# Use an official Python runtime as a parent image FROM python:3.8 # Set up a new user named "user" with user ID 1000 RUN useradd -m -u 1000 user # Switch to the "user" user USER user # Set home to the user's home directory ENV HOME=/home/user \ PATH=/home/user/.local/bin:$PATH # Set the working directory to the user's home directory WORKDIR $HOME/app # Clone your repository or add your code to the container RUN git clone -b dev https://github.com/camenduru/DiffBIR $HOME/app # Install Python dependencies RUN pip install -q einops pytorch_lightning gradio omegaconf xformers==0.0.20 transformers lpips # Install Hugging Face Transformers library RUN pip install transformers # Install Hugging Face Datasets library (if needed) # RUN pip install datasets # Install other dependencies as required # Download checkpoint files using aria2 RUN apt-get update && apt-get install -y aria2 RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt -d $HOME/app/models -o general_full_v1.ckpt RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt -d $HOME/app/models -o general_swinir_v1.ckpt # Expose any necessary ports (if your application requires it) # EXPOSE 80 # Define the command to run your application CMD ["python", "gradio_diffbir.py", "--ckpt", "$HOME/app/models/general_full_v1.ckpt", "--config", "$HOME/app/DiffBIR/configs/model/cldm.yaml", "--reload_swinir", "--swinir_ckpt", "$HOME/app/models/general_swinir_v1.ckpt"]