diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..4308f65163299f6897c26b42c03b7751e80fec9d 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +data/-26aVYRtEAc_000030.mp4 filter=lfs diff=lfs merge=lfs -text +data/-yoaSondvkw_000071.mp4 filter=lfs diff=lfs merge=lfs -text +data/0Bp8c3PfAAA_000053.mp4 filter=lfs diff=lfs merge=lfs -text diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/audioldm/__init__.py b/audioldm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2bbf85f01ccc72b6f18e7405d940adf07a26b500 --- /dev/null +++ b/audioldm/__init__.py @@ -0,0 +1,8 @@ +from .ldm import LatentDiffusion +from .utils import seed_everything, save_wave, get_time, get_duration +from .pipeline import * + + + + + diff --git a/audioldm/__main__.py b/audioldm/__main__.py new file mode 100644 index 0000000000000000000000000000000000000000..13f8bafa839f512a156dd6380d2cf43c573a970a --- /dev/null +++ b/audioldm/__main__.py @@ -0,0 +1,183 @@ +#!/usr/bin/python3 +import os +from audioldm import text_to_audio, style_transfer, build_model, save_wave, get_time, round_up_duration, get_duration +import argparse + +CACHE_DIR = os.getenv( + "AUDIOLDM_CACHE_DIR", + os.path.join(os.path.expanduser("~"), ".cache/audioldm")) + +parser = argparse.ArgumentParser() + +parser.add_argument( + "--mode", + type=str, + required=False, + default="generation", + help="generation: text-to-audio generation; transfer: style transfer", + choices=["generation", "transfer"] +) + +parser.add_argument( + "-t", + "--text", + type=str, + required=False, + default="", + help="Text prompt to the model for audio generation", +) + +parser.add_argument( + "-f", + "--file_path", + type=str, + required=False, + default=None, + help="(--mode transfer): Original audio file for style transfer; Or (--mode generation): the guidance audio file for generating simialr audio", +) + +parser.add_argument( + "--transfer_strength", + type=float, + required=False, + default=0.5, + help="A value between 0 and 1. 0 means original audio without transfer, 1 means completely transfer to the audio indicated by text", +) + +parser.add_argument( + "-s", + "--save_path", + type=str, + required=False, + help="The path to save model output", + default="./output", +) + +parser.add_argument( + "--model_name", + type=str, + required=False, + help="The checkpoint you gonna use", + default="audioldm-s-full", + choices=["audioldm-s-full", "audioldm-l-full", "audioldm-s-full-v2"] +) + +parser.add_argument( + "-ckpt", + "--ckpt_path", + type=str, + required=False, + help="The path to the pretrained .ckpt model", + default=None, +) + +parser.add_argument( + "-b", + "--batchsize", + type=int, + required=False, + default=1, + help="Generate how many samples at the same time", +) + +parser.add_argument( + "--ddim_steps", + type=int, + required=False, + default=200, + help="The sampling step for DDIM", +) + +parser.add_argument( + "-gs", + "--guidance_scale", + type=float, + required=False, + default=2.5, + help="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)", +) + +parser.add_argument( + "-dur", + "--duration", + type=float, + required=False, + default=10.0, + help="The duration of the samples", +) + +parser.add_argument( + "-n", + "--n_candidate_gen_per_text", + type=int, + required=False, + default=3, + help="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation", +) + +parser.add_argument( + "--seed", + type=int, + required=False, + default=42, + help="Change this value (any integer number) will lead to a different generation result.", +) + +args = parser.parse_args() + +if(args.ckpt_path is not None): + print("Warning: ckpt_path has no effect after version 0.0.20.") + +assert args.duration % 2.5 == 0, "Duration must be a multiple of 2.5" + +mode = args.mode +if(mode == "generation" and args.file_path is not None): + mode = "generation_audio_to_audio" + if(len(args.text) > 0): + print("Warning: You have specified the --file_path. --text will be ignored") + args.text = "" + +save_path = os.path.join(args.save_path, mode) + +if(args.file_path is not None): + save_path = os.path.join(save_path, os.path.basename(args.file_path.split(".")[0])) + +text = args.text +random_seed = args.seed +duration = args.duration +guidance_scale = args.guidance_scale +n_candidate_gen_per_text = args.n_candidate_gen_per_text + +os.makedirs(save_path, exist_ok=True) +audioldm = build_model(model_name=args.model_name) + +if(args.mode == "generation"): + waveform = text_to_audio( + audioldm, + text, + args.file_path, + random_seed, + duration=duration, + guidance_scale=guidance_scale, + ddim_steps=args.ddim_steps, + n_candidate_gen_per_text=n_candidate_gen_per_text, + batchsize=args.batchsize, + ) + +elif(args.mode == "transfer"): + assert args.file_path is not None + assert os.path.exists(args.file_path), "The original audio file \'%s\' for style transfer does not exist." % args.file_path + waveform = style_transfer( + audioldm, + text, + args.file_path, + args.transfer_strength, + random_seed, + duration=duration, + guidance_scale=guidance_scale, + ddim_steps=args.ddim_steps, + batchsize=args.batchsize, + ) + waveform = waveform[:,None,:] + +save_wave(waveform, save_path, name="%s_%s" % (get_time(), text)) diff --git a/audioldm/__pycache__/__init__.cpython-310.pyc b/audioldm/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ac9273f78f11206a8c017b4f96e7a53ff21306fe Binary files /dev/null and b/audioldm/__pycache__/__init__.cpython-310.pyc differ diff --git a/audioldm/__pycache__/ldm.cpython-310.pyc b/audioldm/__pycache__/ldm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19e3f57d461c628596414c4649178a78956d528c Binary files /dev/null and b/audioldm/__pycache__/ldm.cpython-310.pyc differ diff --git a/audioldm/__pycache__/pipeline.cpython-310.pyc b/audioldm/__pycache__/pipeline.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e77eaf5512d112fd243abf9de49350464ef02c84 Binary files /dev/null and b/audioldm/__pycache__/pipeline.cpython-310.pyc differ diff --git a/audioldm/__pycache__/utils.cpython-310.pyc b/audioldm/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6dad647ef842d2ebcd3db459d9d93e0401051fec Binary files /dev/null and b/audioldm/__pycache__/utils.cpython-310.pyc differ diff --git a/audioldm/audio/__init__.py b/audioldm/audio/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..56902e96f041bc4ba6bfadd7a7742023b9560233 --- /dev/null +++ b/audioldm/audio/__init__.py @@ -0,0 +1,2 @@ +from .tools import wav_to_fbank, read_wav_file +from .stft import TacotronSTFT diff --git a/audioldm/audio/__pycache__/__init__.cpython-310.pyc b/audioldm/audio/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..99ba0e04045de588109eb23673460f6be2935788 Binary files /dev/null and b/audioldm/audio/__pycache__/__init__.cpython-310.pyc differ diff --git a/audioldm/audio/__pycache__/audio_processing.cpython-310.pyc b/audioldm/audio/__pycache__/audio_processing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cfab7d91d7a9672de32e6e46ff5b63863b33c98f Binary files /dev/null and b/audioldm/audio/__pycache__/audio_processing.cpython-310.pyc differ diff --git a/audioldm/audio/__pycache__/stft.cpython-310.pyc b/audioldm/audio/__pycache__/stft.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..75f73f5f2539e8e5bf99e3bac610ecfb23e44aaf Binary files /dev/null and b/audioldm/audio/__pycache__/stft.cpython-310.pyc differ diff --git a/audioldm/audio/__pycache__/tools.cpython-310.pyc b/audioldm/audio/__pycache__/tools.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c652219cfa1b421884a361ce03f522c49e09385c Binary files /dev/null and b/audioldm/audio/__pycache__/tools.cpython-310.pyc differ diff --git a/audioldm/audio/audio_processing.py b/audioldm/audio/audio_processing.py new file mode 100644 index 0000000000000000000000000000000000000000..77a4057aa82f226f68474f4c2a19eba84510d663 --- /dev/null +++ b/audioldm/audio/audio_processing.py @@ -0,0 +1,100 @@ +import torch +import numpy as np +import librosa.util as librosa_util +from scipy.signal import get_window + + +def window_sumsquare( + window, + n_frames, + hop_length, + win_length, + n_fft, + dtype=np.float32, + norm=None, +): + """ + # from librosa 0.6 + Compute the sum-square envelope of a window function at a given hop length. + + This is used to estimate modulation effects induced by windowing + observations in short-time fourier transforms. + + Parameters + ---------- + window : string, tuple, number, callable, or list-like + Window specification, as in `get_window` + + n_frames : int > 0 + The number of analysis frames + + hop_length : int > 0 + The number of samples to advance between frames + + win_length : [optional] + The length of the window function. By default, this matches `n_fft`. + + n_fft : int > 0 + The length of each analysis frame. + + dtype : np.dtype + The data type of the output + + Returns + ------- + wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` + The sum-squared envelope of the window function + """ + if win_length is None: + win_length = n_fft + + n = n_fft + hop_length * (n_frames - 1) + x = np.zeros(n, dtype=dtype) + + # Compute the squared window at the desired length + win_sq = get_window(window, win_length, fftbins=True) + win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2 + win_sq = librosa_util.pad_center(win_sq, n_fft) + + # Fill the envelope + for i in range(n_frames): + sample = i * hop_length + x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))] + return x + + +def griffin_lim(magnitudes, stft_fn, n_iters=30): + """ + PARAMS + ------ + magnitudes: spectrogram magnitudes + stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods + """ + + angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) + angles = angles.astype(np.float32) + angles = torch.autograd.Variable(torch.from_numpy(angles)) + signal = stft_fn.inverse(magnitudes, angles).squeeze(1) + + for i in range(n_iters): + _, angles = stft_fn.transform(signal) + signal = stft_fn.inverse(magnitudes, angles).squeeze(1) + return signal + + +def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5): + """ + PARAMS + ------ + C: compression factor + """ + return normalize_fun(torch.clamp(x, min=clip_val) * C) + + +def dynamic_range_decompression(x, C=1): + """ + PARAMS + ------ + C: compression factor used to compress + """ + return torch.exp(x) / C diff --git a/audioldm/audio/stft.py b/audioldm/audio/stft.py new file mode 100644 index 0000000000000000000000000000000000000000..b4acef4e7823f5b8ecc58a770b9f3400906864aa --- /dev/null +++ b/audioldm/audio/stft.py @@ -0,0 +1,186 @@ +import torch +import torch.nn.functional as F +import numpy as np +from scipy.signal import get_window +from librosa.util import pad_center, tiny +from librosa.filters import mel as librosa_mel_fn + +from audioldm.audio.audio_processing import ( + dynamic_range_compression, + dynamic_range_decompression, + window_sumsquare, +) + + +class STFT(torch.nn.Module): + """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" + + def __init__(self, filter_length, hop_length, win_length, window="hann"): + super(STFT, self).__init__() + self.filter_length = filter_length + self.hop_length = hop_length + self.win_length = win_length + self.window = window + self.forward_transform = None + scale = self.filter_length / self.hop_length + fourier_basis = np.fft.fft(np.eye(self.filter_length)) + + cutoff = int((self.filter_length / 2 + 1)) + fourier_basis = np.vstack( + [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] + ) + + forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) + inverse_basis = torch.FloatTensor( + np.linalg.pinv(scale * fourier_basis).T[:, None, :] + ) + + if window is not None: + assert filter_length >= win_length + # get window and zero center pad it to filter_length + fft_window = get_window(window, win_length, fftbins=True) + fft_window = pad_center(fft_window, filter_length) + fft_window = torch.from_numpy(fft_window).float() + + # window the bases + forward_basis *= fft_window + inverse_basis *= fft_window + + self.register_buffer("forward_basis", forward_basis.float()) + self.register_buffer("inverse_basis", inverse_basis.float()) + + def transform(self, input_data): + device = self.forward_basis.device + input_data = input_data.to(device) + + num_batches = input_data.size(0) + num_samples = input_data.size(1) + + self.num_samples = num_samples + + # similar to librosa, reflect-pad the input + input_data = input_data.view(num_batches, 1, num_samples) + input_data = F.pad( + input_data.unsqueeze(1), + (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), + mode="reflect", + ) + input_data = input_data.squeeze(1) + + forward_transform = F.conv1d( + input_data, + torch.autograd.Variable(self.forward_basis, requires_grad=False), + stride=self.hop_length, + padding=0, + )#.cpu() + + cutoff = int((self.filter_length / 2) + 1) + real_part = forward_transform[:, :cutoff, :] + imag_part = forward_transform[:, cutoff:, :] + + magnitude = torch.sqrt(real_part**2 + imag_part**2) + phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data)) + + return magnitude, phase + + def inverse(self, magnitude, phase): + device = self.forward_basis.device + magnitude, phase = magnitude.to(device), phase.to(device) + + recombine_magnitude_phase = torch.cat( + [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1 + ) + + inverse_transform = F.conv_transpose1d( + recombine_magnitude_phase, + torch.autograd.Variable(self.inverse_basis, requires_grad=False), + stride=self.hop_length, + padding=0, + ) + + if self.window is not None: + window_sum = window_sumsquare( + self.window, + magnitude.size(-1), + hop_length=self.hop_length, + win_length=self.win_length, + n_fft=self.filter_length, + dtype=np.float32, + ) + # remove modulation effects + approx_nonzero_indices = torch.from_numpy( + np.where(window_sum > tiny(window_sum))[0] + ) + window_sum = torch.autograd.Variable( + torch.from_numpy(window_sum), requires_grad=False + ) + window_sum = window_sum + inverse_transform[:, :, approx_nonzero_indices] /= window_sum[ + approx_nonzero_indices + ] + + # scale by hop ratio + inverse_transform *= float(self.filter_length) / self.hop_length + + inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :] + inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :] + + return inverse_transform + + def forward(self, input_data): + self.magnitude, self.phase = self.transform(input_data) + reconstruction = self.inverse(self.magnitude, self.phase) + return reconstruction + + +class TacotronSTFT(torch.nn.Module): + def __init__( + self, + filter_length, + hop_length, + win_length, + n_mel_channels, + sampling_rate, + mel_fmin, + mel_fmax, + ): + super(TacotronSTFT, self).__init__() + self.n_mel_channels = n_mel_channels + self.sampling_rate = sampling_rate + self.stft_fn = STFT(filter_length, hop_length, win_length) + mel_basis = librosa_mel_fn( + sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax + ) + mel_basis = torch.from_numpy(mel_basis).float() + self.register_buffer("mel_basis", mel_basis) + + def spectral_normalize(self, magnitudes, normalize_fun): + output = dynamic_range_compression(magnitudes, normalize_fun) + return output + + def spectral_de_normalize(self, magnitudes): + output = dynamic_range_decompression(magnitudes) + return output + + def mel_spectrogram(self, y, normalize_fun=torch.log): + """Computes mel-spectrograms from a batch of waves + PARAMS + ------ + y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] + + RETURNS + ------- + mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) + """ + assert torch.min(y.data) >= -1, torch.min(y.data) + assert torch.max(y.data) <= 1, torch.max(y.data) + + magnitudes, phases = self.stft_fn.transform(y) + magnitudes = magnitudes.data + mel_output = torch.matmul(self.mel_basis, magnitudes) + mel_output = self.spectral_normalize(mel_output, normalize_fun) + energy = torch.norm(magnitudes, dim=1) + + log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun) + + return mel_output, log_magnitudes, energy diff --git a/audioldm/audio/tools.py b/audioldm/audio/tools.py new file mode 100644 index 0000000000000000000000000000000000000000..d641a982664b6673822c8528a1929c593f011b11 --- /dev/null +++ b/audioldm/audio/tools.py @@ -0,0 +1,85 @@ +import torch +import numpy as np +import torchaudio + + +def get_mel_from_wav(audio, _stft): + audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1) + audio = torch.autograd.Variable(audio, requires_grad=False) + melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio) + melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32) + log_magnitudes_stft = ( + torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32) + ) + energy = torch.squeeze(energy, 0).numpy().astype(np.float32) + return melspec, log_magnitudes_stft, energy + + +def _pad_spec(fbank, target_length=1024): + n_frames = fbank.shape[0] + p = target_length - n_frames + # cut and pad + if p > 0: + m = torch.nn.ZeroPad2d((0, 0, 0, p)) + fbank = m(fbank) + elif p < 0: + fbank = fbank[0:target_length, :] + + if fbank.size(-1) % 2 != 0: + fbank = fbank[..., :-1] + + return fbank + + +def pad_wav(waveform, segment_length): + waveform_length = waveform.shape[-1] + assert waveform_length > 100, "Waveform is too short, %s" % waveform_length + if segment_length is None or waveform_length == segment_length: + return waveform + elif waveform_length > segment_length: + return waveform[:segment_length] + elif waveform_length < segment_length: + temp_wav = np.zeros((1, segment_length)) + temp_wav[:, :waveform_length] = waveform + return temp_wav + +def normalize_wav(waveform): + waveform = waveform - np.mean(waveform) + waveform = waveform / (np.max(np.abs(waveform)) + 1e-8) + return waveform * 0.5 + + +def read_wav_file(filename, segment_length): + # waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower + waveform, sr = torchaudio.load(filename) # Faster!!! + waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) + waveform = waveform.numpy()[0, ...] + waveform = normalize_wav(waveform) + waveform = waveform[None, ...] + waveform = pad_wav(waveform, segment_length) + + waveform = waveform / np.max(np.abs(waveform)) + waveform = 0.5 * waveform + + return waveform + + +def wav_to_fbank(filename, target_length=1024, fn_STFT=None): + assert fn_STFT is not None + + # mixup + waveform = read_wav_file(filename, target_length * 160) # hop size is 160 + + waveform = waveform[0, ...] + waveform = torch.FloatTensor(waveform) + + fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT) + + fbank = torch.FloatTensor(fbank.T) + log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T) + + fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec( + log_magnitudes_stft, target_length + ) + + return fbank, log_magnitudes_stft, waveform diff --git a/audioldm/clap/__init__.py b/audioldm/clap/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/audioldm/clap/encoders.py b/audioldm/clap/encoders.py new file mode 100644 index 0000000000000000000000000000000000000000..77d5e5c47c9dacf44406e9d00a831bfa051f4214 --- /dev/null +++ b/audioldm/clap/encoders.py @@ -0,0 +1,170 @@ +import torch +import torch.nn as nn +from audioldm.clap.open_clip import create_model +from audioldm.clap.training.data import get_audio_features +import torchaudio +from transformers import RobertaTokenizer +import torch.nn.functional as F + + +class CLAPAudioEmbeddingClassifierFreev2(nn.Module): + def __init__( + self, + pretrained_path="", + key="class", + sampling_rate=16000, + embed_mode="audio", + amodel = "HTSAT-tiny", + unconditional_prob=0.1, + random_mute=False, + max_random_mute_portion=0.5, + training_mode=True, + ): + super().__init__() + + self.key = key + self.device = "cpu" + self.precision = "fp32" + self.amodel = amodel # or 'PANN-14' + self.tmodel = "roberta" # the best text encoder in our training + self.enable_fusion = False # False if you do not want to use the fusion model + self.fusion_type = "aff_2d" + self.pretrained = pretrained_path + self.embed_mode = embed_mode + self.embed_mode_orig = embed_mode + self.sampling_rate = sampling_rate + self.unconditional_prob = unconditional_prob + self.random_mute = random_mute + self.tokenize = RobertaTokenizer.from_pretrained("roberta-base") + self.max_random_mute_portion = max_random_mute_portion + self.training_mode = training_mode + self.model, self.model_cfg = create_model( + self.amodel, + self.tmodel, + self.pretrained, + precision=self.precision, + device=self.device, + enable_fusion=self.enable_fusion, + fusion_type=self.fusion_type, + ) + for p in self.model.parameters(): + p.requires_grad = False + + self.model.eval() + + def get_unconditional_condition(self, batchsize): + self.unconditional_token = self.model.get_text_embedding( + self.tokenizer(["", ""]) + )[0:1] + return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0) + + def batch_to_list(self, batch): + ret = [] + for i in range(batch.size(0)): + ret.append(batch[i]) + return ret + + def make_decision(self, probability): + if float(torch.rand(1)) < probability: + return True + else: + return False + + def random_uniform(self, start, end): + val = torch.rand(1).item() + return start + (end - start) * val + + def _random_mute(self, waveform): + # waveform: [bs, t-steps] + t_steps = waveform.size(-1) + for i in range(waveform.size(0)): + mute_size = int( + self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion)) + ) + mute_start = int(self.random_uniform(0, t_steps - mute_size)) + waveform[i, mute_start : mute_start + mute_size] = 0 + return waveform + + def cos_similarity(self, waveform, text): + # waveform: [bs, t_steps] + with torch.no_grad(): + self.embed_mode = "audio" + audio_emb = self(waveform.cuda()) + self.embed_mode = "text" + text_emb = self(text) + similarity = F.cosine_similarity(audio_emb, text_emb, dim=2), audio_emb, text_emb + return similarity.squeeze() + + def forward(self, batch, key=None): + # If you want this conditioner to be unconditional, set self.unconditional_prob = 1.0 + # If you want this conditioner to be fully conditional, set self.unconditional_prob = 0.0 + if self.model.training == True and not self.training_mode: + print( + "The pretrained CLAP model should always be in eval mode. Reloading model just in case you change the parameters." + ) + self.model, self.model_cfg = create_model( + self.amodel, + self.tmodel, + self.pretrained, + precision=self.precision, + device="cuda", + enable_fusion=self.enable_fusion, + fusion_type=self.fusion_type, + ) + for p in self.model.parameters(): + p.requires_grad = False + self.model.eval() + + # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode + if self.embed_mode == "audio": + with torch.no_grad(): + audio_dict_list = [] + assert ( + self.sampling_rate == 16000 + ), "We only support 16000 sampling rate" + if self.random_mute: + batch = self._random_mute(batch) + # batch: [bs, 1, t-samples] + batch = torchaudio.functional.resample( + batch, orig_freq=self.sampling_rate, new_freq=48000 + ) + for waveform in self.batch_to_list(batch): + audio_dict = {} + audio_dict = get_audio_features( + audio_dict, + waveform, + 480000, + data_truncating="fusion", + data_filling="repeatpad", + audio_cfg=self.model_cfg["audio_cfg"], + ) + audio_dict_list.append(audio_dict) + # [bs, 512] + embed = self.model.get_audio_embedding(audio_dict_list) + elif self.embed_mode == "text": + with torch.no_grad(): + # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode + text_data = self.tokenizer(batch) + embed = self.model.get_text_embedding(text_data) + + embed = embed.unsqueeze(1) + self.unconditional_token = self.model.get_text_embedding( + self.tokenizer(["", ""]) + )[0:1] + + for i in range(embed.size(0)): + if self.make_decision(self.unconditional_prob): + embed[i] = self.unconditional_token + + # [bs, 1, 512] + return embed.detach() + + def tokenizer(self, text): + result = self.tokenize( + text, + padding="max_length", + truncation=True, + max_length=512, + return_tensors="pt", + ) + return {k: v.squeeze(0) for k, v in result.items()} \ No newline at end of file diff --git a/audioldm/clap/open_clip/__init__.py b/audioldm/clap/open_clip/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e9f728f2f273be5d5fdbec6c6cc41d737176a8c0 --- /dev/null +++ b/audioldm/clap/open_clip/__init__.py @@ -0,0 +1,25 @@ +from .factory import ( + list_models, + create_model, + create_model_and_transforms, + add_model_config, +) +from .loss import ClipLoss, gather_features, LPLoss, lp_gather_features, LPMetrics +from .model import ( + CLAP, + CLAPTextCfg, + CLAPVisionCfg, + CLAPAudioCfp, + convert_weights_to_fp16, + trace_model, +) +from .openai import load_openai_model, list_openai_models +from .pretrained import ( + list_pretrained, + list_pretrained_tag_models, + list_pretrained_model_tags, + get_pretrained_url, + download_pretrained, +) +from .tokenizer import SimpleTokenizer, tokenize +from .transform import image_transform diff --git a/audioldm/clap/open_clip/bert.py b/audioldm/clap/open_clip/bert.py new file mode 100644 index 0000000000000000000000000000000000000000..a83d96d2a77ed05198efc05837522bc88d2499cc --- /dev/null +++ b/audioldm/clap/open_clip/bert.py @@ -0,0 +1,40 @@ +from transformers import BertTokenizer, BertModel + +tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") +model = BertModel.from_pretrained("bert-base-uncased") +text = "Replace me by any text you'd like." + + +def bert_embeddings(text): + # text = "Replace me by any text you'd like." + encoded_input = tokenizer(text, return_tensors="pt") + output = model(**encoded_input) + return output + + +from transformers import RobertaTokenizer, RobertaModel + +tokenizer = RobertaTokenizer.from_pretrained("roberta-base") +model = RobertaModel.from_pretrained("roberta-base") +text = "Replace me by any text you'd like." + + +def Roberta_embeddings(text): + # text = "Replace me by any text you'd like." + encoded_input = tokenizer(text, return_tensors="pt") + output = model(**encoded_input) + return output + + +from transformers import BartTokenizer, BartModel + +tokenizer = BartTokenizer.from_pretrained("facebook/bart-base") +model = BartModel.from_pretrained("facebook/bart-base") +text = "Replace me by any text you'd like." + + +def bart_embeddings(text): + # text = "Replace me by any text you'd like." + encoded_input = tokenizer(text, return_tensors="pt") + output = model(**encoded_input) + return output diff --git a/audioldm/clap/open_clip/bpe_simple_vocab_16e6.txt.gz b/audioldm/clap/open_clip/bpe_simple_vocab_16e6.txt.gz new file mode 100644 index 0000000000000000000000000000000000000000..36a15856e00a06a9fbed8cdd34d2393fea4a3113 --- /dev/null +++ b/audioldm/clap/open_clip/bpe_simple_vocab_16e6.txt.gz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a +size 1356917 diff --git a/audioldm/clap/open_clip/factory.py b/audioldm/clap/open_clip/factory.py new file mode 100644 index 0000000000000000000000000000000000000000..64d5368bf4f14bd9592472de73d6162a93b16d73 --- /dev/null +++ b/audioldm/clap/open_clip/factory.py @@ -0,0 +1,279 @@ +import json +import logging +import os +import pathlib +import re +from copy import deepcopy +from pathlib import Path + +import torch + +from .model import CLAP, convert_weights_to_fp16 +from .openai import load_openai_model +from .pretrained import get_pretrained_url, download_pretrained +from .transform import image_transform + +_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] +_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs +CACHE_DIR = os.getenv("AUDIOLDM_CACHE_DIR", "~/.cache/audioldm") + + + +def _natural_key(string_): + return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())] + + +def _rescan_model_configs(): + global _MODEL_CONFIGS + + config_ext = (".json",) + config_files = [] + for config_path in _MODEL_CONFIG_PATHS: + if config_path.is_file() and config_path.suffix in config_ext: + config_files.append(config_path) + elif config_path.is_dir(): + for ext in config_ext: + config_files.extend(config_path.glob(f"*{ext}")) + + for cf in config_files: + if os.path.basename(cf)[0] == ".": + continue # Ignore hidden files + + with open(cf, "r") as f: + model_cfg = json.load(f) + if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")): + _MODEL_CONFIGS[cf.stem] = model_cfg + + _MODEL_CONFIGS = { + k: v + for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])) + } + + +_rescan_model_configs() # initial populate of model config registry + + +def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True): + checkpoint = torch.load(checkpoint_path, map_location=map_location) + if isinstance(checkpoint, dict) and "state_dict" in checkpoint: + state_dict = checkpoint["state_dict"] + else: + state_dict = checkpoint + if skip_params: + if next(iter(state_dict.items()))[0].startswith("module"): + state_dict = {k[7:]: v for k, v in state_dict.items()} + # for k in state_dict: + # if k.startswith('transformer'): + # v = state_dict.pop(k) + # state_dict['text_branch.' + k[12:]] = v + return state_dict + + +def create_model( + amodel_name: str, + tmodel_name: str, + pretrained: str = "", + precision: str = "fp32", + device: torch.device = torch.device("cpu"), + jit: bool = False, + force_quick_gelu: bool = False, + openai_model_cache_dir: str = os.path.expanduser(f"{CACHE_DIR}/clip"), + skip_params=True, + pretrained_audio: str = "", + pretrained_text: str = "", + enable_fusion: bool = False, + fusion_type: str = "None" + # pretrained_image: bool = False, +): + amodel_name = amodel_name.replace( + "/", "-" + ) # for callers using old naming with / in ViT names + pretrained_orig = pretrained + pretrained = pretrained.lower() + if pretrained == "openai": + if amodel_name in _MODEL_CONFIGS: + logging.info(f"Loading {amodel_name} model config.") + model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name]) + else: + logging.error( + f"Model config for {amodel_name} not found; available models {list_models()}." + ) + raise RuntimeError(f"Model config for {amodel_name} not found.") + + logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.") + # Hard Code in model name + model_cfg["text_cfg"]["model_type"] = tmodel_name + model = load_openai_model( + "ViT-B-16", + model_cfg, + device=device, + jit=jit, + cache_dir=openai_model_cache_dir, + enable_fusion=enable_fusion, + fusion_type=fusion_type, + ) + # See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372 + if precision == "amp" or precision == "fp32": + model = model.float() + else: + if amodel_name in _MODEL_CONFIGS: + logging.info(f"Loading {amodel_name} model config.") + model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name]) + else: + logging.error( + f"Model config for {amodel_name} not found; available models {list_models()}." + ) + raise RuntimeError(f"Model config for {amodel_name} not found.") + + if force_quick_gelu: + # override for use of QuickGELU on non-OpenAI transformer models + model_cfg["quick_gelu"] = True + + # if pretrained_image: + # if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}): + # # pretrained weight loading for timm models set via vision_cfg + # model_cfg['vision_cfg']['timm_model_pretrained'] = True + # else: + # assert False, 'pretrained image towers currently only supported for timm models' + model_cfg["text_cfg"]["model_type"] = tmodel_name + model_cfg["enable_fusion"] = enable_fusion + model_cfg["fusion_type"] = fusion_type + model = CLAP(**model_cfg) + + if pretrained: + checkpoint_path = "" + url = get_pretrained_url(amodel_name, pretrained) + if url: + checkpoint_path = download_pretrained(url, root=openai_model_cache_dir) + elif os.path.exists(pretrained_orig): + checkpoint_path = pretrained_orig + if checkpoint_path: + logging.info( + f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained})." + ) + ckpt = load_state_dict(checkpoint_path, skip_params=True) + model.load_state_dict(ckpt) + param_names = [n for n, p in model.named_parameters()] + # for n in param_names: + # print(n, "\t", "Loaded" if n in ckpt else "Unloaded") + else: + logging.warning( + f"Pretrained weights ({pretrained}) not found for model {amodel_name}." + ) + raise RuntimeError( + f"Pretrained weights ({pretrained}) not found for model {amodel_name}." + ) + + if pretrained_audio: + if amodel_name.startswith("PANN"): + if "Cnn14_mAP" in pretrained_audio: # official checkpoint + audio_ckpt = torch.load(pretrained_audio, map_location="cpu") + audio_ckpt = audio_ckpt["model"] + keys = list(audio_ckpt.keys()) + for key in keys: + if ( + "spectrogram_extractor" not in key + and "logmel_extractor" not in key + ): + v = audio_ckpt.pop(key) + audio_ckpt["audio_branch." + key] = v + elif os.path.basename(pretrained_audio).startswith( + "PANN" + ): # checkpoint trained via HTSAT codebase + audio_ckpt = torch.load(pretrained_audio, map_location="cpu") + audio_ckpt = audio_ckpt["state_dict"] + keys = list(audio_ckpt.keys()) + for key in keys: + if key.startswith("sed_model"): + v = audio_ckpt.pop(key) + audio_ckpt["audio_branch." + key[10:]] = v + elif os.path.basename(pretrained_audio).startswith( + "finetuned" + ): # checkpoint trained via linear probe codebase + audio_ckpt = torch.load(pretrained_audio, map_location="cpu") + else: + raise ValueError("Unknown audio checkpoint") + elif amodel_name.startswith("HTSAT"): + if "HTSAT_AudioSet_Saved" in pretrained_audio: # official checkpoint + audio_ckpt = torch.load(pretrained_audio, map_location="cpu") + audio_ckpt = audio_ckpt["state_dict"] + keys = list(audio_ckpt.keys()) + for key in keys: + if key.startswith("sed_model") and ( + "spectrogram_extractor" not in key + and "logmel_extractor" not in key + ): + v = audio_ckpt.pop(key) + audio_ckpt["audio_branch." + key[10:]] = v + elif os.path.basename(pretrained_audio).startswith( + "HTSAT" + ): # checkpoint trained via HTSAT codebase + audio_ckpt = torch.load(pretrained_audio, map_location="cpu") + audio_ckpt = audio_ckpt["state_dict"] + keys = list(audio_ckpt.keys()) + for key in keys: + if key.startswith("sed_model"): + v = audio_ckpt.pop(key) + audio_ckpt["audio_branch." + key[10:]] = v + elif os.path.basename(pretrained_audio).startswith( + "finetuned" + ): # checkpoint trained via linear probe codebase + audio_ckpt = torch.load(pretrained_audio, map_location="cpu") + else: + raise ValueError("Unknown audio checkpoint") + else: + raise f"this audio encoder pretrained checkpoint is not support" + + model.load_state_dict(audio_ckpt, strict=False) + logging.info( + f"Loading pretrained {amodel_name} weights ({pretrained_audio})." + ) + param_names = [n for n, p in model.named_parameters()] + for n in param_names: + print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded") + + model.to(device=device) + if precision == "fp16": + assert device.type != "cpu" + convert_weights_to_fp16(model) + + if jit: + model = torch.jit.script(model) + + return model, model_cfg + + +def create_model_and_transforms( + model_name: str, + pretrained: str = "", + precision: str = "fp32", + device: torch.device = torch.device("cpu"), + jit: bool = False, + force_quick_gelu: bool = False, + # pretrained_image: bool = False, +): + model = create_model( + model_name, + pretrained, + precision, + device, + jit, + force_quick_gelu=force_quick_gelu, + # pretrained_image=pretrained_image + ) + preprocess_train = image_transform(model.visual.image_size, is_train=True) + preprocess_val = image_transform(model.visual.image_size, is_train=False) + return model, preprocess_train, preprocess_val + + +def list_models(): + """enumerate available model architectures based on config files""" + return list(_MODEL_CONFIGS.keys()) + + +def add_model_config(path): + """add model config path or file and update registry""" + if not isinstance(path, Path): + path = Path(path) + _MODEL_CONFIG_PATHS.append(path) + _rescan_model_configs() \ No newline at end of file diff --git a/audioldm/clap/open_clip/feature_fusion.py b/audioldm/clap/open_clip/feature_fusion.py new file mode 100644 index 0000000000000000000000000000000000000000..dbe4e170e05894c12ebdc36ba1dc1de65e441b89 --- /dev/null +++ b/audioldm/clap/open_clip/feature_fusion.py @@ -0,0 +1,192 @@ +""" +Feature Fusion for Varible-Length Data Processing +AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py +According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021 +""" + +import torch +import torch.nn as nn + + +class DAF(nn.Module): + """ + 直接相加 DirectAddFuse + """ + + def __init__(self): + super(DAF, self).