File size: 5,420 Bytes
eaa9650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c86bfd
eaa9650
 
 
 
 
 
 
b15e4f3
0c86bfd
cdc2f90
 
 
0579504
cdc2f90
 
 
 
0c86bfd
 
 
 
 
 
 
4a778bd
0c86bfd
 
 
 
 
 
 
 
 
 
13d267c
0579504
0c86bfd
cdc2f90
 
0c86bfd
 
0579504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c86bfd
0579504
 
 
 
 
 
 
 
 
0c86bfd
f112aea
0c86bfd
 
 
 
 
cdc2f90
 
 
fe073ef
 
cdc2f90
 
b216bbe
eaa9650
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from urllib.parse import urlparse
import requests
import time
import os

from utils.gradio_helpers import parse_outputs, process_outputs

names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed']

def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
    headers = {'Content-Type': 'application/json'}

    payload = {"input": {}}
    
    
    base_url = "http://0.0.0.0:7860"
    for i, key in enumerate(names):
        value = args[i]
        if value and (os.path.exists(str(value))):
            value = f"{base_url}/file=" + value
        if value is not None and value != "":
            payload["input"][key] = value

    response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)

    
    if response.status_code == 201:
        follow_up_url = response.json()["urls"]["get"]
        response = requests.get(follow_up_url, headers=headers)
        while response.json()["status"] != "succeeded":
            if response.json()["status"] == "failed":
                raise gr.Error("The submission failed!")
            response = requests.get(follow_up_url, headers=headers)
            time.sleep(1)
    if response.status_code == 200:
        json_response = response.json()
        #If the output component is JSON return the entire output response 
        if(outputs[0].get_config()["name"] == "json"):
            return json_response["output"]
        predict_outputs = parse_outputs(json_response["output"])
        processed_outputs = process_outputs(predict_outputs)        
        return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
    else:
        if(response.status_code == 409):
            raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
        raise gr.Error(f"The submission failed! Error: {response.status_code}")

title = "Demo for consistent-character cog image by fofr"
description = "Create images of a given character in different poses • running cog image by fofr"

css="""
#col-container{
    margin: 0 auto;
    max-width: 1400px;
    text-align: left;
}
"""
with gr.Blocks(css=css) as app:
    with gr.Column(elem_id="col-container"):
        gr.HTML(f"""
        <h2 style="text-align: center;">Consistent Character Workflow</h2>
        <p style="text-align: center;">{description}</p>
        """)

        with gr.Row():
            with gr.Column(scale=1):
                prompt = gr.Textbox(
                    label="Prompt", info='''Describe the subject. Include clothes and hairstyle for more consistency.'''
                )
        
                subject = gr.Image(
                    label="Subject", type="filepath"
                )

                submit_btn = gr.Button("Submit")

                with gr.Accordion(label="Advanced Settings", open=False):
                    
                    negative_prompt = gr.Textbox(
                        label="Negative Prompt", info='''Things you do not want to see in your image''',
                        value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry"
                    )

                    with gr.Row():

                        number_of_outputs = gr.Slider(
                            label="Number Of Outputs", info='''The number of images to generate.''', value=2,
                            minimum=1, maximum=4, step=1,
                        )
                        
                        number_of_images_per_pose = gr.Slider(
                            label="Number Of Images Per Pose", info='''The number of images to generate for each pose.''', value=1,
                            minimum=1, maximum=4, step=1,
                        )

                    with gr.Row():
                        
                        randomise_poses = gr.Checkbox(
                            label="Randomise Poses", info='''Randomise the poses used.''', value=True
                        )
                        
                        output_format = gr.Dropdown(
                            choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
                        )
                    
                    with gr.Row():
                        
                        output_quality = gr.Number(
                            label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=80
                        )
                        
                        seed = gr.Number(
                            label="Seed", info='''Set a seed for reproducibility. Random by default.''', value=None
                        )

            with gr.Column(scale=1.5):
                consistent_results = gr.Gallery(label="Consistent Results")

    inputs = [prompt, negative_prompt, subject, number_of_outputs, number_of_images_per_pose, randomise_poses, output_format, output_quality, seed]
    outputs = [consistent_results]

    submit_btn.click(
        fn = predict,
        inputs = inputs,
        outputs = outputs,
        show_api = False
    )

app.queue(max_size=12, api_open=False).launch(share=False, show_api=False)