File size: 9,230 Bytes
2ada650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import sys
import json
import argparse
import pathlib
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader

# https://github.com/PyTorchLightning/pytorch-lightning/issues/11663
import sentencepiece; import pytorch_lightning as pl

import torchmetrics.functional as MF

from load_aokvqa import load_aokvqa


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--aokvqa-dir', type=pathlib.Path, required=True, dest='aokvqa_dir')
    parser.add_argument('--vocab', type=argparse.FileType('r'), required=True)
    parser.add_argument('--log-dir', type=pathlib.Path, dest='log_dir', required=True)
    #
    parser.add_argument('--backbone', type=str, choices=['clip', 'resnet', 'bert'], required=True)
    parser.add_argument('--clip-model-type', type=str,
                        choices=['RN50', 'RN50x4', 'RN50x16', 'RN50x64', 'RN101', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px'],
                        dest='clip_model_type', required=('clip' in sys.argv))
    parser.add_argument('--train-features', type=pathlib.Path, required=True, dest='train_features')
    parser.add_argument('--val-features', type=pathlib.Path, required=True, dest='val_features')
    parser.add_argument('--vocab-features', type=pathlib.Path, required=('contrastive' in sys.argv), dest='vocab_features')
    #
    parser.add_argument('--objective', type=str, choices=['classifier', 'contrastive'], required=True)
    parser.add_argument('--inputs', nargs='+', type=str, choices=['question', 'image'], required=True)
    # Defaults
    parser.add_argument('--bs', type=int, default=128, dest='batch_size')
    parser.add_argument('--lr', type=float, default=0.01)
    parser.add_argument('--epochs', type=int, default=500)
    parser.add_argument('--gpus', type=int, default=1)
    args = parser.parse_args()

    pl.seed_everything(1)
    vocab = args.vocab.read().splitlines()

    ## Data loading

    dm = AokvqaEmbeddingsDataModule(
        args.aokvqa_dir,
        args.train_features,
        args.val_features,
        args.objective,
        args.backbone,
        args.inputs,
        vocab,
        args.vocab_features,
        batch_size=args.batch_size,
        num_workers=16
    )

    ## Model definition

    model = LinearClassifier(
        args.objective,
        args.backbone,
        args.clip_model_type,
        args.inputs,
        len(vocab),
        args.lr
    )

    ## Training and testing loops

    logger = pl.loggers.TensorBoardLogger(
        args.log_dir,
        name=f'{args.backbone}-{args.objective}',
        version=f"inputs:{'+'.join(args.inputs)}"
    )

    trainer = pl.Trainer(
        logger=logger,
        gpus=args.gpus,
        max_epochs=args.epochs,
        callbacks=[
            pl.callbacks.ModelCheckpoint(
                monitor="val_acc",
                filename="{epoch:02d}-{val_acc:.2f}",
                mode="max"
            )
        ],
    )

    trainer.fit(model, dm)


class AokvqaEmbeddingsDataset(Dataset):
    def __init__(self, aokvqa_dir, split, input_features, objective, backbone, inputs, vocab, vocab_features):

        aokvqa_set = load_aokvqa(aokvqa_dir, split)

        assert ( backbone == 'resnet' and inputs == ['image'] and objective == 'classifier' ) \
            or ( backbone == 'bert' and inputs == ['question'] and objective == 'classifier' ) \
            or ( backbone == 'clip' )

        embeddings = torch.load(input_features)
        if backbone == 'clip':
            for q in embeddings.keys():
                embeddings[q]['question'] /= embeddings[q]['question'].norm(dim=-1, keepdim=True)
                embeddings[q]['image'] /= embeddings[q]['image'].norm(dim=-1, keepdim=True)
            if objective == 'contrastive':
                vocab_embeddings = torch.load(vocab_features)
                vocab_embeddings /= vocab_embeddings.norm(dim=-1, keepdim=True)

        self.objective = objective
        self.vocab_len = len(vocab)

        self.embeddings = []
        self.answers = []

        for o in aokvqa_set:
            correct_answers = set([o['choices'][o['correct_choice_idx']]] + o['direct_answers'])
            correct_answers = [vocab.index(a) for a in correct_answers if a in vocab]
            if self.objective == 'contrastive':
                correct_answers = [vocab_embeddings[a] for a in correct_answers]
            if len(correct_answers) == 0: continue
            self.answers.append(correct_answers)

