File size: 13,165 Bytes
24eb05d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import glob
import logging
import os
import random

import albumentations as A
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import webdataset
from omegaconf import open_dict, OmegaConf
from skimage.feature import canny
from skimage.transform import rescale, resize
from torch.utils.data import Dataset, IterableDataset, DataLoader, DistributedSampler, ConcatDataset

from saicinpainting.evaluation.data import InpaintingDataset as InpaintingEvaluationDataset, \
    OurInpaintingDataset as OurInpaintingEvaluationDataset, ceil_modulo, InpaintingEvalOnlineDataset
from saicinpainting.training.data.aug import IAAAffine2, IAAPerspective2
from saicinpainting.training.data.masks import get_mask_generator

LOGGER = logging.getLogger(__name__)


class InpaintingTrainDataset(Dataset):
    def __init__(self, indir, mask_generator, transform):
        self.in_files = list(glob.glob(os.path.join(indir, '**', '*.jpg'), recursive=True))
        self.mask_generator = mask_generator
        self.transform = transform
        self.iter_i = 0

    def __len__(self):
        return len(self.in_files)

    def __getitem__(self, item):
        path = self.in_files[item]
        img = cv2.imread(path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = self.transform(image=img)['image']
        img = np.transpose(img, (2, 0, 1))
        # TODO: maybe generate mask before augmentations? slower, but better for segmentation-based masks
        mask = self.mask_generator(img, iter_i=self.iter_i)
        self.iter_i += 1
        return dict(image=img,
                    mask=mask)


class InpaintingTrainWebDataset(IterableDataset):
    def __init__(self, indir, mask_generator, transform, shuffle_buffer=200):
        self.impl = webdataset.Dataset(indir).shuffle(shuffle_buffer).decode('rgb').to_tuple('jpg')
        self.mask_generator = mask_generator
        self.transform = transform

    def __iter__(self):
        for iter_i, (img,) in enumerate(self.impl):
            img = np.clip(img * 255, 0, 255).astype('uint8')
            img = self.transform(image=img)['image']
            img = np.transpose(img, (2, 0, 1))
            mask = self.mask_generator(img, iter_i=iter_i)
            yield dict(image=img,
                       mask=mask)


class ImgSegmentationDataset(Dataset):
    def __init__(self, indir, mask_generator, transform, out_size, segm_indir, semantic_seg_n_classes):
        self.indir = indir
        self.segm_indir = segm_indir
        self.mask_generator = mask_generator
        self.transform = transform
        self.out_size = out_size
        self.semantic_seg_n_classes = semantic_seg_n_classes
        self.in_files = list(glob.glob(os.path.join(indir, '**', '*.jpg'), recursive=True))

    def __len__(self):
        return len(self.in_files)

    def __getitem__(self, item):
        path = self.in_files[item]
        img = cv2.imread(path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (self.out_size, self.out_size))
        img = self.transform(image=img)['image']
        img = np.transpose(img, (2, 0, 1))
        mask = self.mask_generator(img)
        segm, segm_classes= self.load_semantic_segm(path)
        result = dict(image=img,
                      mask=mask,
                      segm=segm,
                      segm_classes=segm_classes)
        return result

    def load_semantic_segm(self, img_path):
        segm_path = img_path.replace(self.indir, self.segm_indir).replace(".jpg", ".png")
        mask = cv2.imread(segm_path, cv2.IMREAD_GRAYSCALE)
        mask = cv2.resize(mask, (self.out_size, self.out_size))
        tensor = torch.from_numpy(np.clip(mask.astype(int)-1, 0, None))
        ohe = F.one_hot(tensor.long(), num_classes=self.semantic_seg_n_classes) # w x h x n_classes
        return ohe.permute(2, 0, 1).float(), tensor.unsqueeze(0)


