File size: 7,752 Bytes
7fb6157
 
391222d
7fb6157
 
 
 
 
e7d2d44
c09190f
 
 
 
 
391222d
6c0447a
 
 
7c7eec0
 
391222d
c09190f
 
9129aed
 
 
1bd1938
36960e6
7c7eec0
5185154
36960e6
3f72ed6
9129aed
 
26beae3
10bb51b
391222d
9129aed
 
7fb6157
 
6c0447a
734997b
 
 
 
 
 
3f72ed6
 
7893b18
734997b
 
 
 
2a4cc4c
734997b
e7e1117
00a9fa5
09e56af
38d399f
30800e2
38d399f
5431daf
bdf739a
 
 
 
93395b5
30800e2
bdf739a
 
 
 
 
 
0cdafe9
bdf739a
892410c
bdf739a
892410c
 
6c0447a
1bd1938
 
7fb6157
 
 
 
 
 
 
 
 
1bd1938
7fb6157
 
 
 
1019525
 
cd6f6d9
7fb6157
 
 
 
 
 
 
 
 
9129aed
7fb6157
 
1bd1938
7fb6157
 
 
 
 
 
 
 
c09190f
 
 
 
 
 
 
 
 
 
 
 
 
7fb6157
391222d
0ac1d72
 
 
 
 
c5bd206
0ac1d72
 
064b63f
439e8e0
03d90ab
439e8e0
 
064b63f
 
 
 
 
 
559bd0e
0ac1d72
 
 
03e0e2d
7fb6157
c819c3d
7fb6157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade087a
e5b0363
2500455
b578325
e5b0363
 
 
 
faf112e
92ac6d6
c819c3d
 
 
 
 
e0dcf65
0ac1d72
 
c819c3d
b578325
7fb6157
391222d
54b4948
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import time
import base64
import gradio as gr
from sentence_transformers import SentenceTransformer

import httpx
import json

import os
import requests
import urllib

from os import path
from pydub import AudioSegment

MUBERT_LICENSE = os.environ.get('MUBERT_LICENSE')
MUBERT_TOKEN = os.environ.get('MUBERT_TOKEN')

#img_to_text = gr.Blocks.load(name="spaces/pharma/CLIP-Interrogator")
img_to_text = gr.Blocks.load(name="spaces/fffiloni/CLIP-Interrogator-2")

from share_btn import community_icon_html, loading_icon_html, share_js

minilm = SentenceTransformer('all-MiniLM-L6-v2')
mubert_tags_embeddings = get_mubert_tags_embeddings(minilm)

def get_prompts(uploaded_image, track_duration, gen_intensity, gen_mode):
  print("calling clip interrogator")
  #prompt = img_to_text(uploaded_image, "ViT-L (best for Stable Diffusion 1.*)", "fast", fn_index=1)[0]
  prompt = img_to_text(uploaded_image, 'fast', 4, fn_index=1)[0]
  print(prompt)
  pat = get_pat_token()
  #music_result = get_music(pat, prompt, track_duration, gen_intensity, gen_mode)
  music_result = generate_track_by_prompt(pat, prompt, track_duration, gen_intensity, gen_mode)
  #print(pat)
  return music_result, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

from utils import get_tags_for_prompts, get_mubert_tags_embedding



def get_pat_token():
    r = httpx.post('https://api-b2b.mubert.com/v2/GetServiceAccess',
                   json={
                       "method": "GetServiceAccess",
                       "params": {
                           "email":"mail@mail.com",
                           "phone":"+11234567890",
                           "license": MUBERT_LICENSE,
                           "token": MUBERT_TOKEN,
                           
                       }
                   })

    rdata = json.loads(r.text)
    #print(rdata)
    #assert rdata['status'] == 1, "probably incorrect e-mail"
    #pat = rdata['data']['pat']
    print(rdata['data']['pat'])
    return rdata['data']['pat'] 

def get_music(pat, prompt, track_duration, gen_intensity, gen_mode):
    
    r = httpx.post('https://api-b2b.mubert.com/v2/TTMRecordTrack',
                   json={
                       "method": "TTMRecordTrack",
                       "params":
                           {
                                "text":"jazz music",
                                "pat": pat,
                                "mode":"track",
                                "duration":track_duration, 
                           }
    })

    rdata = json.loads(r.text)
    print(rdata['data']['tasks'][0]['download_link'])
    #assert rdata['status'] == 1, "probably incorrect e-mail"
    #track = rdata['data']['tasks']['download_link']