__init__() + + def forward(self, x, residual): + return x + residual + + +class iAFF(nn.Module): + """ + 多特征融合 iAFF + """ + + def __init__(self, channels=64, r=4, type="2D"): + super(iAFF, self).__init__() + inter_channels = int(channels // r) + + if type == "1D": + # 本地注意力 + self.local_att = nn.Sequential( + nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(channels), + ) + + # 全局注意力 + self.global_att = nn.Sequential( + nn.AdaptiveAvgPool1d(1), + nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(channels), + ) + + # 第二次本地注意力 + self.local_att2 = nn.Sequential( + nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(channels), + ) + # 第二次全局注意力 + self.global_att2 = nn.Sequential( + nn.AdaptiveAvgPool1d(1), + nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(channels), + ) + elif type == "2D": + # 本地注意力 + self.local_att = nn.Sequential( + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + + # 全局注意力 + self.global_att = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + + # 第二次本地注意力 + self.local_att2 = nn.Sequential( + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + # 第二次全局注意力 + self.global_att2 = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + else: + raise f"the type is not supported" + + self.sigmoid = nn.Sigmoid() + + def forward(self, x, residual): + flag = False + xa = x + residual + if xa.size(0) == 1: + xa = torch.cat([xa, xa], dim=0) + flag = True + xl = self.local_att(xa) + xg = self.global_att(xa) + xlg = xl + xg + wei = self.sigmoid(xlg) + xi = x * wei + residual * (1 - wei) + + xl2 = self.local_att2(xi) + xg2 = self.global_att(xi) + xlg2 = xl2 + xg2 + wei2 = self.sigmoid(xlg2) + xo = x * wei2 + residual * (1 - wei2) + if flag: + xo = xo[0].unsqueeze(0) + return xo + + +class AFF(nn.Module): + """ + 多特征融合 AFF + """ + + def __init__(self, channels=64, r=4, type="2D"): + super(AFF, self).__init__() + inter_channels = int(channels // r) + + if type == "1D": + self.local_att = nn.Sequential( + nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(channels), + ) + self.global_att = nn.Sequential( + nn.AdaptiveAvgPool1d(1), + nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm1d(channels), + ) + elif type == "2D": + self.local_att = nn.Sequential( + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + self.global_att = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + else: + raise f"the type is not supported." + + self.sigmoid = nn.Sigmoid() + + def forward(self, x, residual): + flag = False + xa = x + residual + if xa.size(0) == 1: + xa = torch.cat([xa, xa], dim=0) + flag = True + xl = self.local_att(xa) + xg = self.global_att(xa) + xlg = xl + xg + wei = self.sigmoid(xlg) + xo = 2 * x * wei + 2 * residual * (1 - wei) + if flag: + xo = xo[0].unsqueeze(0) + return xo diff --git a/audioldm/clap/open_clip/htsat.py b/audioldm/clap/open_clip/htsat.py new file mode 100644 index 0000000000000000000000000000000000000000..3b856c6a43df162116a941f1b5c76e93713b276a --- /dev/null +++ b/audioldm/clap/open_clip/htsat.py @@ -0,0 +1,1308 @@ +# Ke Chen +# knutchen@ucsd.edu +# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION +# Some layers designed on the model +# below codes are based and referred from https://github.com/microsoft/Swin-Transformer +# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf + +import torch +import torch.nn as nn +import torch.nn.functional as F +from itertools import repeat +import collections.abc +import math +import warnings + +from torch.nn.init import _calculate_fan_in_and_fan_out +import torch.utils.checkpoint as checkpoint + +import random + +from torchlibrosa.stft import Spectrogram, LogmelFilterBank +from torchlibrosa.augmentation import SpecAugmentation + +from itertools import repeat +from .utils import do_mixup, interpolate + +from .feature_fusion import iAFF, AFF, DAF + +# from PyTorch internals +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable): + return x + return tuple(repeat(x, n)) + + return parse + + +to_1tuple = _ntuple(1) +to_2tuple = _ntuple(2) +to_3tuple = _ntuple(3) +to_4tuple = _ntuple(4) +to_ntuple = _ntuple + + +def drop_path(x, drop_prob: float = 0.0, training: bool = False): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, + the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for + changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use + 'survival rate' as the argument. + """ + if drop_prob == 0.0 or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * ( + x.ndim - 1 + ) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) + random_tensor.floor_() # binarize + output = x.div(keep_prob) * random_tensor + return output + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) + + +class PatchEmbed(nn.Module): + """2D Image to Patch Embedding""" + + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + embed_dim=768, + norm_layer=None, + flatten=True, + patch_stride=16, + enable_fusion=False, + fusion_type="None", + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patch_stride = to_2tuple(patch_stride) + self.img_size = img_size + self.patch_size = patch_size + self.patch_stride = patch_stride + self.grid_size = ( + img_size[0] // patch_stride[0], + img_size[1] // patch_stride[1], + ) + self.num_patches = self.grid_size[0] * self.grid_size[1] + self.flatten = flatten + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.enable_fusion = enable_fusion + self.fusion_type = fusion_type + + padding = ( + (patch_size[0] - patch_stride[0]) // 2, + (patch_size[1] - patch_stride[1]) // 2, + ) + + if (self.enable_fusion) and (self.fusion_type == "channel_map"): + self.proj = nn.Conv2d( + in_chans * 4, + embed_dim, + kernel_size=patch_size, + stride=patch_stride, + padding=padding, + ) + else: + self.proj = nn.Conv2d( + in_chans, + embed_dim, + kernel_size=patch_size, + stride=patch_stride, + padding=padding, + ) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + if (self.enable_fusion) and ( + self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] + ): + self.mel_conv2d = nn.Conv2d( + in_chans, + embed_dim, + kernel_size=(patch_size[0], patch_size[1] * 3), + stride=(patch_stride[0], patch_stride[1] * 3), + padding=padding, + ) + if self.fusion_type == "daf_2d": + self.fusion_model = DAF() + elif self.fusion_type == "aff_2d": + self.fusion_model = AFF(channels=embed_dim, type="2D") + elif self.fusion_type == "iaff_2d": + self.fusion_model = iAFF(channels=embed_dim, type="2D") + + def forward(self, x, longer_idx=None): + if (self.enable_fusion) and ( + self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] + ): + global_x = x[:, 0:1, :, :] + + # global processing + B, C, H, W = global_x.shape + assert ( + H == self.img_size[0] and W == self.img_size[1] + ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + global_x = self.proj(global_x) + TW = global_x.size(-1) + if len(longer_idx) > 0: + # local processing + local_x = x[longer_idx, 1:, :, :].contiguous() + B, C, H, W = local_x.shape + local_x = local_x.view(B * C, 1, H, W) + local_x = self.mel_conv2d(local_x) + local_x = local_x.view( + B, C, local_x.size(1), local_x.size(2), local_x.size(3) + ) + local_x = local_x.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) + TB, TC, TH, _ = local_x.size() + if local_x.size(-1) < TW: + local_x = torch.cat( + [ + local_x, + torch.zeros( + (TB, TC, TH, TW - local_x.size(-1)), + device=global_x.device, + ), + ], + dim=-1, + ) + else: + local_x = local_x[:, :, :, :TW] + + global_x[longer_idx] = self.fusion_model(global_x[longer_idx], local_x) + x = global_x + else: + B, C, H, W = x.shape + assert ( + H == self.img_size[0] and W == self.img_size[1] + ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x) + + if self.flatten: + x = x.flatten(2).transpose(1, 2) # BCHW -> BNC + x = self.norm(x) + return x + + +class Mlp(nn.Module): + """MLP as used in Vision Transformer, MLP-Mixer and related networks""" + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0.0, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def _no_grad_trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn( + "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2, + ) + + with torch.no_grad(): + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.0)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + return tensor + + +def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): + # type: (Tensor, float, float, float, float) -> Tensor + r"""Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \leq \text{mean} \leq b`. + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + Examples: + >>> w = torch.empty(3, 5) + >>> nn.init.trunc_normal_(w) + """ + return _no_grad_trunc_normal_(tensor, mean, std, a, b) + + +def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): + fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) + if mode == "fan_in": + denom = fan_in + elif mode == "fan_out": + denom = fan_out + elif mode == "fan_avg": + denom = (fan_in + fan_out) / 2 + + variance = scale / denom + + if distribution == "truncated_normal": + # constant is stddev of standard normal truncated to (-2, 2) + trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978) + elif distribution == "normal": + tensor.normal_(std=math.sqrt(variance)) + elif distribution == "uniform": + bound = math.sqrt(3 * variance) + tensor.uniform_(-bound, bound) + else: + raise ValueError(f"invalid distribution {distribution}") + + +def lecun_normal_(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + ) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view( + B, H // window_size, W // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +class WindowAttention(nn.Module): + r"""Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + """ + + def __init__( + self, + dim, + window_size, + num_heads, + qkv_bias=True, + qk_scale=None, + attn_drop=0.0, + proj_drop=0.0, + ): + + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) + ) # 2*Wh-1 * 2*Ww-1, nH + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = ( + coords_flatten[:, :, None] - coords_flatten[:, None, :] + ) # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute( + 1, 2, 0 + ).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=0.02) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv = ( + self.qkv(x) + .reshape(B_, N, 3, self.num_heads, C // self.num_heads) + .permute(2, 0, 3, 1, 4) + ) + q, k, v = ( + qkv[0], + qkv[1], + qkv[2], + ) # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = q @ k.transpose(-2, -1) + + relative_position_bias = self.relative_position_bias_table[ + self.relative_position_index.view(-1) + ].view( + self.window_size[0] * self.window_size[1], + self.window_size[0] * self.window_size[1], + -1, + ) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1 + ).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( + 1 + ).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x, attn + + def extra_repr(self): + return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}" + + +# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model +class SwinTransformerBlock(nn.Module): + r"""Swin Transformer Block. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resulotion. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__( + self, + dim, + input_resolution, + num_heads, + window_size=7, + shift_size=0, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + norm_before_mlp="ln", + ): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + self.norm_before_mlp = norm_before_mlp + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert ( + 0 <= self.shift_size < self.window_size + ), "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, + window_size=to_2tuple(self.window_size), + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + ) + + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + if self.norm_before_mlp == "ln": + self.norm2 = nn.LayerNorm(dim) + elif self.norm_before_mlp == "bn": + self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose( + 1, 2 + ) + else: + raise NotImplementedError + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop, + ) + + if self.shift_size > 0: + # calculate attention mask for SW-MSA + H, W = self.input_resolution + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + w_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition( + img_mask, self.window_size + ) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill( + attn_mask != 0, float(-100.0) + ).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def forward(self, x): + # pdb.set_trace() + H, W = self.input_resolution + # print("H: ", H) + # print("W: ", W) + # pdb.set_trace() + B, L, C = x.shape + # assert L == H * W, "input feature has wrong size" + + shortcut = x + x = self.norm1(x) + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll( + x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) + ) + else: + shifted_x = x + + # partition windows + x_windows = window_partition( + shifted_x, self.window_size + ) # nW*B, window_size, window_size, C + x_windows = x_windows.view( + -1, self.window_size * self.window_size, C + ) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA + attn_windows, attn = self.attn( + x_windows, mask=self.attn_mask + ) # nW*B, window_size*window_size, C + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll( + shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) + ) + else: + x = shifted_x + x = x.view(B, H * W, C) + + # FFN + x = shortcut + self.drop_path(x) + x = x + self.drop_path(self.mlp(self.norm2(x))) + + return x, attn + + def extra_repr(self): + return ( + f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + ) + + +class PatchMerging(nn.Module): + r"""Patch Merging Layer. + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.norm(x) + x = self.reduction(x) + + return x + + def extra_repr(self): + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + +class BasicLayer(nn.Module): + """A basic Swin Transformer layer for one stage. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + """ + + def __init__( + self, + dim, + input_resolution, + depth, + num_heads, + window_size, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + norm_layer=nn.LayerNorm, + downsample=None, + use_checkpoint=False, + norm_before_mlp="ln", + ): + + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList( + [ + SwinTransformerBlock( + dim=dim, + input_resolution=input_resolution, + num_heads=num_heads, + window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_path[i] + if isinstance(drop_path, list) + else drop_path, + norm_layer=norm_layer, + norm_before_mlp=norm_before_mlp, + ) + for i in range(depth) + ] + ) + + # patch merging layer + if downsample is not None: + self.downsample = downsample( + input_resolution, dim=dim, norm_layer=norm_layer + ) + else: + self.downsample = None + + def forward(self, x): + attns = [] + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x) + else: + x, attn = blk(x) + if not self.training: + attns.append(attn.unsqueeze(0)) + if self.downsample is not None: + x = self.downsample(x) + if not self.training: + attn = torch.cat(attns, dim=0) + attn = torch.mean(attn, dim=0) + return x, attn + + def extra_repr(self): + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + +# The Core of HTSAT +class HTSAT_Swin_Transformer(nn.Module): + r"""HTSAT based on the Swin Transformer + Args: + spec_size (int | tuple(int)): Input Spectrogram size. Default 256 + patch_size (int | tuple(int)): Patch size. Default: 4 + path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4 + in_chans (int): Number of input image channels. Default: 1 (mono) + num_classes (int): Number of classes for classification head. Default: 527 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 8 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + config (module): The configuration Module from config.py + """ + + def __init__( + self, + spec_size=256, + patch_size=4, + patch_stride=(4, 4), + in_chans=1, + num_classes=527, + embed_dim=96, + depths=[2, 2, 6, 2], + num_heads=[4, 8, 16, 32], + window_size=8, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop_rate=0.0, + attn_drop_rate=0.0, + drop_path_rate=0.1, + norm_layer=nn.LayerNorm, + ape=False, + patch_norm=True, + use_checkpoint=False, + norm_before_mlp="ln", + config=None, + enable_fusion=False, + fusion_type="None", + **kwargs, + ): + super(HTSAT_Swin_Transformer, self).__init__() + + self.config = config + self.spec_size = spec_size + self.patch_stride = patch_stride + self.patch_size = patch_size + self.window_size = window_size + self.embed_dim = embed_dim + self.depths = depths + self.ape = ape + self.in_chans = in_chans + self.num_classes = num_classes + self.num_heads = num_heads + self.num_layers = len(self.depths) + self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1)) + + self.drop_rate = drop_rate + self.attn_drop_rate = attn_drop_rate + self.drop_path_rate = drop_path_rate + + self.qkv_bias = qkv_bias + self.qk_scale = None + + self.patch_norm = patch_norm + self.norm_layer = norm_layer if self.patch_norm else None + self.norm_before_mlp = norm_before_mlp + self.mlp_ratio = mlp_ratio + + self.use_checkpoint = use_checkpoint + + self.enable_fusion = enable_fusion + self.fusion_type = fusion_type + + # process mel-spec ; used only once + self.freq_ratio = self.spec_size // self.config.mel_bins + window = "hann" + center = True + pad_mode = "reflect" + ref = 1.0 + amin = 1e-10 + top_db = None + self.interpolate_ratio = 32 # Downsampled ratio + # Spectrogram extractor + self.spectrogram_extractor = Spectrogram( + n_fft=config.window_size, + hop_length=config.hop_size, + win_length=config.window_size, + window=window, + center=center, + pad_mode=pad_mode, + freeze_parameters=True, + ) + # Logmel feature extractor + self.logmel_extractor = LogmelFilterBank( + sr=config.sample_rate, + n_fft=config.window_size, + n_mels=config.mel_bins, + fmin=config.fmin, + fmax=config.fmax, + ref=ref, + amin=amin, + top_db=top_db, + freeze_parameters=True, + ) + # Spec augmenter + self.spec_augmenter = SpecAugmentation( + time_drop_width=64, + time_stripes_num=2, + freq_drop_width=8, + freq_stripes_num=2, + ) # 2 2 + self.bn0 = nn.BatchNorm2d(self.config.mel_bins) + + # split spctrogram into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=self.spec_size, + patch_size=self.patch_size, + in_chans=self.in_chans, + embed_dim=self.embed_dim, + norm_layer=self.norm_layer, + patch_stride=patch_stride, + enable_fusion=self.enable_fusion, + fusion_type=self.fusion_type, + ) + + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.grid_size + self.patches_resolution = patches_resolution + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter( + torch.zeros(1, num_patches, self.embed_dim) + ) + trunc_normal_(self.absolute_pos_embed, std=0.02) + + self.pos_drop = nn.Dropout(p=self.drop_rate) + + # stochastic depth + dpr = [ + x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths)) + ] # stochastic depth decay rule + + # build layers + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = BasicLayer( + dim=int(self.embed_dim * 2**i_layer), + input_resolution=( + patches_resolution[0] // (2**i_layer), + patches_resolution[1] // (2**i_layer), + ), + depth=self.depths[i_layer], + num_heads=self.num_heads[i_layer], + window_size=self.window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=self.qkv_bias, + qk_scale=self.qk_scale, + drop=self.drop_rate, + attn_drop=self.attn_drop_rate, + drop_path=dpr[ + sum(self.depths[:i_layer]) : sum(self.depths[: i_layer + 1]) + ], + norm_layer=self.norm_layer, + downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, + use_checkpoint=use_checkpoint, + norm_before_mlp=self.norm_before_mlp, + ) + self.layers.append(layer) + + self.norm = self.norm_layer(self.num_features) + self.avgpool = nn.AdaptiveAvgPool1d(1) + self.maxpool = nn.AdaptiveMaxPool1d(1) + + SF = ( + self.spec_size + // (2 ** (len(self.depths) - 1)) + // self.patch_stride[0] + // self.freq_ratio + ) + self.tscam_conv = nn.Conv2d( + in_channels=self.num_features, + out_channels=self.num_classes, + kernel_size=(SF, 3), + padding=(0, 1), + ) + self.head = nn.Linear(num_classes, num_classes) + + if (self.enable_fusion) and ( + self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"] + ): + self.mel_conv1d = nn.Sequential( + nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2), + nn.BatchNorm1d(64), + ) + if self.fusion_type == "daf_1d": + self.fusion_model = DAF() + elif self.fusion_type == "aff_1d": + self.fusion_model = AFF(channels=64, type="1D") + elif self.fusion_type == "iaff_1d": + self.fusion_model = iAFF(channels=64, type="1D") + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {"absolute_pos_embed"} + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {"relative_position_bias_table"} + + def forward_features(self, x, longer_idx=None): + # A deprecated optimization for using a hierarchical output from different blocks + + frames_num = x.shape[2] + x = self.patch_embed(x, longer_idx=longer_idx) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + for i, layer in enumerate(self.layers): + x, attn = layer(x) + # for x + x = self.norm(x) + B, N, C = x.shape + SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] + ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] + x = x.permute(0, 2, 1).contiguous().reshape(B, C, SF, ST) + B, C, F, T = x.shape + # group 2D CNN + c_freq_bin = F // self.freq_ratio + x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T) + x = x.permute(0, 1, 3, 2, 4).contiguous().reshape(B, C, c_freq_bin, -1) + # get latent_output + fine_grained_latent_output = torch.mean(x, dim=2) + fine_grained_latent_output = interpolate( + fine_grained_latent_output.permute(0, 2, 1).contiguous(), + 8 * self.patch_stride[1], + ) + + latent_output = self.avgpool(torch.flatten(x, 2)) + latent_output = torch.flatten(latent_output, 1) + + # display the attention map, if needed + + x = self.tscam_conv(x) + x = torch.flatten(x, 2) # B, C, T + + fpx = interpolate( + torch.sigmoid(x).permute(0, 2, 1).contiguous(), 8 * self.patch_stride[1] + ) + + x = self.avgpool(x) + x = torch.flatten(x, 1) + + output_dict = { + "framewise_output": fpx, # already sigmoided + "clipwise_output": torch.sigmoid(x), + "fine_grained_embedding": fine_grained_latent_output, + "embedding": latent_output, + } + + return output_dict + + def crop_wav(self, x, crop_size, spe_pos=None): + time_steps = x.shape[2] + tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device) + for i in range(len(x)): + if spe_pos is None: + crop_pos = random.randint(0, time_steps - crop_size - 1) + else: + crop_pos = spe_pos + tx[i][0] = x[i, 0, crop_pos : crop_pos + crop_size, :] + return tx + + # Reshape the wavform to a img size, if you want to use the pretrained swin transformer model + def reshape_wav2img(self, x): + B, C, T, F = x.shape + target_T = int(self.spec_size * self.freq_ratio) + target_F = self.spec_size // self.freq_ratio + assert ( + T <= target_T and F <= target_F + ), "the wav size should less than or equal to the swin input size" + # to avoid bicubic zero error + if T < target_T: + x = nn.functional.interpolate( + x, (target_T, x.shape[3]), mode="bicubic", align_corners=True + ) + if F < target_F: + x = nn.functional.interpolate( + x, (x.shape[2], target_F), mode="bicubic", align_corners=True + ) + x = x.permute(0, 1, 3, 2).contiguous() + x = x.reshape( + x.shape[0], + x.shape[1], + x.shape[2], + self.freq_ratio, + x.shape[3] // self.freq_ratio, + ) + # print(x.shape) + x = x.permute(0, 1, 3, 2, 4).contiguous() + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4]) + return x + + # Repeat the wavform to a img size, if you want to use the pretrained swin transformer model + def repeat_wat2img(self, x, cur_pos): + B, C, T, F = x.shape + target_T = int(self.spec_size * self.freq_ratio) + target_F = self.spec_size // self.freq_ratio + assert ( + T <= target_T and F <= target_F + ), "the wav size should less than or equal to the swin input size" + # to avoid bicubic zero error + if T < target_T: + x = nn.functional.interpolate( + x, (target_T, x.shape[3]), mode="bicubic", align_corners=True + ) + if F < target_F: + x = nn.functional.interpolate( + x, (x.shape[2], target_F), mode="bicubic", align_corners=True + ) + x = x.permute(0, 1, 3, 2).contiguous() # B C F T + x = x[:, :, :, cur_pos : cur_pos + self.spec_size] + x = x.repeat(repeats=(1, 1, 4, 1)) + return x + + def forward( + self, x: torch.Tensor, mixup_lambda=None, infer_mode=False, device=None + ): # out_feat_keys: List[str] = None): + + if self.enable_fusion and x["longer"].sum() == 0: + # if no audio is longer than 10s, then randomly select one audio to be longer + x["longer"][torch.randint(0, x["longer"].shape[0], (1,))] = True + + if not self.enable_fusion: + x = x["waveform"].to(device=device, non_blocking=True) + x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins) + x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) + x = x.transpose(1, 3) + x = self.bn0(x) + x = x.transpose(1, 3) + if self.training: + x = self.spec_augmenter(x) + + if self.training and mixup_lambda is not None: + x = do_mixup(x, mixup_lambda) + + x = self.reshape_wav2img(x) + output_dict = self.forward_features(x) + else: + longer_list = x["longer"].to(device=device, non_blocking=True) + x = x["mel_fusion"].to(device=device, non_blocking=True) + x = x.transpose(1, 3) + x = self.bn0(x) + x = x.transpose(1, 3) + longer_list_idx = torch.where(longer_list)[0] + if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]: + new_x = x[:, 0:1, :, :].clone().contiguous() + if len(longer_list_idx) > 0: + # local processing + fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous() + FB, FC, FT, FF = fusion_x_local.size() + fusion_x_local = fusion_x_local.view(FB * FC, FT, FF) + fusion_x_local = torch.permute( + fusion_x_local, (0, 2, 1) + ).contiguous() + fusion_x_local = self.mel_conv1d(fusion_x_local) + fusion_x_local = fusion_x_local.view( + FB, FC, FF, fusion_x_local.size(-1) + ) + fusion_x_local = ( + torch.permute(fusion_x_local, (0, 2, 1, 3)) + .contiguous() + .flatten(2) + ) + if fusion_x_local.size(-1) < FT: + fusion_x_local = torch.cat( + [ + fusion_x_local, + torch.zeros( + (FB, FF, FT - fusion_x_local.size(-1)), + device=device, + ), + ], + dim=-1, + ) + else: + fusion_x_local = fusion_x_local[:, :, :FT] + # 1D fusion + new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous() + new_x[longer_list_idx] = self.fusion_model( + new_x[longer_list_idx], fusion_x_local + ) + x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :] + else: + x = new_x + + elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]: + x = x # no change + + if self.training: + x = self.spec_augmenter(x) + if self.training and mixup_lambda is not None: + x = do_mixup(x, mixup_lambda) + + x = self.reshape_wav2img(x) + output_dict = self.forward_features(x, longer_idx=longer_list_idx) + + # if infer_mode: + # # in infer mode. we need to handle different length audio input + # frame_num = x.shape[2] + # target_T = int(self.spec_size * self.freq_ratio) + # repeat_ratio = math.floor(target_T / frame_num) + # x = x.repeat(repeats=(1,1,repeat_ratio,1)) + # x = self.reshape_wav2img(x) + # output_dict = self.forward_features(x) + # else: + # if x.shape[2] > self.freq_ratio * self.spec_size: + # if self.training: + # x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size) + # x = self.reshape_wav2img(x) + # output_dict = self.forward_features(x) + # else: + # # Change: Hard code here + # overlap_size = (x.shape[2] - 1) // 4 + # output_dicts = [] + # crop_size = (x.shape[2] - 1) // 2 + # for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size): + # tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos) + # tx = self.reshape_wav2img(tx) + # output_dicts.append(self.forward_features(tx)) + # clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device) + # framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device) + # for d in output_dicts: + # clipwise_output += d["clipwise_output"] + # framewise_output += d["framewise_output"] + # clipwise_output = clipwise_output / len(output_dicts) + # framewise_output = framewise_output / len(output_dicts) + # output_dict = { + # 'framewise_output': framewise_output, + # 'clipwise_output': clipwise_output + # } + # else: # this part is typically used, and most easy one + # x = self.reshape_wav2img(x) + # output_dict = self.forward_features(x) + # x = self.head(x) + + # We process the data in the dataloader part, in that here we only consider the input_T < fixed_T + + return output_dict + + +def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type="None"): + try: + + assert audio_cfg.model_name in [ + "tiny", + "base", + "large", + ], "model name for HTS-AT is wrong!" + if audio_cfg.model_name == "tiny": + model = HTSAT_Swin_Transformer( + spec_size=256, + patch_size=4, + patch_stride=(4, 4), + num_classes=audio_cfg.class_num, + embed_dim=96, + depths=[2, 2, 6, 2], + num_heads=[4, 8, 16, 32], + window_size=8, + config=audio_cfg, + enable_fusion=enable_fusion, + fusion_type=fusion_type, + ) + elif audio_cfg.model_name == "base": + model = HTSAT_Swin_Transformer( + spec_size=256, + patch_size=4, + patch_stride=(4, 4), + num_classes=audio_cfg.class_num, + embed_dim=128, + depths=[2, 2, 12, 2], + num_heads=[4, 8, 16, 32], + window_size=8, + config=audio_cfg, + enable_fusion=enable_fusion, + fusion_type=fusion_type, + ) + elif audio_cfg.model_name == "large": + model = HTSAT_Swin_Transformer( + spec_size=256, + patch_size=4, + patch_stride=(4, 4), + num_classes=audio_cfg.class_num, + embed_dim=256, + depths=[2, 2, 12, 2], + num_heads=[4, 8, 16, 32], + window_size=8, + config=audio_cfg, + enable_fusion=enable_fusion, + fusion_type=fusion_type, + ) + + return model + except: + raise RuntimeError( + f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough." + ) diff --git a/audioldm/clap/open_clip/linear_probe.py b/audioldm/clap/open_clip/linear_probe.py new file mode 100644 index 0000000000000000000000000000000000000000..9d7e23b6b67a53e16d050d675a99d01d7d04d581 --- /dev/null +++ b/audioldm/clap/open_clip/linear_probe.py @@ -0,0 +1,66 @@ +import numpy as np +import torch.nn.functional as F +from torch import nn +from .model import MLPLayers + + +class LinearProbe(nn.Module): + def __init__(self, model, mlp, freeze, in_ch, out_ch, act=None): + """ + Args: + model: nn.Module + mlp: bool, if True, then use the MLP layer as the linear probe module + freeze: bool, if Ture, then freeze all the CLAP model's layers when training the linear probe + in_ch: int, the output channel from CLAP model + out_ch: int, the output channel from linear probe (class_num) + act: torch.nn.functional, the activation function before the loss function + """ + super().__init__() + in_ch = 512 + self.clap_model = model + self.clap_model.text_branch = None # to save memory + self.freeze = freeze + if mlp: + self.lp_layer = MLPLayers(units=[in_ch, in_ch * 2, out_ch]) + else: + self.lp_layer = nn.Linear(in_ch, out_ch) + + if self.freeze: + for param in self.clap_model.parameters(): + param.requires_grad = False + + if act == "None": + self.act = None + elif act == "relu": + self.act = nn.ReLU() + elif act == "elu": + self.act = nn.ELU() + elif act == "prelu": + self.act = nn.PReLU(num_parameters=in_ch) + elif act == "softmax": + self.act = nn.Softmax(dim=-1) + elif act == "sigmoid": + self.act = nn.Sigmoid() + + def forward(self, x, mix_lambda=None, device=None): + """ + Args: + x: waveform, torch.tensor [batch, t_samples] / batch of mel_spec and longer list + mix_lambda: torch.tensor [batch], the mixup lambda + Returns: + class_prob: torch.tensor [batch, class_num] + + """ + # batchnorm cancel grandient + if self.freeze: + self.clap_model.eval() + + x = self.clap_model.audio_projection( + self.clap_model.audio_branch(x, mixup_lambda=mix_lambda, device=device)[ + "embedding" + ] + ) + out = self.lp_layer(x) + if self.act is not None: + out = self.act(out) + return out diff --git a/audioldm/clap/open_clip/loss.py b/audioldm/clap/open_clip/loss.py new file mode 100644 index 0000000000000000000000000000000000000000..cc66298a14997da4aa2efc71e37c0a6bcda53fd1 --- /dev/null +++ b/audioldm/clap/open_clip/loss.py @@ -0,0 +1,398 @@ +from multiprocessing.sharedctypes import Value +import torch +import torch.distributed.nn +from torch import distributed as dist, nn as nn +from torch.nn import functional as F +import numpy as np +from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score + +try: + import horovod.torch as hvd +except ImportError: + hvd = None + + +def gather_features( + audio_features, + text_features, + audio_features_mlp=None, + text_features_mlp=None, + local_loss=False, + gather_with_grad=False, + rank=0, + world_size=1, + use_horovod=False, + mlp_loss=False, +): + if use_horovod: + assert hvd is not None, "Please install horovod" + if gather_with_grad: + all_audio_features = hvd.allgather(audio_features) + all_text_features = hvd.allgather(text_features) + if mlp_loss: + all_audio_features_mlp = hvd.allgather(audio_features_mlp) + all_text_features_mlp = hvd.allgather(text_features_mlp) + else: + with torch.no_grad(): + all_audio_features = hvd.allgather(audio_features) + all_text_features = hvd.allgather(text_features) + if mlp_loss: + all_audio_features_mlp = hvd.allgather(audio_features_mlp) + all_text_features_mlp = hvd.allgather(text_features_mlp) + if not local_loss: + # ensure grads for local rank when all_* features don't have a gradient + gathered_audio_features = list( + all_audio_features.chunk(world_size, dim=0) + ) + gathered_text_features = list( + all_text_features.chunk(world_size, dim=0) + ) + gathered_audio_features[rank] = audio_features + gathered_text_features[rank] = text_features + all_audio_features = torch.cat(gathered_audio_features, dim=0) + all_text_features = torch.cat(gathered_text_features, dim=0) + if mlp_loss: + gathered_audio_features_mlp = list( + all_audio_features_mlp.chunk(world_size, dim=0) + ) + gathered_text_features_mlp = list( + all_text_features_mlp.chunk(world_size, dim=0) + ) + gathered_audio_features_mlp[rank] = audio_features_mlp + gathered_text_features_mlp[rank] = text_features_mlp + all_audio_features_mlp = torch.cat( + gathered_audio_features_mlp, dim=0 + ) + all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0) + else: + # We gather tensors from all gpus + if gather_with_grad: + all_audio_features = torch.cat( + torch.distributed.nn.all_gather(audio_features), dim=0 + ) + all_text_features = torch.cat( + torch.distributed.nn.all_gather(text_features), dim=0 + ) + if mlp_loss: + all_audio_features_mlp = torch.cat( + torch.distributed.nn.all_gather(audio_features_mlp), dim=0 + ) + all_text_features_mlp = torch.cat( + torch.distributed.nn.all_gather(text_features_mlp), dim=0 + ) + else: + gathered_audio_features = [ + torch.zeros_like(audio_features) for _ in range(world_size) + ] + gathered_text_features = [ + torch.zeros_like(text_features) for _ in range(world_size) + ] + dist.all_gather(gathered_audio_features, audio_features) + dist.all_gather(gathered_text_features, text_features) + if mlp_loss: + gathered_audio_features_mlp = [ + torch.zeros_like(audio_features_mlp) for _ in range(world_size) + ] + gathered_text_features_mlp = [ + torch.zeros_like(text_features_mlp) for _ in range(world_size) + ] + dist.all_gather(gathered_audio_features_mlp, audio_features_mlp) + dist.all_gather(gathered_text_features_mlp, text_features_mlp) + if not local_loss: + # ensure grads for local rank when all_* features don't have a gradient + gathered_audio_features[rank] = audio_features + gathered_text_features[rank] = text_features + if mlp_loss: + gathered_audio_features_mlp[rank] = audio_features_mlp + gathered_text_features_mlp[rank] = text_features_mlp + + all_audio_features = torch.cat(gathered_audio_features, dim=0) + all_text_features = torch.cat(gathered_text_features, dim=0) + if mlp_loss: + all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0) + all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0) + if mlp_loss: + return ( + all_audio_features, + all_text_features, + all_audio_features_mlp, + all_text_features_mlp, + ) + else: + return all_audio_features, all_text_features + + +class ClipLoss(nn.Module): + def __init__( + self, + local_loss=False, + gather_with_grad=False, + cache_labels=False, + rank=0, + world_size=1, + use_horovod=False, + mlp_loss=False, + weight_loss_kappa=0, + ): + super().