def get_transforms(transform_variant, out_size):
    if transform_variant == 'default':
        transform = A.Compose([
            A.RandomScale(scale_limit=0.2),  # +/- 20%
            A.PadIfNeeded(min_height=out_size, min_width=out_size),
            A.RandomCrop(height=out_size, width=out_size),
            A.HorizontalFlip(),
            A.CLAHE(),
            A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
            A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
            A.ToFloat()
        ])
    elif transform_variant == 'distortions':
        transform = A.Compose([
            IAAPerspective2(scale=(0.0, 0.06)),
            IAAAffine2(scale=(0.7, 1.3),
                       rotate=(-40, 40),
                       shear=(-0.1, 0.1)),
            A.PadIfNeeded(min_height=out_size, min_width=out_size),
            A.OpticalDistortion(),
            A.RandomCrop(height=out_size, width=out_size),
            A.HorizontalFlip(),
            A.CLAHE(),
            A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
            A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
            A.ToFloat()
        ])
    elif transform_variant == 'distortions_scale05_1':
        transform = A.Compose([
            IAAPerspective2(scale=(0.0, 0.06)),
            IAAAffine2(scale=(0.5, 1.0),
                       rotate=(-40, 40),
                       shear=(-0.1, 0.1),
                       p=1),
            A.PadIfNeeded(min_height=out_size, min_width=out_size),
            A.OpticalDistortion(),
            A.RandomCrop(height=out_size, width=out_size),
            A.HorizontalFlip(),
            A.CLAHE(),
            A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
            A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
            A.ToFloat()
        ])
    elif transform_variant == 'distortions_scale03_12':
        transform = A.Compose([
            IAAPerspective2(scale=(0.0, 0.06)),
            IAAAffine2(scale=(0.3, 1.2),
                       rotate=(-40, 40),
                       shear=(-0.1, 0.1),
                       p=1),
            A.PadIfNeeded(min_height=out_size, min_width=out_size),
            A.OpticalDistortion(),
            A.RandomCrop(height=out_size, width=out_size),
            A.HorizontalFlip(),
            A.CLAHE(),
            A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
            A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
            A.ToFloat()
        ])
    elif transform_variant == 'distortions_scale03_07':
        transform = A.Compose([
            IAAPerspective2(scale=(0.0, 0.06)),
            IAAAffine2(scale=(0.3, 0.7),  # scale 512 to 256 in average
                       rotate=(-40, 40),
                       shear=(-0.1, 0.1),
                       p=1),
            A.PadIfNeeded(min_height=out_size, min_width=out_size),
            A.OpticalDistortion(),
            A.RandomCrop(height=out_size, width=out_size),
            A.HorizontalFlip(),
            A.CLAHE(),
            A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
            A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
            A.ToFloat()
        ])
    elif transform_variant == 'distortions_light':
        transform = A.Compose([
            IAAPerspective2(scale=(0.0, 0.02)),
            IAAAffine2(scale=(0.8, 1.8),
                       rotate=(-20, 20),
                       shear=(-0.03, 0.03)),
            A.PadIfNeeded(min_height=out_size, min_width=out_size),
            A.RandomCrop(height=out_size, width=out_size),
            A.HorizontalFlip(),
            A.CLAHE(),
            A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
            A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
            A.ToFloat()
        ])
    elif transform_variant == 'non_space_transform':
        transform = A.Compose([
            A.CLAHE(),
            A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
            A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
            A.ToFloat()
        ])
    elif transform_variant == 'no_augs':
        transform = A.Compose([
            A.ToFloat()
        ])
    else:
        raise ValueError(f'Unexpected transform_variant {transform_variant}')
    return transform


def make_default_train_dataloader(indir, kind='default', out_size=512, mask_gen_kwargs=None, transform_variant='default',
                                  mask_generator_kind="mixed", dataloader_kwargs=None, ddp_kwargs=None, **kwargs):
    LOGGER.info(f'Make train dataloader {kind} from {indir}. Using mask generator={mask_generator_kind}')

