File size: 5,063 Bytes
fcb4edd
 
 
51db498
fdf117e
 
 
 
 
 
fcb4edd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f479bfc
fcb4edd
 
 
fdf117e
fcb4edd
 
 
 
f479bfc
fdf117e
fcb4edd
 
 
 
 
f479bfc
fcb4edd
 
 
 
 
 
 
 
 
fdf117e
fcb4edd
 
 
 
 
fdf117e
 
fcb4edd
 
fdf117e
fcb4edd
fdf117e
fcb4edd
 
 
 
fdf117e
fcb4edd
fdf117e
fcb4edd
 
 
 
 
90cfa64
 
 
 
 
 
fcb4edd
fdf117e
fcb4edd
f479bfc
fcb4edd
 
6081ae2
fcb4edd
 
 
 
fdf117e
fcb4edd
 
f479bfc
fcb4edd
 
f479bfc
fcb4edd
90cfa64
f479bfc
fdf117e
 
 
 
 
 
90cfa64
fdf117e
f479bfc
90cfa64
 
fdf117e
 
f479bfc
fdf117e
f479bfc
 
df9e701
f479bfc
df9e701
fdf117e
 
 
 
df9e701
 
f479bfc
cf5b2d5
fdf117e
fcb4edd
 
 
 
 
 
 
 
df9e701
fcb4edd
 
fdf117e
 
 
 
fcb4edd
 
fdf117e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import gradio as gr
import torch
from huggingface_hub import snapshot_download

# import argparse

snapshot_download(repo_id="fffiloni/svd_keyframe_interpolation", local_dir="checkpoints")
checkpoint_dir = "checkpoints/svd_reverse_motion_with_attnflip"

from diffusers.utils import load_image, export_to_video
from diffusers import UNetSpatioTemporalConditionModel
from custom_diffusers.pipelines.pipeline_frame_interpolation_with_noise_injection import FrameInterpolationWithNoiseInjectionPipeline
from custom_diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler
from attn_ctrl.attention_control import (AttentionStore, 
                                         register_temporal_self_attention_control, 
                                         register_temporal_self_attention_flip_control,
)


pretrained_model_name_or_path = "stabilityai/stable-video-diffusion-img2vid-xt"
noise_scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")

pipe = FrameInterpolationWithNoiseInjectionPipeline.from_pretrained(
    pretrained_model_name_or_path, 
    scheduler=noise_scheduler,
    variant="fp16",
    torch_dtype=torch.float16, 
)
ref_unet = pipe.ori_unet

state_dict = pipe.unet.state_dict()
# computing delta w
finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained(
    checkpoint_dir,
    subfolder="unet",
    torch_dtype=torch.float16,
) 
assert finetuned_unet.config.num_frames==14
ori_unet = UNetSpatioTemporalConditionModel.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid",
    subfolder="unet",
    variant='fp16',
    torch_dtype=torch.float16,
)

finetuned_state_dict = finetuned_unet.state_dict()
ori_state_dict = ori_unet.state_dict()
for name, param in finetuned_state_dict.items():
    if 'temporal_transformer_blocks.0.attn1.to_v' in name or "temporal_transformer_blocks.0.attn1.to_out.0" in name:
        delta_w = param - ori_state_dict[name]
        state_dict[name] = state_dict[name] + delta_w
pipe.unet.load_state_dict(state_dict)

controller_ref= AttentionStore()
register_temporal_self_attention_control(ref_unet, controller_ref)

controller = AttentionStore()
register_temporal_self_attention_flip_control(pipe.unet, controller, controller_ref)

device = "cuda"
pipe = pipe.to(device)

def check_outputs_folder(folder_path):
    # Check if the folder exists
    if os.path.exists(folder_path) and os.path.isdir(folder_path):
        # Delete all contents inside the folder
        for filename in os.listdir(folder_path):
            file_path = os.path.join(folder_path, filename)
            try:
                if os.path.isfile(file_path) or os.path.islink(file_path):
                    os.unlink(file_path)  # Remove file or link
                elif os.path.isdir(file_path):
                    shutil.rmtree(file_path)  # Remove directory
            except Exception as e:
                print(f'Failed to delete {file_path}. Reason: {e}')
    else:
        print(f'The folder {folder_path} does not exist.')

# Custom CUDA memory management function
def cuda_memory_cleanup():
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    gc.collect()
    
def infer(frame1_path, frame2_path):

    seed = 42
    num_inference_steps = 10
    noise_injection_steps = 0
    noise_injection_ratio = 0.5
    weighted_average = False

    generator = torch.Generator(device)
    if seed is not None:
        generator = generator.manual_seed(seed)
    

    frame1 = load_image(frame1_path)
    frame1 = frame1.resize((512, 288))

    frame2 = load_image(frame2_path)
    frame2 = frame2.resize((512, 288))

    cuda_memory_cleanup()

    frames = pipe(image1=frame1, image2=frame2, 
        num_inference_steps=num_inference_steps, # 50
        generator=generator,
        weighted_average=weighted_average, # True
        noise_injection_steps=noise_injection_steps, # 0
        noise_injection_ratio= noise_injection_ratio, # 0.5
         decode_chunk_size=6
    ).frames[0]

    cuda_memory_cleanup()

    print(f"FRAMES: {frames}")
    
    out_dir = "result"

    check_outputs_folder(out_dir)
    os.makedirs(out_dir, exist_ok=True)
    out_path = "result/video_result.mp4"

    
    if out_path.endswith('.gif'):
        frames[0].save(out_path, save_all=True, append_images=frames[1:], duration=142, loop=0)
    else:
        export_to_video(frames, out_path, fps=7)
    
    return out_path

with gr.Blocks() as demo:

    with gr.Column():
        gr.Markdown("# Keyframe Interpolation with Stable Video Diffusion")
        with gr.Row():
            with gr.Column():
                image_input1 = gr.Image(type="filepath")
                image_input2 = gr.Image(type="filepath")
                submit_btn = gr.Button("Submit")
            with gr.Column():
                output = gr.Video()
    
    submit_btn.click(
        fn = infer, 
        inputs = [image_input1, image_input2],
        outputs = [output],
        show_api = False
    )

demo.queue().launch(show_api=False, show_error=True)