File size: 57,770 Bytes
5a510e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
# pylint: disable=R0801
# pylint: disable=W1203

"""
This file defines the 2D blocks for the UNet model in a PyTorch implementation. 
The UNet model is a popular architecture for image segmentation tasks, 
which consists of an encoder, a decoder, and a skip connection mechanism. 
The 2D blocks in this file include various types of layers, such as ResNet blocks, 
Transformer blocks, and cross-attention blocks, 
which are used to build the encoder and decoder parts of the UNet model. 
The AutoencoderTinyBlock class is a simple autoencoder block for tiny models, 
and the UNetMidBlock2D and CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, 
and UpBlock2D classes are used for the middle and decoder parts of the UNet model. 
The classes and functions in this file provide a flexible and modular way 
to construct the UNet model for different image segmentation tasks.
"""

from typing import Any, Dict, Optional, Tuple, Union

import torch
from diffusers.models.activations import get_activation
from diffusers.models.attention_processor import Attention
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
from diffusers.models.transformers.dual_transformer_2d import \
    DualTransformer2DModel
from diffusers.utils import is_torch_version, logging
from diffusers.utils.torch_utils import apply_freeu
from torch import nn

from .transformer_2d import Transformer2DModel

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def get_down_block(
    down_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    temb_channels: int,
    add_downsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    transformer_layers_per_block: int = 1,
    num_attention_heads: Optional[int] = None,
    resnet_groups: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    downsample_padding: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = False,
    only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    attention_type: str = "default",
    attention_head_dim: Optional[int] = None,
    dropout: float = 0.0,
):
    """ This function creates and returns a UpBlock2D or CrossAttnUpBlock2D object based on the given up_block_type.

    Args:
        up_block_type (str): The type of up block to create. Must be either "UpBlock2D" or "CrossAttnUpBlock2D".
        num_layers (int): The number of layers in the ResNet block.
        in_channels (int): The number of input channels.
        out_channels (int): The number of output channels.
        prev_output_channel (int): The number of channels in the previous output.
        temb_channels (int): The number of channels in the token embedding.
        add_upsample (bool): Whether to add an upsample layer after the ResNet block. Defaults to True.
        resnet_eps (float): The epsilon value for the ResNet block. Defaults to 1e-6.
        resnet_act_fn (str): The activation function to use in the ResNet block. Defaults to "swish".
        resnet_groups (int): The number of groups in the ResNet block. Defaults to 32.
        resnet_pre_norm (bool): Whether to use pre-normalization in the ResNet block. Defaults to True.
        output_scale_factor (float): The scale factor to apply to the output. Defaults to 1.0.

    Returns:
        nn.Module: The created UpBlock2D or CrossAttnUpBlock2D object.
    """
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warning("It is recommended to provide `attention_head_dim` when calling `get_down_block`.")
        logger.warning(f"Defaulting `attention_head_dim` to {num_attention_heads}.")
        attention_head_dim = num_attention_heads

    down_block_type = (
        down_block_type[7:]
        if down_block_type.startswith("UNetRes")
        else down_block_type
    )
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            dropout=dropout,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            resnet_time_scale_shift=resnet_time_scale_shift,
        )

    if down_block_type == "CrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError(
                "cross_attention_dim must be specified for CrossAttnDownBlock2D"
            )
        return CrossAttnDownBlock2D(
            num_layers=num_layers,
            transformer_layers_per_block=transformer_layers_per_block,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            dropout=dropout,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            cross_attention_dim=cross_attention_dim,
            num_attention_heads=num_attention_heads,
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
            attention_type=attention_type,
        )
    raise ValueError(f"{down_block_type} does not exist.")


def get_up_block(
    up_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    prev_output_channel: int,
    temb_channels: int,
    add_upsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    resolution_idx: Optional[int] = None,
    transformer_layers_per_block: int = 1,
    num_attention_heads: Optional[int] = None,
    resnet_groups: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = False,
    only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    attention_type: str = "default",
    attention_head_dim: Optional[int] = None,
    dropout: float = 0.0,
) -> nn.Module:
    """ This function ...
        Args:
        Returns:
    """
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warning("It is recommended to provide `attention_head_dim` when calling `get_up_block`.")
        logger.warning(f"Defaulting `attention_head_dim` to {num_attention_heads}.")
        attention_head_dim = num_attention_heads

    up_block_type = (
        up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    )
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            resolution_idx=resolution_idx,
            dropout=dropout,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    if up_block_type == "CrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError(
                "cross_attention_dim must be specified for CrossAttnUpBlock2D"
            )
        return CrossAttnUpBlock2D(
            num_layers=num_layers,
            transformer_layers_per_block=transformer_layers_per_block,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            resolution_idx=resolution_idx,
            dropout=dropout,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
            num_attention_heads=num_attention_heads,
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
            attention_type=attention_type,
        )

    raise ValueError(f"{up_block_type} does not exist.")


class AutoencoderTinyBlock(nn.Module):
    """
    Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
    blocks.