    mask_generator = get_mask_generator(kind=mask_generator_kind, kwargs=mask_gen_kwargs)
    transform = get_transforms(transform_variant, out_size)

    if kind == 'default':
        dataset = InpaintingTrainDataset(indir=indir,
                                         mask_generator=mask_generator,
                                         transform=transform,
                                         **kwargs)
    elif kind == 'default_web':
        dataset = InpaintingTrainWebDataset(indir=indir,
                                            mask_generator=mask_generator,
                                            transform=transform,
                                            **kwargs)
    elif kind == 'img_with_segm':
        dataset = ImgSegmentationDataset(indir=indir,
                                         mask_generator=mask_generator,
                                         transform=transform,
                                         out_size=out_size,
                                         **kwargs)
    else:
        raise ValueError(f'Unknown train dataset kind {kind}')

    if dataloader_kwargs is None:
        dataloader_kwargs = {}

    is_dataset_only_iterable = kind in ('default_web',)

    if ddp_kwargs is not None and not is_dataset_only_iterable:
        dataloader_kwargs['shuffle'] = False
        dataloader_kwargs['sampler'] = DistributedSampler(dataset, **ddp_kwargs)

    if is_dataset_only_iterable and 'shuffle' in dataloader_kwargs:
        with open_dict(dataloader_kwargs):
            del dataloader_kwargs['shuffle']

    dataloader = DataLoader(dataset, **dataloader_kwargs)
    return dataloader


def make_default_val_dataset(indir, kind='default', out_size=512, transform_variant='default', **kwargs):
    if OmegaConf.is_list(indir) or isinstance(indir, (tuple, list)):
        return ConcatDataset([
            make_default_val_dataset(idir, kind=kind, out_size=out_size, transform_variant=transform_variant, **kwargs) for idir in indir 
        ])

    LOGGER.info(f'Make val dataloader {kind} from {indir}')
    mask_generator = get_mask_generator(kind=kwargs.get("mask_generator_kind"), kwargs=kwargs.get("mask_gen_kwargs"))

    if transform_variant is not None:
        transform = get_transforms(transform_variant, out_size)

    if kind == 'default':
        dataset = InpaintingEvaluationDataset(indir, **kwargs)
    elif kind == 'our_eval':
        dataset = OurInpaintingEvaluationDataset(indir, **kwargs)
    elif kind == 'img_with_segm':
        dataset = ImgSegmentationDataset(indir=indir,
                                         mask_generator=mask_generator,
                                         transform=transform,
                                         out_size=out_size,
                                         **kwargs)
    elif kind == 'online':
        dataset = InpaintingEvalOnlineDataset(indir=indir,
                                              mask_generator=mask_generator,
                                              transform=transform,
                                              out_size=out_size,
                                              **kwargs)
    else:
        raise ValueError(f'Unknown val dataset kind {kind}')

    return dataset


def make_default_val_dataloader(*args, dataloader_kwargs=None, **kwargs):
    dataset = make_default_val_dataset(*args, **kwargs)

    if dataloader_kwargs is None:
        dataloader_kwargs = {}
    dataloader = DataLoader(dataset, **dataloader_kwargs)
    return dataloader


def make_constant_area_crop_params(img_height, img_width, min_size=128, max_size=512, area=256*256, round_to_mod=16):
    min_size = min(img_height, img_width, min_size)
    max_size = min(img_height, img_width, max_size)
    if random.random() < 0.5:
        out_height = min(max_size, ceil_modulo(random.randint(min_size, max_size), round_to_mod))
        out_width = min(max_size, ceil_modulo(area // out_height, round_to_mod))
    else:
        out_width = min(max_size, ceil_modulo(random.randint(min_size, max_size), round_to_mod))
        out_height = min(max_size, ceil_modulo(area // out_width, round_to_mod))

    start_y = random.randint(0, img_height - out_height)
    start_x = random.randint(0, img_width - out_width)
    return (start_y, start_x, out_height, out_width)