# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import torch.distributed as dist import torch.nn as nn import torch from transformers.models.llama.modeling_llama import LlamaDecoderLayer from torch.distributed.fsdp.fully_sharded_data_parallel import ( FullyShardedDataParallel as FSDP, CPUOffload, BackwardPrefetch, MixedPrecision, ) from torch.distributed.fsdp.wrap import ( transformer_auto_wrap_policy, size_based_auto_wrap_policy, enable_wrap, wrap, ) import functools from typing import Type def get_size_policy(min_params=1e8): num_wrap_policy = functools.partial( size_based_auto_wrap_policy, min_num_params=min_params ) return num_wrap_policy def get_llama_wrapper(): """we register our main layer class and use the fsdp transformer wrapping policy ensures embedding layers are in the root fsdp unit for shared access and that fsdp units map to transformer layers """ # ==== use new transformer wrapper llama_auto_wrap_policy = functools.partial( transformer_auto_wrap_policy, transformer_layer_cls={ LlamaDecoderLayer, }, ) return llama_auto_wrap_policy