Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import subprocess | |
from moviepy.editor import VideoFileClip | |
def convert_to_mp4_with_aac(input_path, output_path): | |
# Load the video | |
video = VideoFileClip(input_path) | |
# Set the output format to mp4 with AAC codec | |
video.write_videofile(output_path, codec="libx264", audio_codec="aac") | |
return output_path | |
def load_audio(audio_listed): | |
return f"data/audio/{audio_listed}" | |
def execute_command(command: str) -> None: | |
subprocess.run(command, check=True) | |
def infer(audio_input, image_path, emotional_style): | |
output_name = "lipsynced_result" | |
command = [ | |
f"python", | |
f"inference_for_demo_video.py", | |
f"--wav_path={audio_input}", | |
f"--style_clip_path=data/style_clip/3DMM/{emotional_style}", | |
f"--pose_path=data/pose/RichardShelby_front_neutral_level1_001.mat", | |
f"--image_path={image_path}", | |
f"--cfg_scale=1.0", | |
f"--max_gen_len=30", | |
f"--output_name={output_name}" | |
] | |
execute_command(command) | |
# Convert video to compatible codecs | |
input_file = f"output_video/{output_name}.mp4" | |
output_file = f"{output_name}.mp4" | |
result = convert_to_mp4_with_aac(input_file, output_file) | |
return result | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 940px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(""" | |
<h1 style="text-align: center;">DreamTalk</h1> | |
<h2 style="text-align: center;">When Expressive Talking Head Generation Meets Diffusion Probabilistic Models</h2> | |
<p style="text-align: center;"> | |
DreamTalk is a diffusion-based audio-driven expressive talking head generation framework that can produce high-quality talking head videos across diverse speaking styles. <br /> | |
DreamTalk exhibits robust performance with a diverse array of inputs, including songs, speech in multiple languages, noisy audio, and out-of-domain portraits. | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_path = gr.Image(label="Image", type="filepath", sources=["upload"]) | |
audio_input = gr.Audio(label="Audio input", type="filepath", sources=["upload"], value="data/audio/acknowledgement_english.m4a") | |
with gr.Row(): | |
audio_list = gr.Dropdown( | |
label="Choose an audio (optional)", | |
choices=[ | |
"German1.wav", "German2.wav", "German3.wav", "German4.wav", | |
"acknowledgement_chinese.m4a", "acknowledgement_english.m4a", | |
"chinese1_haierlizhi.wav", "chinese2_guanyu.wav", | |
"french1.wav", "french2.wav", "french3.wav", | |
"italian1.wav", "italian2.wav", "italian3.wav", | |
"japan1.wav", "japan2.wav", "japan3.wav", | |
"korean1.wav", "korean2.wav", "korean3.wav", | |
"noisy_audio_cafeter_snr_0.wav", "noisy_audio_meeting_snr_0.wav", "noisy_audio_meeting_snr_10.wav", "noisy_audio_meeting_snr_20.wav", "noisy_audio_narrative.wav", "noisy_audio_office_snr_0.wav", "out_of_domain_narrative.wav", | |
"spanish1.wav", "spanish2.wav", "spanish3.wav" | |
], | |
value = "acknowledgement_english.m4a" | |
) | |
audio_list.change( | |
fn = load_audio, | |
inputs = [audio_list], | |
outputs = [audio_input] | |
) | |
emotional_style = gr.Dropdown( | |
label = "emotional style", | |
choices = [ | |
"M030_front_angry_level3_001.mat", | |
"M030_front_contempt_level3_001.mat", | |
"M030_front_disgusted_level3_001.mat", | |
"M030_front_fear_level3_001.mat", | |
"M030_front_happy_level3_001.mat", | |
"M030_front_neutral_level1_001.mat", | |
"M030_front_sad_level3_001.mat", | |
"M030_front_surprised_level3_001.mat", | |
"W009_front_angry_level3_001.mat", | |
"W009_front_contempt_level3_001.mat", | |
"W009_front_disgusted_level3_001.mat", | |
"W009_front_fear_level3_001.mat", | |
"W009_front_happy_level3_001.mat", | |
"W009_front_neutral_level1_001.mat", | |
"W009_front_sad_level3_001.mat", | |
"W009_front_surprised_level3_001.mat", | |
"W011_front_angry_level3_001.mat", | |
"W011_front_contempt_level3_001.mat", | |
"W011_front_disgusted_level3_001.mat", | |
"W011_front_fear_level3_001.mat", | |
"W011_front_happy_level3_001.mat", | |
"W011_front_neutral_level1_001.mat", | |
"W011_front_sad_level3_001.mat", | |
"W011_front_surprised_level3_001.mat" | |
], | |
value = "M030_front_neutral_level1_001.mat" | |
) | |
gr.Examples( | |
examples = [ | |
"data/src_img/uncropped/face3.png", | |
"data/src_img/uncropped/male_face.png", | |
"data/src_img/uncropped/uncut_src_img.jpg", | |
"data/src_img/cropped/chpa5.png", | |
"data/src_img/cropped/cut_img.png", | |
"data/src_img/cropped/f30.png", | |
"data/src_img/cropped/menglu2.png", | |
"data/src_img/cropped/nscu2.png", | |
"data/src_img/cropped/zp1.png", | |
"data/src_img/cropped/zt12.png" | |
], | |
inputs=[image_path], | |
examples_per_page=5 | |
) | |
run_btn = gr.Button("Run") | |
with gr.Column(): | |
output_video = gr.Video(format="mp4") | |
gr.HTML(""" | |
<img src="https://github.com/ali-vilab/dreamtalk/raw/main/media/teaser.gif" style="margin: 0 auto;border-radius: 10px;" /> | |
""") | |
run_btn.click( | |
fn = infer, | |
inputs = [audio_input, image_path, emotional_style], | |
outputs = [output_video] | |
) | |
demo.queue().launch() |