import gradio as gr
#import torch
#from torch import autocast // only for GPU
from PIL import Image
import numpy as np
from io import BytesIO
import os
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
#from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionImg2ImgPipeline
print("hello sylvain")
YOUR_TOKEN=MY_SECRET_TOKEN
device="cpu"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
pipe.to(device)
source_img = gr.Image(source="upload", type="pil", label="init_img", shape=(image_size, image_size))
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
def infer(prompt, init_image):
init_image = Image.open(BytesIO(init_image)).convert("RGB")
init_image = init_image.resize((768, 512))
#image = pipe(prompt, init_image=init_image)["sample"][0]
images_list = pipe([prompt] * 2, init_image=init_image, strength=0.75)
images = []
safe_image = Image.open(r"unsafe.png")
for i, image in enumerate(images_list["sample"]):
if(images_list["nsfw_content_detected"][i]):
images.append(safe_image)
else:
images.append(image)
return images
print("Great sylvain ! Everything is working fine !")
title="Stable Diffusion CPU"
description="Stable Diffusion example using CPU and HF token.
Warning: Slow process... ~5/10 min inference time. NSFW filter enabled."
gr.Interface(fn=infer, inputs=["text", source_img], outputs=gallery,title=title,description=description).launch(enable_queue=True)