    #print(track)
    return "done"
    
def get_track_by_tags(tags, pat, duration, gen_intensity, gen_mode, maxit=20):
    
    r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM',
                   json={
                       "method": "RecordTrackTTM",
                       "params": {
                           "pat": pat,
                           "duration": duration,
                           "format": "wav",
                           "intensity":gen_intensity,
                           "tags": tags,
                           "mode": gen_mode
                       }
                   })

    rdata = json.loads(r.text)
    print(rdata)
    #assert rdata['status'] == 1, rdata['error']['text']
    trackurl = rdata['data']['tasks'][0]

    print('Generating track ', end='')
    for i in range(maxit):
        r = httpx.get(trackurl)
        if r.status_code == 200:
            return trackurl
        time.sleep(1)


def generate_track_by_prompt(pat, prompt, duration, gen_intensity, gen_mode):
    try:
        _, tags = get_tags_for_prompts(minilm, mubert_tags_embeddings, [prompt, ])[0]
        result = get_track_by_tags(tags, pat, int(duration), gen_intensity, gen_mode)
        print(result)
        return result, ",".join(tags), "Success"
    except Exception as e:
        return None, "", str(e)

def convert_mp3_to_wav(mp3_filepath):
 
  url = mp3_filepath
  save_as = "file.mp3"
  
  data = urllib.request.urlopen(url)

  f = open(save_as,'wb')
  f.write(data.read())
  f.close()
  
  wave_file="file.wav"
  
  sound = AudioSegment.from_mp3(save_as)
  sound.export(wave_file, format="wav")
  
  return wave_file

article = """
    
    <div class="footer">
        <p>
         
        Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates πŸ€—
        </p>
    </div>
    
    <div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;">
        <p style="font-size: 0.8em;margin-bottom: 4px;">You may also like: </p>
        <div id="may-like" style="display: flex;flex-wrap: wrap;align-items: center;height: 20px;">
            <svg height="20" width="122" style="margin-left:4px;margin-bottom: 6px;">       
                 <a href="https://huggingface.co/spaces/fffiloni/spectrogram-to-music" target="_blank">
                    <image href="https://img.shields.io/badge/πŸ€— Spaces-Riffusion-blue" src="https://img.shields.io/badge/πŸ€— Spaces-Riffusion-blue.png" height="20"/>
                 </a>
            </svg>
        </div>
    </div>

    
"""

with gr.Blocks(css="style.css") as demo:
    with gr.Column(elem_id="col-container"):
        
        gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
                <div
                style="
                    display: inline-flex;
                    align-items: center;
                    gap: 0.8rem;
                    font-size: 1.75rem;
                "
                >
                <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
                    Image to Music
                </h1>
                </div>
                <p style="margin-bottom: 10px; font-size: 94%">
                Sends an image in to <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator" target="_blank">CLIP Interrogator</a>
                to generate a text prompt which is then run through 
                <a href="https://huggingface.co/Mubert" target="_blank">Mubert</a> text-to-music to generate music from the input image!
                </p>
            </div>""")
    
        input_img = gr.Image(type="filepath", elem_id="input-img")
        music_output = gr.Audio(label="Result", type="filepath", elem_id="music-output").style(height="5rem")
        text_status = gr.Textbox(label="status")
        with gr.Group(elem_id="share-btn-container"):
            community_icon = gr.HTML(community_icon_html, visible=False)
            loading_icon = gr.HTML(loading_icon_html, visible=False)
            share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)

        with gr.Accordion(label="Music Generation Options", open=False):
            track_duration = gr.Slider(minimum=20, maximum=120, value=30, step=5, label="Track duration", elem_id="duration-inp")
            with gr.Row():
                gen_intensity = gr.Dropdown(choices=["low", "medium", "high"], value="medium", label="Intensity")
                gen_mode = gr.Radio(label="mode", choices=["track", "loop"], value="track")
        
        generate = gr.Button("Generate Music from Image")

        gr.HTML(article)
    
    generate.click(get_prompts, inputs=[input_img,track_duration,gen_intensity,gen_mode], outputs=[text_status, share_button, community_icon, loading_icon], api_name="i2m")
    share_button.click(None, [], [], _js=share_js)

demo.queue(max_size=32, concurrency_count=20).launch()