__init__() + self.local_loss = local_loss + self.gather_with_grad = gather_with_grad + self.cache_labels = cache_labels + self.rank = rank + self.world_size = world_size + self.use_horovod = use_horovod + self.mlp_loss = mlp_loss + self.weighted_loss = bool(weight_loss_kappa != 0) + self.weight_loss_kappa = weight_loss_kappa + # cache state + self.prev_num_logits = 0 + self.labels = {} + + def forward( + self, + audio_features, + text_features, + logit_scale_a, + logit_scale_t=None, + audio_features_mlp=None, + text_features_mlp=None, + ): + device = audio_features.device + if self.mlp_loss: + if self.world_size > 1: + ( + all_audio_features, + all_text_features, + all_audio_features_mlp, + all_text_features_mlp, + ) = gather_features( + audio_features=audio_features, + text_features=text_features, + audio_features_mlp=audio_features_mlp, + text_features_mlp=text_features_mlp, + local_loss=self.local_loss, + gather_with_grad=self.gather_with_grad, + rank=self.rank, + world_size=self.world_size, + use_horovod=self.use_horovod, + mlp_loss=self.mlp_loss, + ) + if self.local_loss: + a_logits_per_audio = ( + logit_scale_a * audio_features @ all_text_features_mlp.T + ) + a_logits_per_text = ( + logit_scale_a * text_features_mlp @ all_audio_features.T + ) + t_logits_per_audio = ( + logit_scale_t * audio_features_mlp @ all_text_features.T + ) + t_logits_per_text = ( + logit_scale_t * text_features @ all_audio_features_mlp.T + ) + else: + a_logits_per_audio = ( + logit_scale_a * all_audio_features @ all_text_features_mlp.T + ) + a_logits_per_text = a_logits_per_audio.T + t_logits_per_audio = ( + logit_scale_t * all_audio_features_mlp @ all_text_features.T + ) + t_logits_per_text = t_logits_per_audio.T + else: + a_logits_per_audio = ( + logit_scale_a * audio_features @ text_features_mlp.T + ) + a_logits_per_text = logit_scale_a * text_features_mlp @ audio_features.T + t_logits_per_audio = ( + logit_scale_t * audio_features_mlp @ text_features.T + ) + t_logits_per_text = logit_scale_t * text_features @ audio_features_mlp.T + + # calculated ground-truth and cache if enabled + num_logits = a_logits_per_audio.shape[0] + if self.prev_num_logits != num_logits or device not in self.labels: + labels = torch.arange(num_logits, device=device, dtype=torch.long) + if self.world_size > 1 and self.local_loss: + labels = labels + num_logits * self.rank + if self.cache_labels: + self.labels[device] = labels + self.prev_num_logits = num_logits + else: + labels = self.labels[device] + + if not self.weighted_loss: + total_loss = ( + F.cross_entropy(a_logits_per_audio, labels) + + F.cross_entropy(a_logits_per_text, labels) + + F.cross_entropy(t_logits_per_audio, labels) + + F.cross_entropy(t_logits_per_text, labels) + ) / 4 + else: + audio_weight = (audio_features @ audio_features.T).detach() + audio_weight = ( + torch.exp( + torch.sum(audio_weight, axis=1) + / (self.weight_loss_kappa * len(audio_weight)) + ) + ).detach() + text_weight = (text_features @ text_features.T).detach() + text_weight = ( + torch.exp( + torch.sum(text_weight, axis=1) + / (self.weight_loss_kappa * len(text_features)) + ) + ).detach() + total_loss = ( + F.cross_entropy(a_logits_per_audio, labels, weight=audio_weight) + + F.cross_entropy(a_logits_per_text, labels, weight=audio_weight) + + F.cross_entropy(t_logits_per_audio, labels, weight=text_weight) + + F.cross_entropy(t_logits_per_text, labels, weight=text_weight) + ) / 4 + else: + if self.world_size > 1: + all_audio_features, all_text_features = gather_features( + audio_features=audio_features, + text_features=text_features, + local_loss=self.local_loss, + gather_with_grad=self.gather_with_grad, + rank=self.rank, + world_size=self.world_size, + use_horovod=self.use_horovod, + mlp_loss=self.mlp_loss, + ) + + if self.local_loss: + logits_per_audio = ( + logit_scale_a * audio_features @ all_text_features.T + ) + logits_per_text = ( + logit_scale_a * text_features @ all_audio_features.T + ) + else: + logits_per_audio = ( + logit_scale_a * all_audio_features @ all_text_features.T + ) + logits_per_text = logits_per_audio.T + else: + logits_per_audio = logit_scale_a * audio_features @ text_features.T + logits_per_text = logit_scale_a * text_features @ audio_features.T + + # calculated ground-truth and cache if enabled + num_logits = logits_per_audio.shape[0] + if self.prev_num_logits != num_logits or device not in self.labels: + labels = torch.arange(num_logits, device=device, dtype=torch.long) + if self.world_size > 1 and self.local_loss: + labels = labels + num_logits * self.rank + if self.cache_labels: + self.labels[device] = labels + self.prev_num_logits = num_logits + else: + labels = self.labels[device] + if not self.weighted_loss: + total_loss = ( + F.cross_entropy(logits_per_audio, labels) + + F.cross_entropy(logits_per_text, labels) + ) / 2 + else: + audio_weight = (all_audio_features @ all_audio_features.T).detach() + audio_weight = ( + torch.exp( + torch.sum(audio_weight, axis=1) + / (self.weight_loss_kappa * len(all_audio_features)) + ) + ).detach() + text_weight = (all_text_features @ all_text_features.T).detach() + text_weight = ( + torch.exp( + torch.sum(text_weight, axis=1) + / (self.weight_loss_kappa * len(all_text_features)) + ) + ).detach() + total_loss = ( + F.cross_entropy(logits_per_audio, labels, weight=text_weight) + + F.cross_entropy(logits_per_text, labels, weight=audio_weight) + ) / 2 + return total_loss + + +def lp_gather_features(pred, target, world_size=1, use_horovod=False): + if use_horovod: + assert hvd is not None, "Please install horovod" + with torch.no_grad(): + all_preds = hvd.allgather(pred) + all_targets = hvd.allgath(target) + else: + gathered_preds = [torch.zeros_like(pred) for _ in range(world_size)] + gathered_targets = [torch.zeros_like(target) for _ in range(world_size)] + + dist.all_gather(gathered_preds, pred) + dist.all_gather(gathered_targets, target) + all_preds = torch.cat(gathered_preds, dim=0) + all_targets = torch.cat(gathered_targets, dim=0) + + return all_preds, all_targets + + +def get_map(pred, target): + pred = torch.sigmoid(pred).numpy() + target = target.numpy() + return np.mean(average_precision_score(target, pred, average=None)) + + +def get_acc(pred, target): + pred = torch.argmax(pred, 1).numpy() + target = torch.argmax(target, 1).numpy() + return accuracy_score(target, pred) + + +def get_mauc(pred, target): + pred = torch.sigmoid(pred).numpy() + target = target.numpy() + return np.mean(roc_auc_score(target, pred, average=None)) + + +class LPMetrics(object): + def __init__(self, metric_names=["map", "acc", "mauc"]): + self.metrics = [] + for name in metric_names: + self.metrics.append(self.get_metric(name)) + self.metric_names = metric_names + + def get_metric(self, name): + if name == "map": + return get_map + elif name == "acc": + return get_acc + elif name == "mauc": + return get_mauc + else: + raise ValueError(f"the metric should be at least one of [map, acc, mauc]") + + def evaluate_mertics(self, pred, target): + metric_dict = {} + for i in range(len(self.metric_names)): + metric_dict[self.metric_names[i]] = self.metrics[i](pred, target) + return metric_dict + + +def calc_celoss(pred, target): + target = torch.argmax(target, 1).long() + return nn.CrossEntropyLoss()(pred, target) + + +class LPLoss(nn.Module): + def __init__(self, loss_name): + super().__init__() + if loss_name == "bce": + self.loss_func = nn.BCEWithLogitsLoss() + elif loss_name == "ce": + self.loss_func = calc_celoss + elif loss_name == "mse": + self.loss_func = nn.MSELoss() + else: + raise ValueError(f"the loss func should be at least one of [bce, ce, mse]") + + def forward(self, pred, target): + loss = self.loss_func(pred, target) + return loss diff --git a/audioldm/clap/open_clip/model.py b/audioldm/clap/open_clip/model.py new file mode 100644 index 0000000000000000000000000000000000000000..b439244f8c293a0b4263b7ac1fd553e9d0adf184 --- /dev/null +++ b/audioldm/clap/open_clip/model.py @@ -0,0 +1,936 @@ +""" CLAP Model + +Adapted from CLIP: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +Adapted to the Audio Task. +""" + +from collections import OrderedDict +from dataclasses import dataclass +from email.mime import audio +from typing import Tuple, Union, Callable, Optional + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn + +from .timm_model import TimmModel +import logging +from .utils import freeze_batch_norm_2d + +from .pann_model import create_pann_model +from .htsat import create_htsat_model +from transformers import BertModel, RobertaModel, BartModel +from transformers.tokenization_utils_base import BatchEncoding + + +class MLPLayers(nn.Module): + def __init__(self, units=[512, 512, 512], nonlin=nn.ReLU(), dropout=0.1): + super(MLPLayers, self).__init__() + self.nonlin = nonlin + self.dropout = dropout + + sequence = [] + for u0, u1 in zip(units[:-1], units[1:]): + sequence.append(nn.Linear(u0, u1)) + sequence.append(self.nonlin) + sequence.append(nn.Dropout(self.dropout)) + sequence = sequence[:-2] + + self.sequential = nn.Sequential(*sequence) + + def forward(self, X): + X = self.sequential(X) + return X + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1): + super().__init__() + + # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 + self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + + self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + + self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() + + self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * self.expansion) + + self.relu = nn.ReLU(inplace=True) + self.downsample = None + self.stride = stride + + if stride > 1 or inplanes != planes * Bottleneck.expansion: + # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 + self.downsample = nn.Sequential( + OrderedDict( + [ + ("-1", nn.AvgPool2d(stride)), + ( + "0", + nn.Conv2d( + inplanes, + planes * self.expansion, + 1, + stride=1, + bias=False, + ), + ), + ("1", nn.BatchNorm2d(planes * self.expansion)), + ] + ) + ) + + def forward(self, x: torch.Tensor): + identity = x + + out = self.relu(self.bn1(self.conv1(x))) + out = self.relu(self.bn2(self.conv2(out))) + out = self.avgpool(out) + out = self.bn3(self.conv3(out)) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + return out + + +class AttentionPool2d(nn.Module): + def __init__( + self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None + ): + super().__init__() + self.positional_embedding = nn.Parameter( + torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5 + ) + self.k_proj = nn.Linear(embed_dim, embed_dim) + self.q_proj = nn.Linear(embed_dim, embed_dim) + self.v_proj = nn.Linear(embed_dim, embed_dim) + self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) + self.num_heads = num_heads + + def forward(self, x): + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute( + 2, 0, 1 + ) # NCHW -> (HW)NC + x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC + x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC + x, _ = F.multi_head_attention_forward( + query=x, + key=x, + value=x, + embed_dim_to_check=x.shape[-1], + num_heads=self.num_heads, + q_proj_weight=self.q_proj.weight, + k_proj_weight=self.k_proj.weight, + v_proj_weight=self.v_proj.weight, + in_proj_weight=None, + in_proj_bias=torch.cat( + [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias] + ), + bias_k=None, + bias_v=None, + add_zero_attn=False, + dropout_p=0, + out_proj_weight=self.c_proj.weight, + out_proj_bias=self.c_proj.bias, + use_separate_proj_weight=True, + training=self.training, + need_weights=False, + ) + + return x[0] + + +class ModifiedResNet(nn.Module): + """ + A ResNet class that is similar to torchvision's but contains the following changes: + - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. + - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 + - The final pooling layer is a QKV attention instead of an average pool + """ + + def __init__(self, layers, output_dim, heads, image_size=224, width=64): + super().__init__() + self.output_dim = output_dim + self.image_size = image_size + + # the 3-layer stem + self.conv1 = nn.Conv2d( + 3, width // 2, kernel_size=3, stride=2, padding=1, bias=False + ) + self.bn1 = nn.BatchNorm2d(width // 2) + self.conv2 = nn.Conv2d( + width // 2, width // 2, kernel_size=3, padding=1, bias=False + ) + self.bn2 = nn.BatchNorm2d(width // 2) + self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) + self.bn3 = nn.BatchNorm2d(width) + self.avgpool = nn.AvgPool2d(2) + self.relu = nn.ReLU(inplace=True) + + # residual layers + self._inplanes = width # this is a *mutable* variable used during construction + self.layer1 = self._make_layer(width, layers[0]) + self.layer2 = self._make_layer(width * 2, layers[1], stride=2) + self.layer3 = self._make_layer(width * 4, layers[2], stride=2) + self.layer4 = self._make_layer(width * 8, layers[3], stride=2) + + embed_dim = width * 32 # the ResNet feature dimension + self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) + + self.init_parameters() + + def _make_layer(self, planes, blocks, stride=1): + layers = [Bottleneck(self._inplanes, planes, stride)] + + self._inplanes = planes * Bottleneck.expansion + for _ in range(1, blocks): + layers.append(Bottleneck(self._inplanes, planes)) + + return nn.Sequential(*layers) + + def init_parameters(self): + if self.attnpool is not None: + std = self.attnpool.c_proj.in_features**-0.5 + nn.init.normal_(self.attnpool.q_proj.weight, std=std) + nn.init.normal_(self.attnpool.k_proj.weight, std=std) + nn.init.normal_(self.attnpool.v_proj.weight, std=std) + nn.init.normal_(self.attnpool.c_proj.weight, std=std) + + for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: + for name, param in resnet_block.named_parameters(): + if name.endswith("bn3.weight"): + nn.init.zeros_(param) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + assert ( + unlocked_groups == 0 + ), "partial locking not currently supported for this model" + for param in self.parameters(): + param.requires_grad = False + if freeze_bn_stats: + freeze_batch_norm_2d(self) + + def stem(self, x): + for conv, bn in [ + (self.conv1, self.bn1), + (self.conv2, self.bn2), + (self.conv3, self.bn3), + ]: + x = self.relu(bn(conv(x))) + x = self.avgpool(x) + return x + + def forward(self, x): + x = self.stem(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.attnpool(x) + + return x + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16.""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + return x.to(orig_type) + + +class QuickGELU(nn.Module): + # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class ResidualAttentionBlock(nn.Module): + def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU): + super().__init__() + + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ln_1 = LayerNorm(d_model) + self.mlp = nn.Sequential( + OrderedDict( + [ + ("c_fc", nn.Linear(d_model, d_model * 4)), + ("gelu", act_layer()), + ("c_proj", nn.Linear(d_model * 4, d_model)), + ] + ) + ) + self.ln_2 = LayerNorm(d_model) + + def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] + + def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + x = x + self.attention(self.ln_1(x), attn_mask=attn_mask) + x = x + self.mlp(self.ln_2(x)) + return x + + +class Transformer(nn.Module): + def __init__( + self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU + ): + super().__init__() + self.width = width + self.layers = layers + self.resblocks = nn.ModuleList( + [ + ResidualAttentionBlock(width, heads, act_layer=act_layer) + for _ in range(layers) + ] + ) + + def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + for r in self.resblocks: + x = r(x, attn_mask=attn_mask) + return x + + +class VisualTransformer(nn.Module): + def __init__( + self, + image_size: int, + patch_size: int, + width: int, + layers: int, + heads: int, + output_dim: int, + act_layer: Callable = nn.GELU, + ): + super().__init__() + self.image_size = image_size + self.output_dim = output_dim + self.conv1 = nn.Conv2d( + in_channels=3, + out_channels=width, + kernel_size=patch_size, + stride=patch_size, + bias=False, + ) + + scale = width**-0.5 + self.class_embedding = nn.Parameter(scale * torch.randn(width)) + self.positional_embedding = nn.Parameter( + scale * torch.randn((image_size // patch_size) ** 2 + 1, width) + ) + self.ln_pre = LayerNorm(width) + + self.text_branch = Transformer(width, layers, heads, act_layer=act_layer) + + self.ln_post = LayerNorm(width) + self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + assert ( + unlocked_groups == 0 + ), "partial locking not currently supported for this model" + for param in self.parameters(): + param.requires_grad = False + + def forward(self, x: torch.Tensor): + x = self.conv1(x) # shape = [*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + x = torch.cat( + [ + self.class_embedding.to(x.dtype) + + torch.zeros( + x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device + ), + x, + ], + dim=1, + ) # shape = [*, grid ** 2 + 1, width] + x = x + self.positional_embedding.to(x.dtype) + x = self.ln_pre(x) + + x = x.permute(1, 0, 2) # NLD -> LND + x = self.text_branch(x) + x = x.permute(1, 0, 2) # LND -> NLD + + x = self.ln_post(x[:, 0, :]) + + if self.proj is not None: + x = x @ self.proj + + return x + + +@dataclass +class CLAPVisionCfg: + layers: Union[Tuple[int, int, int, int], int] = 12 + width: int = 768 + patch_size: int = 16 + image_size: Union[Tuple[int, int], int] = 224 + timm_model_name: str = ( + None # a valid model name overrides layers, width, patch_size + ) + timm_model_pretrained: bool = ( + False # use (imagenet) pretrained weights for named model + ) + timm_pool: str = ( + "avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') + ) + timm_proj: str = ( + "linear" # linear projection for timm model output ('linear', 'mlp', '') + ) + + +# Audio Config Class +@dataclass +class CLAPAudioCfp: + model_type: str = "PANN" + model_name: str = "Cnn14" + sample_rate: int = 48000 + # Param + audio_length: int = 1024 + window_size: int = 1024 + hop_size: int = 1024 + fmin: int = 50 + fmax: int = 14000 + class_num: int = 527 + mel_bins: int = 64 + clip_samples: int = 480000 + + +@dataclass +class CLAPTextCfg: + context_length: int + vocab_size: int + width: int + heads: int + layers: int + model_type: str + + +class CLAP(nn.Module): + def __init__( + self, + embed_dim: int, + audio_cfg: CLAPAudioCfp, + text_cfg: CLAPTextCfg, + quick_gelu: bool = False, + enable_fusion: bool = False, + fusion_type: str = "None", + joint_embed_shape: int = 512, + mlp_act: str = "relu", + ): + super().__init__() + if isinstance(audio_cfg, dict): + audio_cfg = CLAPAudioCfp(**audio_cfg) + if isinstance(text_cfg, dict): + text_cfg = CLAPTextCfg(**text_cfg) + + self.audio_cfg = audio_cfg + self.text_cfg = text_cfg + self.enable_fusion = enable_fusion + self.fusion_type = fusion_type + self.joint_embed_shape = joint_embed_shape + self.mlp_act = mlp_act + + self.context_length = text_cfg.context_length + + # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more + # memory efficient in recent PyTorch releases (>= 1.10). + # NOTE: timm models always use native GELU regardless of quick_gelu flag. + act_layer = QuickGELU if quick_gelu else nn.GELU + + if mlp_act == "relu": + mlp_act_layer = nn.ReLU() + elif mlp_act == "gelu": + mlp_act_layer = nn.GELU() + else: + raise NotImplementedError + + # audio branch + # audio branch parameters + if audio_cfg.model_type == "PANN": + self.audio_branch = create_pann_model(audio_cfg, enable_fusion, fusion_type) + elif audio_cfg.model_type == "HTSAT": + self.audio_branch = create_htsat_model( + audio_cfg, enable_fusion, fusion_type + ) + else: + logging.error(f"Model config for {audio_cfg.model_type} not found") + raise RuntimeError(f"Model config for {audio_cfg.model_type} not found.") + + # text branch + # text branch parameters + if text_cfg.model_type == "transformer": + self.text_branch = Transformer( + width=text_cfg.width, + layers=text_cfg.layers, + heads=text_cfg.heads, + act_layer=act_layer, + ) + self.vocab_size = text_cfg.vocab_size + self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width) + self.positional_embedding = nn.Parameter( + torch.empty(self.context_length, text_cfg.width) + ) + self.ln_final = LayerNorm(text_cfg.width) + self.text_transform = MLPLayers( + units=[ + self.joint_embed_shape, + self.joint_embed_shape, + self.joint_embed_shape, + ], + dropout=0.1, + ) + self.text_projection = nn.Sequential( + nn.Linear(text_cfg.width, self.joint_embed_shape), + mlp_act_layer, + nn.Linear(self.joint_embed_shape, self.joint_embed_shape), + ) + elif text_cfg.model_type == "bert": + self.text_branch = BertModel.from_pretrained("bert-base-uncased") + self.text_transform = MLPLayers( + units=[ + self.joint_embed_shape, + self.joint_embed_shape, + self.joint_embed_shape, + ], + dropout=0.1, + ) + self.text_projection = nn.Sequential( + nn.Linear(768, self.joint_embed_shape), + mlp_act_layer, + nn.Linear(self.joint_embed_shape, self.joint_embed_shape), + ) + elif text_cfg.model_type == "roberta": + self.text_branch = RobertaModel.from_pretrained("roberta-base") + self.text_transform = MLPLayers( + units=[ + self.joint_embed_shape, + self.joint_embed_shape, + self.joint_embed_shape, + ], + dropout=0.1, + ) + self.text_projection = nn.Sequential( + nn.Linear(768, self.joint_embed_shape), + mlp_act_layer, + nn.Linear(self.joint_embed_shape, self.joint_embed_shape), + ) + elif text_cfg.model_type == "bart": + self.text_branch = BartModel.from_pretrained("facebook/bart-base") + self.text_transform = MLPLayers( + units=[ + self.joint_embed_shape, + self.joint_embed_shape, + self.joint_embed_shape, + ], + dropout=0.1, + ) + self.text_projection = nn.Sequential( + nn.Linear(768, self.joint_embed_shape), + mlp_act_layer, + nn.Linear(self.joint_embed_shape, self.joint_embed_shape), + ) + else: + logging.error(f"Model config for {text_cfg.model_type} not found") + raise RuntimeError(f"Model config for {text_cfg.model_type} not found.") + self.text_branch_type = text_cfg.model_type + # text branch parameters + + # audio branch parameters + self.audio_transform = MLPLayers( + units=[ + self.joint_embed_shape, + self.joint_embed_shape, + self.joint_embed_shape, + ], + dropout=0.1, + ) + + # below here is text branch parameters + + # ============================================================================================================ + self.audio_projection = nn.Sequential( + nn.Linear(embed_dim, self.joint_embed_shape), + mlp_act_layer, + nn.Linear(self.joint_embed_shape, self.joint_embed_shape), + ) + + self.logit_scale_a = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + self.logit_scale_t = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False) + + self.init_text_branch_parameters() + + def init_text_branch_parameters(self): + if self.text_branch_type == "transformer": + nn.init.normal_(self.token_embedding.weight, std=0.02) + nn.init.normal_(self.positional_embedding, std=0.01) + proj_std = (self.text_branch.width**-0.5) * ( + (2 * self.text_branch.layers) ** -0.5 + ) + attn_std = self.text_branch.width**-0.5 + fc_std = (2 * self.text_branch.width) ** -0.5 + for block in self.text_branch.resblocks: + nn.init.normal_(block.attn.in_proj_weight, std=attn_std) + nn.init.normal_(block.attn.out_proj.weight, std=proj_std) + nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) + nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) + if self.text_branch_type == "bert" or self.text_branch_type == "roberta": + width = self.text_branch.embeddings.word_embeddings.weight.shape[-1] + elif self.text_branch_type == "bart": + width = self.text_branch.shared.weight.shape[-1] + else: + width = self.text_branch.width + nn.init.constant_(self.logit_scale_a, np.log(1 / 0.07)) + nn.init.constant_(self.logit_scale_t, np.log(1 / 0.07)) + + # deprecated + # if hasattr(self.visual, 'init_parameters'): + # self.visual.init_parameters() + + # if self.text_projection is not None: + # nn.init.normal_(self.text_projection, std=width**-0.5) + + def build_attention_mask(self): + # lazily create causal attention mask, with full attention between the vision tokens + # pytorch uses additive attention mask; fill with -inf + mask = torch.empty(self.context_length, self.context_length) + mask.fill_(float("-inf")) + mask.triu_(1) # zero out the lower diagonal + return mask + + def encode_audio(self, audio, device): + return self.audio_branch( + audio, mixup_lambda=None, device=device + ) # mix lambda needs to add + + # def list_of_dict_of_tensor2dict_of_tensor(self, x, device): + # tmp = {} + # for k in x[0].keys(): + # tmp[k] = [] + # for i in range(len(x)): + # tmp[k].append(x[i][k][:77]) + # for k in x[0].keys(): + # tmp[k] = torch.tensor(tmp[k]).to(device=device, non_blocking=True) + # return tmp + + def encode_text(self, text, device): + if self.text_branch_type == "transformer": + text = text.to(device=device, non_blocking=True) + x = self.token_embedding(text) # [batch_size, n_ctx, d_model] + + x = x + self.positional_embedding + x = x.permute(1, 0, 2) # NLD -> LND + x = self.text_branch(x, attn_mask=self.attn_mask) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.ln_final(x) + + # x.shape = [batch_size, n_ctx, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)]) + elif self.text_branch_type == "bert": + # text = self.list_of_dict_of_tensor2dict_of_tensor(text, device) + # text = BatchEncoding(text) + x = self.text_branch( + input_ids=text["input_ids"].to(device=device, non_blocking=True), + attention_mask=text["attention_mask"].to( + device=device, non_blocking=True + ), + token_type_ids=text["token_type_ids"].to( + device=device, non_blocking=True + ), + )["pooler_output"] + x = self.text_projection(x) + elif self.text_branch_type == "roberta": + x = self.text_branch( + input_ids=text["input_ids"].to(device=device, non_blocking=True), + attention_mask=text["attention_mask"].to( + device=device, non_blocking=True + ), + )["pooler_output"] + x = self.text_projection(x) + elif self.text_branch_type == "bart": + x = torch.mean( + self.text_branch( + input_ids=text["input_ids"].to(device=device, non_blocking=True), + attention_mask=text["attention_mask"].to( + device=device, non_blocking=True + ), + )["encoder_last_hidden_state"], + axis=1, + ) + x = self.text_projection(x) + else: + logging.error(f"Model type {self.text_branch_type} not found") + raise RuntimeError(f"Model type {self.text_branch_type} not found.") + return x + + def forward(self, audio, text, device=None): + """Forward audio and text into the CLAP + + Parameters + ---------- + audio: torch.Tensor (batch_size, audio_length) + the time-domain audio input / the batch of mel_spec and longer list. + text: torch.Tensor () // need to add + the text token input + """ + if device is None: + if audio is not None: + device = audio.device + elif text is not None: + device = text.device + if audio is None and text is None: + # a hack to get the logit scale + return self.logit_scale_a.exp(), self.logit_scale_t.exp() + elif audio is None: + return self.encode_text(text, device=device) + elif text is None: + return self.audio_projection( + self.encode_audio(audio, device=device)["embedding"] + ) + audio_features = self.audio_projection( + self.encode_audio(audio, device=device)["embedding"] + ) + audio_features = F.normalize(audio_features, dim=-1) + + text_features = self.encode_text(text, device=device) + # print("text_features", text_features) + # print("text_features.shape", text_features.shape) + # print("text_features.type", type(text_features)) + text_features = F.normalize(text_features, dim=-1) + + audio_features_mlp = self.audio_transform(audio_features) + text_features_mlp = self.text_transform(text_features) + # Four outputs: audio features (basic & MLP), text features (basic & MLP) + return ( + audio_features, + text_features, + audio_features_mlp, + text_features_mlp, + self.logit_scale_a.exp(), + self.logit_scale_t.exp(), + ) + + def get_logit_scale(self): + return self.logit_scale_a.exp(), self.logit_scale_t.exp() + + def get_text_embedding(self, data): + """Get the text embedding from the model + + Parameters + ---------- + data: torch.Tensor + a tensor of text embedding + + Returns + ---------- + text_embed: torch.Tensor + a tensor of text_embeds (N, D) + + """ + device = next(self.parameters()).device + for k in data: + data[k] = data[k].to(device) + if len(data[k].size()) < 2: + data[k] = data[k].unsqueeze(0) + text_embeds = self.encode_text(data, device=device) + text_embeds = F.normalize(text_embeds, dim=-1) + + return text_embeds + + def get_audio_embedding(self, data): + """Get the audio embedding from the model + + Parameters + ---------- + data: a list of dict + the audio input dict list from 'get_audio_feature' method + + Returns + ---------- + audio_embed: torch.Tensor + a tensor of audio_embeds (N, D) + + """ + device = next(self.parameters()).device + input_dict = {} + keys = data[0].keys() + for k in keys: + input_dict[k] = torch.cat([d[k].unsqueeze(0) for d in data], dim=0).to( + device + ) + + audio_embeds = self.audio_projection( + self.encode_audio(input_dict, device=device)["embedding"] + ) + audio_embeds = F.normalize(audio_embeds, dim=-1) + + return audio_embeds + + def audio_infer(self, audio, hopsize=None, device=None): + """Forward one audio and produce the audio embedding + + Parameters + ---------- + audio: (audio_length) + the time-domain audio input, notice that it must be only one input + hopsize: int + the overlap hopsize as the sliding window + + Returns + ---------- + output_dict: { + key: [n, (embedding_shape)] if "HTS-AT" + or + key: [(embedding_shape)] if "PANN" + } + the list of key values of the audio branch + + """ + + assert not self.training, "the inference mode must be run at eval stage" + output_dict = {} + # PANN + if self.audio_cfg.model_type == "PANN": + audio_input = audio.unsqueeze(dim=0) + output_dict[key] = self.encode_audio(audio_input, device=device)[ + key + ].squeeze(dim=0) + elif self.audio_cfg.model_type == "HTSAT": + # repeat + audio_len = len(audio) + k = self.audio_cfg.clip_samples // audio_len + if k > 1: + audio = audio.repeat(k) + audio_len = len(audio) + + if hopsize is None: + hopsize = min(hopsize, audio_len) + + if audio_len > self.audio_cfg.clip_samples: + audio_input = [ + audio[pos : pos + self.audio_cfg.clip_samples].clone() + for pos in range( + 0, audio_len - self.audio_cfg.clip_samples, hopsize + ) + ] + audio_input.append(audio[-self.audio_cfg.clip_samples :].clone()) + audio_input = torch.stack(audio_input) + output_dict[key] = self.encode_audio(audio_input, device=device)[key] + else: + audio_input = audio.unsqueeze(dim=0) + output_dict[key] = self.encode_audio(audio_input, device=device)[ + key + ].squeeze(dim=0) + + return output_dict + + +def convert_weights_to_fp16(model: nn.Module): + """Convert applicable model parameters to fp16""" + + def _convert_weights_to_fp16(l): + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): + l.weight.data = l.weight.data.half() + if l.bias is not None: + l.bias.data = l.bias.data.half() + + if isinstance(l, nn.MultiheadAttention): + for attr in [ + *[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], + "in_proj_bias", + "bias_k", + "bias_v", + ]: + tensor = getattr(l, attr) + if tensor is not None: + tensor.data = tensor.data.half() + + for name in ["text_projection", "proj"]: + if hasattr(l, name): + attr = getattr(l, name) + if attr is not None: + attr.data = attr.data.half() + + model.apply(_convert_weights_to_fp16) + + +# Ignore the state dict of the vision part +def build_model_from_openai_state_dict( + state_dict: dict, model_cfg, enable_fusion: bool = False, fusion_type: str = "None" +): + + embed_dim = model_cfg["embed_dim"] + audio_cfg = model_cfg["audio_cfg"] + text_cfg = model_cfg["text_cfg"] + context_length = state_dict["positional_embedding"].shape[0] + vocab_size = state_dict["token_embedding.weight"].shape[0] + transformer_width = state_dict["ln_final.weight"].shape[0] + transformer_heads = transformer_width // 64 + transformer_layers = len( + set( + k.split(".")