File size: 4,270 Bytes
c673f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
from audioldm.latent_diffusion.ema import *
from audioldm.variational_autoencoder.modules import Encoder, Decoder
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution

from audioldm.hifigan.utilities import get_vocoder, vocoder_infer


class AutoencoderKL(nn.Module):
    def __init__(
        self,
        ddconfig=None,
        lossconfig=None,
        image_key="fbank",
        embed_dim=None,
        time_shuffle=1,
        subband=1,
        ckpt_path=None,
        reload_from_ckpt=None,
        ignore_keys=[],
        colorize_nlabels=None,
        monitor=None,
        base_learning_rate=1e-5,
        scale_factor=1
    ):
        super().__init__()

        self.encoder = Encoder(**ddconfig)
        self.decoder = Decoder(**ddconfig)

        self.subband = int(subband)

        if self.subband > 1:
            print("Use subband decomposition %s" % self.subband)

        self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)

        self.vocoder = get_vocoder(None, "cpu")
        self.embed_dim = embed_dim

        if monitor is not None:
            self.monitor = monitor

        self.time_shuffle = time_shuffle
        self.reload_from_ckpt = reload_from_ckpt
        self.reloaded = False
        self.mean, self.std = None, None
        
        self.scale_factor = scale_factor

    def encode(self, x):
        # x = self.time_shuffle_operation(x)
        x = self.freq_split_subband(x)
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        dec = self.freq_merge_subband(dec)
        return dec

    def decode_to_waveform(self, dec):
        dec = dec.squeeze(1).permute(0, 2, 1)
        wav_reconstruction = vocoder_infer(dec, self.vocoder)
        return wav_reconstruction

    def forward(self, input, sample_posterior=True):
        posterior = self.encode(input)
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()

        if self.flag_first_run:
            print("Latent size: ", z.size())
            self.flag_first_run = False

        dec = self.decode(z)

        return dec, posterior

    def freq_split_subband(self, fbank):
        if self.subband == 1 or self.image_key != "stft":
            return fbank

        bs, ch, tstep, fbins = fbank.size()

        assert fbank.size(-1) % self.subband == 0
        assert ch == 1

        return (
            fbank.squeeze(1)
            .reshape(bs, tstep, self.subband, fbins // self.subband)
            .permute(0, 2, 1, 3)
        )

    def freq_merge_subband(self, subband_fbank):
        if self.subband == 1 or self.image_key != "stft":
            return subband_fbank
        assert subband_fbank.size(1) == self.subband  # Channel dimension
        bs, sub_ch, tstep, fbins = subband_fbank.size()
        return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1)
    
    def device(self):
        return next(self.parameters()).device
    
    @torch.no_grad()
    def encode_first_stage(self, x):
        return self.encode(x)
    
    @torch.no_grad()
    def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
        if predict_cids:
            if z.dim() == 4:
                z = torch.argmax(z.exp(), dim=1).long()
            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
            z = rearrange(z, "b h w c -> b c h w").contiguous()

        z = 1.0 / self.scale_factor * z
        return self.decode(z)

    def get_first_stage_encoding(self, encoder_posterior):
        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
            z = encoder_posterior.sample()
        elif isinstance(encoder_posterior, torch.Tensor):
            z = encoder_posterior
        else:
            raise NotImplementedError(
                f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
            )
        return self.scale_factor * z