Spaces:
Build error
Build error
File size: 13,165 Bytes
24eb05d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import glob
import logging
import os
import random
import albumentations as A
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import webdataset
from omegaconf import open_dict, OmegaConf
from skimage.feature import canny
from skimage.transform import rescale, resize
from torch.utils.data import Dataset, IterableDataset, DataLoader, DistributedSampler, ConcatDataset
from saicinpainting.evaluation.data import InpaintingDataset as InpaintingEvaluationDataset, \
OurInpaintingDataset as OurInpaintingEvaluationDataset, ceil_modulo, InpaintingEvalOnlineDataset
from saicinpainting.training.data.aug import IAAAffine2, IAAPerspective2
from saicinpainting.training.data.masks import get_mask_generator
LOGGER = logging.getLogger(__name__)
class InpaintingTrainDataset(Dataset):
def __init__(self, indir, mask_generator, transform):
self.in_files = list(glob.glob(os.path.join(indir, '**', '*.jpg'), recursive=True))
self.mask_generator = mask_generator
self.transform = transform
self.iter_i = 0
def __len__(self):
return len(self.in_files)
def __getitem__(self, item):
path = self.in_files[item]
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = self.transform(image=img)['image']
img = np.transpose(img, (2, 0, 1))
# TODO: maybe generate mask before augmentations? slower, but better for segmentation-based masks
mask = self.mask_generator(img, iter_i=self.iter_i)
self.iter_i += 1
return dict(image=img,
mask=mask)
class InpaintingTrainWebDataset(IterableDataset):
def __init__(self, indir, mask_generator, transform, shuffle_buffer=200):
self.impl = webdataset.Dataset(indir).shuffle(shuffle_buffer).decode('rgb').to_tuple('jpg')
self.mask_generator = mask_generator
self.transform = transform
def __iter__(self):
for iter_i, (img,) in enumerate(self.impl):
img = np.clip(img * 255, 0, 255).astype('uint8')
img = self.transform(image=img)['image']
img = np.transpose(img, (2, 0, 1))
mask = self.mask_generator(img, iter_i=iter_i)
yield dict(image=img,
mask=mask)
class ImgSegmentationDataset(Dataset):
def __init__(self, indir, mask_generator, transform, out_size, segm_indir, semantic_seg_n_classes):
self.indir = indir
self.segm_indir = segm_indir
self.mask_generator = mask_generator
self.transform = transform
self.out_size = out_size
self.semantic_seg_n_classes = semantic_seg_n_classes
self.in_files = list(glob.glob(os.path.join(indir, '**', '*.jpg'), recursive=True))
def __len__(self):
return len(self.in_files)
def __getitem__(self, item):
path = self.in_files[item]
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (self.out_size, self.out_size))
img = self.transform(image=img)['image']
img = np.transpose(img, (2, 0, 1))
mask = self.mask_generator(img)
segm, segm_classes= self.load_semantic_segm(path)
result = dict(image=img,
mask=mask,
segm=segm,
segm_classes=segm_classes)
return result
def load_semantic_segm(self, img_path):
segm_path = img_path.replace(self.indir, self.segm_indir).replace(".jpg", ".png")
mask = cv2.imread(segm_path, cv2.IMREAD_GRAYSCALE)
mask = cv2.resize(mask, (self.out_size, self.out_size))
tensor = torch.from_numpy(np.clip(mask.astype(int)-1, 0, None))
ohe = F.one_hot(tensor.long(), num_classes=self.semantic_seg_n_classes) # w x h x n_classes
return ohe.permute(2, 0, 1).float(), tensor.unsqueeze(0)
def get_transforms(transform_variant, out_size):
if transform_variant == 'default':
transform = A.Compose([
A.RandomScale(scale_limit=0.2), # +/- 20%
A.PadIfNeeded(min_height=out_size, min_width=out_size),
A.RandomCrop(height=out_size, width=out_size),
A.HorizontalFlip(),
A.CLAHE(),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
A.ToFloat()
])
elif transform_variant == 'distortions':
transform = A.Compose([
IAAPerspective2(scale=(0.0, 0.06)),
IAAAffine2(scale=(0.7, 1.3),
rotate=(-40, 40),
shear=(-0.1, 0.1)),
A.PadIfNeeded(min_height=out_size, min_width=out_size),
A.OpticalDistortion(),
A.RandomCrop(height=out_size, width=out_size),
A.HorizontalFlip(),
A.CLAHE(),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
A.ToFloat()
])
elif transform_variant == 'distortions_scale05_1':
transform = A.Compose([
IAAPerspective2(scale=(0.0, 0.06)),
IAAAffine2(scale=(0.5, 1.0),
rotate=(-40, 40),
shear=(-0.1, 0.1),
p=1),
A.PadIfNeeded(min_height=out_size, min_width=out_size),
A.OpticalDistortion(),
A.RandomCrop(height=out_size, width=out_size),
A.HorizontalFlip(),
A.CLAHE(),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
A.ToFloat()
])
elif transform_variant == 'distortions_scale03_12':
transform = A.Compose([
IAAPerspective2(scale=(0.0, 0.06)),
IAAAffine2(scale=(0.3, 1.2),
rotate=(-40, 40),
shear=(-0.1, 0.1),
p=1),
A.PadIfNeeded(min_height=out_size, min_width=out_size),
A.OpticalDistortion(),
