sd3-ControlNet / app.py
fffiloni's picture
Update app.py
b7751ed verified
raw
history blame
4.27 kB
import gradio as gr
import os
import sys
import subprocess
import numpy as np
from PIL import Image
import cv2
import torch
from diffusers import StableDiffusion3Pipeline
from diffusers.models.controlnet_sd3 import ControlNetSD3Model
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils import load_image
# Clone the specific branch
subprocess.run(["git", "clone", "-b", "sd3_control", "https://github.com/instantX-research/diffusers_sd3_control.git"])
# Change directory to the cloned repository and install it
os.chdir('diffusers_sd3_control')
subprocess.run(["pip", "install", "-e", "."])
# Add the path to the examples directory
sys.path.append(os.path.abspath('./examples/community'))
# Import the required pipeline
from pipeline_stable_diffusion_3_controlnet import StableDiffusion3CommonPipeline
# load pipeline
base_model = 'stabilityai/stable-diffusion-3-medium-diffusers'
pipe = StableDiffusion3CommonPipeline.from_pretrained(
base_model,
controlnet_list=['InstantX/SD3-Controlnet-Canny'],
)
pipe.to('cuda:0', torch.float16)
def resize_image(input_path, output_path, target_height):
# Open the input image
img = Image.open(input_path)
# Calculate the aspect ratio of the original image
original_width, original_height = img.size
original_aspect_ratio = original_width / original_height
# Calculate the new width while maintaining the aspect ratio and the target height
new_width = int(target_height * original_aspect_ratio)
# Resize the image while maintaining the aspect ratio and fixing the height
img = img.resize((new_width, target_height), Image.LANCZOS)
# Save the resized image
img.save(output_path)
return output_path, new_width, target_height
def infer(image_in, prompt, inference_steps, guidance_scale, control_weight):
n_prompt = 'NSFW, nude, naked, porn, ugly'
image_in, w, h = resize_image(image_in, "resized_input.jpg", 1024)
# Canny preprocessing
image_to_canny = load_image(image_in)
image_to_canny = np.array(image_to_canny)
image_to_canny = cv2.Canny(image_to_canny, 100, 200)
image_to_canny = image_to_canny[:, :, None]
image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2)
image_to_canny = Image.fromarray(image_to_canny)
# controlnet config
controlnet_conditioning = [
dict(
control_index=0,
control_image=image_to_canny,
control_weight=control_weight,
control_pooled_projections='zeros'
)
]
# infer
image = pipe(
prompt=prompt,
negative_prompt=n_prompt,
controlnet_conditioning=controlnet_conditioning,
num_inference_steps=inference_steps,
guidance_scale=guidance_scale,
width=w,
height=h
).images[0]
return image, image_to_canny
css="""
#col-container{
margin: 0 auto;
max-width: 1080px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# SD3 ControlNet
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
prompt = gr.Textbox(label="Prompt")
with gr.Accordion("Advanced settings", open=False):
with gr.Column():
with gr.Row():
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=25)
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=7.0)
control_weight = gr.Slider(label="Control Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.7)
submit_btn = gr.Button("Submit")
with gr.Column():
result = gr.Image(label="Result")
canny_used = gr.Image(label="Preprocessed Canny")
submit_btn.click(
fn = infer,
inputs = [image_in, prompt, inference_steps, guidance_scale, control_weight],
outputs = [result, canny_used],
show_api=False
)
demo.queue().launch()