Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import io
|
3 |
-
import typing as T
|
4 |
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
@@ -8,36 +8,56 @@ import pydub
|
|
8 |
from scipy.io import wavfile
|
9 |
import torch
|
10 |
import torchaudio
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
return
|
41 |
|
42 |
def spectrogram_from_waveform(
|
43 |
waveform: np.ndarray,
|
@@ -80,28 +100,51 @@ def spectrogram_from_waveform(
|
|
80 |
return Sxx_mag
|
81 |
|
82 |
def image_from_spectrogram(
|
83 |
-
|
|
|
|
|
84 |
) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
"""
|
86 |
-
|
87 |
"""
|
88 |
-
# Apply the power curve
|
89 |
-
data = np.power(spectrogram, power_for_image)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
|
94 |
-
#
|
95 |
-
|
96 |
|
97 |
-
# Convert to
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
#
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
-
#
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
|
106 |
return image
|
107 |
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
import io
|
|
|
4 |
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
|
|
8 |
from scipy.io import wavfile
|
9 |
import torch
|
10 |
import torchaudio
|
11 |
+
import argparse
|
12 |
|
13 |
+
parser = argparse.ArgumentParser()
|
14 |
+
parser.add_argument("-i", "--input", help="Input file to process, anything that FFMPEG supports, but wav and mp3 are recommended")
|
15 |
+
parser.add_argument("-o", "--output", help="Output Image")
|
16 |
+
parser.add_argument("-m", "--maxvol", default=100, help="Max Volume, 255 for identical results")
|
17 |
+
parser.add_argument("-p", "--powerforimage", default=0.25, help="Power for Image")
|
18 |
+
parser.add_argument("-n", "--nmels", default=512, help="n_mels to use for Image, basically width. Higher = more fidelity")
|
19 |
+
args = parser.parse_args()
|
20 |
+
|
21 |
+
def spectrogram_image_from_wav(wav_bytes: io.BytesIO, max_volume: float = 50, power_for_image: float = 0.25, ms_duration: int = 5119) -> Image.Image:
|
22 |
+
"""
|
23 |
+
Generate a spectrogram image from a WAV file.
|
24 |
+
"""
|
25 |
+
# Read WAV file from bytes
|
26 |
+
sample_rate, waveform = wavfile.read(wav_bytes)
|
27 |
+
|
28 |
+
#sample_rate = 44100 # [Hz]
|
29 |
+
clip_duration_ms = ms_duration # [ms]
|
30 |
+
|
31 |
+
bins_per_image = 512
|
32 |
+
n_mels = int(args.nmels)
|
33 |
+
mel_scale = True
|
34 |
+
|
35 |
+
# FFT parameters
|
36 |
+
window_duration_ms = 100 # [ms]
|
37 |
+
padded_duration_ms = 400 # [ms]
|
38 |
+
step_size_ms = 10 # [ms]
|
39 |
+
|
40 |
+
# Derived parameters
|
41 |
+
num_samples = int(512 / float(bins_per_image) * clip_duration_ms) * sample_rate
|
42 |
+
n_fft = int(padded_duration_ms / 1000.0 * sample_rate)
|
43 |
+
hop_length = int(step_size_ms / 1000.0 * sample_rate)
|
44 |
+
win_length = int(window_duration_ms / 1000.0 * sample_rate)
|
45 |
+
|
46 |
+
# Compute spectrogram from waveform
|
47 |
+
Sxx = spectrogram_from_waveform(
|
48 |
+
waveform=waveform,
|
49 |
+
sample_rate=sample_rate,
|
50 |
+
n_fft=n_fft,
|
51 |
+
hop_length=hop_length,
|
52 |
+
win_length=win_length,
|
53 |
+
mel_scale=mel_scale,
|
54 |
+
n_mels=n_mels,
|
55 |
)
|
56 |
|
57 |
+
# Convert spectrogram to image
|
58 |
+
image = image_from_spectrogram(Sxx, max_volume=max_volume, power_for_image=power_for_image)
|
59 |
|
60 |
+
return image
|
61 |
|
62 |
def spectrogram_from_waveform(
|
63 |
waveform: np.ndarray,
|
|
|
100 |
return Sxx_mag
|
101 |
|
102 |
def image_from_spectrogram(
|
103 |
+
data: np.ndarray,
|
104 |
+
max_volume: float = 50,
|
105 |
+
power_for_image: float = 0.25
|
106 |
) -> Image.Image:
|
107 |
+
data = np.power(data, power_for_image)
|
108 |
+
data = data / (max_volume / 255)
|
109 |
+
data = 255 - data
|
110 |
+
data = data[::-1]
|
111 |
+
image = Image.fromarray(data.astype(np.uint8))
|
112 |
+
return image
|
113 |
+
|
114 |
+
def spectrogram_image_from_file(filename, max_volume: float = 50, power_for_image: float = 0.25) -> Image.Image:
|
115 |
"""
|
116 |
+
Generate a spectrogram image from an MP3 file.
|
117 |
"""
|
|
|
|
|
118 |
|
119 |
+
max_volume = int(args.maxvol)
|
120 |
+
power_for_image = float(args.powerforimage)
|
121 |
|
122 |
+
# Load MP3 file into AudioSegment object
|
123 |
+
audio = pydub.AudioSegment.from_file(filename)
|
124 |
|
125 |
+
# Convert to mono and set frame rate
|
126 |
+
audio = audio.set_channels(1)
|
127 |
+
audio = audio.set_frame_rate(44100)
|
128 |
+
|
129 |
+
length_in_ms = len(audio)
|
130 |
+
print("ORIGINAL AUDIO LENGTH IN MS:", length_in_ms)
|
131 |
+
# Extract first 5 seconds of audio data
|
132 |
+
audio = audio[:5119]
|
133 |
+
length_in_ms = len(audio)
|
134 |
+
print("CROPPED AUDIO LENGTH IN MS:", length_in_ms)
|
135 |
|
136 |
+
# Convert to WAV and save as BytesIO object
|
137 |
+
wav_bytes = io.BytesIO()
|
138 |
+
audio.export("clip.wav", format="wav")
|
139 |
+
audio.export(wav_bytes, format="wav")
|
140 |
+
wav_bytes.seek(0)
|
141 |
|
142 |
+
# Generate spectrogram image from WAV file
|
143 |
+
return spectrogram_image_from_wav(wav_bytes, max_volume=max_volume, power_for_image=power_for_image, ms_duration=length_in_ms)
|
144 |
+
|
145 |
+
def convert(audio):
|
146 |
+
|
147 |
+
image = spectrogram_image_from_file(filename)
|
148 |
|
149 |
return image
|
150 |
|