File size: 4,669 Bytes
fcb4edd
 
 
 
 
 
e9dea12
fcb4edd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import gradio as gr
import torch

# import argparse

checkpoint_dir = "checkpoints/svd_reverse_motion_with_attnflip/unet"

from diffusers.utils import load_image, export_to_video
from diffusers import UNetSpatioTemporalConditionModel
from custom_diffusers.pipelines.pipeline_frame_interpolation_with_noise_injection import FrameInterpolationWithNoiseInjectionPipeline
from custom_diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler
from attn_ctrl.attention_control import (AttentionStore, 
                                         register_temporal_self_attention_control, 
                                         register_temporal_self_attention_flip_control,
)


pretrained_model_name_or_path = "stabilityai/stable-video-diffusion-img2vid-xt"
noise_scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")

pipe = FrameInterpolationWithNoiseInjectionPipeline.from_pretrained(
    pretrained_model_name_or_path, 
    scheduler=noise_scheduler,
    variant="fp16",
    torch_dtype=torch.float16, 
)
ref_unet = pipe.ori_unet

state_dict = pipe.unet.state_dict()
# computing delta w
finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained(
    checkpoint_dir,
    subfolder="unet",
    torch_dtype=torch.float16,
) 
assert finetuned_unet.config.num_frames==14
ori_unet = UNetSpatioTemporalConditionModel.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid",
    subfolder="unet",
    variant='fp16',
    torch_dtype=torch.float16,
)

finetuned_state_dict = finetuned_unet.state_dict()
ori_state_dict = ori_unet.state_dict()
for name, param in finetuned_state_dict.items():
    if 'temporal_transformer_blocks.0.attn1.to_v' in name or "temporal_transformer_blocks.0.attn1.to_out.0" in name:
        delta_w = param - ori_state_dict[name]
        state_dict[name] = state_dict[name] + delta_w
pipe.unet.load_state_dict(state_dict)

controller_ref= AttentionStore()
register_temporal_self_attention_control(ref_unet, controller_ref)

controller = AttentionStore()
register_temporal_self_attention_flip_control(pipe.unet, controller, controller_ref)

device = "cuda"
pipe = pipe.to(device)

def check_outputs_folder(folder_path):
    # Check if the folder exists
    if os.path.exists(folder_path) and os.path.isdir(folder_path):
        # Delete all contents inside the folder
        for filename in os.listdir(folder_path):
            file_path = os.path.join(folder_path, filename)
            try:
                if os.path.isfile(file_path) or os.path.islink(file_path):
                    os.unlink(file_path)  # Remove file or link
                elif os.path.isdir(file_path):
                    shutil.rmtree(file_path)  # Remove directory
            except Exception as e:
                print(f'Failed to delete {file_path}. Reason: {e}')
    else:
        print(f'The folder {folder_path} does not exist.')

def infer(frame1_path, frame2_path):

    seed = 42
    num_inference_steps = 25
    noise_injection_steps = 0
    noise_injection_ratio = 0.5
    weighted_average = True

    generator = torch.Generator(device)
    if seed is not None:
        generator = generator.manual_seed(seed)
    

    frame1 = load_image(frame1_path)
    frame1 = frame1.resize((1024, 576))

    frame2 = load_image(frame2_path)
    frame2 = frame2.resize((1024, 576))

    frames = pipe(image1=frame1, image2=frame2, 
        num_inference_steps=num_inference_steps, # 50
        generator=generator,
        weighted_average=weighted_average, # True
        noise_injection_steps=noise_injection_steps, # 0
        noise_injection_ratio= noise_injection_ratio, # 0.5
    ).frames[0]
    
    out_dir = "result"

    check_outputs_folder(out_dir)
    os.makedirs(out_dir, exist_ok=True)
    out_path = "result/video_result.mp4"
    
    if out_path.endswith('.gif'):
        frames[0].save(out_path, save_all=True, append_images=frames[1:], duration=142, loop=0)
    else:
        export_to_video(frames, out_path, fps=7)
    
    return out_path

with gr.Blocks() as demo:

    with gr.Column():
        gr.Markdown("# Keyframe Interpolation with Stable Video Diffusion")
        with gr.Row():
            with gr.Column():
                image_input1 = gr.Image(type="filepath")
                image_input2 = gr.Image(type="filepath")
                submit_btn = gr.Button("Submit")
            with gr.Column():
                output = gr.Video()
    
    submit_btn.click(
        fn = infer, 
        inputs = [image_input1, image_input2],
        outputs = [output],
        show_api = False
    )

demo.queue().launch(show_api=False, show_error=True)