[2] + for k in state_dict + if k.startswith(f"transformer.resblocks") + ) + ) + + audio_cfg = CLAPAudioCfp(**audio_cfg) + text_cfg = CLAPTextCfg(**text_cfg) + + model = CLAP( + embed_dim, + audio_cfg=audio_cfg, + text_cfg=text_cfg, + quick_gelu=True, # OpenAI models were trained with QuickGELU + enable_fusion=enable_fusion, + fusion_type=fusion_type, + ) + state_dict["logit_scale_a"] = state_dict["logit_scale"] + state_dict["logit_scale_t"] = state_dict["logit_scale"] + pop_keys = list(state_dict.keys())[::] + # pop the visual branch saved weights + for key in pop_keys: + if key.startswith("visual."): + state_dict.pop(key, None) + + for key in ["logit_scale", "input_resolution", "context_length", "vocab_size"]: + state_dict.pop(key, None) + + # not use fp16 + # convert_weights_to_fp16(model) + model.load_state_dict(state_dict, strict=False) + return model.eval() + + +def trace_model(model, batch_size=256, device=torch.device("cpu")): + model.eval() + audio_length = model.audio_cfg.audio_length + example_audio = torch.ones((batch_size, audio_length), device=device) + example_text = torch.zeros( + (batch_size, model.context_length), dtype=torch.int, device=device + ) + model = torch.jit.trace_module( + model, + inputs=dict( + forward=(example_audio, example_text), + encode_text=(example_text,), + encode_image=(example_audio,), + ), + ) + model.audio_cfg.audio_length = audio_length # Question: what does this do? + return model diff --git a/audioldm/clap/open_clip/model_configs/HTSAT-base.json b/audioldm/clap/open_clip/model_configs/HTSAT-base.json new file mode 100644 index 0000000000000000000000000000000000000000..6cef625a89daf4431f1c9f72e10bc9640eef2ba8 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/HTSAT-base.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 1024, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "HTSAT", + "model_name": "base" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/HTSAT-large.json b/audioldm/clap/open_clip/model_configs/HTSAT-large.json new file mode 100644 index 0000000000000000000000000000000000000000..699cdb1b16855582606551e4196b24aba2ffd871 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/HTSAT-large.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 2048, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "HTSAT", + "model_name": "large" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/HTSAT-tiny-win-1536.json b/audioldm/clap/open_clip/model_configs/HTSAT-tiny-win-1536.json new file mode 100644 index 0000000000000000000000000000000000000000..73e42990fe8361a0df502e7f93d29f19f58c9ecb --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/HTSAT-tiny-win-1536.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 768, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1536, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "HTSAT", + "model_name": "tiny" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/HTSAT-tiny.json b/audioldm/clap/open_clip/model_configs/HTSAT-tiny.json new file mode 100644 index 0000000000000000000000000000000000000000..a6e7821163d9afa81c27345a1e472475b92af169 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/HTSAT-tiny.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 768, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "HTSAT", + "model_name": "tiny" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/PANN-10.json b/audioldm/clap/open_clip/model_configs/PANN-10.json new file mode 100644 index 0000000000000000000000000000000000000000..954ddf62921aed7dde9c37ffffec98a2e96a4ee7 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/PANN-10.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 1024, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "PANN", + "model_name": "Cnn10" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/PANN-14-fmax-18k.json b/audioldm/clap/open_clip/model_configs/PANN-14-fmax-18k.json new file mode 100644 index 0000000000000000000000000000000000000000..b7989bc0cd95d0d39049b7524eba508b3e386439 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/PANN-14-fmax-18k.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 2048, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 480, + "fmin": 50, + "fmax": 18000, + "class_num": 527, + "model_type": "PANN", + "model_name": "Cnn14" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/PANN-14-fmax-8k-20s.json b/audioldm/clap/open_clip/model_configs/PANN-14-fmax-8k-20s.json new file mode 100644 index 0000000000000000000000000000000000000000..56bdb56bedc304ffa52d8bf5988cea2c1d82d14e --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/PANN-14-fmax-8k-20s.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 2048, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 960000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 360, + "fmin": 50, + "fmax": 8000, + "class_num": 527, + "model_type": "PANN", + "model_name": "Cnn14" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/PANN-14-tiny-transformer.json b/audioldm/clap/open_clip/model_configs/PANN-14-tiny-transformer.json new file mode 100644 index 0000000000000000000000000000000000000000..5756e3bebc97cc985f512cb081930fee4e49bec1 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/PANN-14-tiny-transformer.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 2048, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "PANN", + "model_name": "Cnn14" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 4 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/PANN-14-win-1536.json b/audioldm/clap/open_clip/model_configs/PANN-14-win-1536.json new file mode 100644 index 0000000000000000000000000000000000000000..5a9e7e208b661619d5e26625e849da1adda8a475 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/PANN-14-win-1536.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 2048, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1536, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "PANN", + "model_name": "Cnn14" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/PANN-14.json b/audioldm/clap/open_clip/model_configs/PANN-14.json new file mode 100644 index 0000000000000000000000000000000000000000..39a5134cde1d8c50f4758377c952ef22f07bab41 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/PANN-14.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 2048, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "PANN", + "model_name": "Cnn14" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/PANN-6.json b/audioldm/clap/open_clip/model_configs/PANN-6.json new file mode 100644 index 0000000000000000000000000000000000000000..21ebc344326de260c386ba77e0ad63cf9b04febf --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/PANN-6.json @@ -0,0 +1,23 @@ +{ + "embed_dim": 512, + "audio_cfg": { + "audio_length": 1024, + "clip_samples": 480000, + "mel_bins": 64, + "sample_rate": 48000, + "window_size": 1024, + "hop_size": 480, + "fmin": 50, + "fmax": 14000, + "class_num": 527, + "model_type": "PANN", + "model_name": "Cnn6" + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/RN101-quickgelu.json b/audioldm/clap/open_clip/model_configs/RN101-quickgelu.json new file mode 100644 index 0000000000000000000000000000000000000000..d0db2c161d13138788c4609d373b023b8454d624 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/RN101-quickgelu.json @@ -0,0 +1,22 @@ +{ + "embed_dim": 512, + "quick_gelu": true, + "vision_cfg": { + "image_size": 224, + "layers": [ + 3, + 4, + 23, + 3 + ], + "width": 64, + "patch_size": null + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/RN101.json b/audioldm/clap/open_clip/model_configs/RN101.json new file mode 100644 index 0000000000000000000000000000000000000000..b88b4d3acbaa701c614ab0ea65fc88fcfe289c32 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/RN101.json @@ -0,0 +1,21 @@ +{ + "embed_dim": 512, + "vision_cfg": { + "image_size": 224, + "layers": [ + 3, + 4, + 23, + 3 + ], + "width": 64, + "patch_size": null + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/RN50-quickgelu.json b/audioldm/clap/open_clip/model_configs/RN50-quickgelu.json new file mode 100644 index 0000000000000000000000000000000000000000..8c2f91260cdeb043434dc1e893cce81d4ce7f0d1 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/RN50-quickgelu.json @@ -0,0 +1,22 @@ +{ + "embed_dim": 1024, + "quick_gelu": true, + "vision_cfg": { + "image_size": 224, + "layers": [ + 3, + 4, + 6, + 3 + ], + "width": 64, + "patch_size": null + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} diff --git a/audioldm/clap/open_clip/model_configs/RN50.json b/audioldm/clap/open_clip/model_configs/RN50.json new file mode 100644 index 0000000000000000000000000000000000000000..33aa884d54fee0076c33676831e49d5e1ffcb8f2 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/RN50.json @@ -0,0 +1,21 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": [ + 3, + 4, + 6, + 3 + ], + "width": 64, + "patch_size": null + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/RN50x16.json b/audioldm/clap/open_clip/model_configs/RN50x16.json new file mode 100644 index 0000000000000000000000000000000000000000..3161e1a2c9a839161e652a4d729c2cdc971161db --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/RN50x16.json @@ -0,0 +1,21 @@ +{ + "embed_dim": 768, + "vision_cfg": { + "image_size": 384, + "layers": [ + 6, + 8, + 18, + 8 + ], + "width": 96, + "patch_size": null + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 768, + "heads": 12, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/RN50x4.json b/audioldm/clap/open_clip/model_configs/RN50x4.json new file mode 100644 index 0000000000000000000000000000000000000000..e155237f8ce1026aaaeecc80751eabe6f329f0bb --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/RN50x4.json @@ -0,0 +1,21 @@ +{ + "embed_dim": 640, + "vision_cfg": { + "image_size": 288, + "layers": [ + 4, + 6, + 10, + 6 + ], + "width": 80, + "patch_size": null + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 640, + "heads": 10, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/ViT-B-16.json b/audioldm/clap/open_clip/model_configs/ViT-B-16.json new file mode 100644 index 0000000000000000000000000000000000000000..395eea77ec3907c0611531aba63459b193e67b9c --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/ViT-B-16.json @@ -0,0 +1,16 @@ +{ + "embed_dim": 512, + "vision_cfg": { + "image_size": 224, + "layers": 12, + "width": 768, + "patch_size": 16 + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/ViT-B-32-quickgelu.json b/audioldm/clap/open_clip/model_configs/ViT-B-32-quickgelu.json new file mode 100644 index 0000000000000000000000000000000000000000..ce6bd923593293ed50dfcfb28b73ca7403bcf3c5 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/ViT-B-32-quickgelu.json @@ -0,0 +1,17 @@ +{ + "embed_dim": 512, + "quick_gelu": true, + "vision_cfg": { + "image_size": 224, + "layers": 12, + "width": 768, + "patch_size": 32 + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/ViT-B-32.json b/audioldm/clap/open_clip/model_configs/ViT-B-32.json new file mode 100644 index 0000000000000000000000000000000000000000..07c8e28eb06fa1813ba932fe4eec668262d1c47f --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/ViT-B-32.json @@ -0,0 +1,16 @@ +{ + "embed_dim": 512, + "vision_cfg": { + "image_size": 224, + "layers": 12, + "width": 768, + "patch_size": 32 + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/model_configs/ViT-L-14.json b/audioldm/clap/open_clip/model_configs/ViT-L-14.json new file mode 100644 index 0000000000000000000000000000000000000000..d4a4bbb1dd4ed4edb317d3ace4f3ad13b211c241 --- /dev/null +++ b/audioldm/clap/open_clip/model_configs/ViT-L-14.json @@ -0,0 +1,16 @@ +{ + "embed_dim": 768, + "vision_cfg": { + "image_size": 224, + "layers": 24, + "width": 1024, + "patch_size": 14 + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 768, + "heads": 12, + "layers": 12 + } +} \ No newline at end of file diff --git a/audioldm/clap/open_clip/openai.py b/audioldm/clap/open_clip/openai.py new file mode 100644 index 0000000000000000000000000000000000000000..fcb624f54a8b9d2c4b11e3adb50c53c3261716d4 --- /dev/null +++ b/audioldm/clap/open_clip/openai.py @@ -0,0 +1,159 @@ +""" OpenAI pretrained model functions + +Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +""" + +import os +import warnings +from typing import Union, List + +import torch + +from .model import build_model_from_openai_state_dict +from .pretrained import ( + get_pretrained_url, + list_pretrained_tag_models, + download_pretrained, +) + +__all__ = ["list_openai_models", "load_openai_model"] + +CACHE_DIR = os.getenv("AUDIOLDM_CACHE_DIR", "~/.cache") + + + +def list_openai_models() -> List[str]: + """Returns the names of available CLIP models""" + return list_pretrained_tag_models("openai") + + +def load_openai_model( + name: str, + model_cfg, + device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", + jit=True, + cache_dir=os.path.expanduser(f"{CACHE_DIR}/clip"), + enable_fusion: bool = False, + fusion_type: str = "None", +): + """Load a CLIP model, preserve its text pretrained part, and set in the CLAP model + + Parameters + ---------- + name : str + A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict + device : Union[str, torch.device] + The device to put the loaded model + jit : bool + Whether to load the optimized JIT model (default) or more hackable non-JIT model. + + Returns + ------- + model : torch.nn.Module + The CLAP model + preprocess : Callable[[PIL.Image], torch.Tensor] + A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input + """ + if get_pretrained_url(name, "openai"): + model_path = download_pretrained( + get_pretrained_url(name, "openai"), root=cache_dir + ) + elif os.path.isfile(name): + model_path = name + else: + raise RuntimeError( + f"Model {name} not found; available models = {list_openai_models()}" + ) + + try: + # loading JIT archive + model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() + state_dict = None + except RuntimeError: + # loading saved state dict + if jit: + warnings.warn( + f"File {model_path} is not a JIT archive. Loading as a state dict instead" + ) + jit = False + state_dict = torch.load(model_path, map_location="cpu") + + if not jit: + try: + model = build_model_from_openai_state_dict( + state_dict or model.state_dict(), model_cfg, enable_fusion, fusion_type + ).to(device) + except KeyError: + sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} + model = build_model_from_openai_state_dict( + sd, model_cfg, enable_fusion, fusion_type + ).to(device) + + if str(device) == "cpu": + model.float() + return model + + # patch the device names + device_holder = torch.jit.trace( + lambda: torch.ones([]).to(torch.device(device)), example_inputs=[] + ) + device_node = [ + n + for n in device_holder.graph.findAllNodes("prim::Constant") + if "Device" in repr(n) + ][-1] + + def patch_device(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("prim::Constant"): + if "value" in node.attributeNames() and str(node["value"]).startswith( + "cuda" + ): + node.copyAttributes(device_node) + + model.apply(patch_device) + patch_device(model.encode_audio) + patch_device(model.encode_text) + + # patch dtype to float32 on CPU + if str(device) == "cpu": + float_holder = torch.jit.trace( + lambda: torch.ones([]).float(), example_inputs=[] + ) + float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] + float_node = float_input.node() + + def patch_float(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("aten::to"): + inputs = list(node.inputs()) + for i in [ + 1, + 2, + ]: # dtype can be the second or third argument to aten::to() + if inputs[i].node()["value"] == 5: + inputs[i].node().copyAttributes(float_node) + + model.apply(patch_float) + patch_float(model.encode_audio) + patch_float(model.encode_text) + model.float() + + model.audio_branch.audio_length = model.audio_cfg.audio_length + return model diff --git a/audioldm/clap/open_clip/pann_model.py b/audioldm/clap/open_clip/pann_model.py new file mode 100644 index 0000000000000000000000000000000000000000..0d9a8eb0bf897ad6ec04923361b01e5de433b2ef --- /dev/null +++ b/audioldm/clap/open_clip/pann_model.py @@ -0,0 +1,704 @@ +# PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition +# Reference from https://github.com/qiuqiangkong/audioset_tagging_cnn +# Some layers are re-designed for CLAP +import os + +os.environ["NUMBA_CACHE_DIR"] = "/tmp/" + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torchlibrosa.stft import Spectrogram, LogmelFilterBank +from torchlibrosa.augmentation import SpecAugmentation + +from .utils import do_mixup, interpolate, pad_framewise_output +from .feature_fusion import iAFF, AFF, DAF + + +def init_layer(layer): + """Initialize a Linear or Convolutional layer.""" + nn.init.xavier_uniform_(layer.weight) + + if hasattr(layer, "bias"): + if layer.bias is not None: + layer.bias.data.fill_(0.0) + + +def init_bn(bn): + """Initialize a Batchnorm layer.""" + bn.bias.data.fill_(0.0) + bn.weight.data.fill_(1.0) + + +class ConvBlock(nn.Module): + def __init__(self, in_channels, out_channels): + + super(ConvBlock, self).__init__() + + self.conv1 = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1), + bias=False, + ) + + self.conv2 = nn.Conv2d( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1), + bias=False, + ) + + self.bn1 = nn.BatchNorm2d(out_channels) + self.bn2 = nn.BatchNorm2d(out_channels) + + self.init_weight() + + def init_weight(self): + init_layer(self.conv1) + init_layer(self.conv2) + init_bn(self.bn1) + init_bn(self.bn2) + + def forward(self, input, pool_size=(2, 2), pool_type="avg"): + + x = input + x = F.relu_(self.bn1(self.conv1(x))) + x = F.relu_(self.bn2(self.conv2(x))) + if pool_type == "max": + x = F.max_pool2d(x, kernel_size=pool_size) + elif pool_type == "avg": + x = F.avg_pool2d(x, kernel_size=pool_size) + elif pool_type == "avg+max": + x1 = F.avg_pool2d(x, kernel_size=pool_size) + x2 = F.max_pool2d(x, kernel_size=pool_size) + x = x1 + x2 + else: + raise Exception("Incorrect argument!") + + return x + + +class ConvBlock5x5(nn.Module): + def __init__(self, in_channels, out_channels): + + super(ConvBlock5x5, self).__init__() + + self.conv1 = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=(5, 5), + stride=(1, 1), + padding=(2, 2), + bias=False, + ) + + self.bn1 = nn.BatchNorm2d(out_channels) + + self.init_weight() + + def init_weight(self): + init_layer(self.conv1) + init_bn(self.bn1) + + def forward(self, input, pool_size=(2, 2), pool_type="avg"): + + x = input + x = F.relu_(self.bn1(self.conv1(x))) + if pool_type == "max": + x = F.max_pool2d(x, kernel_size=pool_size) + elif pool_type == "avg": + x = F.avg_pool2d(x, kernel_size=pool_size) + elif pool_type == "avg+max": + x1 = F.avg_pool2d(x, kernel_size=pool_size) + x2 = F.max_pool2d(x, kernel_size=pool_size) + x = x1 + x2 + else: + raise Exception("Incorrect argument!") + + return x + + +class AttBlock(nn.Module): + def __init__(self, n_in, n_out, activation="linear", temperature=1.0): + super(AttBlock, self).__init__() + + self.activation = activation + self.temperature = temperature + self.att = nn.Conv1d( + in_channels=n_in, + out_channels=n_out, + kernel_size=1, + stride=1, + padding=0, + bias=True, + ) + self.cla = nn.Conv1d( + in_channels=n_in, + out_channels=n_out, + kernel_size=1, + stride=1, + padding=0, + bias=True, + ) + + self.bn_att = nn.BatchNorm1d(n_out) + self.init_weights() + + def init_weights(self): + init_layer(self.att) + init_layer(self.cla) + init_bn(self.bn_att) + + def forward(self, x): + # x: (n_samples, n_in, n_time) + norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1) + cla = self.nonlinear_transform(self.cla(x)) + x = torch.sum(norm_att * cla, dim=2) + return x, norm_att, cla + + def nonlinear_transform(self, x): + if self.activation == "linear": + return x + elif self.activation == "sigmoid": + return torch.sigmoid(x) + + +class Cnn14(nn.Module): + def __init__( + self, + sample_rate, + window_size, + hop_size, + mel_bins, + fmin, + fmax, + classes_num, + enable_fusion=False, + fusion_type="None", + ): + + super(Cnn14, self).__init__() + + window = "hann" + center = True + pad_mode = "reflect" + ref = 1.0 + amin = 1e-10 + top_db = None + + self.enable_fusion = enable_fusion + self.fusion_type = fusion_type + + # Spectrogram extractor + self.spectrogram_extractor = Spectrogram( + n_fft=window_size, + hop_length=hop_size, + win_length=window_size, + window=window, + center=center, + pad_mode=pad_mode, + freeze_parameters=True, + ) + + # Logmel feature extractor + self.logmel_extractor = LogmelFilterBank( + sr=sample_rate, + n_fft=window_size, + n_mels=mel_bins, + fmin=fmin, + fmax=fmax, + ref=ref, + amin=amin, + top_db=top_db, + freeze_parameters=True, + ) + + # Spec augmenter + self.spec_augmenter = SpecAugmentation( + time_drop_width=64, + time_stripes_num=2, + freq_drop_width=8, + freq_stripes_num=2, + ) + + self.bn0 = nn.BatchNorm2d(64) + + if (self.enable_fusion) and (self.fusion_type == "channel_map"): + self.conv_block1 = ConvBlock(in_channels=4, out_channels=64) + else: + self.conv_block1 = ConvBlock(in_channels=1, out_channels=64) + self.conv_block2 = ConvBlock(in_channels=64, out_channels=128) + self.conv_block3 = ConvBlock(in_channels=128, out_channels=256) + self.conv_block4 = ConvBlock(in_channels=256, out_channels=512) + self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024) + self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048) + + self.fc1 = nn.Linear(2048, 2048, bias=True) + self.fc_audioset = nn.Linear(2048, classes_num, bias=True) + + if (self.enable_fusion) and ( + self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"] + ): + self.mel_conv1d = nn.Sequential( + nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2), + nn.BatchNorm1d(64), # No Relu + ) + if self.fusion_type == "daf_1d": + self.fusion_model = DAF() + elif self.fusion_type == "aff_1d": + self.fusion_model = AFF(channels=64, type="1D") + elif self.fusion_type == "iaff_1d": + self.fusion_model = iAFF(channels=64, type="1D") + + if (self.enable_fusion) and ( + self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] + ): + self.mel_conv2d = nn.Sequential( + nn.Conv2d(1, 64, kernel_size=(5, 5), stride=(6, 2), padding=(2, 2)), + nn.BatchNorm2d(64), + nn.ReLU(inplace=True), + ) + + if self.fusion_type == "daf_2d": + self.fusion_model = DAF() + elif self.fusion_type == "aff_2d": + self.fusion_model = AFF(channels=64, type="2D") + elif self.fusion_type == "iaff_2d": + self.fusion_model = iAFF(channels=64, type="2D") + self.init_weight() + + def init_weight(self): + init_bn(self.bn0) + init_layer(self.fc1) + init_layer(self.fc_audioset) + + def forward(self, input, mixup_lambda=None, device=None): + """ + Input: (batch_size, data_length)""" + + if self.enable_fusion and input["longer"].sum() == 0: + # if no audio is longer than 10s, then randomly select one audio to be longer + input["longer"][torch.randint(0, input["longer"].shape[0], (1,))] = True + + if not self.enable_fusion: + x = self.spectrogram_extractor( + input["waveform"].to(device=device, non_blocking=True) + ) # (batch_size, 1, time_steps, freq_bins) + x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) + + x = x.transpose(1, 3) + x = self.bn0(x) + x = x.transpose(1, 3) + else: + longer_list = input["longer"].to(device=device, non_blocking=True) + x = input["mel_fusion"].to(device=device, non_blocking=True) + longer_list_idx = torch.where(longer_list)[0] + x = x.transpose(1, 3) + x = self.bn0(x) + x = x.transpose(1, 3) + if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]: + new_x = x[:, 0:1, :, :].clone().contiguous() + # local processing + if len(longer_list_idx) > 0: + fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous() + FB, FC, FT, FF = fusion_x_local.size() + fusion_x_local = fusion_x_local.view(FB * FC, FT, FF) + fusion_x_local = torch.permute( + fusion_x_local, (0, 2, 1) + ).contiguous() + fusion_x_local = self.mel_conv1d(fusion_x_local) + fusion_x_local = fusion_x_local.view( + FB, FC, FF, fusion_x_local.size(-1) + ) + fusion_x_local = ( + torch.permute(fusion_x_local, (0, 2, 1, 3)) + .contiguous() + .flatten(2) + ) + if fusion_x_local.size(-1) < FT: + fusion_x_local = torch.cat( + [ + fusion_x_local, + torch.zeros( + (FB, FF, FT - fusion_x_local.size(-1)), + device=device, + ), + ], + dim=-1, + ) + else: + fusion_x_local = fusion_x_local[:, :, :FT] + # 1D fusion + new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous() + new_x[longer_list_idx] = self.fusion_model( + new_x[longer_list_idx], fusion_x_local + ) + x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :] + else: + x = new_x + elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]: + x = x # no change + + if self.training: + x = self.spec_augmenter(x) + # Mixup on spectrogram + if self.training and mixup_lambda is not None: + x = do_mixup(x, mixup_lambda) + if (self.enable_fusion) and ( + self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] + ): + global_x = x[:, 0:1, :, :] + + # global processing + B, C, H, W = global_x.shape + global_x = self.conv_block1(global_x, pool_size=(2, 2), pool_type="avg") + if len(longer_list_idx) > 0: + local_x = x[longer_list_idx, 1:, :, :].contiguous() + TH = global_x.size(-2) + # local processing + B, C, H, W = local_x.shape + local_x = local_x.view(B * C, 1, H, W) + local_x = self.mel_conv2d(local_x) + local_x = local_x.view( + B, C, local_x.size(1), local_x.size(2), local_x.size(3) + ) + local_x = local_x.permute((0, 2, 1, 3, 4)).contiguous().flatten(2, 3) + TB, TC, _, TW = local_x.size() + if local_x.size(-2) < TH: + local_x = torch.cat( + [ + local_x, + torch.zeros( + (TB, TC, TH - local_x.size(-2), TW), + device=global_x.device, + ), + ], + dim=-2, + ) + else: + local_x = local_x[:, :, :TH, :] + + global_x[longer_list_idx] = self.fusion_model( + global_x[longer_list_idx], local_x + ) + x = global_x + else: + x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg") + + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = torch.mean(x, dim=3) + + latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1) + latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1) + latent_x = latent_x1 + latent_x2 + latent_x = latent_x.transpose(1, 2) + latent_x = F.relu_(self.fc1(latent_x)) + latent_output = interpolate(latent_x, 32) + + (x1, _) = torch.max(x, dim=2) + x2 = torch.mean(x, dim=2) + x = x1 + x2 + x = F.dropout(x, p=0.5, training=self.training) + x = F.relu_(self.fc1(x)) + embedding = F.dropout(x, p=0.5, training=self.training) + clipwise_output = torch.sigmoid(self.fc_audioset(x)) + + output_dict = { + "clipwise_output": clipwise_output, + "embedding": embedding, + "fine_grained_embedding": latent_output, + } + return output_dict + + +class Cnn6(nn.Module): + def __init__( + self, + sample_rate, + window_size, + hop_size, + mel_bins, + fmin, + fmax, + classes_num, + enable_fusion=False, + fusion_type="None", + ): + + super(Cnn6, self).__init__() + + window = "hann" + center = True + pad_mode = "reflect" + ref = 1.0 + amin = 1e-10 + top_db = None + + self.enable_fusion = enable_fusion + self.fusion_type = fusion_type + + # Spectrogram extractor + self.spectrogram_extractor = Spectrogram( + n_fft=window_size, + hop_length=hop_size, + win_length=window_size, + window=window, + center=center, + pad_mode=pad_mode, + freeze_parameters=True, + ) + + # Logmel feature extractor + self.logmel_extractor = LogmelFilterBank( + sr=sample_rate, + n_fft=window_size, + n_mels=mel_bins, + fmin=fmin, + fmax=fmax, + ref=ref, + amin=amin, + top_db=top_db, + freeze_parameters=True, + ) + + # Spec augmenter + self.spec_augmenter = SpecAugmentation( + time_drop_width=64, + time_stripes_num=2, + freq_drop_width=8, + freq_stripes_num=2, + ) + + self.bn0 = nn.BatchNorm2d(64) + + self.conv_block1 = ConvBlock5x5(in_channels=1, out_channels=64) + self.conv_block2 = ConvBlock5x5(in_channels=64, out_channels=128) + self.conv_block3 = ConvBlock5x5(in_channels=128, out_channels=256) + self.conv_block4 = ConvBlock5x5(in_channels=256, out_channels=512) + + self.fc1 = nn.Linear(512, 512, bias=True) + self.fc_audioset = nn.Linear(512, classes_num, bias=True) + + self.init_weight() + + def init_weight(self): + init_bn(self.bn0) + init_layer(self.fc1) + init_layer(self.fc_audioset) + + def forward(self, input, mixup_lambda=None, device=None): + """ + Input: (batch_size, data_length)""" + + x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) + x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) + + x = x.transpose(1, 3) + x = self.bn0(x) + x = x.transpose(1, 3) + + if self.training: + x = self.spec_augmenter(x) + + # Mixup on spectrogram + if self.training and mixup_lambda is not None: + x = do_mixup(x, mixup_lambda) + + x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = torch.mean(x, dim=3) + + latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1) + latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1) + latent_x = latent_x1 + latent_x2 + latent_x = latent_x.transpose(1, 2) + latent_x = F.relu_(self.fc1(latent_x)) + latent_output = interpolate(latent_x, 16) + + (x1, _) = torch.max(x, dim=2) + x2 = torch.mean(x, dim=2) + x = x1 + x2 + x = F.dropout(x, p=0.5, training=self.training) + x = F.relu_(self.fc1(x)) + embedding = F.dropout(x, p=0.5, training=self.training) + clipwise_output = torch.sigmoid(self.fc_audioset(x)) + + output_dict = { + "clipwise_output": clipwise_output, + "embedding": embedding, + "fine_grained_embedding": latent_output, + } + + return output_dict + + +class Cnn10(nn.Module): + def __init__( + self, + sample_rate, + window_size, + hop_size, + mel_bins, + fmin, + fmax, + classes_num, + enable_fusion=False, + fusion_type="None", + ): + + super(Cnn10, self).__init__() + + window = "hann" + center = True + pad_mode = "reflect" + ref = 1.0 + amin = 1e-10 + top_db = None + + self.enable_fusion = enable_fusion + self.fusion_type = fusion_type + + # Spectrogram extractor + self.spectrogram_extractor = Spectrogram( + n_fft=window_size, + hop_length=hop_size, + win_length=window_size, + window=window, + center=center, + pad_mode=pad_mode, + freeze_parameters=True, + ) + + # Logmel feature extractor + self.logmel_extractor = LogmelFilterBank( + sr=sample_rate, + n_fft=window_size, + n_mels=mel_bins, + fmin=fmin, + fmax=fmax, + ref=ref, + amin=amin, + top_db=top_db, + freeze_parameters=True, + ) + + # Spec augmenter + self.spec_augmenter = SpecAugmentation( + time_drop_width=64, + time_stripes_num=2, + freq_drop_width=8, + freq_stripes_num=2, + ) + + self.bn0 = nn.BatchNorm2d(64) + + self.conv_block1 = ConvBlock(in_channels=1, out_channels=64) + self.conv_block2 = ConvBlock(in_channels=64, out_channels=128) + self.conv_block3 = ConvBlock(in_channels=128, out_channels=256) + self.conv_block4 = ConvBlock(in_channels=256, out_channels=512) + self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024) + + self.fc1 = nn.Linear(1024, 1024, bias=True) + self.fc_audioset = nn.Linear(1024, classes_num, bias=True) + + self.init_weight() + + def init_weight(self): + init_bn(self.bn0) + init_layer(self.fc1) + init_layer(self.fc_audioset) + + def forward(self, input, mixup_lambda=None, device=None): + """ + Input: (batch_size, data_length)""" + + x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) + x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) + + x = x.transpose(1, 3) + x = self.bn0(x) + x = x.transpose(1, 3) + + if self.training: + x = self.spec_augmenter(x) + + # Mixup on spectrogram + if self.training and mixup_lambda is not None: + x = do_mixup(x, mixup_lambda) + + x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg") + x = F.dropout(x, p=0.2, training=self.training) + x = torch.mean(x, dim=3) + + latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1) + latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1) + latent_x = latent_x1 + latent_x2 + latent_x = latent_x.transpose(1, 2) + latent_x = F.relu_(self.fc1(latent_x)) + latent_output = interpolate(latent_x, 32) + + (x1, _) = torch.max(x, dim=2) + x2 = torch.mean(x, dim=2) + x = x1 + x2 + x = F.dropout(x, p=0.5, training=self.training) + x = F.relu_(self.fc1(x)) + embedding = F.dropout(x, p=0.5, training=self.training) + clipwise_output = torch.sigmoid(self.fc_audioset(x)) + + output_dict = { + "clipwise_output": clipwise_output, + "embedding": embedding, + "fine_grained_embedding": latent_output, + } + + return output_dict + + +def create_pann_model(audio_cfg, enable_fusion=False, fusion_type="None"): + try: + ModelProto = eval(audio_cfg.model_name) + model = ModelProto( + sample_rate=audio_cfg.sample_rate, + window_size=audio_cfg.window_size, + hop_size=audio_cfg.hop_size, + mel_bins=audio_cfg.mel_bins, + fmin=audio_cfg.fmin, + fmax=audio_cfg.fmax, + classes_num=audio_cfg.class_num, + enable_fusion=enable_fusion, + fusion_type=fusion_type, + ) + return model + except: + raise RuntimeError( + f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough." + ) diff --git a/audioldm/clap/open_clip/pretrained.py b/audioldm/clap/open_clip/pretrained.py new file mode 100644 index 0000000000000000000000000000000000000000..8ed2ae1732a28c4e98d1f3412157ef27054e41dc --- /dev/null +++ b/audioldm/clap/open_clip/pretrained.py @@ -0,0 +1,169 @@ +import hashlib +import os +import urllib +import warnings + +from tqdm import tqdm + +CACHE_DIR = os.getenv("AUDIOLDM_CACHE_DIR", "~/.cache") + +_RN50 = dict( + openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", + yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt", + cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt", +) + +_RN50_quickgelu = dict( + openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", + yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt", + cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt", +) + +_RN101 = dict( + openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", + yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt", +) + +_RN101_quickgelu = dict( + openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", + yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt", +) + +_RN50x4 = dict( + openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", +) + +_RN50x16 = dict( + openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", +) + +_RN50x64 = dict( + openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", +) + +_VITB32 = dict( + openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", + laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt", + laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt", + laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt", +) + +_VITB32_quickgelu = dict( + openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", + laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt", + laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt", + laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt", +) + +_VITB16 = dict( + openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", +) + +_VITL14 = dict( + openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", +) + +_PRETRAINED = { + "RN50": _RN50, + "RN50-quickgelu": _RN50_quickgelu, + "RN101": _RN101, + "RN101-quickgelu": _RN101_quickgelu, + "RN50x4": _RN50x4, + "RN50x16": _RN50x16, + "ViT-B-32": _VITB32, + "ViT-B-32-quickgelu": _VITB32_quickgelu, + "ViT-B-16": _VITB16, + "ViT-L-14": _VITL14, +} + + +def list_pretrained(as_str: bool = False): + """returns list of pretrained models + Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True + """ + return [ + ":".join([k, t]) if as_str else (k, t) + for k in _PRETRAINED.keys() + for t in _PRETRAINED[k].keys() + ] + + +def list_pretrained_tag_models(tag: str): + """return all models having the specified pretrain tag""" + models = [] + for k in _PRETRAINED.keys(): + if tag in _PRETRAINED[k]: + models.append(k) + return models + + +def list_pretrained_model_tags(model: str): + """return all pretrain tags for the specified model architecture""" + tags = [] + if model in _PRETRAINED: + tags.extend(_PRETRAINED[model].keys()) + return tags + + +def get_pretrained_url(model: str, tag: str): + if model not in _PRETRAINED: + return "" + model_pretrained = _PRETRAINED[model] + if tag not in model_pretrained: + return "" + return model_pretrained[tag] + + +def download_pretrained(url: str, root: str = os.path.expanduser(f"{CACHE_DIR}/clip")): + os.makedirs(root, exist_ok=True) + filename = os.path.basename(url) + + if "openaipublic" in url: + expected_sha256 = url.split("/")[-2] + else: + expected_sha256 = "" + + download_target = os.path.join(root, filename) + + if os.path.exists(download_target) and not os.path.isfile(download_target): + raise RuntimeError(f"{download_target} exists and is not a regular file") + + if os.path.isfile(download_target): + if expected_sha256: + if ( + hashlib.sha256(open(download_target, "rb").read()).hexdigest() + == expected_sha256 + ): + return download_target + else: + warnings.warn( + f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" + ) + else: + return download_target + + with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: + with tqdm( + total=int(source.info().get("Content-Length")), + ncols=80, + unit="iB", + unit_scale=True, + ) as loop: + while True: + buffer = source.read(8192) + if not buffer: + break + + output.write(buffer) + loop.update(len(buffer)) + + if ( + expected_sha256 + and hashlib.sha256(open(download_target, "rb").read()).hexdigest() + != expected_sha256 + ): + raise RuntimeError( + f"Model has been downloaded but the SHA256 checksum does not not match" + ) + + return download_target diff --git a/audioldm/clap/open_clip/timm_model.py b/audioldm/clap/open_clip/timm_model.py new file mode 100644 index 0000000000000000000000000000000000000000..c9d1ab4666b5bab5038d44b90c9ddca5087de460 --- /dev/null +++ b/audioldm/clap/open_clip/timm_model.py @@ -0,0 +1,112 @@ +""" timm model adapter + +Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model. +""" +from collections import OrderedDict + +import torch.nn as nn + +try: + import timm + from timm.models.layers import Mlp, to_2tuple + from timm.models.layers.attention_pool2d import RotAttentionPool2d + from timm.models.layers.attention_pool2d import ( + AttentionPool2d as AbsAttentionPool2d, + ) +except ImportError as e: + timm = None + +from .utils import freeze_batch_norm_2d + + +class TimmModel(nn.Module): + """timm model adapter + # FIXME this adapter is a work in progress, may change in ways that break weight compat + """ + + def __init__( + self, + model_name, + embed_dim, + image_size=224, + pool="avg", + proj="linear", + drop=0.0, + pretrained=False, + ): + super().