File size: 3,313 Bytes
61e8157
 
1b829a0
 
eb48411
 
 
1b829a0
61e8157
 
 
 
0d95b06
1b829a0
eede3bc
 
 
 
 
 
 
1b829a0
 
 
 
 
 
 
61e8157
 
 
 
 
 
 
 
 
456a8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e8157
 
 
456a8a0
 
 
 
 
 
 
 
 
61e8157
 
 
 
456a8a0
61e8157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import os
import sys
import subprocess
import numpy as np
from PIL import Image
import cv2

import torch
from diffusers import StableDiffusion3Pipeline
from diffusers.models.controlnet_sd3 import ControlNetSD3Model
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils import load_image

# Clone the specific branch
subprocess.run(["git", "clone", "-b", "sd3_control", "https://github.com/instantX-research/diffusers_sd3_control.git"])

# Change directory to the cloned repository and install it
os.chdir('diffusers_sd3_control')
subprocess.run(["pip", "install", "-e", "."])

# Add the path to the examples directory
sys.path.append(os.path.abspath('./examples/community'))

# Import the required pipeline
from pipeline_stable_diffusion_3_controlnet import StableDiffusion3CommonPipeline



# load pipeline
base_model = 'stabilityai/stable-diffusion-3-medium-diffusers'
pipe = StableDiffusion3CommonPipeline.from_pretrained(
    base_model, 
    controlnet_list=['InstantX/SD3-Controlnet-Canny'],
)
pipe.to('cuda:0', torch.float16)

def resize_image(input_path, output_path, target_height):
    # Open the input image
    img = Image.open(input_path)

    # Calculate the aspect ratio of the original image
    original_width, original_height = img.size
    original_aspect_ratio = original_width / original_height

    # Calculate the new width while maintaining the aspect ratio and the target height
    new_width = int(target_height * original_aspect_ratio)

    # Resize the image while maintaining the aspect ratio and fixing the height
    img = img.resize((new_width, target_height), Image.LANCZOS)

    # Save the resized image
    img.save(output_path)

    return output_path

def infer(image_in, prompt):
    prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
    n_prompt = 'NSFW, nude, naked, porn, ugly'

    image_to_canny = load_image(image_in)

    image_to_canny = np.array(image_to_canny)
    image_to_canny = cv2.Canny(image_to_canny, 100, 200)
    image_to_canny = image_to_canny[:, :, None]
    image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2)
    image_to_canny = Image.fromarray(image_to_canny)
    
    # controlnet config
    controlnet_conditioning = [
        dict(
            control_index=0,
            control_image=image_to_canny,
            control_weight=0.7,
            control_pooled_projections='zeros'
        )
    ]
    # infer
    image = pipe(
        prompt=prompt,
        negative_prompt=n_prompt,
        controlnet_conditioning=controlnet_conditioning,
        num_inference_steps=28,
        guidance_scale=7.0,
        height=1024,
        width=1024,
    ).images[0]

    return image


with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("""
        # SD3 ControlNet
        """)
        image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
        prompt = gr.Textbox(label="Prompt")
        submit_btn = gr.Button("Submit")
        result = gr.Image(label="Result")
    
    submit_btn.click(
        fn = infer,
        inputs = [image_in, prompt],
        outputs = [result],
        show_api=False
    )
demo.queue().launch()