    Args:
        in_channels (`int`): The number of input channels.
        out_channels (`int`): The number of output channels.
        act_fn (`str`):
            ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.

    Returns:
        `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
        `out_channels`.
    """

    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
        super().__init__()
        act_fn = get_activation(act_fn)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            act_fn,
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
        )
        self.skip = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            if in_channels != out_channels
            else nn.Identity()
        )
        self.fuse = nn.ReLU()

    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        """
        Forward pass of the AutoencoderTinyBlock class.

        Parameters:
        x (torch.FloatTensor): The input tensor to the AutoencoderTinyBlock.

        Returns:
        torch.FloatTensor: The output tensor after passing through the AutoencoderTinyBlock.
        """
        return self.fuse(self.conv(x) + self.skip(x))


class UNetMidBlock2D(nn.Module):
    """
    A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.

    Args:
        in_channels (`int`): The number of input channels.
        temb_channels (`int`): The number of temporal embedding channels.
        dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
        num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
        resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
        resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
            The type of normalization to apply to the time embeddings. This can help to improve the performance of the
            model on tasks with long-range temporal dependencies.
        resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
        resnet_groups (`int`, *optional*, defaults to 32):
            The number of groups to use in the group normalization layers of the resnet blocks.
        attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
        resnet_pre_norm (`bool`, *optional*, defaults to `True`):
            Whether to use pre-normalization for the resnet blocks.
        add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
        attention_head_dim (`int`, *optional*, defaults to 1):
            Dimension of a single attention head. The number of attention heads is determined based on this value and
            the number of input channels.
        output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.

    Returns:
        `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
        in_channels, height, width)`.

    """

    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",  # default, spatial
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        attn_groups: Optional[int] = None,
        resnet_pre_norm: bool = True,
        add_attention: bool = True,
        attention_head_dim: int = 1,
        output_scale_factor: float = 1.0,
    ):
        super().__init__()
        resnet_groups = (
            resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
        )
        self.add_attention = add_attention

        if attn_groups is None:
            attn_groups = (
                resnet_groups if resnet_time_scale_shift == "default" else None
            )

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        if attention_head_dim is None:
            logger.warning(
                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
            )
            attention_head_dim = in_channels

        for _ in range(num_layers):
            if self.add_attention:
                attentions.append(
                    Attention(
                        in_channels,
                        heads=in_channels // attention_head_dim,
                        dim_head=attention_head_dim,
                        rescale_output_factor=output_scale_factor,
                        eps=resnet_eps,
                        norm_num_groups=attn_groups,
                        spatial_norm_dim=(
                            temb_channels
                            if resnet_time_scale_shift == "spatial"
                            else None
                        ),
                        residual_connection=True,
                        bias=True,
                        upcast_softmax=True,
                        _from_deprecated_attn_block=True,
                    )
                )
            else:
                attentions.append(None)

            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

    def forward(
        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Forward pass of the UNetMidBlock2D class.

        Args:
            hidden_states (torch.FloatTensor): The input tensor to the UNetMidBlock2D.
            temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None.

        Returns:
            torch.FloatTensor: The output tensor after passing through the UNetMidBlock2D.
        """
        # Your implementation here
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            if attn is not None:
                hidden_states = attn(hidden_states, temb=temb)
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


class UNetMidBlock2DCrossAttn(nn.Module):
    """
    UNetMidBlock2DCrossAttn is a class that represents a mid-block 2D UNet with cross-attention.
    
    This block is responsible for processing the input tensor with a series of residual blocks,
    and applying cross-attention mechanism to attend to the global information in the encoder.
    