__init__() + if timm is None: + raise RuntimeError("Please `pip install timm` to use timm models.") + + self.image_size = to_2tuple(image_size) + self.trunk = timm.create_model(model_name, pretrained=pretrained) + feat_size = self.trunk.default_cfg.get("pool_size", None) + feature_ndim = 1 if not feat_size else 2 + if pool in ("abs_attn", "rot_attn"): + assert feature_ndim == 2 + # if attn pooling used, remove both classifier and default pool + self.trunk.reset_classifier(0, global_pool="") + else: + # reset global pool if pool config set, otherwise leave as network default + reset_kwargs = dict(global_pool=pool) if pool else {} + self.trunk.reset_classifier(0, **reset_kwargs) + prev_chs = self.trunk.num_features + + head_layers = OrderedDict() + if pool == "abs_attn": + head_layers["pool"] = AbsAttentionPool2d( + prev_chs, feat_size=feat_size, out_features=embed_dim + ) + prev_chs = embed_dim + elif pool == "rot_attn": + head_layers["pool"] = RotAttentionPool2d(prev_chs, out_features=embed_dim) + prev_chs = embed_dim + else: + assert proj, "projection layer needed if non-attention pooling is used." + + # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used + if proj == "linear": + head_layers["drop"] = nn.Dropout(drop) + head_layers["proj"] = nn.Linear(prev_chs, embed_dim) + elif proj == "mlp": + head_layers["mlp"] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop) + + self.head = nn.Sequential(head_layers) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + """lock modules + Args: + unlocked_groups (int): leave last n layer groups unlocked (default: 0) + """ + if not unlocked_groups: + # lock full model + for param in self.trunk.parameters(): + param.requires_grad = False + if freeze_bn_stats: + freeze_batch_norm_2d(self.trunk) + else: + # NOTE: partial freeze requires latest timm (master) branch and is subject to change + try: + # FIXME import here until API stable and in an official release + from timm.models.helpers import group_parameters, group_modules + except ImportError: + raise RuntimeError( + "Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`" + ) + matcher = self.trunk.group_matcher() + gparams = group_parameters(self.trunk, matcher) + max_layer_id = max(gparams.keys()) + max_layer_id = max_layer_id - unlocked_groups + for group_idx in range(max_layer_id + 1): + group = gparams[group_idx] + for param in group: + self.trunk.get_parameter(param).requires_grad = False + if freeze_bn_stats: + gmodules = group_modules(self.trunk, matcher, reverse=True) + gmodules = {k for k, v in gmodules.items() if v <= max_layer_id} + freeze_batch_norm_2d(self.trunk, gmodules) + + def forward(self, x): + x = self.trunk(x) + x = self.head(x) + return x diff --git a/audioldm/clap/open_clip/tokenizer.py b/audioldm/clap/open_clip/tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..ee4d28450ec5dd12a79daf38cf3088e9e73c2cd5 --- /dev/null +++ b/audioldm/clap/open_clip/tokenizer.py @@ -0,0 +1,197 @@ +""" CLIP tokenizer + +Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +""" +import gzip +import html +import os +from functools import lru_cache +from typing import Union, List + +import ftfy +import regex as re +import torch + + +@lru_cache() +def default_bpe(): + return os.path.join( + os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz" + ) + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a signficant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + + list(range(ord("¡"), ord("¬") + 1)) + + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """Return set of symbol pairs in a word. + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +def basic_clean(text): + text = ftfy.fix_text(text) + text = html.unescape(html.unescape(text)) + return text.strip() + + +def whitespace_clean(text): + text = re.sub(r"\s+", " ", text) + text = text.strip() + return text + + +class SimpleTokenizer(object): + def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + merges = gzip.open(bpe_path).read().decode("utf-8").split("\n") + merges = merges[1 : 49152 - 256 - 2 + 1] + merges = [tuple(merge.split()) for merge in merges] + vocab = list(bytes_to_unicode().values()) + vocab = vocab + [v + "" for v in vocab] + for merge in merges: + vocab.append("".join(merge)) + if not special_tokens: + special_tokens = ["", ""] + else: + special_tokens = ["", ""] + special_tokens + vocab.extend(special_tokens) + self.encoder = dict(zip(vocab, range(len(vocab)))) + self.decoder = {v: k for k, v in self.encoder.items()} + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {t: t for t in special_tokens} + special = "|".join(special_tokens) + self.pat = re.compile( + special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", + re.IGNORECASE, + ) + + self.vocab_size = len(self.encoder) + self.all_special_ids = [self.encoder[t] for t in special_tokens] + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token[:-1]) + (token[-1] + "",) + pairs = get_pairs(word) + + if not pairs: + return token + "" + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + new_word.extend(word[i:j]) + i = j + except: + new_word.extend(word[i:]) + break + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def encode(self, text): + bpe_tokens = [] + text = whitespace_clean(basic_clean(text)).lower() + for token in re.findall(self.pat, text): + token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) + bpe_tokens.extend( + self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ") + ) + return bpe_tokens + + def decode(self, tokens): + text = "".join([self.decoder[token] for token in tokens]) + text = ( + bytearray([self.byte_decoder[c] for c in text]) + .decode("utf-8", errors="replace") + .replace("", " ") + ) + return text + + +_tokenizer = SimpleTokenizer() + + +def tokenize( + texts: Union[str, List[str]], context_length: int = 77 +) -> torch.LongTensor: + """ + Returns the tokenized representation of given input string(s) + + Parameters + ---------- + texts : Union[str, List[str]] + An input string or a list of input strings to tokenize + context_length : int + The context length to use; all CLIP models use 77 as the context length + + Returns + ------- + A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] + """ + if isinstance(texts, str): + texts = [texts] + + sot_token = _tokenizer.encoder[""] + eot_token = _tokenizer.encoder[""] + all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] + result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) + + for i, tokens in enumerate(all_tokens): + if len(tokens) > context_length: + tokens = tokens[:context_length] # Truncate + result[i, : len(tokens)] = torch.tensor(tokens) + + return result diff --git a/audioldm/clap/open_clip/transform.py b/audioldm/clap/open_clip/transform.py new file mode 100644 index 0000000000000000000000000000000000000000..77aaa722c4a5544ac50de6df35d3e922f63b111d --- /dev/null +++ b/audioldm/clap/open_clip/transform.py @@ -0,0 +1,45 @@ +from torchvision.transforms import ( + Normalize, + Compose, + RandomResizedCrop, + InterpolationMode, + ToTensor, + Resize, + CenterCrop, +) + + +def _convert_to_rgb(image): + return image.convert("RGB") + + +def image_transform( + image_size: int, + is_train: bool, + mean=(0.48145466, 0.4578275, 0.40821073), + std=(0.26862954, 0.26130258, 0.27577711), +): + normalize = Normalize(mean=mean, std=std) + if is_train: + return Compose( + [ + RandomResizedCrop( + image_size, + scale=(0.9, 1.0), + interpolation=InterpolationMode.BICUBIC, + ), + _convert_to_rgb, + ToTensor(), + normalize, + ] + ) + else: + return Compose( + [ + Resize(image_size, interpolation=InterpolationMode.BICUBIC), + CenterCrop(image_size), + _convert_to_rgb, + ToTensor(), + normalize, + ] + ) diff --git a/audioldm/clap/open_clip/utils.py b/audioldm/clap/open_clip/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..34ecbced4cb7e6b6f92154a666e2c7efc7c922c6 --- /dev/null +++ b/audioldm/clap/open_clip/utils.py @@ -0,0 +1,362 @@ +import numpy as np +import torch +from torch import nn as nn +from torchvision.ops.misc import FrozenBatchNorm2d +import logging + +# import h5py +from tqdm import tqdm +import random +import json +import os +import pathlib + +# TODO: (yusong) this not a good place to store those information and does not scale. Need to be fixed later. +dataset_split = { + "audiocaps": ["train", "valid", "test"], + "audioset": ["balanced_train", "unbalanced_train", "eval"], + "BBCSoundEffects": ["train", "test"], + "Clotho": ["train", "test", "valid"], + "free_to_use_sounds": ["train", "test"], + "paramount_motion": ["train", "test"], + "sonniss_game_effects": ["train", "test"], + "wesoundeffects": ["train", "test"], + "MACS": ["train", "test"], + "freesound": ["train", "test"], + "FSD50K": ["train", "test", "valid"], + "fsd50k_class_label": ["train", "test", "valid"], + "esc50": ["train", "test"], + "audiostock": ["train", "test"], + "freesound_no_overlap_noesc50": ["train", "test"], + "epidemic_sound_effects": ["train", "test"], + "VGGSound": ["train", "test"], + "urbansound8k_class_label": ["train", "test"], + "audioset_t5": ["balanced_train", "unbalanced_train", "eval"], + "epidemic_sound_effects_t5": ["train", "test"], + "WavText5K": ["train", "test"], + "esc50_no_overlap": ["train", "test"], + "usd8k_no_overlap": ["train", "test"], + "fsd50k_200_class_label": ["train", "test", "valid"], +} + + +def freeze_batch_norm_2d(module, module_match={}, name=""): + """ + Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is + itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and + returned. Otherwise, the module is walked recursively and submodules are converted in place. + + Args: + module (torch.nn.Module): Any PyTorch module. + module_match (dict): Dictionary of full module names to freeze (all if empty) + name (str): Full module name (prefix) + + Returns: + torch.nn.Module: Resulting module + + Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 + """ + res = module + is_match = True + if module_match: + is_match = name in module_match + if is_match and isinstance( + module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm) + ): + res = FrozenBatchNorm2d(module.num_features) + res.num_features = module.num_features + res.affine = module.affine + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + else: + for child_name, child in module.named_children(): + full_child_name = ".".join([name, child_name]) if name else child_name + new_child = freeze_batch_norm_2d(child, module_match, full_child_name) + if new_child is not child: + res.add_module(child_name, new_child) + return res + + +def exist(dataset_name, dataset_type): + """ + Check if dataset exists + """ + if dataset_type in dataset_split[dataset_name]: + return True + else: + return False + + +def get_tar_path_from_dataset_name( + dataset_names, dataset_types, islocal, dataset_path, proportion=1, full_dataset=None +): + """ + Get tar path from dataset name and type + """ + output = [] + for n in dataset_names: + if full_dataset is not None and n in full_dataset: + current_dataset_types = dataset_split[n] + else: + current_dataset_types = dataset_types + for s in current_dataset_types: + tmp = [] + if islocal: + sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json" + if not os.path.exists(sizefilepath_): + sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" + else: + sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" + if not os.path.exists(sizefilepath_): + continue + sizes = json.load(open(sizefilepath_, "r")) + for k in sizes.keys(): + if islocal: + tmp.append(f"{dataset_path}/{n}/{s}/{k}") + else: + tmp.append( + f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -" + ) + if proportion != 1: + tmp = random.sample(tmp, int(proportion * len(tmp))) + output.append(tmp) + return sum(output, []) + + +def get_tar_path_from_txts(txt_path, islocal, proportion=1): + """ + Get tar path from txt path + """ + if isinstance(txt_path, (list, tuple)): + return sum( + [ + get_tar_path_from_txts( + txt_path[i], islocal=islocal, proportion=proportion + ) + for i in range(len(txt_path)) + ], + [], + ) + if isinstance(txt_path, str): + with open(txt_path) as f: + lines = f.readlines() + if islocal: + lines = [ + lines[i] + .split("\n")[0] + .replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/") + for i in range(len(lines)) + ] + else: + lines = [ + lines[i].split("\n")[0].replace(".tar", ".tar -") + for i in range(len(lines)) + ] + if proportion != 1: + print("Sampling tars with proportion of {}".format(proportion)) + lines = random.sample(lines, int(proportion * len(lines))) + return lines + + +def get_mix_lambda(mixup_alpha, batch_size): + mixup_lambdas = [ + np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size) + ] + return np.array(mixup_lambdas).astype(np.float32) + + +def do_mixup(x, mixup_lambda): + """ + Args: + x: (batch_size , ...) + mixup_lambda: (batch_size,) + Returns: + out: (batch_size, ...) + """ + out = ( + x.transpose(0, -1) * mixup_lambda + + torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda) + ).transpose(0, -1) + return out + + +def interpolate(x, ratio): + """Interpolate data in time domain. This is used to compensate the + resolution reduction in downsampling of a CNN. + + Args: + x: (batch_size, time_steps, classes_num) + ratio: int, ratio to interpolate + Returns: + upsampled: (batch_size, time_steps * ratio, classes_num) + """ + (batch_size, time_steps, classes_num) = x.shape + upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1) + upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num) + return upsampled + + +def pad_framewise_output(framewise_output, frames_num): + """Pad framewise_output to the same length as input frames. The pad value + is the same as the value of the last frame. + Args: + framewise_output: (batch_size, frames_num, classes_num) + frames_num: int, number of frames to pad + Outputs: + output: (batch_size, frames_num, classes_num) + """ + pad = framewise_output[:, -1:, :].repeat( + 1, frames_num - framewise_output.shape[1], 1 + ) + """tensor for padding""" + + output = torch.cat((framewise_output, pad), dim=1) + """(batch_size, frames_num, classes_num)""" + + +# def process_ipc(index_path, classes_num, filename): +# # load data +# logging.info("Load Data...............") +# ipc = [[] for _ in range(classes_num)] +# with h5py.File(index_path, "r") as f: +# for i in tqdm(range(len(f["target"]))): +# t_class = np.where(f["target"][i])[0] +# for t in t_class: +# ipc[t].append(i) +# print(ipc) +# np.save(filename, ipc) +# logging.info("Load Data Succeed...............") + + +def save_to_dict(s, o_={}): + sp = s.split(": ") + o_.update({sp[0]: float(sp[1])}) + return o_ + + +def get_data_from_log(txt_path): + """ + Output dictionary from out.txt log file + """ + with open(txt_path) as f: + lines = f.readlines() + val_data = {} + train_data = {} + train_losses = [] + train_losses_epoch = [] + for i in range(len(lines)): + if "| INFO |" in lines[i]: + if "Eval Epoch" in lines[i]: + if "val_loss" in lines[i]: + # float(regex.sub("", lines[310].split(" ")[-1]).replace(" ", "")) + line = lines[i].split("Eval Epoch: ")[-1] + num_epoch = int(line.split(" ")[0].split(" ")[0]) + d = { + line.split(" ")[0] + .split(" ")[1] + .replace(":", ""): float(line.split(" ")[0].split(" ")[-1]) + } + for i in range(1, len(line.split(" "))): + d = save_to_dict(line.split(" ")[i], d) + val_data[num_epoch] = d + elif "Train Epoch" in lines[i]: + num_epoch = int(lines[i].split("Train Epoch: ")[1][0]) + loss = float(lines[i].split("Loss: ")[-1].split(" (")[0]) + train_losses.append(loss) + train_losses_epoch.append(num_epoch) + for i in range(len(train_losses)): + train_data[i] = { + "num_epoch": train_losses_epoch[i], + "train_loss": train_losses[i], + } + return train_data, val_data + + +def save_p(obj, filename): + import pickle + + try: + from deepdiff import DeepDiff + except: + os.system("pip install deepdiff") + from deepdiff import DeepDiff + with open(filename, "wb") as file: + pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) # highest protocol + with open(filename, "rb") as file: + z = pickle.load(file) + assert ( + DeepDiff(obj, z, ignore_string_case=True) == {} + ), "there is something wrong with the saving process" + return + + +def load_p(filename): + import pickle + + with open(filename, "rb") as file: + z = pickle.load(file) + return z + + +def save_json(data, name="data.json"): + import json + + with open(name, "w") as fp: + json.dump(data, fp) + return + + +def load_json(name): + import json + + with open(name, "r") as fp: + data = json.load(fp) + return data + + +from multiprocessing import Process, Manager +from multiprocessing import Process, Value, Array +from ctypes import c_wchar + + +def load_class_label(path): + # https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing + # https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array + out = None + if path is not None: + if pathlib.Path(path).suffix in [".pkl", ".pickle"]: + out = load_p(path) + elif pathlib.Path(path).suffix in [".json", ".txt"]: + out = load_json(path) + elif pathlib.Path(path).suffix in [".npy", ".npz"]: + out = np.load(path) + elif pathlib.Path(path).suffix in [".csv"]: + import pandas as pd + + out = pd.read_csv(path) + return out + # if out is None: + # return None + # else: + # key = Array(c_wchar, '\n'.join(list(out.keys())), lock=False) + # val = Array('i', out.values(), lock=False) + # return (key, val) + + +from torch import optim + + +def get_optimizer(params, lr, betas, eps, momentum, optimizer_name): + if optimizer_name.lower() == "adamw": + optimizer = optim.AdamW(params, lr=lr, betas=betas, eps=eps) + elif optimizer_name.lower() == "sgd": + optimizer = optim.SGD(params, lr=lr, momentum=momentum) + elif optimizer_name.lower() == "adam": + optimizer = optim.Adam(params, lr=lr, betas=betas, eps=eps) + else: + raise ValueError("optimizer name is not correct") + return optimizer diff --git a/audioldm/clap/open_clip/version.py b/audioldm/clap/open_clip/version.py new file mode 100644 index 0000000000000000000000000000000000000000..3ced3581bb601ae91b1e1da4b8f4f520855a065e --- /dev/null +++ b/audioldm/clap/open_clip/version.py @@ -0,0 +1 @@ +__version__ = "0.2.1" diff --git a/audioldm/clap/training/__init__.py b/audioldm/clap/training/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/audioldm/clap/training/audioset_textmap.npy b/audioldm/clap/training/audioset_textmap.npy new file mode 100644 index 0000000000000000000000000000000000000000..3da4c92d3819aaec11e5f576464a9973a6df811b --- /dev/null +++ b/audioldm/clap/training/audioset_textmap.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bada103070d92f9eadd33e1b4f45ec8583f59080ef218c966b43294bd4c86d5b +size 84448 diff --git a/audioldm/clap/training/data.py b/audioldm/clap/training/data.py new file mode 100644 index 0000000000000000000000000000000000000000..a005fee2f51e577446839b8cffd117d9ae93abc9 --- /dev/null +++ b/audioldm/clap/training/data.py @@ -0,0 +1,981 @@ +import ast +import json +import logging +import math +import os +import random + +# import h5py +from dataclasses import dataclass +from audioldm.clap.training.params import parse_args + +# import braceexpand +import numpy as np +import pandas as pd +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchvision.datasets as datasets +import torchvision.transforms + +# import webdataset as wds +from PIL import Image +from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler +from torch.utils.data.distributed import DistributedSampler +from functools import partial +import soundfile as sf +import io +from pathlib import Path + +# import wget + +from audioldm.clap.open_clip.utils import ( + get_tar_path_from_dataset_name, + dataset_split, +) +from audioldm.clap.open_clip.utils import load_p, load_class_label +import copy + +try: + import horovod.torch as hvd +except ImportError: + hvd = None + +try: + import torchaudio +except ImportError: + torchaudio = None + +from audioldm.clap.open_clip import tokenize + + +def tokenizer(text): + return tokenize(text).squeeze(0) + + +from transformers import RobertaTokenizer + +tokenize = RobertaTokenizer.from_pretrained("roberta-base") + + +def tokenizer(text): + result = tokenize( + text, + padding="max_length", + truncation=True, + max_length=77, + return_tensors="pt", + ) + return {k: v.squeeze(0) for k, v in result.items()} + + +# initizlied the audioset map +_AUDIOSET_MAP_PATH = os.path.join(Path(__file__).parent, "audioset_textmap.npy") +_AUDIOSET_MAP = np.load(_AUDIOSET_MAP_PATH, allow_pickle=True) + + +def int16_to_float32(x): + return (x / 32767.0).astype(np.float32) + + +def float32_to_int16(x): + x = np.clip(x, a_min=-1.0, a_max=1.0) + return (x * 32767.0).astype(np.int16) + + +# For Toy Dataset +# class ToyDataset(Dataset): +# def __init__(self, index_path, ipc, config, eval_mode=False): +# """Toy Dataset for testing the audioset input with text labels +# Parameters +# ---------- +# index_path: str +# the link to the h5 file of each audio +# idc: str +# the link to the npy file, the number of samples in each class +# config: dict +# the audio cfg file +# eval_model (bool): to indicate if the dataset is a testing dataset +# """ +# self.audio_cfg = config["audio_cfg"] +# self.text_cfg = config["text_cfg"] +# self.fp = h5py.File(index_path, "r") +# self.ipc = np.load(ipc, allow_pickle=True) +# self.total_size = len(self.fp["audio_name"]) +# self.classes_num = self.audio_cfg["class_num"] +# self.eval_mode = eval_mode + +# if not eval_mode: +# self.generate_queue() +# else: +# self.queue = [] +# for i in range(self.total_size): +# target = self.fp["target"][i] +# if np.sum(target) > 0: +# self.queue.append(i) +# self.total_size = len(self.queue) +# logging.info("total dataset size: %d" % (self.total_size)) +# logging.info("class num: %d" % (self.classes_num)) + +# def time_shifting(self, x): +# frame_num = len(x) +# shift_len = random.randint(0, frame_num - 1) +# new_sample = np.concatenate([x[shift_len:], x[:shift_len]], axis=0) +# return new_sample + +# def generate_queue(self): +# self.queue = [] +# while len(self.queue) < self.total_size: +# class_set = [*range(self.classes_num)] +# random.shuffle(class_set) +# self.queue += [ +# self.ipc[d][random.randint(0, len(self.ipc[d]) - 1)] for d in class_set +# ] +# self.queue = self.queue[: self.total_size] + +# logging.info("queue regenerated:%s" % (self.queue[-5:])) + +# def crop_wav(self, x): +# crop_size = self.audio_cfg["crop_size"] +# crop_pos = random.randint(0, len(x) - crop_size - 1) +# return x[crop_pos : crop_pos + crop_size] + +# def prompt_text(self, target): +# events = _AUDIOSET_MAP[np.where(target > 0)] +# event_text = "The sounds of " + ", ".join(events[:-1]) + " and " + events[-1] +# text = tokenize(event_text)[0] +# return text + +# def __getitem__(self, index): +# """Load waveform, text, and target of an audio clip + +# Parameters +# ---------- +# index: int +# the index number +# Return +# ------ +# output: dict { +# "hdf5_path": str, +# "index_in_hdf5": int, +# "audio_name": str, +# "waveform": list (audio_length,), +# "target": list (class_num, ), +# "text": torch.tensor (context_length,) +# } +# the output dictionary +# """ +# s_index = self.queue[index] + +# audio_name = self.fp["audio_name"][s_index].decode() +# # Hardcode here CHANGE +# hdf5_path = ( +# self.fp["hdf5_path"][s_index] +# .decode() +# .replace( +# "../workspace", +# "/home/la/kechen/Research/ke_zsasp/workspace", +# ) +# ) +# r_idx = self.fp["index_in_hdf5"][s_index] +# target = self.fp["target"][s_index].astype(np.float32) +# text = self.prompt_text(target) +# with h5py.File(hdf5_path, "r") as f: +# waveform = int16_to_float32(f["waveform"][r_idx])[ +# : self.audio_cfg["clip_samples"] +# ] +# assert ( +# len(waveform) == self.audio_cfg["clip_samples"] +# ), "The sample length is not match" +# # Time shift +# # if (self.config.enable_time_shift) and (not self.eval_mode): +# # waveform = self.time_shifting(waveform) +# # # Label Enhance +# # if (self.config.crop_size is not None) and (not self.eval_mode): +# # waveform = self.crop_wav(waveform) +# # # the label enhance rate is fixed 0.5 +# # if (self.config.enable_label_enhance) and (not self.eval_mode) and random.random() < 0.5: +# # kidx = np.where(target)[0] +# # for k in kidx: +# # for add_key in self.class_map[k][1]: +# # target[add_key] = 1.0 +# # if len(self.class_map[k][2]) > 0: +# # add_key = random.choice(self.class_map[k][2]) +# # target[add_key] = 1.0 + +# # missing the text input +# mel_spec = get_mel(torch.from_numpy(waveform), self.audio_cfg)[None, :, :] +# mel_spec = ( +# torch.cat( +# [mel_spec, mel_spec.clone(), mel_spec.clone(), mel_spec.clone()], dim=0 +# ) +# .cpu() +# .numpy() +# ) +# longer = random.choice([True, False]) +# if longer == False: +# mel_spec[1:, :, :] = 0.0 +# data_dict = { +# "hdf5_path": hdf5_path, +# "index_in_hdf5": r_idx, +# "audio_name": audio_name, +# "waveform": waveform, +# "class_label": target, +# "text": text, +# "longer": longer, +# "mel_fusion": mel_spec, +# } +# return data_dict + +# def __len__(self): +# return self.total_size + + +class CsvDataset(Dataset): + def __init__(self, input_filename, transforms, img_key, caption_key, sep="\t"): + logging.debug(f"Loading csv data from {input_filename}.") + df = pd.read_csv(input_filename, sep=sep) + + self.images = df[img_key].tolist() + self.captions = df[caption_key].tolist() + self.transforms = transforms + logging.debug("Done loading data.") + + def __len__(self): + return len(self.captions) + + def __getitem__(self, idx): + images = self.transforms(Image.open(str(self.images[idx]))) + texts = tokenize([str(self.captions[idx])])[0] + return images, texts + + +@dataclass +class DataInfo: + dataloader: DataLoader + sampler: DistributedSampler + + +def preprocess_txt(text): + return tokenize([str(text)])[0] + + +def get_dataset_size(shards, sizefilepath_=None, is_local=True): + if isinstance(shards, list): + size_list = [] + for s in shards: + size_list.append( + get_dataset_size(s, sizefilepath_=sizefilepath_, is_local=is_local)[0] + ) + else: + if not is_local: + for n in dataset_split.keys(): + if n in shards.split("/"): + break + for s in dataset_split[n]: + if s in shards.split("/"): + break + sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" + shards_list = list(braceexpand.braceexpand(shards)) + dir_path = os.path.dirname(shards) + if sizefilepath_ is not None: + sizes = json.load(open(sizefilepath_, "r")) + total_size = sum( + [ + int(sizes[os.path.basename(shard.replace(".tar -", ".tar"))]) + for shard in shards_list + ] + ) + else: + sizes_filename = os.path.join(dir_path, "sizes.json") + len_filename = os.path.join(dir_path, "__len__") + if os.path.exists(sizes_filename): + sizes = json.load(open(sizes_filename, "r")) + total_size = sum( + [int(sizes[os.path.basename(shard)]) for shard in shards_list] + ) + elif os.path.exists(len_filename): + # FIXME this used to be eval(open(...)) but that seemed rather unsafe + total_size = ast.literal_eval(open(len_filename, "r").read()) + else: + raise Exception( + "Cannot find sizes file for dataset. Please specify the path to the file." + ) + # total_size = None # num samples undefined + # some common dataset sizes (at time of authors last download) + # cc3m-train: 2905954 + # cc12m: 10968539 + # LAION-400m: 407332084 + num_shards = len(shards_list) + if isinstance(shards, list): + return sum(size_list), len(shards) + else: + return total_size, num_shards + + +def get_imagenet(args, preprocess_fns, split): + assert split in ["train", "val", "v2"] + is_train = split == "train" + preprocess_train, preprocess_val = preprocess_fns + + if split == "v2": + from imagenetv2_pytorch import ImageNetV2Dataset + + dataset = ImageNetV2Dataset(location=args.imagenet_v2, transform=preprocess_val) + else: + if is_train: + data_path = args.imagenet_train + preprocess_fn = preprocess_train + else: + data_path = args.imagenet_val + preprocess_fn = preprocess_val + assert data_path + + dataset = datasets.ImageFolder(data_path, transform=preprocess_fn) + + if is_train: + idxs = np.zeros(len(dataset.targets)) + target_array = np.array(dataset.targets) + k = 50 + for c in range(1000): + m = target_array == c + n = len(idxs[m]) + arr = np.zeros(n) + arr[:k] = 1 + np.random.shuffle(arr) + idxs[m] = arr + + idxs = idxs.astype("int") + sampler = SubsetRandomSampler(np.where(idxs)[0]) + else: + sampler = None + + dataloader = torch.utils.data.DataLoader( + dataset, + batch_size=args.batch_size, + num_workers=args.workers, + sampler=sampler, + ) + + return DataInfo(dataloader, sampler) + + +def count_samples(dataloader): + os.environ["WDS_EPOCH"] = "0" + n_elements, n_batches = 0, 0 + for images, texts in dataloader: + n_batches += 1 + n_elements += len(images) + assert len(images) == len(texts) + return n_elements, n_batches + + +def filter_no_caption(sample): + return "txt" in sample + + +def log_and_continue(exn): + """Call in an exception handler to ignore any exception, isssue a warning, and continue.""" + logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.") + return True + + +_SHARD_SHUFFLE_SIZE = 2000 +_SHARD_SHUFFLE_INITIAL = 500 +_SAMPLE_SHUFFLE_SIZE = 5000 +_SAMPLE_SHUFFLE_INITIAL = 1000 + + +def sample_prop(sizefile, inputs, proportion, is_local=True): + """ + Sample a proportion of the data. + """ + file_path_dict = { + os.path.split(inputs[i])[1]: os.path.split(inputs[i])[0] + for i in range(len(inputs)) + } + sampled_filepath_dict = {} + sampled_size_dict = {} + if not is_local: + if os.path.exists("sizes.json"): + os.remove("sizes.json") + wget.download(sizefile, "sizes.json") + sizefile = "sizes.json" + with open(sizefile, "r", encoding="UTF-8") as f: + load_dict = json.load(f) + L = int(len(file_path_dict) * proportion) + subkeys = random.sample(file_path_dict.keys(), L) + for k in subkeys: + sampled_size_dict[k] = load_dict[k] + sampled_filepath_dict[k] = file_path_dict[k] + return ( + sum(sampled_size_dict.values()), + L, + [os.path.join(v, k) for k, v in sampled_filepath_dict.items()], + sampled_size_dict, + ) + + +def get_mel(audio_data, audio_cfg): + # mel shape: (n_mels, T) + mel = torchaudio.transforms.MelSpectrogram( + sample_rate=audio_cfg["sample_rate"], + n_fft=audio_cfg["window_size"], + win_length=audio_cfg["window_size"], + hop_length=audio_cfg["hop_size"], + center=True, + pad_mode="reflect", + power=2.0, + norm=None, + onesided=True, + n_mels=64, + f_min=audio_cfg["fmin"], + f_max=audio_cfg["fmax"], + ).to(audio_data.device) + mel = mel(audio_data) + # Align to librosa: + # librosa_melspec = librosa.feature.melspectrogram( + # waveform, + # sr=audio_cfg['sample_rate'], + # n_fft=audio_cfg['window_size'], + # hop_length=audio_cfg['hop_size'], + # win_length=audio_cfg['window_size'], + # center=True, + # pad_mode="reflect", + # power=2.0, + # n_mels=64, + # norm=None, + # htk=True, + # f_min=audio_cfg['fmin'], + # f_max=audio_cfg['fmax'] + # ) + # we use log mel spectrogram as input + mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel) + return mel.T # (T, n_mels) + + +def get_audio_features( + sample, audio_data, max_len, data_truncating, data_filling, audio_cfg +): + """ + Calculate and add audio features to sample. + Sample: a dict containing all the data of current sample. + audio_data: a tensor of shape (T) containing audio data. + max_len: the maximum length of audio data. + data_truncating: the method of truncating data. + data_filling: the method of filling data. + audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg']. + """ + with torch.no_grad(): + if len(audio_data) > max_len: + if data_truncating == "rand_trunc": + longer = torch.tensor([True]) + elif data_truncating == "fusion": + # fusion + mel = get_mel(audio_data, audio_cfg) + # split to three parts + chunk_frames = ( + max_len // audio_cfg["hop_size"] + 1 + ) # the +1 related to how the spectrogram is computed + total_frames = mel.shape[0] + if chunk_frames == total_frames: + # there is a corner case where the audio length is + # larger than max_len but smaller than max_len+hop_size. + # In this case, we just use the whole audio. + mel_fusion = torch.stack([mel, mel, mel, mel], dim=0) + sample["mel_fusion"] = mel_fusion + longer = torch.tensor([False]) + else: + ranges = np.array_split( + list(range(0, total_frames - chunk_frames + 1)), 3 + ) + # print('total_frames-chunk_frames:', total_frames-chunk_frames, + # 'len(audio_data):', len(audio_data), + # 'chunk_frames:', chunk_frames, + # 'total_frames:', total_frames) + if len(ranges[1]) == 0: + # if the audio is too short, we just use the first chunk + ranges[1] = [0] + if len(ranges[2]) == 0: + # if the audio is too short, we just use the first chunk + ranges[2] = [0] + # randomly choose index for each part + idx_front = np.random.choice(ranges[0]) + idx_middle = np.random.choice(ranges[1]) + idx_back = np.random.choice(ranges[2]) + # select mel + mel_chunk_front = mel[idx_front : idx_front + chunk_frames, :] + mel_chunk_middle = mel[idx_middle : idx_middle + chunk_frames, :] + mel_chunk_back = mel[idx_back : idx_back + chunk_frames, :] + + # shrink the mel + mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])( + mel[None] + )[0] + # logging.info(f"mel_shrink.shape: {mel_shrink.shape}") + + # stack + mel_fusion = torch.stack( + [mel_chunk_front, mel_chunk_middle, mel_chunk_back, mel_shrink], + dim=0, + ) + sample["mel_fusion"] = mel_fusion + longer = torch.tensor([True]) + else: + raise NotImplementedError( + f"data_truncating {data_truncating} not implemented" + ) + # random crop to max_len (for compatibility) + overflow = len(audio_data) - max_len + idx = np.random.randint(0, overflow + 1) + audio_data = audio_data[idx : idx + max_len] + + else: # padding if too short + if len(audio_data) < max_len: # do nothing if equal + if data_filling == "repeatpad": + n_repeat = int(max_len / len(audio_data)) + audio_data = audio_data.repeat(n_repeat) + # audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0) + # audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0] + audio_data = F.pad( + audio_data, + (0, max_len - len(audio_data)), + mode="constant", + value=0, + ) + elif data_filling == "pad": + audio_data = F.pad( + audio_data, + (0, max_len - len(audio_data)), + mode="constant", + value=0, + ) + elif data_filling == "repeat": + n_repeat = int(max_len / len(audio_data)) + audio_data = audio_data.repeat(n_repeat + 1)[:max_len] + else: + raise NotImplementedError( + f"data_filling {data_filling} not implemented" + ) + if data_truncating == "fusion": + mel = get_mel(audio_data, audio_cfg) + mel_fusion = torch.stack([mel, mel, mel, mel], dim=0) + sample["mel_fusion"] = mel_fusion + longer = torch.tensor([False]) + + sample["longer"] = longer + sample["waveform"] = audio_data + + return sample + + +def preprocess( + sample, + audio_ext, + text_ext, + max_len, + audio_cfg, + class_index_dict=None, + data_filling="pad", + data_truncating="rand_trunc", + text_augment_selection=None, +): + """ + Preprocess a single sample for wdsdataloader. + """ + audio_data, orig_sr = sf.read(io.BytesIO(sample[audio_ext])) + audio_data = int16_to_float32(float32_to_int16(audio_data)) + audio_data = torch.tensor(audio_data).float() + + # TODO: (yusong) to be include in the future + # # if torchaudio not installed, use soundfile to load audio + # if torchaudio is None: + # audio_data, orig_sr = sf.read(io.BytesIO(sample[audio_ext])) + # audio_data = torch.tensor(audio_data).float() + # else: + # # https://github.com/webdataset/webdataset/blob/main/webdataset/autodecode.py + # with tempfile.TemporaryDirectory() as dirname: + # os.makedirs(dirname, exist_ok=True) + # fname = os.path.join(dirname, f"file.flac") + # with open(fname, "wb") as stream: + # stream.write(sample[audio_ext]) + # audio_data, orig_sr = torchaudio.load(fname) + # audio_data = audio_data[0, :].float() + + sample = get_audio_features( + sample, audio_data, max_len, data_truncating, data_filling, audio_cfg + ) + del sample[audio_ext] + + try: + json_dict_raw = json.loads(sample[text_ext].decode("utf-8")) + except: + print("sample[__url__]:", sample["__url__"]) + + # For selecting augmented text from dataset + if text_augment_selection is None or text_augment_selection == "none": + texts = json_dict_raw["text"] + elif text_augment_selection == "all": + if "text_augment_all" in json_dict_raw.keys(): + texts = json_dict_raw["text_augment_all"] + else: + texts = json_dict_raw["text"] + elif text_augment_selection == "augment_only": + if "text_augment_all" in json_dict_raw.keys(): + if json_dict_raw["text_augment_t5"] is None: + texts = json_dict_raw["text"] + else: + texts = json_dict_raw["text_augment_t5"] + else: + texts = json_dict_raw["text"] + else: + raise NotImplementedError( + f"text_augment_selection {text_augment_selection} not implemented" + ) + sample["full_text"] = texts + + if isinstance(texts, list) and isinstance(texts[0], str) and len(texts) > 1: + texts = random.choice(texts) + sample["raw_text"] = texts + sample["text"] = tokenizer(texts) # text shape: [num_token] + if class_index_dict is not None: + # https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing + # https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array + # key, val = class_index_dict + # key = key[:].split('\n') + # _dict = {k: v for k, v in zip(key, val)} + sample["class_label"] = np.zeros(len(class_index_dict.keys())) + for x in json_dict_raw["tag"]: + sample["class_label"][class_index_dict[x]] = 1 + sample["class_label"] = torch.tensor(sample["class_label"]).float() + del sample[text_ext] + sample["audio_name"] = sample["__key__"].split("/")[-1] + "." + audio_ext + sample["text_name"] = sample["__key__"].split("/")[-1] + "." + text_ext + sample["audio_orig_sr"] = orig_sr + return sample + + +def collate_fn(batch): + """ + Collate function for wdsdataloader. + batch: a list of dict, each dict is a sample + """ + # concatenate values in each dictionary. if it is a tensor, concatenate. if it is a list, extend. + batch_dict = {} + for k in batch[0].keys(): + if isinstance(batch[0][k], dict): # dealwith bert tokenizer output + batch_dict[k] = {} + for kk in batch[0][k].keys(): + tmp = [] + for i in range(len(batch)): + tmp.append(batch[i][k][kk]) + batch_dict[k][kk] = torch.vstack(tmp) + elif isinstance(batch[0][k], torch.Tensor): + batch_dict[k] = torch.stack([sample[k] for sample in batch]) + elif isinstance(batch[0][k], np.ndarray): + batch_dict[k] = torch.tensor(np.stack([sample[k] for sample in batch])) + else: + batch_dict[k] = [sample[k] for sample in batch] + return batch_dict + + +def get_wds_dataset( + args, + model_cfg, + is_train, + audio_ext="flac", + text_ext="json", + max_len=480000, + proportion=1.0, + sizefilepath_=None, + is_local=None, +): + """ + Get a dataset for wdsdataloader. + """ + if is_local is None and (not args.remotedata is None): + is_local = not args.remotedata + + input_shards = args.train_data if is_train else args.val_data + assert input_shards is not None + + if not sizefilepath_ is None: + sizefilepath = sizefilepath_ + else: + sizefilepath = os.path.join(os.path.dirname(input_shards[0]), "sizes.json") + + if proportion != 1.0: + num_samples, num_shards, input_shards, _ = sample_prop( + sizefilepath, input_shards, proportion, is_local=is_local + ) + else: + num_samples, num_shards = get_dataset_size( + input_shards, sizefilepath_=sizefilepath_, is_local=is_local + ) + + if not num_samples: + if is_train: + num_samples = args.train_num_samples + if not num_samples: + raise RuntimeError( + "Currently, number of dataset samples must be specified for training dataset. " + "Please specify via `--train-num-samples` if no dataset length info present." + ) + else: + num_samples = ( + args.val_num_samples or 0 + ) # eval will just exhaust the iterator if not specified + + pipeline = [wds.SimpleShardList(input_shards)] + # at this point we have an iterator over all the shards + # TODO: (yusong): add a if statement of distributed. If not, we don't need to split_by_node + if is_train or args.parallel_eval: + pipeline.extend( + [ + wds.detshuffle( + bufsize=_SHARD_SHUFFLE_SIZE, + initial=_SHARD_SHUFFLE_INITIAL, + seed=args.seed, + ), + wds.split_by_node, + wds.split_by_worker, + # at this point, we have an iterator over the shards assigned to each worker at each node + wds.tarfile_to_samples(handler=log_and_continue), + wds.shuffle( + bufsize=_SAMPLE_SHUFFLE_SIZE, + initial=_SAMPLE_SHUFFLE_INITIAL, + rng=random.Random(args.seed), + ), + # wds.repeatedly, # FIXME determine if this is beneficial + ] + ) + else: + pipeline.extend( + [ + wds.split_by_worker, + # at this point, we have an iterator over the shards assigned to each worker + wds.tarfile_to_samples(handler=log_and_continue), + ] + ) + pipeline.append( + wds.map( + partial( + preprocess, + audio_ext=audio_ext, + text_ext=text_ext, + max_len=max_len, + audio_cfg=model_cfg["audio_cfg"], + class_index_dict=copy.deepcopy(args.class_index_dict), + data_filling=args.data_filling, + data_truncating=args.data_truncating, + text_augment_selection=args.text_augment_selection, + ) + ), + ) + + pipeline.append( + wds.batched( + args.batch_size, + partial=not (is_train or args.parallel_eval), + collation_fn=collate_fn, + ) + ) + + dataset = wds.DataPipeline(*pipeline) + if is_train or args.parallel_eval: + # (yusong): Currently parallel evaluation will be not precise as we are repeat the last few samples. + # (yusong): See comments below. + # roll over and repeat a few samples to get same number of full batches on each node + global_batch_size = args.batch_size * args.world_size + num_batches = math.ceil(num_samples / global_batch_size) + num_workers = max(1, args.workers) + num_worker_batches = math.ceil( + num_batches / num_workers + ) # per dataloader worker + num_batches = num_worker_batches * num_workers + num_samples = num_batches * global_batch_size + dataset = dataset.with_epoch( + num_worker_batches + ) # each worker is iterating over this + else: + # last batches are partial, eval is done on single (master) node + num_batches = math.ceil(num_samples / args.batch_size) + + kwargs = {} + if args.horovod: # multi-node training on summit + kwargs["multiprocessing_context"] = "forkserver" + + dataloader = wds.WebLoader( + dataset, batch_size=None, shuffle=False, num_workers=args.workers, **kwargs + ) + + # FIXME not clear which approach is better, with_epoch before vs after dataloader? + # hoping to resolve via https://github.com/webdataset/webdataset/issues/169 + # if is_train: + # # roll over and repeat a few samples to get same number of full batches on each node + # global_batch_size = args.batch_size * args.world_size + # num_batches = math.ceil(num_samples / global_batch_size) + # num_workers = max(1, args.workers) + # num_batches = math.ceil(num_batches / num_workers) * num_workers + # num_samples = num_batches * global_batch_size + # dataloader = dataloader.with_epoch(num_batches) + # else: + # # last batches are partial, eval is done on single (master) node + # num_batches = math.ceil(num_samples / args.batch_size) + + # add meta-data to dataloader instance for convenience + dataloader.num_batches = num_batches + dataloader.num_samples = num_samples + + return DataInfo(dataloader, None) + + +def wds_batch_list2dict( + batch, + keys=[ + "__url__", + "__key__", + "waveform", + "text", + "raw_text", + "audio_name", + "text_name", + "audio_orig_sr", + ], +): + """ + Return a dictionary of the batch, with keys as the names of the fields. + """ + assert len(keys) == len( + batch + ), "batch must have same number of keys as keys argument" + return {keys[i]: batch[i] for i in range(len(batch))} + + +def get_csv_dataset(args, preprocess_fn, is_train): + input_filename = args.train_data if is_train else args.val_data + assert input_filename + dataset = CsvDataset( + input_filename, + preprocess_fn, + img_key=args.csv_img_key, + caption_key=args.csv_caption_key, + sep=args.csv_separator, + ) + num_samples = len(dataset) + sampler = DistributedSampler(dataset) if args.distributed and is_train else None + shuffle = is_train and sampler is None + + dataloader = DataLoader( + dataset, + batch_size=args.batch_size, + shuffle=shuffle, + num_workers=args.workers, + pin_memory=True, + sampler=sampler, + drop_last=is_train, + ) + dataloader.num_samples = num_samples + dataloader.num_batches = len(dataloader) + + return DataInfo(dataloader, sampler) + + +def get_toy_dataset(args, model_cfg, is_train): + index_path = args.train_data if is_train else args.val_data + ipc_path = args.train_ipc if is_train else args.val_ipc + assert index_path and ipc_path + eval_mode = not is_train + dataset = ToyDataset(index_path, ipc_path, model_cfg, eval_mode=eval_mode) + + num_samples = len(dataset) + sampler = ( + DistributedSampler(dataset, shuffle=False) + if args.distributed and is_train + else None + ) + + dataloader = DataLoader( + dataset, + batch_size=args.batch_size, + shuffle=False, + num_workers=args.workers, + sampler=sampler, + drop_last=is_train, + ) + dataloader.num_samples = num_samples + dataloader.num_batches = len(dataloader) + + return DataInfo(dataloader, sampler) + + +def get_dataset_fn(data_path, dataset_type): + if dataset_type == "webdataset": + return get_wds_dataset + elif dataset_type == "csv": + return get_csv_dataset + elif dataset_type == "auto": + ext = data_path.split(".")[-1] + if ext in ["csv", "tsv"]: + return get_csv_dataset + elif ext in ["tar"]: + return get_wds_dataset + else: + raise ValueError( + f"Tried to figure out dataset type, but failed for extention {ext}." + ) + elif dataset_type == "toy": + return get_toy_dataset + else: + raise ValueError(f"Unsupported dataset type: {dataset_type}") + + +def get_data(args, model_cfg): + data = {} + + args.class_index_dict = load_class_label(args.class_label_path) + + if args.datasetinfos is None: + args.datasetinfos = ["train", "unbalanced_train", "balanced_train"] + if args.dataset_type == "webdataset": + args.train_data = get_tar_path_from_dataset_name( + args.datasetnames, + args.datasetinfos, + islocal=not args.remotedata, + proportion=args.dataset_proportion, + dataset_path=args.datasetpath, + full_dataset=args.full_train_dataset, + ) + + if args.full_train_dataset is None: + args.full_train_dataset = [] + if args.exclude_eval_dataset is None: + args.exclude_eval_dataset = [] + excluded_eval_datasets = args.full_train_dataset + args.exclude_eval_dataset + + val_dataset_names = ( + [n for n in args.datasetnames if n not in excluded_eval_datasets] + if excluded_eval_datasets + else args.datasetnames + ) + args.val_dataset_names = val_dataset_names + args.val_data = get_tar_path_from_dataset_name( + val_dataset_names, + ["valid", "test", "eval"], + islocal=not args.remotedata, + proportion=1, + dataset_path=args.datasetpath, + full_dataset=None, + ) + + if args.train_data: + data["train"] = get_dataset_fn(args.train_data, args.dataset_type)( + args, model_cfg, is_train=True + ) + + if args.val_data: + data["val"] = get_dataset_fn(args.val_data, args.dataset_type)( + args, model_cfg, is_train=False + ) + + return data diff --git a/audioldm/clap/training/distributed.py b/audioldm/clap/training/distributed.py new file mode 100644 index 0000000000000000000000000000000000000000..2fa61f76c5cc3ab9f6a9643042afa8e1f2e1cb7f --- /dev/null +++ b/audioldm/clap/training/distributed.py @@ -0,0 +1,150 @@ +import os + +import torch +import socket + +try: + import horovod.torch as hvd +except ImportError: + hvd = None + + +def is_global_master(args): + return args.rank == 0 + + +def is_local_master(args): + return args.local_rank == 0 + + +def is_master(args, local=False): + return is_local_master(args) if local else is_global_master(args) + + +def is_using_horovod(): + # NOTE w/ horovod run, OMPI vars should be set, but w/ SLURM PMI vars will be set + # Differentiating between horovod and DDP use via SLURM may not be possible, so horovod arg still required... + ompi_vars = ["OMPI_COMM_WORLD_RANK", "OMPI_COMM_WORLD_SIZE"] + pmi_vars = ["PMI_RANK", "PMI_SIZE"] + if all([var in os.environ for var in ompi_vars]) or all( + [var in os.environ for var in pmi_vars] + ): + return True + else: + return False + + +def is_using_distributed(): + if "WORLD_SIZE" in os.environ: + return int(os.environ["WORLD_SIZE"]) > 1 + if "SLURM_NTASKS" in os.environ: + return int(os.environ["SLURM_NTASKS"]) > 1 + return False + + +def world_info_from_env(): + local_rank = 0 + for v in ( + "SLURM_LOCALID", + "MPI_LOCALRANKID", + "OMPI_COMM_WORLD_LOCAL_RANK", + "LOCAL_RANK", + ): + if v in os.environ: + local_rank = int(os.environ[v]) + break + global_rank = 0 + for v in ("SLURM_PROCID", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "RANK"): + if v in os.environ: + global_rank = int(os.environ[v]) + break + world_size = 1 + for v in ("SLURM_NTASKS", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "WORLD_SIZE"): + if v in os.environ: + world_size = int(os.environ[v]) + break + + return local_rank, global_rank, world_size + + +def init_distributed_device(args): + # Distributed training = training on more than one GPU. + # Works in both single and multi-node scenarios. + args.distributed = False + args.world_size = 1 + args.rank = 0 # global rank + args.local_rank = 0 + if args.horovod: + assert hvd is not None, "Horovod is not installed" + hvd.init() + world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) + world_rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) + local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) + args.local_rank = local_rank + args.rank = world_rank + args.world_size = world_size + # args.local_rank = int(hvd.local_rank()) + # args.rank = hvd.rank() + # args.world_size = hvd.size() + args.distributed = True + os.environ["LOCAL_RANK"] = str(args.local_rank) + os.environ["RANK"] = str(args.rank) + os.environ["WORLD_SIZE"] = str(args.world_size) + print( + f"Distributed training: local_rank={args.local_rank}, " + f"rank={args.rank}, world_size={args.world_size}, " + f"hostname={socket.gethostname()}, pid={os.getpid()}" + ) + elif is_using_distributed(): + if "SLURM_PROCID" in os.environ: + # DDP via SLURM + args.local_rank, args.rank, args.world_size = world_info_from_env() + # SLURM var -> torch.distributed vars in case needed + os.environ["LOCAL_RANK"] = str(args.local_rank) + os.environ["RANK"] = str(args.rank) + os.environ["WORLD_SIZE"] = str(args.world_size) + torch.distributed.init_process_group( + backend=args.dist_backend, + init_method=args.dist_url, + world_size=args.world_size, + rank=args.rank, + ) + elif "OMPI_COMM_WORLD_SIZE" in os.environ: # using Summit cluster + world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) + world_rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) + local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) + args.local_rank = local_rank + args.rank = world_rank + args.world_size = world_size + torch.distributed.init_process_group( + backend=args.dist_backend, + init_method=args.dist_url, + world_size=args.world_size, + rank=args.rank, + ) + else: + # DDP via torchrun, torch.distributed.launch + args.local_rank, _, _ = world_info_from_env() + torch.distributed.init_process_group( + backend=args.dist_backend, init_method=args.dist_url + ) + args.world_size = torch.distributed.get_world_size() + args.rank = torch.distributed.get_rank() + args.distributed = True + print( + f"Distributed training: local_rank={args.local_rank}, " + f"rank={args.rank}, world_size={args.world_size}, " + f"hostname={socket.gethostname()}, pid={os.getpid()}" + ) + + if torch.cuda.is_available(): + if args.distributed and not args.no_set_device_rank: + device = "cuda:%d" % args.local_rank + else: + device = "cuda:0" + torch.cuda.set_device(device) + else: + device = "cpu" + args.device = device + device = torch.device(device) + return device diff --git a/audioldm/clap/training/imagenet_zeroshot_data.py b/audioldm/clap/training/imagenet_zeroshot_data.py new file mode 100644 index 0000000000000000000000000000000000000000..d32e55328d6799ccb8d61625f43abb80a33d6c17 --- /dev/null +++ b/audioldm/clap/training/imagenet_zeroshot_data.py @@ -0,0 +1,1088 @@ +# NOTE: This script is currently not supported for CLAP. + +imagenet_classnames = [ + "tench", + "goldfish", + "great white shark", + "tiger shark", + "hammerhead shark", + "electric ray", + "stingray", + "rooster", + "hen", + "ostrich", + "brambling", + "goldfinch", + "house finch", + "junco", + "indigo bunting", + "American robin", + "bulbul", + "jay", + "magpie", + "chickadee", + "American dipper", + "kite (bird of prey)", + "bald eagle", + "vulture", + "great grey owl", + "fire salamander", + "smooth newt", + "newt", + "spotted salamander", + "axolotl", + "American bullfrog", + "tree frog", + "tailed frog", + "loggerhead sea turtle", + "leatherback sea turtle", + "mud turtle", + "terrapin", + "box turtle", + "banded gecko", + "green iguana", + "Carolina anole", + "desert grassland whiptail lizard", + "agama", + "frilled-necked lizard", + "alligator lizard", + "Gila monster", + "European green lizard", + "chameleon", + "Komodo dragon", + "Nile crocodile", + "American alligator", + "triceratops", + "worm snake", + "ring-necked snake", + "eastern hog-nosed snake", + "smooth green snake", + "kingsnake", + "garter snake", + "water snake", + "vine snake", + "night snake", + "boa constrictor", + "African rock python", + "Indian cobra", + "green mamba", + "sea snake", + "Saharan horned viper", + "eastern diamondback rattlesnake", + "sidewinder rattlesnake", + "trilobite", + "harvestman", + "scorpion", + "yellow garden spider", + "barn spider", + "European garden spider", + "southern black widow", + "tarantula", + "wolf spider", + "tick", + "centipede", + "black grouse", + "ptarmigan", + "ruffed grouse", + "prairie grouse", + "peafowl", + "quail", + "partridge", + "african grey parrot", + "macaw", + "sulphur-crested cockatoo", + "lorikeet", + "coucal", + "bee eater", + "hornbill", + "hummingbird", + "jacamar", + "toucan", + "duck", + "red-breasted merganser", + "goose", + "black swan", + "tusker", + "echidna", + "platypus", + "wallaby", + "koala", + "wombat", + "jellyfish", + "sea anemone", + "brain coral", + "flatworm", + "nematode", + "conch", + "snail", + "slug", + "sea slug", + "chiton", + "chambered nautilus", + "Dungeness crab", + "rock crab", + "fiddler crab", + "red king crab", + "American lobster", + "spiny lobster", + "crayfish", + "hermit crab", + "isopod", + "white stork", + "black stork", + "spoonbill", + "flamingo", + "little blue heron", + "great egret", + "bittern bird", + "crane bird", + "limpkin", + "common gallinule", + "American coot", + "bustard", + "ruddy turnstone", + "dunlin", + "common redshank", + "dowitcher", + "oystercatcher", + "pelican", + "king penguin", + "albatross", + "grey whale", + "killer whale", + "dugong", + "sea lion", + "Chihuahua", + "Japanese Chin", + "Maltese", + "Pekingese", + "Shih Tzu", + "King Charles Spaniel", + "Papillon", + "toy terrier", + "Rhodesian Ridgeback", + "Afghan Hound", + "Basset Hound", + "Beagle", + "Bloodhound", + "Bluetick Coonhound", + "Black and Tan Coonhound", + "Treeing Walker Coonhound", + "English foxhound", + "Redbone Coonhound", + "borzoi", + "Irish Wolfhound", + "Italian Greyhound", + "Whippet", + "Ibizan Hound", + "Norwegian Elkhound", + "Otterhound", + "Saluki", + "Scottish Deerhound", + "Weimaraner", + "Staffordshire Bull Terrier", + "American Staffordshire Terrier", + "Bedlington Terrier", + "Border Terrier", + "Kerry Blue Terrier", + "Irish Terrier", + "Norfolk Terrier", + "Norwich Terrier", + "Yorkshire Terrier", + "Wire Fox Terrier", + "Lakeland Terrier", + "Sealyham Terrier", + "Airedale Terrier", + "Cairn Terrier", + "Australian Terrier", + "Dandie Dinmont Terrier", + "Boston Terrier", + "Miniature Schnauzer", + "Giant Schnauzer", + "Standard Schnauzer", + "Scottish Terrier", + "Tibetan Terrier", + "Australian Silky Terrier", + "Soft-coated Wheaten Terrier", + "West Highland White Terrier", + "Lhasa Apso", + "Flat-Coated Retriever", + "Curly-coated Retriever", + "Golden Retriever", + "Labrador Retriever", + "Chesapeake Bay Retriever", + "German Shorthaired Pointer", + "Vizsla", + "English Setter", + "Irish Setter", + "Gordon Setter", + "Brittany dog", + "Clumber Spaniel", + "English Springer Spaniel", + "Welsh Springer Spaniel", + "Cocker Spaniel", + "Sussex Spaniel", + "Irish Water Spaniel", + "Kuvasz", + "Schipperke", + "Groenendael dog", + "Malinois", + "Briard", + "Australian Kelpie", + "Komondor", + "Old English Sheepdog", + "Shetland Sheepdog", + "collie", + "Border Collie", + "Bouvier des Flandres dog", + "Rottweiler", + "German Shepherd Dog", + "Dobermann", + "Miniature Pinscher", + "Greater Swiss Mountain Dog", + "Bernese Mountain Dog", + "Appenzeller Sennenhund", + "Entlebucher Sennenhund", + "Boxer", + "Bullmastiff", + "Tibetan Mastiff", + "French Bulldog", + "Great Dane", + "St. Bernard", + "husky", + "Alaskan Malamute", + "Siberian Husky", + "Dalmatian", + "Affenpinscher", + "Basenji", + "pug", + "Leonberger", + "Newfoundland dog", + "Great Pyrenees dog", + "Samoyed", + "Pomeranian", + "Chow Chow", + "Keeshond", + "brussels griffon", + "Pembroke Welsh Corgi", + "Cardigan Welsh Corgi", + "Toy Poodle", + "Miniature Poodle", + "Standard Poodle", + "Mexican hairless dog (xoloitzcuintli)", + "grey wolf", + "Alaskan tundra wolf", + "red wolf or maned wolf", + "coyote", + "dingo", + "dhole", + "African wild dog", + "hyena", + "red fox", + "kit fox", + "Arctic fox", + "grey fox", + "tabby cat", + "tiger cat", + "Persian cat", + "Siamese cat", + "Egyptian Mau", + "cougar", + "lynx", + "leopard", + "snow leopard", + "jaguar", + "lion", + "tiger", + "cheetah", + "brown bear", + "American black bear", + "polar bear", + "sloth bear", + "mongoose", + "meerkat", + "tiger beetle", + "ladybug", + "ground beetle", + "longhorn beetle", + "leaf beetle", + "dung beetle", + "rhinoceros beetle", + "weevil", + "fly", + "bee", + "ant", + "grasshopper", + "cricket insect", + "stick insect", + "cockroach", + "praying mantis", + "cicada", + "leafhopper", + "lacewing", + "dragonfly", + "damselfly", + "red admiral butterfly", + "ringlet butterfly", + "monarch butterfly", + "small white butterfly", + "sulphur butterfly", + "gossamer-winged butterfly", + "starfish", + "sea urchin", + "sea cucumber", + "cottontail rabbit", + "hare", + "Angora rabbit", + "hamster", + "porcupine", + "fox squirrel", + "marmot", + "beaver", + "guinea pig", + "common sorrel horse", + "zebra", + "pig", + "wild boar", + "warthog", + "hippopotamus", + "ox", + "water buffalo", + "bison", + "ram (adult male sheep)", + "bighorn sheep", + "Alpine ibex", + "hartebeest", + "impala (antelope)", + "gazelle", + "arabian camel", + "llama", + "weasel", + "mink", + "European polecat", + "black-footed ferret", + "otter", + "skunk", + "badger", + "armadillo", + "three-toed sloth", + "orangutan", + "gorilla", + "chimpanzee", + "gibbon", + "siamang", + "guenon", + "patas monkey", + "baboon", + "macaque", + "langur", + "black-and-white colobus", + "proboscis monkey", + "marmoset", + "white-headed capuchin", + "howler monkey", + "titi monkey", + "Geoffroy's spider monkey", + "common squirrel monkey", + "ring-tailed lemur", + "indri", + "Asian elephant", + "African bush elephant", + "red panda", + "giant panda", + "snoek fish", + "eel", + "silver salmon", + "rock beauty fish", + "clownfish", + "sturgeon", + "gar fish", + "lionfish", + "pufferfish", + "abacus", + "abaya", + "academic gown", + "accordion", + "acoustic guitar", + "aircraft carrier", + "airliner", + "airship", + "altar", + "ambulance", + "amphibious vehicle", + "analog clock", + "apiary", + "apron", + "trash can", + "assault rifle", + "backpack", + "bakery", + "balance beam", + "balloon", + "ballpoint pen", + "Band-Aid", + "banjo", + "baluster / handrail", + "barbell", + "barber chair", + "barbershop", + "barn", + "barometer", + "barrel", + "wheelbarrow", + "baseball", + "basketball", + "bassinet", + "bassoon", + "swimming cap", + "bath towel", + "bathtub", + "station wagon", + "lighthouse", + "beaker", + "military hat (bearskin or shako)", + "beer bottle", + "beer glass", + "bell tower", + "baby bib", + "tandem bicycle", + "bikini", + "ring binder", + "binoculars", + "birdhouse", + "boathouse", + "bobsleigh", + "bolo tie", + "poke bonnet", + "bookcase", + "bookstore", + "bottle cap", + "hunting bow", + "bow tie", + "brass memorial plaque", + "bra", + "breakwater", + "breastplate", + "broom", + "bucket", + "buckle", + "bulletproof vest", + "high-speed train", + "butcher shop", + "taxicab", + "cauldron", + "candle", + "cannon", + "canoe", + "can opener", + "cardigan", + "car mirror", + "carousel", + "tool kit", + "cardboard box / carton", + "car wheel", + "automated teller machine", + "cassette", + "cassette player", + "castle", + "catamaran", + "CD player", + "cello", + "mobile phone", + "chain", + "chain-link fence", + "chain mail", + "chainsaw", + "storage chest", + "chiffonier", + "bell or wind chime", + "china cabinet", + "Christmas stocking", + "church", + "movie theater", + "cleaver", + "cliff dwelling", + "cloak", + "clogs", + "cocktail shaker", + "coffee mug", + "coffeemaker", + "spiral or coil", + "combination lock", + "computer keyboard", + "candy store", + "container ship", + "convertible", + "corkscrew", + "cornet", + "cowboy boot", + "cowboy hat", + "cradle", + "construction crane", + "crash helmet", + "crate", + "infant bed", + "Crock Pot", + "croquet ball", + "crutch", + "cuirass", + "dam", + "desk", + "desktop computer", + "rotary dial telephone", + "diaper", + "digital clock", + "digital watch", + "dining table", + "dishcloth", + "dishwasher", + "disc brake", + "dock", + "dog sled", + "dome", + "doormat", + "drilling rig", + "drum", + "drumstick", + "dumbbell", + "Dutch oven", + "electric fan", + "electric guitar", + "electric locomotive", + "entertainment center", + "envelope", + "espresso machine", + "face powder", + "feather boa", + "filing cabinet", + "fireboat", + "fire truck", + "fire screen", + "flagpole", + "flute", + "folding chair", + "football helmet", + "forklift", + "fountain", + "fountain pen", + "four-poster bed", + "freight car", + "French horn", + "frying pan", + "fur coat", + "garbage truck", + "gas mask or respirator", + "gas pump", + "goblet", + "go-kart", + "golf ball", + "golf cart", + "gondola", + "gong", + "gown", + "grand piano", + "greenhouse", + "radiator grille", + "grocery store", + "guillotine", + "hair clip", + "hair spray", + "half-track", + "hammer", + "hamper", + "hair dryer", + "hand-held computer", + "handkerchief", + "hard disk drive", + "harmonica", + "harp", + "combine harvester", + "hatchet", + "holster", + "home theater", + "honeycomb", + "hook", + "hoop skirt", + "gymnastic horizontal bar", + "horse-drawn vehicle", + "hourglass", + "iPod", + "clothes iron", + "carved pumpkin", + "jeans", + "jeep", + "T-shirt", + "jigsaw puzzle", + "rickshaw", + "joystick", + "kimono", + "knee pad", + "knot", + "lab coat", + "ladle", + "lampshade", + "laptop computer", + "lawn mower", + "lens cap", + "letter opener", + "library", + "lifeboat", + "lighter", + "limousine", + "ocean liner", + "lipstick", + "slip-on shoe", + "lotion", + "music speaker", + "loupe magnifying glass", + "sawmill", + "magnetic compass", + "messenger bag", + "mailbox", + "tights", + "one-piece bathing suit", + "manhole cover", + "maraca", + "marimba", + "mask", + "matchstick", + "maypole", + "maze", + "measuring cup", + "medicine cabinet", + "megalith", + "microphone", + "microwave oven", + "military uniform", + "milk can", + "minibus", + "miniskirt", + "minivan", + "missile", + "mitten", + "mixing bowl", + "mobile home", + "ford model t", + "modem", + "monastery", + "monitor", + "moped", + "mortar and pestle", + "graduation cap", + "mosque", + "mosquito net", + "vespa", + "mountain bike", + "tent", + "computer mouse", + "mousetrap", + "moving van", + "muzzle", + "metal nail", + "neck brace", + "necklace", + "baby pacifier", + "notebook computer", + "obelisk", + "oboe", + "ocarina", + "odometer", + "oil filter", + "pipe organ", + "oscilloscope", + "overskirt", + "bullock cart", + "oxygen mask", + "product packet / packaging", + "paddle", + "paddle wheel", + "padlock", + "paintbrush", + "pajamas", + "palace", + "pan flute", + "paper towel", + "parachute", + "parallel bars", + "park bench", + "parking meter", + "railroad car", + "patio", + "payphone", + "pedestal", + "pencil case", + "pencil sharpener", + "perfume", + "Petri dish", + "photocopier", + "plectrum", + "Pickelhaube", + "picket fence", + "pickup truck", + "pier", + "piggy bank", + "pill bottle", + "pillow", + "ping-pong ball", + "pinwheel", + "pirate ship", + "drink pitcher", + "block plane", + "planetarium", + "plastic bag", + "plate rack", + "farm plow", + "plunger", + "Polaroid camera", + "pole", + "police van", + "poncho", + "pool table", + "soda bottle", + "plant pot", + "potter's wheel", + "power drill", + "prayer rug", + "printer", + "prison", + "missile", + "projector", + "hockey puck", + "punching bag", + "purse", + "quill", + "quilt", + "race car", + "racket", + "radiator", + "radio", + "radio telescope", + "rain barrel", + "recreational vehicle", + "fishing casting reel", + "reflex camera", + "refrigerator", + "remote control", + "restaurant", + "revolver", + "rifle", + "rocking chair", + "rotisserie", + "eraser", + "rugby ball", + "ruler measuring stick", + "sneaker", + "safe", + "safety pin", + "salt shaker", + "sandal", + "sarong", + "saxophone", + "scabbard", + "weighing scale", + "school bus", + "schooner", + "scoreboard", + "CRT monitor", + "screw", + "screwdriver", + "seat belt", + "sewing machine", + "shield", + "shoe store", + "shoji screen / room divider", + "shopping basket", + "shopping cart", + "shovel", + "shower cap", + "shower curtain", + "ski", + "balaclava ski mask", + "sleeping bag", + "slide rule", + "sliding door", + "slot machine", + "snorkel", + "snowmobile", + "snowplow", + "soap dispenser", + "soccer ball", + "sock", + "solar thermal collector", + "sombrero", + "soup bowl", + "keyboard space bar", + "space heater", + "space shuttle", + "spatula", + "motorboat", + "spider web", + "spindle", + "sports car", + "spotlight", + "stage", + "steam locomotive", + "through arch bridge", + "steel drum", + "stethoscope", + "scarf", + "stone wall", + "stopwatch", + "stove", + "strainer", + "tram", + "stretcher", + "couch", + "stupa", + "submarine", + "suit", + "sundial", + "sunglasses", + "sunglasses", + "sunscreen", + "suspension