import gradio as gr import os import sys import subprocess import numpy as np from PIL import Image import cv2 import torch from diffusers import StableDiffusion3Pipeline from diffusers.models.controlnet_sd3 import ControlNetSD3Model from diffusers.utils.torch_utils import randn_tensor from diffusers.utils import load_image # Clone the specific branch subprocess.run(["git", "clone", "-b", "sd3_control", "https://github.com/instantX-research/diffusers_sd3_control.git"]) # Change directory to the cloned repository and install it os.chdir('diffusers_sd3_control') subprocess.run(["pip", "install", "-e", "."]) # Add the path to the examples directory sys.path.append(os.path.abspath('./examples/community')) # Import the required pipeline from pipeline_stable_diffusion_3_controlnet import StableDiffusion3CommonPipeline # load pipeline base_model = 'stabilityai/stable-diffusion-3-medium-diffusers' pipe = StableDiffusion3CommonPipeline.from_pretrained( base_model, controlnet_list=['InstantX/SD3-Controlnet-Canny'], ) pipe.to('cuda:0', torch.float16) def resize_image(input_path, output_path, target_height): # Open the input image img = Image.open(input_path) # Calculate the aspect ratio of the original image original_width, original_height = img.size original_aspect_ratio = original_width / original_height # Calculate the new width while maintaining the aspect ratio and the target height new_width = int(target_height * original_aspect_ratio) # Resize the image while maintaining the aspect ratio and fixing the height img = img.resize((new_width, target_height), Image.LANCZOS) # Save the resized image img.save(output_path) return output_path def infer(image_in, prompt, inference_steps, guidance_scale, control_weight): n_prompt = 'NSFW, nude, naked, porn, ugly' # Canny preprocessing image_to_canny = load_image(image_in) image_to_canny = np.array(image_to_canny) image_to_canny = cv2.Canny(image_to_canny, 100, 200) image_to_canny = image_to_canny[:, :, None] image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2) image_to_canny = Image.fromarray(image_to_canny) # controlnet config controlnet_conditioning = [ dict( control_index=0, control_image=image_to_canny, control_weight=control_weight, control_pooled_projections='zeros' ) ] # infer image = pipe( prompt=prompt, negative_prompt=n_prompt, controlnet_conditioning=controlnet_conditioning, num_inference_steps=inference_steps, guidance_scale=guidance_scale, ).images[0] return image, image_to_canny css=""" #col-container{ margin: 0 auto; max-width: 1080px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # SD3 ControlNet """) with gr.Row(): with gr.Column(): image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath") prompt = gr.Textbox(label="Prompt") with gr.Accordion("Advanced settings", open=False): with gr.Column(): with gr.Row(): inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=25) guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=7.0) control_weight = gr.Slider(label="Control Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.7) submit_btn = gr.Button("Submit") with gr.Column(): result = gr.Image(label="Result") canny_used = gr.Image(label="Preprocessed Canny") submit_btn.click( fn = infer, inputs = [image_in, prompt, inference_steps, guidance_scale, control_weight], outputs = [result, canny_used], show_api=False ) demo.queue().launch()