    Args:
        in_channels (int): The number of input channels.
        temb_channels (int): The number of channels for the token embedding.
        dropout (float, optional): The dropout rate. Defaults to 0.0.
        num_layers (int, optional): The number of layers in the residual blocks. Defaults to 1.
        resnet_eps (float, optional): The epsilon value for the residual blocks. Defaults to 1e-6.
        resnet_time_scale_shift (str, optional): The time scale shift type for the residual blocks. Defaults to "default".
        resnet_act_fn (str, optional): The activation function for the residual blocks. Defaults to "swish".
        resnet_groups (int, optional): The number of groups for the residual blocks. Defaults to 32.
        resnet_pre_norm (bool, optional): Whether to apply pre-normalization for the residual blocks. Defaults to True.
        num_attention_heads (int, optional): The number of attention heads for cross-attention. Defaults to 1.
        cross_attention_dim (int, optional): The dimension of the cross-attention. Defaults to 1280.
        output_scale_factor (float, optional): The scale factor for the output tensor. Defaults to 1.0.
    """
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        output_scale_factor: float = 1.0,
        cross_attention_dim: int = 1280,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
    ):
        super().__init__()

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads
        resnet_groups = (
            resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
        )

        # support for variable transformer layers per block
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for i in range(num_layers):
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        num_attention_heads,
                        in_channels // num_attention_heads,
                        in_channels=in_channels,
                        num_layers=transformer_layers_per_block[i],
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        upcast_attention=upcast_attention,
                        attention_type=attention_type,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        num_attention_heads,
                        in_channels // num_attention_heads,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Forward pass for the UNetMidBlock2DCrossAttn class.

        Args:
            hidden_states (torch.FloatTensor): The input hidden states tensor.
            temb (Optional[torch.FloatTensor], optional): The optional tensor for time embeddings.
            encoder_hidden_states (Optional[torch.FloatTensor], optional): The optional encoder hidden states tensor.
            attention_mask (Optional[torch.FloatTensor], optional): The optional attention mask tensor.
            cross_attention_kwargs (Optional[Dict[str, Any]], optional): The optional cross-attention kwargs tensor.
            encoder_attention_mask (Optional[torch.FloatTensor], optional): The optional encoder attention mask tensor.

        Returns:
            torch.FloatTensor: The output tensor after passing through the UNetMidBlock2DCrossAttn layers.
        """
        lora_scale = (
            cross_attention_kwargs.get("scale", 1.0)
            if cross_attention_kwargs is not None
            else 1.0
        )
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)

                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                hidden_states, _ref_feature = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states, _ref_feature = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)

        return hidden_states


class CrossAttnDownBlock2D(nn.Module):
    """
    CrossAttnDownBlock2D is a class that represents a 2D cross-attention downsampling block.
    
    This block is used in the UNet model and consists of a series of ResNet blocks and Transformer layers.
    It takes input hidden states, a tensor embedding, and optional encoder hidden states, attention mask,
    and cross-attention kwargs. The block performs a series of operations including downsampling, cross-attention,
    and residual connections.

    Attributes:
        in_channels (int): The number of input channels.
        out_channels (int): The number of output channels.
        temb_channels (int): The number of tensor embedding channels.
        dropout (float): The dropout rate.
        num_layers (int): The number of ResNet layers.
        transformer_layers_per_block (Union[int, Tuple[int]]): The number of Transformer layers per block.
        resnet_eps (float): The ResNet epsilon value.
        resnet_time_scale_shift (str): The ResNet time scale shift type.
        resnet_act_fn (str): The ResNet activation function.
        resnet_groups (int): The ResNet group size.
        resnet_pre_norm (bool): Whether to use ResNet pre-normalization.
        num_attention_heads (int): The number of attention heads.
        cross_attention_dim (int): The cross-attention dimension.
        output_scale_factor (float): The output scale factor.
        downsample_padding (int): The downsampling padding.
        add_downsample (bool): Whether to add downsampling.
        dual_cross_attention (bool): Whether to use dual cross-attention.
        use_linear_projection (bool): Whether to use linear projection.
        only_cross_attention (bool): Whether to use only cross-attention.
        upcast_attention (bool): Whether to upcast attention.
        attention_type (str): The attention type.
    """
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        downsample_padding: int = 1,
        add_downsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=transformer_layers_per_block[i],
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        only_cross_attention=only_cross_attention,
                        upcast_attention=upcast_attention,
                        attention_type=attention_type,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        padding=downsample_padding,
                        name="op",
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        additional_residuals: Optional[torch.FloatTensor] = None,
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
        """
        Forward pass for the CrossAttnDownBlock2D class.

        Args:
            hidden_states (torch.FloatTensor): The input hidden states.
            temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None.
            encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states. Defaults to None.
            attention_mask (Optional[torch.FloatTensor], optional): The attention mask. Defaults to None.
            cross_attention_kwargs (Optional[Dict[str, Any]], optional): The cross-attention kwargs. Defaults to None.
            encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask. Defaults to None.
            additional_residuals (Optional[torch.FloatTensor], optional): The additional residuals. Defaults to None.