bridge", + "mop", + "sweatshirt", + "swim trunks / shorts", + "swing", + "electrical switch", + "syringe", + "table lamp", + "tank", + "tape player", + "teapot", + "teddy bear", + "television", + "tennis ball", + "thatched roof", + "front curtain", + "thimble", + "threshing machine", + "throne", + "tile roof", + "toaster", + "tobacco shop", + "toilet seat", + "torch", + "totem pole", + "tow truck", + "toy store", + "tractor", + "semi-trailer truck", + "tray", + "trench coat", + "tricycle", + "trimaran", + "tripod", + "triumphal arch", + "trolleybus", + "trombone", + "hot tub", + "turnstile", + "typewriter keyboard", + "umbrella", + "unicycle", + "upright piano", + "vacuum cleaner", + "vase", + "vaulted or arched ceiling", + "velvet fabric", + "vending machine", + "vestment", + "viaduct", + "violin", + "volleyball", + "waffle iron", + "wall clock", + "wallet", + "wardrobe", + "military aircraft", + "sink", + "washing machine", + "water bottle", + "water jug", + "water tower", + "whiskey jug", + "whistle", + "hair wig", + "window screen", + "window shade", + "Windsor tie", + "wine bottle", + "airplane wing", + "wok", + "wooden spoon", + "wool", + "split-rail fence", + "shipwreck", + "sailboat", + "yurt", + "website", + "comic book", + "crossword", + "traffic or street sign", + "traffic light", + "dust jacket", + "menu", + "plate", + "guacamole", + "consomme", + "hot pot", + "trifle", + "ice cream", + "popsicle", + "baguette", + "bagel", + "pretzel", + "cheeseburger", + "hot dog", + "mashed potatoes", + "cabbage", + "broccoli", + "cauliflower", + "zucchini", + "spaghetti squash", + "acorn squash", + "butternut squash", + "cucumber", + "artichoke", + "bell pepper", + "cardoon", + "mushroom", + "Granny Smith apple", + "strawberry", + "orange", + "lemon", + "fig", + "pineapple", + "banana", + "jackfruit", + "cherimoya (custard apple)", + "pomegranate", + "hay", + "carbonara", + "chocolate syrup", + "dough", + "meatloaf", + "pizza", + "pot pie", + "burrito", + "red wine", + "espresso", + "tea cup", + "eggnog", + "mountain", + "bubble", + "cliff", + "coral reef", + "geyser", + "lakeshore", + "promontory", + "sandbar", + "beach", + "valley", + "volcano", + "baseball player", + "bridegroom", + "scuba diver", + "rapeseed", + "daisy", + "yellow lady's slipper", + "corn", + "acorn", + "rose hip", + "horse chestnut seed", + "coral fungus", + "agaric", + "gyromitra", + "stinkhorn mushroom", + "earth star fungus", + "hen of the woods mushroom", + "bolete", + "corn cob", + "toilet paper", +] + + +openai_imagenet_template = [ + lambda c: f"a bad photo of a {c}.", + lambda c: f"a photo of many {c}.", + lambda c: f"a sculpture of a {c}.", + lambda c: f"a photo of the hard to see {c}.", + lambda c: f"a low resolution photo of the {c}.", + lambda c: f"a rendering of a {c}.", + lambda c: f"graffiti of a {c}.", + lambda c: f"a bad photo of the {c}.", + lambda c: f"a cropped photo of the {c}.", + lambda c: f"a tattoo of a {c}.", + lambda c: f"the embroidered {c}.", + lambda c: f"a photo of a hard to see {c}.", + lambda c: f"a bright photo of a {c}.", + lambda c: f"a photo of a clean {c}.", + lambda c: f"a photo of a dirty {c}.", + lambda c: f"a dark photo of the {c}.", + lambda c: f"a drawing of a {c}.", + lambda c: f"a photo of my {c}.", + lambda c: f"the plastic {c}.", + lambda c: f"a photo of the cool {c}.", + lambda c: f"a close-up photo of a {c}.", + lambda c: f"a black and white photo of the {c}.", + lambda c: f"a painting of the {c}.", + lambda c: f"a painting of a {c}.", + lambda c: f"a pixelated photo of the {c}.", + lambda c: f"a sculpture of the {c}.", + lambda c: f"a bright photo of the {c}.", + lambda c: f"a cropped photo of a {c}.", + lambda c: f"a plastic {c}.", + lambda c: f"a photo of the dirty {c}.", + lambda c: f"a jpeg corrupted photo of a {c}.", + lambda c: f"a blurry photo of the {c}.", + lambda c: f"a photo of the {c}.", + lambda c: f"a good photo of the {c}.", + lambda c: f"a rendering of the {c}.", + lambda c: f"a {c} in a video game.", + lambda c: f"a photo of one {c}.", + lambda c: f"a doodle of a {c}.", + lambda c: f"a close-up photo of the {c}.", + lambda c: f"a photo of a {c}.", + lambda c: f"the origami {c}.", + lambda c: f"the {c} in a video game.", + lambda c: f"a sketch of a {c}.", + lambda c: f"a doodle of the {c}.", + lambda c: f"a origami {c}.", + lambda c: f"a low resolution photo of a {c}.", + lambda c: f"the toy {c}.", + lambda c: f"a rendition of the {c}.", + lambda c: f"a photo of the clean {c}.", + lambda c: f"a photo of a large {c}.", + lambda c: f"a rendition of a {c}.", + lambda c: f"a photo of a nice {c}.", + lambda c: f"a photo of a weird {c}.", + lambda c: f"a blurry photo of a {c}.", + lambda c: f"a cartoon {c}.", + lambda c: f"art of a {c}.", + lambda c: f"a sketch of the {c}.", + lambda c: f"a embroidered {c}.", + lambda c: f"a pixelated photo of a {c}.", + lambda c: f"itap of the {c}.", + lambda c: f"a jpeg corrupted photo of the {c}.", + lambda c: f"a good photo of a {c}.", + lambda c: f"a plushie {c}.", + lambda c: f"a photo of the nice {c}.", + lambda c: f"a photo of the small {c}.", + lambda c: f"a photo of the weird {c}.", + lambda c: f"the cartoon {c}.", + lambda c: f"art of the {c}.", + lambda c: f"a drawing of the {c}.", + lambda c: f"a photo of the large {c}.", + lambda c: f"a black and white photo of a {c}.", + lambda c: f"the plushie {c}.", + lambda c: f"a dark photo of a {c}.", + lambda c: f"itap of a {c}.", + lambda c: f"graffiti of the {c}.", + lambda c: f"a toy {c}.", + lambda c: f"itap of my {c}.", + lambda c: f"a photo of a cool {c}.", + lambda c: f"a photo of a small {c}.", + lambda c: f"a tattoo of the {c}.", +] diff --git a/audioldm/clap/training/infer_demo.py b/audioldm/clap/training/infer_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..7d1f4784898dbfeb69affefb6f624711adc8cb42 --- /dev/null +++ b/audioldm/clap/training/infer_demo.py @@ -0,0 +1,105 @@ +import sys + +import os +import torch +import librosa +from open_clip import create_model +from training.data import get_audio_features +from training.data import int16_to_float32, float32_to_int16 +from transformers import RobertaTokenizer + +tokenize = RobertaTokenizer.from_pretrained("roberta-base") + + +def tokenizer(text): + result = tokenize( + text, + padding="max_length", + truncation=True, + max_length=77, + return_tensors="pt", + ) + return {k: v.squeeze(0) for k, v in result.items()} + + +PRETRAINED_PATH = "/mnt/fast/nobackup/users/hl01486/projects/contrastive_pretraining/CLAP/assets/checkpoints/epoch_top_0_audioset_no_fusion.pt" +WAVE_48k_PATH = "/mnt/fast/nobackup/users/hl01486/projects/contrastive_pretraining/CLAP/assets/audio/machine.wav" + + +def infer_text(): + device = "cuda:0" if torch.cuda.is_available() else "cpu" + precision = "fp32" + amodel = "HTSAT-tiny" # or 'PANN-14' + tmodel = "roberta" # the best text encoder in our training + enable_fusion = False # False if you do not want to use the fusion model + fusion_type = "aff_2d" + pretrained = PRETRAINED_PATH + + model, model_cfg = create_model( + amodel, + tmodel, + pretrained, + precision=precision, + device=device, + enable_fusion=enable_fusion, + fusion_type=fusion_type, + ) + # load the text, can be a list (i.e. batch size) + text_data = ["I love the contrastive learning", "I love the pretrain model"] + # tokenize for roberta, if you want to tokenize for another text encoder, please refer to data.py#L43-90 + text_data = tokenizer(text_data) + + text_embed = model.get_text_embedding(text_data) + print(text_embed.size()) + + +def infer_audio(): + + device = "cuda:0" if torch.cuda.is_available() else "cpu" + precision = "fp32" + amodel = "HTSAT-tiny" # or 'PANN-14' + tmodel = "roberta" # the best text encoder in our training + enable_fusion = False # False if you do not want to use the fusion model + fusion_type = "aff_2d" + pretrained = PRETRAINED_PATH + + model, model_cfg = create_model( + amodel, + tmodel, + pretrained, + precision=precision, + device=device, + enable_fusion=enable_fusion, + fusion_type=fusion_type, + ) + + # load the waveform of the shape (T,), should resample to 48000 + audio_waveform, sr = librosa.load(WAVE_48k_PATH, sr=48000) + # quantize + audio_waveform = int16_to_float32(float32_to_int16(audio_waveform)) + audio_waveform = torch.from_numpy(audio_waveform).float() + audio_dict = {} + + # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode + import ipdb + + ipdb.set_trace() + audio_dict = get_audio_features( + audio_dict, + audio_waveform, + 480000, + data_truncating="fusion", + data_filling="repeatpad", + audio_cfg=model_cfg["audio_cfg"], + ) + # can send a list to the model, to process many audio tracks in one time (i.e. batch size) + audio_embed = model.get_audio_embedding([audio_dict]) + print(audio_embed.size()) + import ipdb + + ipdb.set_trace() + + +if __name__ == "__main__": + infer_text() + infer_audio() diff --git a/audioldm/clap/training/logger.py b/audioldm/clap/training/logger.py new file mode 100644 index 0000000000000000000000000000000000000000..ac4634970fae6aacde2b7b808355dbd50c90ce73 --- /dev/null +++ b/audioldm/clap/training/logger.py @@ -0,0 +1,30 @@ +import logging + + +def setup_logging(log_file, level, include_host=False): + if include_host: + import socket + + hostname = socket.gethostname() + formatter = logging.Formatter( + f"%(asctime)s | {hostname} | %(levelname)s | %(message)s", + datefmt="%Y-%m-%d,%H:%M:%S", + ) + else: + formatter = logging.Formatter( + "%(asctime)s | %(levelname)s | %(message)s", datefmt="%Y-%m-%d,%H:%M:%S" + ) + + logging.root.setLevel(level) + loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict] + for logger in loggers: + logger.setLevel(level) + + stream_handler = logging.StreamHandler() + stream_handler.setFormatter(formatter) + logging.root.addHandler(stream_handler) + + if log_file: + file_handler = logging.FileHandler(filename=log_file) + file_handler.setFormatter(formatter) + logging.root.addHandler(file_handler) diff --git a/audioldm/clap/training/lp_main.py b/audioldm/clap/training/lp_main.py new file mode 100644 index 0000000000000000000000000000000000000000..c2d4e8c85aaa3c8e4221963ef56a815cc14f354f --- /dev/null +++ b/audioldm/clap/training/lp_main.py @@ -0,0 +1,670 @@ +from cmath import cos +from inspect import getargs +import logging +import os +import random +from datetime import datetime +import bisect +import copy +from sched import scheduler +import numpy as np +import torch +import torch.backends.cudnn as cudnn +from torch import optim +from torch.cuda.amp import GradScaler +import faulthandler +import pathlib +import argparse +import time + +try: + import wandb +except ImportError: + wandb = None + +try: + import torch.utils.tensorboard as tensorboard +except ImportError: + tensorboard = None + +try: + import horovod.torch as hvd +except ImportError: + hvd = None + +from open_clip import create_model_and_transforms, trace_model, create_model +from training.data import get_data +from training.params import parse_args +from training.distributed import is_master, init_distributed_device, world_info_from_env +from training.logger import setup_logging +from training.scheduler import cosine_lr +from training.lp_train import train_one_epoch, evaluate +from open_clip.utils import get_tar_path_from_dataset_name, dataset_split, get_optimizer +from open_clip.utils import load_p, load_class_label +from open_clip.linear_probe import LinearProbe + + +def maintain_ckpts(args, startidx, all_idx_len): + for i in reversed(range(startidx, all_idx_len)): + if os.path.exists(os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt")): + os.rename( + os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"), + os.path.join(args.checkpoint_path, f"epoch_top_{i+1}.pt"), + ) + if os.path.exists( + os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt") + ): + os.remove(os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt")) + return + + +def update_top_k_performance( + new_metrics_inputs, current_top_k_ckpt_metrics, args, ckpt, bignumbetter=True +): + """ + Record the top-k performance of the current epoch. + current_top_k_metrics is a dictionary of the form: {1: top_1_ckpt_measure, 2: top_2_ckpt_measure, ...} + """ + if isinstance(new_metrics_inputs, (list, tuple)): + new_metrics_inputs = np.mean(new_metrics_inputs) + return update_top_k_performance( + new_metrics_inputs, + current_top_k_ckpt_metrics, + args=args, + ckpt=ckpt, + bignumbetter=bignumbetter, + ) + elif isinstance(new_metrics_inputs, dict): + new_metrics_inputs = np.mean(list(new_metrics_inputs.values())) + return update_top_k_performance( + new_metrics_inputs, + current_top_k_ckpt_metrics, + args=args, + ckpt=ckpt, + bignumbetter=bignumbetter, + ) + elif isinstance(new_metrics_inputs, (float, int)): + update_flag = {k: False for k in current_top_k_ckpt_metrics.keys()} + sorted_keys = sorted(current_top_k_ckpt_metrics.keys()) + sorted_values = sorted( + current_top_k_ckpt_metrics.values(), reverse=bignumbetter + ) + sorted_values_ = copy.deepcopy(sorted_values) + sorted_values.append(new_metrics_inputs) + sorted_values = sorted(sorted_values, reverse=bignumbetter) + sorted_values = sorted_values[:-1] + + if sorted_values == sorted_values_: + return current_top_k_ckpt_metrics, new_metrics_inputs + else: + for i in range(len(sorted_keys)): + if current_top_k_ckpt_metrics[sorted_keys[i]] != sorted_values[i]: + current_top_k_ckpt_metrics[sorted_keys[i]] = sorted_values[i] + update_flag[sorted_keys[i]] = True + for i in range(len(update_flag)): + if update_flag[i]: + maintain_ckpts(args, i, len(sorted_keys)) + torch.save( + ckpt, + os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"), + ) + break + return current_top_k_ckpt_metrics, new_metrics_inputs + + +# def updateifNone(a, b): +# a = b if None else a +# return a + + +def is_pretrained_params(n): + return ( + n.startswith("clap_model.transformer") + or n in ["clap_model.positional_embedding", "clap_model.text_projection"] + or n.startswith("clap_model.token_embedding") + or n.startswith("clap_model.ln_final") + or n.startswith("clap_model.logit_scale_t") + ) + + +def random_seed(seed=42, rank=0): + torch.manual_seed(seed + rank) + np.random.seed(seed + rank) + random.seed(seed + rank) + + +def config_lp_optimizer(model, data, args): + # set wd-related params to 0 if use adam optimizer + if args.optimizer == "adam": + args.wd = 0 + args.wd_pretrained = 0 + args.wd_new = 0 + + in_clap = lambda n, p: n.startswith("clap_model") + + named_parameters = list(model.named_parameters()) + + optimizer = {} + scheduler = {} + + # freeze text encoder + text_freeze_parameters = [ + p + for n, p in named_parameters + if n.startswith("clap_model.transformer") + or n in ["clap_model.positional_embedding", "clap_model.text_projection"] + or n.startswith("clap_model.token_embedding") + or n.startswith("clap_model.ln_final") + ] + + if args.freeze_text: + logging.info("Freeze Text!!!!") + for k in text_freeze_parameters: + k.requires_grad = False + + if not args.lp_freeze: + exclude = ( + lambda n, p: p.ndim < 2 + or "bn" in n + or "ln" in n + or "bias" in n + or "logit_scale" in n + ) + include = lambda n, p: not exclude(n, p) + + # (yusong): we do not split the learning rate anymore + # p for n, p in named_parameters if in_clap(n,p) and exclude(n, p) and p.requires_grad + gain_or_bias_params = [ + p for n, p in named_parameters if exclude(n, p) and p.requires_grad + ] + # rest_params = [p for n, p in named_parameters if in_clap(n,p) and include(n, p) and p.requires_grad] + rest_params = [ + p for n, p in named_parameters if include(n, p) and p.requires_grad + ] + + if args.train_data is None: + optimizer = None + scheduler = None + else: + total_steps = data["train"].dataloader.num_batches * args.epochs + + if args.split_opt: + for x in ["lr", "beta1", "beta2", "eps", "wd"]: + for y in ["_new", "_pretrained"]: + if getattr(args, x + y) is None: + setattr(args, x + y, getattr(args, x)) + + gain_or_bias_pretrained_params = [ + p + for n, p in named_parameters + if (exclude(n, p) and p.requires_grad) and is_pretrained_params(n) + ] + rest_pretrained_params = [ + p + for n, p in named_parameters + if (include(n, p) and p.requires_grad) and is_pretrained_params(n) + ] + gain_or_bias_new_params = [ + p + for n, p in named_parameters + if (exclude(n, p) and p.requires_grad) + and (not is_pretrained_params(n)) + ] + rest_new_params = [ + p + for n, p in named_parameters + if (include(n, p) and p.requires_grad) + and (not is_pretrained_params(n)) + ] + + pretrained_params_optimizer = get_optimizer( + [ + {"params": gain_or_bias_pretrained_params, "weight_decay": 0.0}, + { + "params": rest_pretrained_params, + "weight_decay": args.wd_pretrained, + }, + ], + lr=args.lr_pretrained, + betas=(args.beta1_pretrained, args.beta2_pretrained), + eps=args.eps_pretrained, + momentum=args.momentum_pretrained, + optimizer_name=args.optimizer, + ) + pretrained_params_scheduler = cosine_lr( + pretrained_params_optimizer, + args.lr_pretrained, + args.warmup, + total_steps, + ) + + new_params_optimizer = get_optimizer( + [ + {"params": gain_or_bias_new_params, "weight_decay": 0.0}, + {"params": rest_new_params, "weight_decay": args.wd_new}, + ], + lr=args.lr_new, + betas=(args.beta1_new, args.beta2_new), + eps=args.eps_new, + momentum=args.momentum_new, + optimizer_name=args.optimizer, + ) + new_params_scheduler = cosine_lr( + new_params_optimizer, args.lr_new, args.warmup, total_steps + ) + + optimizer["text"] = pretrained_params_optimizer + optimizer["audio"] = new_params_optimizer + scheduler["text"] = pretrained_params_scheduler + scheduler["audio"] = new_params_scheduler + + if args.horovod: + pretrained_params_optimizer = hvd.DistributedOptimizer( + pretrained_params_optimizer, + named_parameters=model.named_parameters(), + ) + new_params_optimizer = hvd.DistributedOptimizer( + new_params_optimizer, named_parameters=model.named_parameters() + ) + hvd.broadcast_parameters(model.state_dict(), root_rank=0) + hvd.broadcast_optimizer_state( + pretrained_params_optimizer, root_rank=0 + ) + hvd.broadcast_optimizer_state(new_params_optimizer, root_rank=0) + else: + + optimizer["clap"] = get_optimizer( + [ + {"params": gain_or_bias_params, "weight_decay": 0.0}, + {"params": rest_params, "weight_decay": args.wd}, + ], + lr=args.lr, + betas=(args.beta1, args.beta2), + eps=args.eps, + momentum=args.momentum, + optimizer_name=args.optimizer, + ) + scheduler["clap"] = cosine_lr( + optimizer["clap"], args.lr, args.warmup, total_steps + ) + + if args.horovod: + optimizer["clap"] = hvd.DistributedOptimizer( + optimizer["clap"], named_parameters=model.named_parameters() + ) + hvd.broadcast_parameters(model.state_dict(), root_rank=0) + hvd.broadcast_optimizer_state(optimizer["clap"], root_rank=0) + + # linear probe optimizer + else: + lp_params = [ + p for n, p in named_parameters if (not in_clap(n, p)) and p.requires_grad + ] + lp_optim = get_optimizer( + lp_params, + lr=args.lp_lr, + betas=(args.beta1, args.beta2), + eps=args.eps, + momentum=0.9, + optimizer_name=args.optimizer, + ) + optimizer["lp"] = lp_optim + + return optimizer, scheduler, text_freeze_parameters + + +def main(): + args = parse_args() + + time.sleep(args.sleep) + + # sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule? + args.amodel = args.amodel.replace("/", "-") + # download sizes.json file + + # (yusong): the below two lines are for debug + # print("setting up faulthandler") + # faulthandler.register(10) + + random.seed(args.seed) + torch.manual_seed(args.seed) + torch.cuda.manual_seed(args.seed) + torch.cuda.manual_seed_all(args.seed) + np.random.seed(args.seed) + args.class_index_dict = load_class_label(args.class_label_path) + + # get the name of the experiments + if args.name is None: + args.name = "-".join( + [ + datetime.now().strftime("%Y_%m_%d-%H_%M_%S"), + f"linear_probe" f"model_{args.amodel}", + f"lr_{args.lr}", + f"b_{args.batch_size}", + f"j_{args.workers}", + f"p_{args.precision}", + ] + ) + + # discover initial world args early so we can log properly + args.distributed = False + args.local_rank, args.rank, args.world_size = world_info_from_env() + + if args.remotedata and is_master(args): + for dataset_name in args.datasetnames: + for split in dataset_split[dataset_name]: + if not os.path.exists(f"./json_files/{dataset_name}/{split}"): + os.makedirs(f"./json_files/{dataset_name}/{split}") + os.system( + f"aws s3 cp s3://s-laion-audio/webdataset_tar/{dataset_name}/{split}/sizes.json ./json_files/{dataset_name}/{split}/sizes.json" + ) + + args.log_path = None + if is_master(args, local=args.log_local): + log_base_path = os.path.join(args.logs, args.name) + os.makedirs(log_base_path, exist_ok=True) + log_filename = f"out-{args.rank}" if args.log_local else "out.log" + args.log_path = os.path.join(log_base_path, log_filename) + + # avoid log dir in same name: + postfix = 0 + while os.path.exists(args.log_path): + postfix += 1 + log_base_path_new = log_base_path + "-" + str(postfix) + os.makedirs(log_base_path_new, exist_ok=True) + log_filename = f"out-{args.rank}" if args.log_local else "out.log" + args.log_path = os.path.join(log_base_path_new, log_filename) + # print( + # "Error. Experiment already exists. Use --name {} to specify a new experiment." + # ) + # return -1 + + # Set logger + args.log_level = logging.DEBUG if args.debug else logging.INFO + setup_logging(args.log_path, args.log_level) + + # fully initialize distributed device environment + device = init_distributed_device(args) + + args.wandb = "wandb" in args.report_to or "all" in args.report_to + args.tensorboard = "tensorboard" in args.report_to or "all" in args.report_to + if is_master(args): + args.tensorboard_path = ( + os.path.join(args.logs, args.name, "tensorboard") + if args.tensorboard + else "" + ) + args.checkpoint_path = os.path.join(args.logs, args.name, "checkpoints") + for dirname in [args.tensorboard_path, args.checkpoint_path]: + if dirname: + os.makedirs(dirname, exist_ok=True) + else: + args.tensorboard_path = "" + args.checkpoint_path = "" + + if args.copy_codebase: + copy_codebase(args) + + assert args.precision in ["amp", "fp16", "fp32"] + if args.precision == "fp16": + logging.warning( + "It is recommended to use AMP mixed-precision instead of FP16. " + "FP16 support needs further verification and tuning, especially for train." + ) + + if args.horovod: + logging.info( + f"Running in horovod mode with multiple processes / nodes. Device: {args.device}." + f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}." + ) + elif args.distributed: + logging.info( + f"Running in distributed mode with multiple processes. Device: {args.device}." + f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}." + ) + else: + logging.info(f"Running with a single process. Device {args.device}.") + + logging.info(f"openai cache dir: {os.path.expanduser(args.openai_model_cache_dir)}") + + # Create CLAP model + clap_model, clap_model_cfg = create_model( + args.amodel, + args.tmodel, + args.pretrained, + precision=args.precision, + device=device, + jit=args.torchscript, + force_quick_gelu=args.force_quick_gelu, + openai_model_cache_dir=os.path.expanduser(args.openai_model_cache_dir), + skip_params=False, + pretrained_audio=args.pretrained_audio, + pretrained_text=args.pretrained_text, + enable_fusion=args.enable_fusion, + fusion_type=args.fusion_type, + ) + + args.lp_out_ch = len(list(args.class_index_dict.keys())) + # Linear Probe + logging.info(f"linear probe using mlp: {args.lp_mlp}") + logging.info(f"linear probe using freeze: {args.lp_freeze}") + logging.info(f"linear probe act layer: {args.lp_act}") + logging.info(f"linear probe out ch: {args.lp_out_ch}") + logging.info(f"linear probe learning rate (if applicable): {args.lp_lr}") + logging.info(f"linear probe loss func: {args.lp_loss}") + logging.info(f"linear probe lp_metrics: {args.lp_metrics}") + + model = LinearProbe( + clap_model, + mlp=args.lp_mlp, + freeze=args.lp_freeze, + in_ch=512, + out_ch=args.lp_out_ch, + act=args.lp_act, + ) # in_ch is fixed (i.e., 512) + model = model.to(device) + + if args.horovod: + with torch.no_grad(): + for param in model.parameters(): + param.set_(param.contiguous()) + + if args.trace: + model = trace_model(model, batch_size=args.batch_size, device=device) + + if is_master(args): + logging.info("Linear Probe CLAP Model:") + logging.info(f"{str(clap_model)}") + logging.info("Params:") + params_file = os.path.join(args.logs, args.name, "params.txt") + with open(params_file, "w") as f: + for name in sorted(vars(args)): + val = getattr(args, name) + logging.info(f" {name}: {val}") + f.write(f"{name}: {val}\n") + + if args.distributed and not args.horovod: + if args.use_bn_sync: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) + ddp_args = {} + if args.ddp_static_graph: + # this doesn't exist in older PyTorch, arg only added if enabled + ddp_args["static_graph"] = True + model = torch.nn.parallel.DistributedDataParallel( + model, device_ids=[device], find_unused_parameters=True, **ddp_args + ) + + data = get_data(args, clap_model_cfg) + assert len(data), "At least one train or eval dataset must be specified." + if args.trace: + assert "train" not in data, "Cannot train with traced model" + + optimizer, scheduler, text_freeze_parameters = config_lp_optimizer( + model, data, args + ) + + scaler = GradScaler() if args.precision == "amp" else None + + # optionally resume from a checkpoint + start_epoch = 0 + if args.resume is not None: + if os.path.isfile(args.resume): + checkpoint = torch.load(args.resume, map_location=device) + if "epoch" in checkpoint: + # resuming a train checkpoint w/ epoch and optimizer state + start_epoch = checkpoint["epoch"] + sd = checkpoint["state_dict"] + if not args.distributed and next(iter(sd.items()))[0].startswith( + "module" + ): + sd = {k[len("module.") :]: v for k, v in sd.items()} + model.load_state_dict(sd) + if args.split_opt: + if optimizer is not None: + for k, o_ in optimizer.items(): + o_.load_state_dict(checkpoint[k + "_" + "optimizer"]) + if optimizer is not None: + optimizer.load_state_dict(checkpoint["optimizer"]) + if scaler is not None and "scaler" in checkpoint: + scaler.load_state_dict(checkpoint["scaler"]) + logging.info( + f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch})" + ) + else: + # loading a bare (model only) checkpoint for fine-tune or evaluation + model.load_state_dict(checkpoint) + logging.info( + f"=> loaded checkpoint '{args.resume}' (epoch {start_epoch})" + ) + if args.freeze_text: + print("Freeze Text!!!!") + for k in text_freeze_parameters: + k.requires_grad = False + else: + logging.info("=> no checkpoint found at '{}'".format(args.resume)) + + cudnn.benchmark = True + cudnn.deterministic = False + + # determine if this worker should save logs and checkpoints. only do so if it is rank == 0 + args.save_logs = args.logs and args.logs.lower() != "none" and is_master(args) + writer = None + if args.save_logs and args.tensorboard: + assert tensorboard is not None, "Please install tensorboard." + writer = tensorboard.SummaryWriter(args.tensorboard_path) + + if args.wandb and is_master(args): + assert wandb is not None, "Please install wandb." + logging.debug("Starting wandb.") + args.train_sz = data["train"].dataloader.num_samples + if args.val_data is not None: + args.val_sz = data["val"].dataloader.num_samples + # you will have to configure this for your project! + wandb.init( + project="clap", + notes=args.wandb_notes, + name=args.wandb_notes, + tags=[], + config=vars(args), + ) + if args.debug: + wandb.watch(model, log="all") + wandb.save(params_file) + logging.debug("Finished loading wandb.") + + if "train" not in data: + evaluate(model, data, start_epoch, args, writer) + return + elif start_epoch == 0 and "val" in data and not args.no_eval: + evaluate(model, data, 0, args, writer) + if args.save_top_performance: + current_top_k_ckpt_metrics = { + i: 0 for i in range(args.save_top_performance) + } # initialize the top-k metric for ckpts to 0 + + for epoch in range(start_epoch, args.epochs): + # freeze the text param after (include) args.freeze_text_after, this is -1 by default + if epoch == args.freeze_text_after: + print("Text pretrained parameters are freezed since this epoch.") + for k in text_freeze_parameters: + k.requires_grad = False + if is_master(args): + logging.info(f"Start epoch {epoch}") + + train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, writer) + completed_epoch = epoch + 1 + + if ( + any(v in data for v in ("val", "imagenet-val", "imagenet-v2")) + and not args.no_eval + ): + metrics = evaluate(model, data, completed_epoch, args, writer) + if args.save_top_performance: + top_k_dataset = args.top_k_checkpoint_select_dataset + top_k_metric = args.top_k_checkpoint_select_metric + filtered_metrics = [ + v + for k, v in metrics.items() + if top_k_metric in k and top_k_dataset in k + ] # check all R@10 metrics (all dataset) and use it to update the ckpt + # Saving checkpoints. + if args.save_logs: + opt_dict = { + k + "_" + "optimizer": v.state_dict() for k, v in optimizer.items() + } + checkpoint_dict = { + "epoch": completed_epoch, + "name": args.name, + "state_dict": model.state_dict(), + } + checkpoint_dict.update(opt_dict) + if scaler is not None: + checkpoint_dict["scaler"] = scaler.state_dict() + + if completed_epoch == args.epochs or ( + args.save_frequency > 0 and (completed_epoch % args.save_frequency) == 0 + ): + torch.save( + checkpoint_dict, + os.path.join(args.checkpoint_path, f"epoch_{completed_epoch}.pt"), + ) + if args.save_most_recent: + torch.save( + checkpoint_dict, + os.path.join(args.checkpoint_path, f"epoch_latest.pt"), + ) + if args.save_top_performance and not args.no_eval: + update_top_k_performance( + filtered_metrics, + current_top_k_ckpt_metrics, + args, + checkpoint_dict, + bignumbetter=True, + ) + + if args.wandb and is_master(args): + wandb.finish() + + +def copy_codebase(args): + from shutil import copytree, ignore_patterns + + new_code_path = os.path.join(args.logs, args.name, "code") + if os.path.exists(new_code_path): + print( + f"Error. Experiment already exists at {new_code_path}. Use --name to specify a new experiment." + ) + return -1 + print(f"Copying codebase to {new_code_path}") + current_code_path = os.path.realpath(__file__) + for _ in range(3): + current_code_path = os.path.dirname(current_code_path) + copytree( + current_code_path, new_code_path, ignore=ignore_patterns("log", "logs", "wandb") + ) + print("Done copying code.") + return 1 + + +if __name__ == "__main__": + main() diff --git a/audioldm/clap/training/lp_train.py b/audioldm/clap/training/lp_train.py new file mode 100644 index 0000000000000000000000000000000000000000..24a19bacd0a4b789415cfccbce1f8bc99bc493ed --- /dev/null +++ b/audioldm/clap/training/lp_train.py @@ -0,0 +1,301 @@ +import json +import logging +import math +import os +import time +from contextlib import suppress + +import numpy as np +import torch +import torch.nn.functional as F + +try: + import wandb +except ImportError: + wandb = None + +from open_clip import LPLoss, LPMetrics, lp_gather_features +from open_clip.utils import do_mixup, get_mix_lambda +from .distributed import is_master +from .zero_shot import zero_shot_eval + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def unwrap_model(model): + if hasattr(model, "module"): + return model.module + else: + return model + + +def train_one_epoch( + model, + data, + epoch, + optimizer, + scaler, + scheduler, + args, + tb_writer=None, + extra_suffix="", +): + device = torch.device(args.device) + autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress + model.train() + loss = LPLoss(args.lp_loss) + + dataloader, sampler = data["train"].dataloader, data["train"].sampler + if args.distributed and sampler is not None: + sampler.set_epoch(epoch) + num_batches_per_epoch = dataloader.num_batches + sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10)) + + # for toy dataset + if args.dataset_type == "toy": + dataloader.dataset.generate_queue() + + loss_m = AverageMeter() + batch_time_m = AverageMeter() + data_time_m = AverageMeter() + end = time.time() + + for i, batch in enumerate(dataloader): + step = num_batches_per_epoch * epoch + i + + if isinstance(scheduler, dict): + for s in scheduler.values(): + s(step) + else: + scheduler(step) + + audio = batch # contains mel_spec, wavform, and longer list + class_label = batch["class_label"] + # audio = audio.to(device=device, non_blocking=True) + class_label = class_label.to(device=device, non_blocking=True) + + if args.mixup: + # https://github.com/RetroCirce/HTS-Audio-Transformer/blob/main/utils.py#L146 + mix_lambda = torch.from_numpy( + get_mix_lambda(0.5, len(audio["waveform"])) + ).to(device) + class_label = do_mixup(class_label, mix_lambda) + else: + mix_lambda = None + + data_time_m.update(time.time() - end) + if isinstance(optimizer, dict): + for o_ in optimizer.values(): + o_.zero_grad() + else: + optimizer.zero_grad() + + with autocast(): + pred = model(audio, mix_lambda=mix_lambda, device=device) + total_loss = loss(pred, class_label) + + if isinstance(optimizer, dict): + if scaler is not None: + scaler.scale(total_loss).backward() + for o_ in optimizer.values(): + if args.horovod: + o_.synchronize() + scaler.unscale_(o_) + with o_.skip_synchronize(): + scaler.step(o_) + else: + scaler.step(o_) + scaler.update() + else: + total_loss.backward() + for o_ in optimizer.values(): + o_.step() + else: + if scaler is not None: + scaler.scale(total_loss).backward() + if args.horovod: + optimizer.synchronize() + scaler.unscale_(optimizer) + with optimizer.skip_synchronize(): + scaler.step(optimizer) + else: + scaler.step(optimizer) + scaler.update() + else: + total_loss.backward() + optimizer.step() + + # Note: we clamp to 4.6052 = ln(100), as in the original paper. + with torch.no_grad(): + unwrap_model(model).clap_model.logit_scale_a.clamp_(0, math.log(100)) + unwrap_model(model).clap_model.logit_scale_t.clamp_(0, math.log(100)) + + batch_time_m.update(time.time() - end) + end = time.time() + batch_count = i + 1 + + if is_master(args) and (i % 100 == 0 or batch_count == num_batches_per_epoch): + if isinstance(audio, dict): + batch_size = len(audio["waveform"]) + else: + batch_size = len(audio) + num_samples = batch_count * batch_size * args.world_size + samples_per_epoch = dataloader.num_samples + percent_complete = 100.0 * batch_count / num_batches_per_epoch + + # NOTE loss is coarsely sampled, just master node and per log update + loss_m.update(total_loss.item(), batch_size) + if isinstance(optimizer, dict): + logging.info( + f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " + f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " + f"Data (t): {data_time_m.avg:.3f} " + f"Batch (t): {batch_time_m.avg:.3f} " + f"LR: {[o_.param_groups[0]['lr'] for o_ in optimizer.values()]}" + ) + log_data = { + "loss": loss_m.val, + "data_time": data_time_m.val, + "batch_time": batch_time_m.val, + "lr": [o_.param_groups[0]["lr"] for