            q = o['question_id']
            if 'question' in inputs and 'image' in inputs:
                e = torch.cat((embeddings[q]['question'], embeddings[q]['image']))
            elif 'question' in inputs and 'image' not in inputs:
                e = embeddings[q]['question']
            elif 'question' not in inputs and 'image' in inputs:
                e = embeddings[q]['image']
            self.embeddings.append(e)

    def __getitem__(self, index):
        e = self.embeddings[index]
        a = self.answers[index]
        if self.objective == 'classifier':
            a = torch.sum(F.one_hot(torch.tensor(a), num_classes=self.vocab_len), dim=0)
        elif self.objective == 'contrastive':
            a = random.sample(a, 1)[0]
        return e, a

    def __len__(self):
        return len(self.embeddings)


class AokvqaEmbeddingsDataModule(pl.LightningDataModule):

    def __init__(self, aokvqa_dir, train_features, val_features, objective, backbone, inputs, vocab, vocab_features, batch_size=1, num_workers=0):
        super().__init__()
        self.aokvqa_dir = aokvqa_dir
        self.train_features = train_features
        self.val_features = val_features
        self.objective = objective
        self.backbone = backbone
        self.inputs = inputs
        self.vocab = vocab
        self.vocab_features = vocab_features
        self.batch_size = batch_size
        self.num_workers = num_workers

    def setup(self, stage=None):
        self.train_dataset = AokvqaEmbeddingsDataset(
            self.aokvqa_dir, 'train', self.train_features, self.objective,
            self.backbone, self.inputs, self.vocab, self.vocab_features
        )
        self.val_dataset = AokvqaEmbeddingsDataset(
            self.aokvqa_dir, 'val', self.val_features, self.objective,
            self.backbone, self.inputs, self.vocab, self.vocab_features
        )

    def train_dataloader(self):
        return DataLoader(
            self.train_dataset, batch_size=self.batch_size, shuffle=True,
            num_workers=int(0.8 * self.num_workers)
        )

    def val_dataloader(self):
        return DataLoader(
            self.val_dataset, batch_size=self.batch_size, shuffle=False,
            num_workers=int(0.2 * self.num_workers)
        )


class LinearClassifier(pl.LightningModule):
    def __init__(self, objective, backbone, clip_model_type, inputs, vocab_len, lr=0.001):
        super().__init__()
        self.save_hyperparameters(ignore=['lr'])
        self.lr = lr

        if self.hparams.backbone == 'clip':
            clip_dim = {
                'RN50' : 1024,
                'RN50x4' : 640,
                'RN50x16' : 768,
                'RN50x64' : 1024,
                'RN101' : 512,
                'ViT-B/32' : 512,
                'ViT-B/16' : 512,
                'ViT-L/14' : 768,
                'ViT-L/14@336px' : 768,
            }[clip_model_type]
            emb_dim = clip_dim * len(inputs)
        elif self.hparams.backbone == 'resnet':
            emb_dim = 2048
        elif self.hparams.backbone == 'bert':
            emb_dim = 768

        if self.hparams.objective == 'classifier':
            out_dim = vocab_len
        elif self.hparams.objective == 'contrastive':
            out_dim = clip_dim

        self.linear = nn.Linear(emb_dim, out_dim)

    def forward(self, x):
        x = self.linear(x)
        if self.hparams.objective == 'classifier':
            x = torch.sigmoid(x)
        return x

    def compute_loss(self, batch):
        x, y = batch

        y_pred = self.forward(x)

        if self.hparams.objective == 'classifier':
            loss = F.binary_cross_entropy(y_pred, y.float())
        elif self.hparams.objective == 'contrastive':
            indices = torch.arange(0, x.shape[0], dtype=torch.int64, device=self.device)
            sim = (y_pred @ y.T).softmax(dim=-1)
            loss = F.cross_entropy(sim, indices)

        if self.hparams.objective == 'classifier':
            acc = MF.f1_score(y_pred, y)
        elif self.hparams.objective == 'contrastive':
            acc = torch.mean(sim[indices, indices])

        return loss, acc

    def training_step(self, batch, batch_idx):
        loss, acc = self.compute_loss(batch)
        self.log("train_loss", loss)
        self.log("train_acc", acc)
        return loss

    def validation_step(self, batch, batch_idx):
        loss, acc = self.compute_loss(batch)
        self.log("val_loss", loss)
        self.log("val_acc", acc)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
        return optimizer


if __name__ == '__main__':
    main()