|
import gradio as gr |
|
|
|
|
|
|
|
from PIL import Image |
|
import numpy as np |
|
from io import BytesIO |
|
import os |
|
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') |
|
|
|
|
|
from diffusers import StableDiffusionImg2ImgPipeline |
|
|
|
print("hello sylvain") |
|
|
|
YOUR_TOKEN=MY_SECRET_TOKEN |
|
|
|
device="cpu" |
|
|
|
|
|
|
|
|
|
img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) |
|
img_pipe.to(device) |
|
|
|
source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px") |
|
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto") |
|
|
|
def resize(value,img): |
|
|
|
img = Image.open(img) |
|
|
|
|
|
|
|
img = img.resize((value,value), Image.Resampling.LANCZOS) |
|
return img |
|
|
|
|
|
def infer(source_img, prompt, guide, steps, seed, strength): |
|
generator = torch.Generator('cpu').manual_seed(seed) |
|
|
|
source_image = resize(512, source_img) |
|
source_image.save('source.png') |
|
|
|
images_list = img_pipe([prompt] * 2, init_image=source_image, strength=strength, guidance_scale=guide, num_inference_steps=steps) |
|
images = [] |
|
safe_image = Image.open(r"unsafe.png") |
|
|
|
for i, image in enumerate(images_list["sample"]): |
|
if(images_list["nsfw_content_detected"][i]): |
|
images.append(safe_image) |
|
else: |
|
images.append(image) |
|
return images |
|
|
|
print("Great sylvain ! Everything is working fine !") |
|
|
|
title="Img2Img Stable Diffusion CPU" |
|
description="Img2Img Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>" |
|
|
|
gr.Interface(fn=infer, inputs=[source_img, |
|
"text", |
|
gr.Slider(2, 15, value = 7, label = 'Guidence Scale'), |
|
gr.Slider(10, 50, value = 25, step = 1, label = 'Number of Iterations'), |
|
gr.Slider(label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True), |
|
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .75)], |
|
outputs=gallery,title=title,description=description, allow_flagging="manual", flagging_dir="flagged").queue(max_size=100).launch(enable_queue=True) |