A.RandomCrop(height=out_size, width=out_size),
A.HorizontalFlip(),
A.CLAHE(),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
A.ToFloat()
])
elif transform_variant == 'distortions_scale03_07':
transform = A.Compose([
IAAPerspective2(scale=(0.0, 0.06)),
IAAAffine2(scale=(0.3, 0.7), # scale 512 to 256 in average
rotate=(-40, 40),
shear=(-0.1, 0.1),
p=1),
A.PadIfNeeded(min_height=out_size, min_width=out_size),
A.OpticalDistortion(),
A.RandomCrop(height=out_size, width=out_size),
A.HorizontalFlip(),
A.CLAHE(),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
A.ToFloat()
])
elif transform_variant == 'distortions_light':
transform = A.Compose([
IAAPerspective2(scale=(0.0, 0.02)),
IAAAffine2(scale=(0.8, 1.8),
rotate=(-20, 20),
shear=(-0.03, 0.03)),
A.PadIfNeeded(min_height=out_size, min_width=out_size),
A.RandomCrop(height=out_size, width=out_size),
A.HorizontalFlip(),
A.CLAHE(),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
A.ToFloat()
])
elif transform_variant == 'non_space_transform':
transform = A.Compose([
A.CLAHE(),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
A.ToFloat()
])
elif transform_variant == 'no_augs':
transform = A.Compose([
A.ToFloat()
])
else:
raise ValueError(f'Unexpected transform_variant {transform_variant}')
return transform
def make_default_train_dataloader(indir, kind='default', out_size=512, mask_gen_kwargs=None, transform_variant='default',
mask_generator_kind="mixed", dataloader_kwargs=None, ddp_kwargs=None, **kwargs):
LOGGER.info(f'Make train dataloader {kind} from {indir}. Using mask generator={mask_generator_kind}')
mask_generator = get_mask_generator(kind=mask_generator_kind, kwargs=mask_gen_kwargs)
transform = get_transforms(transform_variant, out_size)
if kind == 'default':
dataset = InpaintingTrainDataset(indir=indir,
mask_generator=mask_generator,
transform=transform,
**kwargs)
elif kind == 'default_web':
dataset = InpaintingTrainWebDataset(indir=indir,
mask_generator=mask_generator,
transform=transform,
**kwargs)
elif kind == 'img_with_segm':
dataset = ImgSegmentationDataset(indir=indir,
mask_generator=mask_generator,
transform=transform,
out_size=out_size,
**kwargs)
else:
raise ValueError(f'Unknown train dataset kind {kind}')
if dataloader_kwargs is None:
dataloader_kwargs = {}
is_dataset_only_iterable = kind in ('default_web',)
if ddp_kwargs is not None and not is_dataset_only_iterable:
dataloader_kwargs['shuffle'] = False
dataloader_kwargs['sampler'] = DistributedSampler(dataset, **ddp_kwargs)
if is_dataset_only_iterable and 'shuffle' in dataloader_kwargs:
with open_dict(dataloader_kwargs):
del dataloader_kwargs['shuffle']
dataloader = DataLoader(dataset, **dataloader_kwargs)
return dataloader
def make_default_val_dataset(indir, kind='default', out_size=512, transform_variant='default', **kwargs):
if OmegaConf.is_list(indir) or isinstance(indir, (tuple, list)):
return ConcatDataset([
make_default_val_dataset(idir, kind=kind, out_size=out_size, transform_variant=transform_variant, **kwargs) for idir in indir
])
LOGGER.info(f'Make val dataloader {kind} from {indir}')
mask_generator = get_mask_generator(kind=kwargs.get("mask_generator_kind"), kwargs=kwargs.get("mask_gen_kwargs"))
if transform_variant is not None:
transform = get_transforms(transform_variant, out_size)
if kind == 'default':
dataset = InpaintingEvaluationDataset(indir, **kwargs)
elif kind == 'our_eval':
dataset = OurInpaintingEvaluationDataset(indir, **kwargs)
elif kind == 'img_with_segm':
dataset = ImgSegmentationDataset(indir=indir,
mask_generator=mask_generator,
transform=transform,
out_size=out_size,
**kwargs)
elif kind == 'online':
dataset = InpaintingEvalOnlineDataset(indir=indir,
mask_generator=mask_generator,
transform=transform,
out_size=out_size,
**kwargs)
else:
raise ValueError(f'Unknown val dataset kind {kind}')
return dataset
def make_default_val_dataloader(*args, dataloader_kwargs=None, **kwargs):
dataset = make_default_val_dataset(*args, **kwargs)
if dataloader_kwargs is None:
dataloader_kwargs = {}
dataloader = DataLoader(dataset, **dataloader_kwargs)
return dataloader
def make_constant_area_crop_params(img_height, img_width, min_size=128, max_size=512, area=256*256, round_to_mod=16):
min_size = min(img_height, img_width, min_size)
max_size = min(img_height, img_width, max_size)
if random.random() < 0.5:
out_height = min(max_size, ceil_modulo(random.randint(min_size, max_size), round_to_mod))
out_width = min(max_size, ceil_modulo(area // out_height, round_to_mod))
else:
out_width = min(max_size, ceil_modulo(random.randint(min_size, max_size), round_to_mod))
out_height = min(max_size, ceil_modulo(area // out_width, round_to_mod))
start_y = random.randint(0, img_height - out_height)
start_x = random.randint(0, img_width - out_width)
return (start_y, start_x, out_height, out_width)
|