Spaces:
Sleeping
Sleeping
import argparse | |
import pathlib | |
import json | |
import glob | |
from load_aokvqa import load_aokvqa | |
def eval_aokvqa(dataset, preds, multiple_choice=False, strict=True): | |
if isinstance(dataset, list): | |
dataset = { dataset[i]['question_id'] : dataset[i] for i in range(len(dataset)) } | |
if multiple_choice is False: | |
dataset = {k:v for k,v in dataset.items() if v['difficult_direct_answer'] is False} | |
if strict: | |
dataset_qids = set(dataset.keys()) | |
preds_qids = set(preds.keys()) | |
assert dataset_qids.issubset(preds_qids) | |
# dataset = q_id (str) : dataset element (dict) | |
# preds = q_id (str) : prediction (str) | |
acc = [] | |
for q in dataset.keys(): | |
if q not in preds.keys(): | |
acc.append(0.0) | |
continue | |
pred = preds[q] | |
choices = dataset[q]['choices'] | |
direct_answers = dataset[q]['direct_answers'] | |
## Multiple Choice setting | |
if multiple_choice: | |
if strict: | |
assert pred in choices, 'Prediction must be a valid choice' | |
correct_choice_idx = dataset[q]['correct_choice_idx'] | |
acc.append( float(pred == choices[correct_choice_idx]) ) | |
## Direct Answer setting | |
else: | |
num_match = sum([pred.lower() == da.lower() for da in direct_answers]) | |
vqa_acc = min(1.0, num_match / 3.0) | |
acc.append(vqa_acc) | |
acc = sum(acc) / len(acc) * 100 | |
return acc | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--aokvqa-dir', type=pathlib.Path, required=True, dest='aokvqa_dir') | |
parser.add_argument('--split', type=str, choices=['train', 'val', 'test'], required=True) | |
parser.add_argument('--preds', type=str, required=True, dest='prediction_files') | |
args = parser.parse_args() | |
dataset = load_aokvqa(args.aokvqa_dir, args.split) | |
for prediction_file in glob.glob(args.prediction_files): | |
predictions = json.load(open(prediction_file, 'r')) | |
# Multiple choice | |
mc_predictions = {} | |
for q in predictions.keys(): | |
if 'multiple_choice' in predictions[q].keys(): | |
mc_predictions[q] = predictions[q]['multiple_choice'] | |
if mc_predictions != {}: | |
mc_acc = eval_aokvqa( | |
dataset, | |
mc_predictions, | |
multiple_choice=True, | |
strict=False | |
) | |
print(prediction_file, 'MC', mc_acc) | |
# Direct Answer | |
da_predictions = {} | |
for q in predictions.keys(): | |
if 'direct_answer' in predictions[q].keys(): | |
da_predictions[q] = predictions[q]['direct_answer'] | |
if da_predictions != {}: | |
da_acc = eval_aokvqa( | |
dataset, | |
da_predictions, | |
multiple_choice=False, | |
strict=False | |
) | |
print(prediction_file, 'DA', da_acc) | |