Spaces:
Sleeping
Sleeping
File size: 6,017 Bytes
7453da0 c657020 540056e e8fd75c 5301c9c 540056e 5301c9c e8fd75c 540056e d6695b2 e8fd75c 540056e 5301c9c a2c09c5 5301c9c a15b3ce 99bd104 c657020 5e6dba7 c657020 a15b3ce bf18300 a15b3ce bf18300 a15b3ce bf18300 a15b3ce bf18300 540056e 80aa4e5 508045d 455006b 05d65fa 43a6e4c 72f0d04 9375fef 318d728 bb80675 72f0d04 b8b8031 9375fef b8b8031 bb80675 72f0d04 455006b efc72c4 508045d fc0768e 508045d 540056e 09d059c 540056e e8fd75c f7b9ef5 e8fd75c 20fea69 508045d e8fd75c 508045d 80aa4e5 e8fd75c 5bddbaf 508045d 23bb5b3 b9bed89 9375fef b9bed89 23bb5b3 b9bed89 776a974 5bddbaf 09d059c 5bddbaf 776a974 5bddbaf c6466be 776a974 306eb01 e0b6034 a2c4d07 306eb01 5bddbaf 306eb01 b9bed89 5bddbaf b9bed89 17ba671 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import json
from gradio_client import Client
#fusecap_client = Client("https://noamrot-fusecap-image-captioning.hf.space/")
#fuyu_client = Client("https://adept-fuyu-8b-demo.hf.space/")
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
def get_caption(image_in):
"""
fuyu_result = fuyu_client.predict(
image_in, # str representing input in 'raw_image' Image component
True, # bool in 'Enable detailed captioning' Checkbox component
fn_index=2
)
"""
kosmos2_result = kosmos2_client.predict(
image_in, # str (filepath or URL to image) in 'Test Image' Image component
"Detailed", # str in 'Description Type' Radio component
fn_index=4
)
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
with open(kosmos2_result[1], 'r') as f:
data = json.load(f)
reconstructed_sentence = []
for sublist in data:
reconstructed_sentence.append(sublist[0])
full_sentence = ' '.join(reconstructed_sentence)
print(full_sentence)
# Find the last occurrence of "."
#last_period_index = full_sentence.rfind('.')
# Truncate the string up to the last period
#truncated_caption = full_sentence[:last_period_index + 1]
# print(truncated_caption)
#print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
return full_sentence
import re
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
agent_maker_sys = f"""
You are an AI whose job is to help users create their own chatbot whose personality will reflect the character or scene from an image described by users.
In particular, you need to respond succintly in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. Make sure each part is included.
The system prompt will not mention any image provided.
For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", first do a friendly response, then add the title, system prompt, and example user input.
Immediately STOP after the example input. It should be EXACTLY in this format:
"Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound?
Title: Dragon Trainer
System prompt: Let's say You are a Dragon trainer and your job is to provide guidance and tips on mastering dragons. Use a friendly and informative tone.
Example input: How can I train a dragon to breathe fire?"
Here's another example. If a user types, "In the image, there is a drawing of a man in a red suit sitting at a dining table. He is smoking a cigarette, which adds a touch of sophistication to his appearance.", respond:
"Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound?
Title: Gentleman's Companion
System prompt: Let's say You are sophisticated old man, also know as the Gentleman's Companion. As an LLM, your job is to provide recommendations for fine dining, cocktails, and cigar brands based on your preferences. Use a sophisticated and refined tone.
Example input: Can you suggest a good cigar brand for a man who enjoys smoking while dining in style?"
"""
instruction = f"""
<|system|>
{agent_maker_sys}</s>
<|user|>
"""
def infer(image_in):
gr.Info("Getting image caption with Kosmos2...")
user_prompt = get_caption(image_in)
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
#print(f"PROMPT: {prompt}")
gr.Info("Building a system according to the image caption ...")
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
print(f"SUGGESTED LLM: {cleaned_text}")
return user_prompt, cleaned_text.lstrip("\n")
title = f"LLM Agent from a Picture",
description = f"Get a LLM system prompt from a picture so you can use it in <a href='https://huggingface.co/spaces/abidlabs/GPT-Baker'>GPT-Baker</a>."
css = """
#col-container{
margin: 0 auto;
max-width: 780px;
text-align: left;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(f"""
<h2 style="text-align: center;">LLM Agent from a Picture</h2>
<p style="text-align: center;">{description}</p>
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(
label = "Image reference",
type = "filepath",
elem_id = "image-in"
)
submit_btn = gr.Button("Make LLM system from my pic !")
with gr.Column():
caption = gr.Textbox(
label = "Image caption (Kosmos2)",
elem_id = "image-caption"
)
result = gr.Textbox(
label = "Suggested System",
lines = 6,
max_lines = 30,
elem_id = "suggested-system-prompt"
)
with gr.Row():
gr.Examples(
examples = [
["examples/ocean_poet.jpeg"],
["examples/winter_hiking.png"],
["examples/teatime.jpeg"],
["examples/news_experts.jpeg"],
["examples/chicken_adobo.jpeg"]
],
fn = infer,
inputs = [image_in],
outputs = [caption, result],
cache_examples = True
)
submit_btn.click(
fn = infer,
inputs = [
image_in
],
outputs =[
caption,
result
]
)
demo.queue().launch(show_api=False) |