        Returns:
            Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output hidden states and residuals.
        """
        output_states = ()

        lora_scale = (
            cross_attention_kwargs.get("scale", 1.0)
            if cross_attention_kwargs is not None
            else 1.0
        )

        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)

                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states, _ref_feature = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )
            else:
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
                hidden_states, _ref_feature = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )

            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

            output_states = output_states + (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, scale=lora_scale)

            output_states = output_states + (hidden_states,)

        return hidden_states, output_states


class DownBlock2D(nn.Module):
    """
    DownBlock2D is a class that represents a 2D downsampling block in a neural network.

    It takes the following parameters:
    - in_channels (int): The number of input channels in the block.
    - out_channels (int): The number of output channels in the block.
    - temb_channels (int): The number of channels in the token embedding.
    - dropout (float): The dropout rate for the block.
    - num_layers (int): The number of layers in the block.
    - resnet_eps (float): The epsilon value for the ResNet layer.
    - resnet_time_scale_shift (str): The type of activation function for the ResNet layer.
    - resnet_act_fn (str): The activation function for the ResNet layer.
    - resnet_groups (int): The number of groups in the ResNet layer.
    - resnet_pre_norm (bool): Whether to apply layer normalization before the ResNet layer.
    - output_scale_factor (float): The scale factor for the output.
    - add_downsample (bool): Whether to add a downsampling layer.
    - downsample_padding (int): The padding value for the downsampling layer.

    The DownBlock2D class inherits from the nn.Module class and defines the following methods:
    - __init__: Initializes the DownBlock2D class with the given parameters.
    - forward: Forward pass of the DownBlock2D class.

    The forward method takes the following parameters:
    - hidden_states (torch.FloatTensor): The input tensor to the block.
    - temb (Optional[torch.FloatTensor]): The token embedding tensor.
    - scale (float): The scale factor for the input tensor.

    The forward method returns a tuple containing the output tensor and a tuple of hidden states.
    """
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        downsample_padding: int = 1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        padding=downsample_padding,
                        name="op",
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
        """
        Forward pass of the DownBlock2D class.

        Args:
            hidden_states (torch.FloatTensor): The input tensor to the DownBlock2D layer.
            temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None.
            scale (float, optional): The scale factor for the input tensor. Defaults to 1.0.

        Returns:
            Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output tensor and any additional hidden states.
        """
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet),
                        hidden_states,
                        temb,
                        use_reentrant=False,
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
            else:
                hidden_states = resnet(hidden_states, temb, scale=scale)

            output_states = output_states + (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states, scale=scale)

            output_states = output_states + (hidden_states,)

        return hidden_states, output_states


class CrossAttnUpBlock2D(nn.Module):
    """
    CrossAttnUpBlock2D is a class that represents a cross-attention UpBlock in a 2D UNet architecture.
    
    This block is responsible for upsampling the input tensor and performing cross-attention with the encoder's hidden states.
    
    Args:
        in_channels (int): The number of input channels in the tensor.
        out_channels (int): The number of output channels in the tensor.
        prev_output_channel (int): The number of channels in the previous output tensor.
        temb_channels (int): The number of channels in the token embedding tensor.
        resolution_idx (Optional[int]): The index of the resolution in the model.
        dropout (float): The dropout rate for the layer.
        num_layers (int): The number of layers in the ResNet block.
        transformer_layers_per_block (Union[int, Tuple[int]]): The number of transformer layers per block.
        resnet_eps (float): The epsilon value for the ResNet layer.
        resnet_time_scale_shift (str): The type of time scale shift to be applied in the ResNet layer.
        resnet_act_fn (str): The activation function to be used in the ResNet layer.
        resnet_groups (int): The number of groups in the ResNet layer.
        resnet_pre_norm (bool): Whether to use pre-normalization in the ResNet layer.
        num_attention_heads (int): The number of attention heads in the cross-attention layer.
        cross_attention_dim (int): The dimension of the cross-attention layer.
        output_scale_factor (float): The scale factor for the output tensor.
        add_upsample (bool): Whether to add upsampling to the block.
        dual_cross_attention (bool): Whether to use dual cross-attention.
        use_linear_projection (bool): Whether to use linear projection in the cross-attention layer.
        only_cross_attention (bool): Whether to only use cross-attention and no self-attention.
        upcast_attention (bool): Whether to upcast the attention weights.
        attention_type (str): The type of attention to be used in the cross-attention layer.

