File size: 8,105 Bytes
87d91a7
2419492
 
 
067da29
 
2419492
 
 
3651eaa
 
 
 
 
 
2419492
be9073e
331eca2
0af1d8d
 
 
 
 
 
 
 
be9073e
0af1d8d
 
 
 
331eca2
0af1d8d
510810d
3651eaa
0699667
331eca2
c058625
2ca2323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00f4438
238d2f7
 
 
067da29
 
 
331eca2
2ca2323
 
7f39ca4
 
 
 
 
 
 
 
 
331eca2
 
067da29
 
 
 
331eca2
 
 
 
 
a231571
7f39ca4
 
 
 
 
00f4438
 
 
331eca2
7f39ca4
 
 
 
 
 
 
00f4438
 
 
331eca2
c058625
 
7f39ca4
83f75b0
7f39ca4
c058625
8f2831f
 
 
8d07e5f
1069a6c
8f2831f
067da29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f2831f
067da29
8f2831f
 
067da29
 
 
 
3d9c69a
067da29
8f7b910
067da29
 
 
 
 
 
 
 
 
331eca2
35f5939
331eca2
8f2831f
 
a231571
c058625
a613ef1
 
 
093e5a8
81e01f7
00f4438
81e01f7
093e5a8
00f4438
bf07a86
a231571
d1d4c1e
 
 
c058625
 
3651eaa
c058625
 
00f4438
c058625
 
3651eaa
238d2f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
from huggingface_hub import login
import os

is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] else False

hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)

from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-canny-sdxl-1.0",
    torch_dtype=torch.float16
)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    vae=vae,
    torch_dtype=torch.float16, 
    variant="fp16",
    use_safetensors=True
)

pipe.to("cuda")



#pipe.enable_model_cpu_offload()

from PIL import Image

def resize_image(input_path, output_path, target_height):
    # Open the input image
    img = Image.open(input_path)

    # Calculate the aspect ratio of the original image
    original_width, original_height = img.size
    original_aspect_ratio = original_width / original_height

    # Calculate the new width while maintaining the aspect ratio and the target height
    new_width = int(target_height * original_aspect_ratio)

    # Resize the image while maintaining the aspect ratio and fixing the height
    img = img.resize((new_width, target_height), Image.LANCZOS)

    # Save the resized image
    img.save(output_path)

    return output_path

def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
    prompt = prompt
    negative_prompt = negative_prompt
    generator = torch.Generator(device="cuda").manual_seed(seed)

    if image_in == None:
        raise gr.Error("You forgot to upload a source image.")
    
    image_in = resize_image(image_in, "resized_input.jpg", 1024)
    
    if preprocessor == "canny":

        image = load_image(image_in)

        image = np.array(image)
        image = cv2.Canny(image, 100, 200)
        image = image[:, :, None]
        image = np.concatenate([image, image, image], axis=2)
        image = Image.fromarray(image)
    
    if use_custom_model:
        
        if custom_model == "":
            raise gr.Error("you forgot to set a custom model name.")
        
        custom_model = model_name

        # This is where you load your trained weights
        pipe.load_lora_weights(custom_model, use_auth_token=True)
    
        lora_scale=custom_lora_weight

        images = pipe(
            prompt, 
            negative_prompt=negative_prompt, 
            image=image, 
            controlnet_conditioning_scale=float(controlnet_conditioning_scale),
            guidance_scale = float(guidance_scale),
            num_inference_steps=inf_steps,
            generator=generator,
            cross_attention_kwargs={"scale": lora_scale}
        ).images
    else:
        images = pipe(
            prompt, 
            negative_prompt=negative_prompt, 
            image=image, 
            controlnet_conditioning_scale=float(controlnet_conditioning_scale),
            guidance_scale = float(guidance_scale),
            num_inference_steps=inf_steps,
            generator=generator,
        ).images

    images[0].save(f"result.png")

    return f"result.png"

css="""
#col-container{
    margin: 0 auto;
    max-width: 680px;
    text-align: left;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 10px 5px;
    margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        if is_shared_ui:
            top_description = gr.HTML(f'''
                <div class="gr-prose">
                    <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                    Note: you might want to use a custom LoRa model</h2>
                    <p class="main-message">
                        To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br />
                    </p>
                    <p class="actions">
                        <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                        </a>
                        to start using private models and skip the queue
                    </p>
                </div>
            ''', elem_id="warning-duplicate")
        gr.HTML("""
<h2 style="text-align: center;">SD-XL Control LoRas</h2>
<p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p>

        """)
        
        image_in = gr.Image(source="upload", type="filepath")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt")
                negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
                inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
            with gr.Column():
                preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")  
                controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5)
                seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
        use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
        with gr.Row():
            model_name = gr.Textbox(label="Custom Model to use", placeholder="username/my_custom_public_model")
            custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9)
        submit_btn = gr.Button("Submit")
        result = gr.Image(label="Result")

    submit_btn.click(
        fn = infer,
        inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
        outputs = [result]
    )

demo.queue(max_size=12).launch()