import gradio as gr import io import numpy as np from PIL import Image import pydub from scipy.io import wavfile import torch import torchaudio import argparse parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", help="Input file to process, anything that FFMPEG supports, but wav and mp3 are recommended") parser.add_argument("-o", "--output", help="Output Image") parser.add_argument("-m", "--maxvol", default=100, help="Max Volume, 255 for identical results") parser.add_argument("-p", "--powerforimage", default=0.25, help="Power for Image") parser.add_argument("-n", "--nmels", default=512, help="n_mels to use for Image, basically width. Higher = more fidelity") args = parser.parse_args() def spectrogram_image_from_wav(wav_bytes: io.BytesIO, max_volume: float = 50, power_for_image: float = 0.25, ms_duration: int = 5119) -> Image.Image: """ Generate a spectrogram image from a WAV file. """ # Read WAV file from bytes sample_rate, waveform = wavfile.read(wav_bytes) #sample_rate = 44100 # [Hz] clip_duration_ms = ms_duration # [ms] bins_per_image = 512 n_mels = int(args.nmels) mel_scale = True # FFT parameters window_duration_ms = 100 # [ms] padded_duration_ms = 400 # [ms] step_size_ms = 10 # [ms] # Derived parameters num_samples = int(512 / float(bins_per_image) * clip_duration_ms) * sample_rate n_fft = int(padded_duration_ms / 1000.0 * sample_rate) hop_length = int(step_size_ms / 1000.0 * sample_rate) win_length = int(window_duration_ms / 1000.0 * sample_rate) # Compute spectrogram from waveform Sxx = spectrogram_from_waveform( waveform=waveform, sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, win_length=win_length, mel_scale=mel_scale, n_mels=n_mels, ) # Convert spectrogram to image image = image_from_spectrogram(Sxx, max_volume=max_volume, power_for_image=power_for_image) return image def spectrogram_from_waveform( waveform: np.ndarray, sample_rate: int, n_fft: int, hop_length: int, win_length: int, mel_scale: bool = True, n_mels: int = 512, ) -> np.ndarray: """ Compute a spectrogram from a waveform. """ spectrogram_func = torchaudio.transforms.Spectrogram( n_fft=n_fft, power=None, hop_length=hop_length, win_length=win_length, ) waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1) Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0] Sxx_mag = np.abs(Sxx_complex) if mel_scale: mel_scaler = torchaudio.transforms.MelScale( n_mels=n_mels, sample_rate=sample_rate, f_min=0, f_max=10000, n_stft=n_fft // 2 + 1, norm=None, mel_scale="htk", ) Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy() return Sxx_mag def image_from_spectrogram( data: np.ndarray, max_volume: float = 50, power_for_image: float = 0.25 ) -> Image.Image: data = np.power(data, power_for_image) data = data / (max_volume / 255) data = 255 - data data = data[::-1] image = Image.fromarray(data.astype(np.uint8)) return image def spectrogram_image_from_file(filename, max_volume: float = 50, power_for_image: float = 0.25) -> Image.Image: """ Generate a spectrogram image from an MP3 file. """ max_volume = int(max_volume) power_for_image = float(args.powerforimage) # Load MP3 file into AudioSegment object audio = pydub.AudioSegment.from_file(filename) # Convert to mono and set frame rate audio = audio.set_channels(1) audio = audio.set_frame_rate(44100) length_in_ms = len(audio) print("ORIGINAL AUDIO LENGTH IN MS:", length_in_ms) # Extract first 5 seconds of audio data audio = audio[:5119] length_in_ms = len(audio) print("CROPPED AUDIO LENGTH IN MS:", length_in_ms) # Convert to WAV and save as BytesIO object wav_bytes = io.BytesIO() audio.export("clip.wav", format="wav") audio.export(wav_bytes, format="wav") wav_bytes.seek(0) # Generate spectrogram image from WAV file return spectrogram_image_from_wav(wav_bytes, max_volume=max_volume, power_for_image=power_for_image, ms_duration=length_in_ms) def convert(audio): image = spectrogram_image_from_file(audio, 255) return image gr.Interface(fn=convert, inputs=[gr.Audio(source="upload", type="filepath")], outputs=[gr.Image()]).launch()