    Attributes:
        up_block (nn.Module): The UpBlock module responsible for upsampling the input tensor.
        cross_attn (nn.Module): The cross-attention module that performs attention between 
        the decoder's hidden states and the encoder's hidden states.
        resnet_blocks (nn.ModuleList): A list of ResNet blocks that make up the ResNet portion of the block.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        resolution_idx: Optional[int] = None,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=transformer_layers_per_block[i],
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        only_cross_attention=only_cross_attention,
                        upcast_attention=upcast_attention,
                        attention_type=attention_type,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
        self.resolution_idx = resolution_idx

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Forward pass for the CrossAttnUpBlock2D class.

        Args:
            self (CrossAttnUpBlock2D): An instance of the CrossAttnUpBlock2D class.
            hidden_states (torch.FloatTensor): The input hidden states tensor.
            res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states tensors.
            temb (Optional[torch.FloatTensor], optional): The token embeddings tensor. Defaults to None.
            encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states tensor. Defaults to None.
            cross_attention_kwargs (Optional[Dict[str, Any]], optional): Additional keyword arguments for cross attention. Defaults to None.
            upsample_size (Optional[int], optional): The upsample size. Defaults to None.
            attention_mask (Optional[torch.FloatTensor], optional): The attention mask tensor. Defaults to None.
            encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask tensor. Defaults to None.

        Returns:
            torch.FloatTensor: The output tensor after passing through the block.
        """
        lora_scale = (
            cross_attention_kwargs.get("scale", 1.0)
            if cross_attention_kwargs is not None
            else 1.0
        )
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)

                        return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states, _ref_feature = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )
            else:
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
                hidden_states, _ref_feature = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(
                    hidden_states, upsample_size, scale=lora_scale
                )

        return hidden_states


class UpBlock2D(nn.Module):
    """
    UpBlock2D is a class that represents a 2D upsampling block in a neural network.
    
    This block is used for upsampling the input tensor by a factor of 2 in both dimensions.
    It takes the previous output channel, input channels, and output channels as input
    and applies a series of convolutional layers, batch normalization, and activation
    functions to produce the upsampled tensor.

    Args:
        in_channels (int): The number of input channels in the tensor.
        prev_output_channel (int): The number of channels in the previous output tensor.
        out_channels (int): The number of output channels in the tensor.
        temb_channels (int): The number of channels in the time embedding tensor.
        resolution_idx (Optional[int], optional): The index of the resolution in the sequence of resolutions. Defaults to None.
        dropout (float, optional): The dropout rate to be applied to the convolutional layers. Defaults to 0.0.
        num_layers (int, optional): The number of convolutional layers in the block. Defaults to 1.
        resnet_eps (float, optional): The epsilon value used in the batch normalization layer. Defaults to 1e-6.
        resnet_time_scale_shift (str, optional): The type of activation function to be applied after the convolutional layers. Defaults to "default".
        resnet_act_fn (str, optional): The activation function to be applied after the batch normalization layer. Defaults to "swish".
        resnet_groups (int, optional): The number of groups in the group normalization layer. Defaults to 32.
        resnet_pre_norm (bool, optional): A flag indicating whether to apply layer normalization before the activation function. Defaults to True.
        output_scale_factor (float, optional): The scale factor to be applied to the output tensor. Defaults to 1.0.
        add_upsample (bool, optional): A flag indicating whether to add an upsampling layer to the block. Defaults to True.

    Attributes:
        layers (nn.ModuleList): A list of nn.Module objects representing the convolutional layers in the block.
        upsample (nn.Module): The upsampling layer in the block, if add_upsample is True.

    """

    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        resolution_idx: Optional[int] = None,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
        self.resolution_idx = resolution_idx

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        upsample_size: Optional[int] = None,
        scale: float = 1.0,
    ) -> torch.FloatTensor:

        """
        Forward pass for the UpBlock2D class.

        Args:
            self (UpBlock2D): An instance of the UpBlock2D class.
            hidden_states (torch.FloatTensor): The input tensor to the block.
            res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states.
            temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None.
            upsample_size (Optional[int], optional): The size to upsample the input tensor to. Defaults to None.
            scale (float, optional): The scale factor to apply to the input tensor. Defaults to 1.0.

        Returns:
            torch.FloatTensor: The output tensor after passing through the block.
        """
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet),
                        hidden_states,
                        temb,
                        use_reentrant=False,
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
            else:
                hidden_states = resnet(hidden_states, temb, scale=scale)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)

        return hidden_states