File size: 10,668 Bytes
fcb4edd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import abc
import torch
from typing import Tuple, List
from einops import rearrange

class AttentionControl(abc.ABC):

    def step_callback(self, x_t):
        return x_t

    def between_steps(self):
        return

    @property
    def num_uncond_att_layers(self):
        return 0

    @abc.abstractmethod
    def forward(self, attn, is_cross: bool, place_in_unet: str):
        raise NotImplementedError

    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        if self.cur_att_layer >= self.num_uncond_att_layers:
            self.forward(attn, is_cross, place_in_unet)
        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
            self.cur_att_layer = 0
            self.cur_step += 1
            self.between_steps()

    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0

    def __init__(self):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0

class AttentionStore(AttentionControl):

    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [],
                "down_self": [], "mid_self": [], "up_self": []}

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        #if attn.shape[1] <= 32 ** 2:  # avoid memory overhead
        self.step_store[key].append(attn)
        return attn

    def between_steps(self):
        self.attention_store = self.step_store
        if self.save_global_store:
            with torch.no_grad():
                if len(self.global_store) == 0:
                    self.global_store = self.step_store
                else:
                    for key in self.global_store:
                        for i in range(len(self.global_store[key])):
                            self.global_store[key][i] += self.step_store[key][i].detach()
        self.step_store = self.get_empty_store()
        self.step_store = self.get_empty_store()

    def get_average_attention(self):
        average_attention = self.attention_store
        return average_attention

    def get_average_global_attention(self):
        average_attention = {key: [item / self.cur_step for item in self.global_store[key]] for key in
                             self.attention_store}
        return average_attention

    def reset(self):
        super(AttentionStore, self).reset()
        self.step_store = self.get_empty_store()
        self.attention_store = {}
        self.global_store = {}

    def __init__(self, save_global_store=False):
        '''
        Initialize an empty AttentionStore
        :param step_index: used to visualize only a specific step in the diffusion process
        '''
        super(AttentionStore, self).__init__()
        self.save_global_store = save_global_store
        self.step_store = self.get_empty_store()
        self.attention_store = {}
        self.global_store = {}
        self.curr_step_index = 0        

class AttentionStoreProcessor:

    def __init__(self, attnstore, place_in_unet):
        super().__init__()
        self.attnstore = attnstore
        self.place_in_unet = place_in_unet

    def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)


        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        self.attnstore(rearrange(attention_probs, '(b h) i j -> b h i j', b=batch_size), False, self.place_in_unet)

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class AttentionFlipCtrlProcessor:

    def __init__(self, attnstore, attnstore_ref, place_in_unet):
        super().__init__()
        self.attnstore = attnstore
        self.attnrstore_ref = attnstore_ref
        self.place_in_unet = place_in_unet

    def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        
        if self.place_in_unet == 'mid':
            cur_att_layer = self.attnstore.cur_att_layer-len(self.attnrstore_ref.attention_store["down_self"])
        elif self.place_in_unet == 'up':
            cur_att_layer = self.attnstore.cur_att_layer-(len(self.attnrstore_ref.attention_store["down_self"])+len(self.attnrstore_ref.attention_store["mid_self"]))
        else:
            cur_att_layer = self.attnstore.cur_att_layer

        attention_probs_ref = self.attnrstore_ref.attention_store[f"{self.place_in_unet}_{'self'}"][cur_att_layer]
        attention_probs_ref = rearrange(attention_probs_ref, 'b h i j -> (b h) i j')
        attention_probs = 0.0 * attention_probs + 1.0 * torch.flip(attention_probs_ref, dims=(-2, -1))
        
        self.attnstore(rearrange(attention_probs, '(b h) i j -> b h i j', b=batch_size), False, self.place_in_unet)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states

def register_temporal_self_attention_control(unet, controller):

    attn_procs = {}
    temporal_self_att_count = 0
    for name in unet.attn_processors.keys():
        if name.endswith("temporal_transformer_blocks.0.attn1.processor"):
            if name.startswith("mid_block"):
                place_in_unet = "mid"
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                place_in_unet = "up"
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                place_in_unet = "down"
            else:
                continue

            temporal_self_att_count += 1
            attn_procs[name] = AttentionStoreProcessor(
                attnstore=controller, place_in_unet=place_in_unet
            )
        else:
            attn_procs[name] = unet.attn_processors[name]

    unet.set_attn_processor(attn_procs)
    controller.num_att_layers = temporal_self_att_count

def register_temporal_self_attention_flip_control(unet, controller, controller_ref):

    attn_procs = {}
    temporal_self_att_count = 0
    for name in unet.attn_processors.keys():
        if name.endswith("temporal_transformer_blocks.0.attn1.processor"):
            if name.startswith("mid_block"):
                place_in_unet = "mid"
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                place_in_unet = "up"
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                place_in_unet = "down"
            else:
                continue

            temporal_self_att_count += 1
            attn_procs[name] = AttentionFlipCtrlProcessor(
                attnstore=controller, attnstore_ref=controller_ref, place_in_unet=place_in_unet
            )
        else:
            attn_procs[name] = unet.attn_processors[name]

    unet.set_attn_processor(attn_procs)
    controller.num_att_layers = temporal_self_att_count