o_ in optimizer.values()], + } + else: + logging.info( + f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " + f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " + f"Data (t): {data_time_m.avg:.3f} " + f"Batch (t): {batch_time_m.avg:.3f} " + f"LR: {optimizer.param_groups[0]['lr']:5f} " + ) + + # Save train loss / etc. Using non avg meter values as loggers have their own smoothing + log_data = { + "loss": loss_m.val, + "data_time": data_time_m.val, + "batch_time": batch_time_m.val, + "lr": optimizer.param_groups[0]["lr"], + } + for name, val in log_data.items(): + name = f"train{extra_suffix}/{name}" + if tb_writer is not None: + tb_writer.add_scalar(name, val, step) + if args.wandb: + assert wandb is not None, "Please install wandb." + wandb.log({name: val, "step": step}) + + # resetting batch / data time meters per log window + batch_time_m.reset() + data_time_m.reset() + # end for + + +def evaluate(model, data, epoch, args, tb_writer=None, extra_suffix=""): + metrics = {} + if not args.parallel_eval: + if not is_master(args): + return metrics + device = torch.device(args.device) + model.eval() + + # CHANGE + # zero_shot_metrics = zero_shot_eval(model, data, epoch, args) + # metrics.update(zero_shot_metrics) + if is_master(args): + print("Evaluating...") + metric_names = args.lp_metrics.split(",") + eval_tool = LPMetrics(metric_names=metric_names) + + autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress + if "val" in data and ( + args.val_frequency + and ((epoch % args.val_frequency) == 0 or epoch == args.epochs) + ): + if args.parallel_eval: + dataloader, sampler = data["val"].dataloader, data["val"].sampler + if args.distributed and sampler is not None: + sampler.set_epoch(epoch) + samples_per_val = dataloader.num_samples + else: + dataloader = data["val"].dataloader + num_samples = 0 + samples_per_val = dataloader.num_samples + + eval_info = {"pred": [], "target": []} + with torch.no_grad(): + for i, batch in enumerate(dataloader): + audio = batch # contains mel_spec, wavform, and longer list + class_label = batch["class_label"] + + # audio = audio.to(device=device, non_blocking=True) + class_label = class_label.to(device=device, non_blocking=True) + + with autocast(): + pred = model(audio, device=device) + if args.parallel_eval: + pred, class_label = lp_gather_features( + pred, class_label, args.world_size, args.horovod + ) + eval_info["pred"].append(pred) + eval_info["target"].append(class_label) + + num_samples += class_label.shape[0] + + if (i % 100) == 0: # and i != 0: + logging.info( + f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]" + ) + + if is_master(args): + eval_info["pred"] = torch.cat(eval_info["pred"], 0).cpu() + eval_info["target"] = torch.cat(eval_info["target"], 0).cpu() + metric_dict = eval_tool.evaluate_mertics( + eval_info["pred"], eval_info["target"] + ) + metrics.update(metric_dict) + if "epoch" not in metrics.keys(): + metrics.update({"epoch": epoch}) + + if is_master(args): + if not metrics: + return metrics + + logging.info( + f"Eval Epoch: {epoch} " + + "\n".join( + ["\t".join([f"{m}: {round(metrics[m], 4):.4f}"]) for m in metrics] + ) + ) + if args.save_logs: + for name, val in metrics.items(): + if tb_writer is not None: + tb_writer.add_scalar(f"val{extra_suffix}/{name}", val, epoch) + + with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f: + f.write(json.dumps(metrics)) + f.write("\n") + + if args.wandb: + assert wandb is not None, "Please install wandb." + for name, val in metrics.items(): + wandb.log({f"val{extra_suffix}/{name}": val, "epoch": epoch}) + + return metrics + else: + return metrics diff --git a/audioldm/clap/training/main.py b/audioldm/clap/training/main.py new file mode 100644 index 0000000000000000000000000000000000000000..3b563a5d001be7adfbe779dee7ad8ac49aadc50d --- /dev/null +++ b/audioldm/clap/training/main.py @@ -0,0 +1,596 @@ +from inspect import getargs +import logging +import os +import random +from datetime import datetime +import bisect +import copy +import numpy as np +import torch +import torch.backends.cudnn as cudnn +from torch import optim +from torch.cuda.amp import GradScaler +import faulthandler +import pathlib + +try: + import wandb +except ImportError: + wandb = None + +try: + import torch.utils.tensorboard as tensorboard +except ImportError: + tensorboard = None + +try: + import horovod.torch as hvd +except ImportError: + hvd = None + +from open_clip import create_model_and_transforms, trace_model, create_model +from training.data import get_data +from training.distributed import is_master, init_distributed_device, world_info_from_env +from training.logger import setup_logging +from training.params import parse_args +from training.scheduler import cosine_lr +from training.train import train_one_epoch, evaluate +from open_clip.utils import dataset_split, get_optimizer + + +def maintain_ckpts(args, startidx, all_idx_len): + for i in reversed(range(startidx, all_idx_len)): + if os.path.exists(os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt")): + os.rename( + os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"), + os.path.join(args.checkpoint_path, f"epoch_top_{i+1}.pt"), + ) + if os.path.exists( + os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt") + ): + os.remove(os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt")) + return + + +def update_top_k_performance( + new_metrics_inputs, current_top_k_ckpt_metrics, args, ckpt, bignumbetter=True +): + """ + Record the top-k performance of the current epoch. + current_top_k_metrics is a dictionary of the form: {1: top_1_ckpt_measure, 2: top_2_ckpt_measure, ...} + """ + if isinstance(new_metrics_inputs, (list, tuple)): + new_metrics_inputs = np.mean(new_metrics_inputs) + return update_top_k_performance( + new_metrics_inputs, + current_top_k_ckpt_metrics, + args=args, + ckpt=ckpt, + bignumbetter=bignumbetter, + ) + elif isinstance(new_metrics_inputs, dict): + new_metrics_inputs = np.mean(list(new_metrics_inputs.values())) + return update_top_k_performance( + new_metrics_inputs, + current_top_k_ckpt_metrics, + args=args, + ckpt=ckpt, + bignumbetter=bignumbetter, + ) + elif isinstance(new_metrics_inputs, (float, int)): + update_flag = {k: False for k in current_top_k_ckpt_metrics.keys()} + sorted_keys = sorted(current_top_k_ckpt_metrics.keys()) + sorted_values = sorted( + current_top_k_ckpt_metrics.values(), reverse=bignumbetter + ) + sorted_values_ = copy.deepcopy(sorted_values) + sorted_values.append(new_metrics_inputs) + sorted_values = sorted(sorted_values, reverse=bignumbetter) + sorted_values = sorted_values[:-1] + + if sorted_values == sorted_values_: + return current_top_k_ckpt_metrics, new_metrics_inputs + else: + for i in range(len(sorted_keys)): + if current_top_k_ckpt_metrics[sorted_keys[i]] != sorted_values[i]: + current_top_k_ckpt_metrics[sorted_keys[i]] = sorted_values[i] + update_flag[sorted_keys[i]] = True + for i in range(len(update_flag)): + if update_flag[i]: + maintain_ckpts(args, i, len(sorted_keys)) + torch.save( + ckpt, + os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"), + ) + break + return current_top_k_ckpt_metrics, new_metrics_inputs + + +# def updateifNone(a, b): +# a = b if None else a +# return a + + +def is_pretrained_params(n): + return ( + n.startswith("transformer") + or n in ["positional_embedding", "text_projection"] + or n.startswith("token_embedding") + or n.startswith("ln_final") + or n.startswith("logit_scale_t") + ) + + +def random_seed(seed=42, rank=0): + torch.manual_seed(seed + rank) + np.random.seed(seed + rank) + random.seed(seed + rank) + + +def main(): + args = parse_args() + # sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule? + args.amodel = args.amodel.replace("/", "-") + # download sizes.json file + + # (yusong): the below two lines are for debug + # print("setting up faulthandler") + # faulthandler.register(10) + + random.seed(args.seed) + torch.manual_seed(args.seed) + torch.cuda.manual_seed(args.seed) + torch.cuda.manual_seed_all(args.seed) + np.random.seed(args.seed) + if args.tmodel == "bert" or args.tmodel == "roberta" or args.tmodel == "bart": + assert ( + args.pretrained == "" or args.pretrained is None + ), "bert/roberta/bart text encoder does not support pretrained models." + + # get the name of the experiments + if args.name is None: + args.name = "-".join( + [ + datetime.now().strftime("%Y_%m_%d-%H_%M_%S"), + f"model_{args.amodel}", + f"lr_{args.lr}", + f"b_{args.batch_size}", + f"j_{args.workers}", + f"p_{args.precision}", + ] + ) + + # discover initial world args early so we can log properly + args.distributed = False + args.local_rank, args.rank, args.world_size = world_info_from_env() + + if args.remotedata and is_master(args): + for dataset_name in args.datasetnames: + for split in dataset_split[dataset_name]: + if not os.path.exists(f"./json_files/{dataset_name}/{split}"): + os.makedirs(f"./json_files/{dataset_name}/{split}") + os.system( + f"aws s3 cp s3://s-laion-audio/webdataset_tar/{dataset_name}/{split}/sizes.json ./json_files/{dataset_name}/{split}/sizes.json" + ) + + args.log_path = None + if is_master(args, local=args.log_local): + log_base_path = os.path.join(args.logs, args.name) + os.makedirs(log_base_path, exist_ok=True) + log_filename = f"out-{args.rank}" if args.log_local else "out.log" + args.log_path = os.path.join(log_base_path, log_filename) + if os.path.exists(args.log_path): + print( + "Error. Experiment already exists. Use --name {} to specify a new experiment." + ) + return -1 + + # Set logger + args.log_level = logging.DEBUG if args.debug else logging.INFO + setup_logging(args.log_path, args.log_level) + + # fully initialize distributed device environment + device = init_distributed_device(args) + + args.wandb = "wandb" in args.report_to or "all" in args.report_to + args.tensorboard = "tensorboard" in args.report_to or "all" in args.report_to + if is_master(args): + args.tensorboard_path = ( + os.path.join(args.logs, args.name, "tensorboard") + if args.tensorboard + else "" + ) + args.checkpoint_path = os.path.join(args.logs, args.name, "checkpoints") + for dirname in [args.tensorboard_path, args.checkpoint_path]: + if dirname: + os.makedirs(dirname, exist_ok=True) + else: + args.tensorboard_path = "" + args.checkpoint_path = "" + + if args.copy_codebase: + copy_codebase(args) + + assert args.precision in ["amp", "fp16", "fp32"] + if args.precision == "fp16": + logging.warning( + "It is recommended to use AMP mixed-precision instead of FP16. " + "FP16 support needs further verification and tuning, especially for train." + ) + + if args.horovod: + logging.info( + f"Running in horovod mode with multiple processes / nodes. Device: {args.device}." + f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}." + ) + elif args.distributed: + logging.info( + f"Running in distributed mode with multiple processes. Device: {args.device}." + f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}." + ) + else: + logging.info(f"Running with a single process. Device {args.device}.") + + logging.info(f"openai cache dir: {os.path.expanduser(args.openai_model_cache_dir)}") + + model, model_cfg = create_model( + args.amodel, + args.tmodel, + args.pretrained, + precision=args.precision, + device=device, + jit=args.torchscript, + force_quick_gelu=args.force_quick_gelu, + openai_model_cache_dir=os.path.expanduser(args.openai_model_cache_dir), + skip_params=True, + pretrained_audio=args.pretrained_audio, + pretrained_text=args.pretrained_text, + enable_fusion=args.enable_fusion, + fusion_type=args.fusion_type, + ) + + if args.horovod: + with torch.no_grad(): + for param in model.parameters(): + param.set_(param.contiguous()) + + if args.trace: + model = trace_model(model, batch_size=args.batch_size, device=device) + + if is_master(args): + logging.info("Model:") + logging.info(f"{str(model)}") + logging.info("Params:") + params_file = os.path.join(args.logs, args.name, "params.txt") + with open(params_file, "w") as f: + for name in sorted(vars(args)): + val = getattr(args, name) + logging.info(f" {name}: {val}") + f.write(f"{name}: {val}\n") + + if args.distributed and not args.horovod: + if args.use_bn_sync: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) + ddp_args = {} + if args.ddp_static_graph: + # this doesn't exist in older PyTorch, arg only added if enabled + ddp_args["static_graph"] = True + model = torch.nn.parallel.DistributedDataParallel( + model, device_ids=[device], find_unused_parameters=True, **ddp_args + ) + + data = get_data(args, model_cfg) + assert len(data), "At least one train or eval dataset must be specified." + if args.trace: + assert "train" not in data, "Cannot train with traced model" + + exclude = ( + lambda n, p: p.ndim < 2 + or "bn" in n + or "ln" in n + or "bias" in n + or "logit_scale" in n + ) + include = lambda n, p: not exclude(n, p) + + named_parameters = list(model.named_parameters()) + + # freeze text encoder + text_freeze_parameters = [p for n, p in named_parameters if "text_branch" in n] + + if args.freeze_text: + print("Freeze Text!!!!") + for k in text_freeze_parameters: + k.requires_grad = False + + gain_or_bias_params = [ + p for n, p in named_parameters if exclude(n, p) and p.requires_grad + ] + rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad] + + # set wd-related params to 0 if use adam optimizer + if args.optimizer == "adam": + args.wd = 0 + args.wd_pretrained = 0 + args.wd_new = 0 + + if args.train_data is None: + optimizer = None + scheduler = None + else: + total_steps = data["train"].dataloader.num_batches * args.epochs + + if args.split_opt: + for x in ["lr", "beta1", "beta2", "eps", "wd"]: + for y in ["_new", "_pretrained"]: + if getattr(args, x + y) is None: + setattr(args, x + y, getattr(args, x)) + + gain_or_bias_pretrained_params = [ + p + for n, p in named_parameters + if (exclude(n, p) and p.requires_grad) and is_pretrained_params(n) + ] + rest_pretrained_params = [ + p + for n, p in named_parameters + if (include(n, p) and p.requires_grad) and is_pretrained_params(n) + ] + gain_or_bias_new_params = [ + p + for n, p in named_parameters + if (exclude(n, p) and p.requires_grad) and (not is_pretrained_params(n)) + ] + rest_new_params = [ + p + for n, p in named_parameters + if (include(n, p) and p.requires_grad) and (not is_pretrained_params(n)) + ] + pretrained_params_optimizer = get_optimizer( + [ + {"params": gain_or_bias_pretrained_params, "weight_decay": 0.0}, + { + "params": rest_pretrained_params, + "weight_decay": args.wd_pretrained, + }, + ], + lr=args.lr_pretrained, + betas=(args.beta1_pretrained, args.beta2_pretrained), + eps=args.eps_pretrained, + momentum=args.momentum_pretrained, + optimizer_name=args.optimizer, + ) + pretrained_params_scheduler = cosine_lr( + pretrained_params_optimizer, + args.lr_pretrained, + args.warmup, + total_steps, + ) + new_params_optimizer = get_optimizer( + [ + {"params": gain_or_bias_new_params, "weight_decay": 0.0}, + {"params": rest_new_params, "weight_decay": args.wd_new}, + ], + lr=args.lr_new, + betas=(args.beta1_new, args.beta2_new), + eps=args.eps_new, + momentum=args.momentum_new, + optimizer_name=args.optimizer, + ) + + new_params_scheduler = cosine_lr( + new_params_optimizer, args.lr_new, args.warmup, total_steps + ) + + optimizer = { + "pretrained": pretrained_params_optimizer, + "new": new_params_optimizer, + } + scheduler = { + "pretrained": pretrained_params_scheduler, + "new": new_params_scheduler, + } + + if args.horovod: + pretrained_params_optimizer = hvd.DistributedOptimizer( + pretrained_params_optimizer, + named_parameters=model.named_parameters(), + ) + new_params_optimizer = hvd.DistributedOptimizer( + new_params_optimizer, named_parameters=model.named_parameters() + ) + hvd.broadcast_parameters(model.state_dict(), root_rank=0) + hvd.broadcast_optimizer_state(pretrained_params_optimizer, root_rank=0) + hvd.broadcast_optimizer_state(new_params_optimizer, root_rank=0) + else: + optimizer = get_optimizer( + [ + {"params": gain_or_bias_params, "weight_decay": 0.0}, + {"params": rest_params, "weight_decay": args.wd}, + ], + lr=args.lr, + betas=(args.beta1, args.beta2), + eps=args.eps, + momentum=args.momentum, + optimizer_name=args.optimizer, + ) + + scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps) + + if args.horovod: + optimizer = hvd.DistributedOptimizer( + optimizer, named_parameters=model.named_parameters() + ) + hvd.broadcast_parameters(model.state_dict(), root_rank=0) + hvd.broadcast_optimizer_state(optimizer, root_rank=0) + + scaler = GradScaler() if args.precision == "amp" else None + + # optionally resume from a checkpoint + start_epoch = 0 + if args.resume is not None: + if os.path.isfile(args.resume): + checkpoint = torch.load(args.resume, map_location=device) + if "epoch" in checkpoint: + # resuming a train checkpoint w/ epoch and optimizer state + start_epoch = checkpoint["epoch"] + sd = checkpoint["state_dict"] + if not args.distributed and next(iter(sd.items()))[0].startswith( + "module" + ): + sd = {k[len("module.") :]: v for k, v in sd.items()} + model.load_state_dict(sd) + if args.split_opt: + if optimizer is not None: + for k, o_ in optimizer.items(): + o_.load_state_dict(checkpoint[k + "_" + "optimizer"]) + if optimizer is not None: + optimizer.load_state_dict(checkpoint["optimizer"]) + if scaler is not None and "scaler" in checkpoint: + scaler.load_state_dict(checkpoint["scaler"]) + logging.info( + f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch})" + ) + else: + # loading a bare (model only) checkpoint for fine-tune or evaluation + model.load_state_dict(checkpoint) + logging.info( + f"=> loaded checkpoint '{args.resume}' (epoch {start_epoch})" + ) + if args.freeze_text: + print("Freeze Text!!!!") + for k in text_freeze_parameters: + k.requires_grad = False + else: + logging.info("=> no checkpoint found at '{}'".format(args.resume)) + + cudnn.benchmark = True + cudnn.deterministic = False + + # determine if this worker should save logs and checkpoints. only do so if it is rank == 0 + args.save_logs = args.logs and args.logs.lower() != "none" and is_master(args) + writer = None + if args.save_logs and args.tensorboard: + assert tensorboard is not None, "Please install tensorboard." + writer = tensorboard.SummaryWriter(args.tensorboard_path) + + if args.wandb and is_master(args): + assert wandb is not None, "Please install wandb." + logging.debug("Starting wandb.") + args.train_sz = data["train"].dataloader.num_samples + if args.val_data is not None: + args.val_sz = data["val"].dataloader.num_samples + # you will have to configure this for your project! + wandb.init( + project="clap", + notes=args.wandb_notes, + name=args.wandb_notes, + tags=[], + config=vars(args), + ) + if args.debug: + wandb.watch(model, log="all") + wandb.save(params_file) + logging.debug("Finished loading wandb.") + + if "train" not in data: + evaluate(model, data, start_epoch, args, writer) + return + elif start_epoch == 0 and "val" in data and not args.no_eval: + evaluate(model, data, 0, args, writer) + # print(f'rank {args.rank}, Start First Evaluation')# (yusong): for debug + if args.save_top_performance: + current_top_k_ckpt_metrics = { + i: 0 for i in range(args.save_top_performance) + } # initialize the top-k metric for ckpts to 0 + + # print(f'rank {args.rank}, Start Training') # (yusong): for debug + for epoch in range(start_epoch, args.epochs): + # freeze the text param after (include) args.freeze_text_after, this is -1 by default + if epoch == args.freeze_text_after: + print("Text pretrained parameters are freezed since this epoch.") + for k in text_freeze_parameters: + k.requires_grad = False + if is_master(args): + logging.info(f"Start epoch {epoch}") + + train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, writer) + completed_epoch = epoch + 1 + + if ( + any(v in data for v in ("val", "imagenet-val", "imagenet-v2")) + and not args.no_eval + ): + metrics = evaluate(model, data, completed_epoch, args, writer) + if args.save_top_performance: + top_k_dataset = args.top_k_checkpoint_select_dataset + top_k_metric = args.top_k_checkpoint_select_metric + filtered_metrics = [ + v + for k, v in metrics.items() + if top_k_metric in k and top_k_dataset in k + ] # check all R@10 metrics (all dataset) and use it to update the ckpt + # Saving checkpoints. + if args.save_logs: + if args.split_opt: + opt_dict = { + k + "_" + "optimizer": v.state_dict() for k, v in optimizer.items() + } + else: + opt_dict = {"optimizer": optimizer.state_dict()} + checkpoint_dict = { + "epoch": completed_epoch, + "name": args.name, + "state_dict": model.state_dict(), + } + checkpoint_dict.update(opt_dict) + if scaler is not None: + checkpoint_dict["scaler"] = scaler.state_dict() + + if completed_epoch == args.epochs or ( + args.save_frequency > 0 and (completed_epoch % args.save_frequency) == 0 + ): + torch.save( + checkpoint_dict, + os.path.join(args.checkpoint_path, f"epoch_{completed_epoch}.pt"), + ) + if args.save_most_recent: + torch.save( + checkpoint_dict, + os.path.join(args.checkpoint_path, f"epoch_latest.pt"), + ) + if args.save_top_performance and not args.no_eval: + update_top_k_performance( + filtered_metrics, + current_top_k_ckpt_metrics, + args, + checkpoint_dict, + bignumbetter=True, + ) + + if args.wandb and is_master(args): + wandb.finish() + + +def copy_codebase(args): + from shutil import copytree, ignore_patterns + + new_code_path = os.path.join(args.logs, args.name, "code") + if os.path.exists(new_code_path): + print( + f"Error. Experiment already exists at {new_code_path}. Use --name to specify a new experiment." + ) + return -1 + print(f"Copying codebase to {new_code_path}") + current_code_path = os.path.realpath(__file__) + for _ in range(3): + current_code_path = os.path.dirname(current_code_path) + copytree( + current_code_path, new_code_path, ignore=ignore_patterns("log", "logs", "wandb") + ) + print("Done copying code.") + return 1 + + +if __name__ == "__main__": + main() diff --git a/audioldm/clap/training/params.py b/audioldm/clap/training/params.py new file mode 100644 index 0000000000000000000000000000000000000000..b1933e3a78ff583733846ea285d56eb0a0b892a5 --- /dev/null +++ b/audioldm/clap/training/params.py @@ -0,0 +1,569 @@ +import argparse +import os + +CACHE_DIR = os.getenv( + "AUDIOLDM_CACHE_DIR", + "~/.cache") + + + +def get_default_params(model_name): + # Params from paper (https://arxiv.org/pdf/2103.00020.pdf) + model_name = model_name.lower() + if "vit" in model_name: + return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.98, "eps": 1.0e-6} + else: + return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.999, "eps": 1.0e-8} + + +def parse_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--train-data", + type=str, + default=None, + help="Path to h5 filewith training data", + ) + parser.add_argument( + "--val-data", + type=str, + default=None, + help="Path to h5 file with validation data", + ) + parser.add_argument( + "--freeze-text", + default=False, + action="store_true", + help="if you need to freeze the text encoder, make this True", + ) + parser.add_argument( + "--freeze-text-after", + type=int, + default=-1, + help="if you need to freeze the text encoder after (include) epoch x, set this param to x. Set -1 to disable it", + ) + parser.add_argument( + "--train-ipc", + type=str, + default=None, + help="Path to npy file of the number of instance per class in training data", + ) + parser.add_argument( + "--val-ipc", + type=str, + default=None, + help="Path to npy file of the number of instance per class in validation data", + ) + parser.add_argument( + "--train-num-samples", + type=int, + default=None, + help="Number of samples in dataset. Required for webdataset if not available in info file.", + ) + parser.add_argument( + "--val-num-samples", + type=int, + default=None, + help="Number of samples in dataset. Useful for webdataset if not available in info file.", + ) + parser.add_argument( + "--dataset-type", + choices=["webdataset", "csv", "auto", "toy"], + default="auto", + help="Which type of dataset to process.", + ) + parser.add_argument( + "--csv-separator", + type=str, + default="\t", + help="For csv-like datasets, which separator to use.", + ) + parser.add_argument( + "--csv-img-key", + type=str, + default="filepath", + help="For csv-like datasets, the name of the key for the image paths.", + ) + parser.add_argument( + "--csv-caption-key", + type=str, + default="title", + help="For csv-like datasets, the name of the key for the captions.", + ) + parser.add_argument( + "--imagenet-val", + type=str, + default=None, + help="Path to imagenet val set for conducting zero shot evaluation.", + ) + parser.add_argument( + "--imagenet-v2", + type=str, + default=None, + help="Path to imagenet v2 for conducting zero shot evaluation.", + ) + parser.add_argument( + "--datasetnames", + nargs="+", + default=None, + help="If loading webdataset, spedify the dataset names to load. Can be some of these: Clotho, audioset, audiocaps, BBCSoundEffects", + ) + parser.add_argument( + "--full-train-dataset", + nargs="+", + default=None, + help="Which dataset will be trained with all the subsets. (train+test)", + ) + parser.add_argument( + "--exclude-eval-dataset", + nargs="+", + default=None, + help="Which dataset will be excluded with evaluation", + ) + parser.add_argument( + "--datasetinfos", + nargs="+", + default=None, + help="If loading webdataset, spedify the dataset types to load. Can be some of these: train, test, valid, unbalanced_train, balanced_train, eval", + ) + parser.add_argument( + "--dataset-proportion", + type=float, + default=1.0, + help="How much proportion of dataset we want to train.", + ) + parser.add_argument( + "--remotedata", + default=False, + action="store_true", + help="if the dataset is remote, set this flag", + ) + parser.add_argument( + "--class-label-path", + type=str, + default=None, + help="The path of the class label pickle or csv.", + ) + parser.add_argument( + "--datasetpath", + type=str, + default="/mnt/audio_clip/webdataset_tar", + help="The path to the dataset", + ) + parser.add_argument( + "--logs", + type=str, + default="./logs/", + help="Where to store tensorboard logs. Use None to avoid storing logs.", + ) + parser.add_argument( + "--log-local", + action="store_true", + default=False, + help="log files on local master, otherwise global master only.", + ) + parser.add_argument( + "--name", + type=str, + default=None, + help="Optional identifier for the experiment when storing logs. Otherwise use current time.", + ) + parser.add_argument( + "--workers", type=int, default=1, help="Number of workers per GPU." + ) + parser.add_argument( + "--batch-size", type=int, default=64, help="Batch size per GPU." + ) + parser.add_argument( + "--epochs", type=int, default=32, help="Number of epochs to train for." + ) + parser.add_argument("--lr", type=float, default=None, help="Learning rate.") + parser.add_argument("--beta1", type=float, default=None, help="Adam beta 1.") + parser.add_argument("--beta2", type=float, default=None, help="Adam beta 2.") + parser.add_argument("--eps", type=float, default=None, help="Adam epsilon.") + parser.add_argument("--momentum", type=float, default=None, help="SGD epsilon.") + parser.add_argument("--wd", type=float, default=0.2, help="Weight decay.") + + parser.add_argument( + "--split-opt", + action="store_true", + default=False, + help="Use this flag to skip the learning rate decay.", + ) + parser.add_argument( + "--lr-pretrained", type=float, default=None, help="Learning rate for text." + ) + parser.add_argument( + "--beta1-pretrained", type=float, default=None, help="Adam beta 1 for text." + ) + parser.add_argument( + "--beta2-pretrained", type=float, default=None, help="Adam beta 2 for text." + ) + parser.add_argument( + "--eps-pretrained", type=float, default=None, help="Adam epsilon for text." + ) + parser.add_argument( + "--wd-pretrained", type=float, default=0.2, help="Weight decay for text." + ) + parser.add_argument( + "--momentum-pretrained", type=float, default=0.9, help="Momentum for text." + ) + parser.add_argument( + "--lr-new", type=float, default=None, help="Learning rate for audio." + ) + parser.add_argument( + "--beta1-new", type=float, default=None, help="Adam beta 1 for audio." + ) + parser.add_argument( + "--beta2-new", type=float, default=None, help="Adam beta 2 for audio." + ) + parser.add_argument( + "--eps-new", type=float, default=None, help="Adam epsilon for audio." + ) + parser.add_argument( + "--wd-new", type=float, default=0.2, help="Weight decay for audio." + ) + parser.add_argument( + "--momentum-new", type=float, default=0.9, help="Momentum for audio." + ) + parser.add_argument( + "--warmup", type=int, default=10000, help="Number of steps to warmup for." + ) + parser.add_argument( + "--use-bn-sync", + default=False, + action="store_true", + help="Whether to use batch norm sync.", + ) + parser.add_argument( + "--skip-scheduler", + action="store_true", + default=False, + help="Use this flag to skip the learning rate decay.", + ) + parser.add_argument( + "--save-frequency", type=int, default=1, help="How often to save checkpoints." + ) + parser.add_argument( + "--save-top-performance", + type=int, + default=0, + help="Save the top x performance weights if the value >0", + ) + parser.add_argument( + "--save-most-recent", + action="store_true", + default=False, + help="Always save the most recent model trained to epoch_latest.pt.", + ) + parser.add_argument( + "--zeroshot-frequency", type=int, default=2, help="How often to run zero shot." + ) + parser.add_argument( + "--val-frequency", + type=int, + default=1, + help="How often to run evaluation with val data.", + ) + parser.add_argument( + "--resume", + default=None, + type=str, + help="path to latest checkpoint (default: none)", + ) + parser.add_argument( + "--precision", + choices=["amp", "fp16", "fp32"], + default="amp", + help="Floating point precision.", + ) + parser.add_argument( + "--amodel", + type=str, + default="RN50", + help="Name of the audio backbone to use.", + ) + parser.add_argument( + "--tmodel", + type=str, + default="transformer", + help="Name of the text backbone to use. Can be [transformer, bert, roberta, bart]", + ) + parser.add_argument( + "--pretrained-audio", + default="", + type=str, + help="Use a pretrained audio model weights for the audio encoder of CLAP", + ) + parser.add_argument( + "--pretrained-text", + default="", + type=str, + help="Use a pretrained text model weights for the text encoder of CLAP", + ) + parser.add_argument( + "--pretrained", + default="", + type=str, + help="Use a pretrained CLIP model weights with the specified tag or file path.", + ) + parser.add_argument( + "--pretrained-image", + default=False, + action="store_true", + help="Load imagenet pretrained weights for image tower backbone if available.", + ) + parser.add_argument( + "--lock-image", + default=False, + action="store_true", + help="Lock full image tower by disabling gradients.", + ) + parser.add_argument( + "--lock-image-unlocked-groups", + type=int, + default=0, + help="Leave last n image tower layer groups unlocked.", + ) + parser.add_argument( + "--lock-image-freeze-bn-stats", + default=False, + action="store_true", + help="Freeze BatchNorm running stats in image tower for any locked layers.", + ) + parser.add_argument( + "--local-loss", + default=False, + action="store_true", + help="calculate loss w/ local features @ global (instead of realizing full global @ global matrix)", + ) + parser.add_argument( + "--gather-with-grad", + default=False, + action="store_true", + help="enable full distributed gradient for feature gather", + ) + parser.add_argument( + "--force-quick-gelu", + default=False, + action="store_true", + help="Force use of QuickGELU activation for non-OpenAI transformer models.", + ) + parser.add_argument( + "--torchscript", + default=False, + action="store_true", + help="torch.jit.script the model, also uses jit version of OpenAI models if pretrained=='openai'", + ) + parser.add_argument( + "--trace", + default=False, + action="store_true", + help="torch.jit.trace the model for inference / eval only", + ) + # arguments for distributed training + parser.add_argument( + "--dist-url", + default="env://", + type=str, + help="url used to set up distributed training", + ) + parser.add_argument( + "--dist-backend", default="nccl", type=str, help="distributed backend" + ) + parser.add_argument( + "--report-to", + default="", + type=str, + help="Options are ['wandb', 'tensorboard', 'wandb,tensorboard']", + ) + parser.add_argument( + "--wandb-notes", default="", type=str, help="Notes if logging with wandb" + ) + parser.add_argument( + "--C", type=float, default=3.16, help="inverse regularizer for logistic reg." + ) + parser.add_argument( + "--debug", + default=False, + action="store_true", + help="If true, more information is logged.", + ) + parser.add_argument( + "--copy-codebase", + default=False, + action="store_true", + help="If true, we copy the entire base on the log diretory, and execute from there.", + ) + parser.add_argument( + "--horovod", + default=False, + action="store_true", + help="Use horovod for distributed training.", + ) + parser.add_argument( + "--ddp-static-graph", + default=False, + action="store_true", + help="Enable static graph optimization for DDP in PyTorch >= 1.11.", + ) + parser.add_argument( + "--no-set-device-rank", + default=False, + action="store_true", + help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc).", + ) + parser.add_argument("--seed", type=int, default=4242, help="Default random seed.") + + parser.add_argument( + "--top-k-checkpoint-select-dataset", + type=str, + default="all", + help="The dataset of selecting top-k checkpoint.", + ) + + # @R10, @R@5, @R1, mAP@10 + parser.add_argument( + "--top-k-checkpoint-select-metric", + type=str, + default="_R@10", + help="The metric for selecting top-k checkpoint.", + ) + parser.add_argument( + "--openai-model-cache-dir", + type=str, + default=f"{CACHE_DIR}/clip", + help="Directory to download OpenAI models.", + ) + parser.add_argument( + "--optimizer", + type=str, + default="adamw", + help="can be AdamW or SGD", + ) + parser.add_argument( + "--parallel-eval", + default=False, + action="store_true", + help="Eval in parallel (multi-GPU, multi-node).", + ) + + parser.add_argument( + "--no-eval", + default=False, + action="store_true", + help="Training without evaluation.", + ) + + parser.add_argument( + "--lp-mlp", + default=False, + action="store_true", + help="Linear Probe using MLP layer or not.", + ) + + parser.add_argument( + "--lp-freeze", + default=False, + action="store_true", + help="Linear Probe using Freeze CLAP or not", + ) + + parser.add_argument( + "--lp-act", + default="None", + type=str, + help="Options are ['relu','elu','prelu','softmax','sigmoid']", + ) + + parser.add_argument( + "--lp-loss", type=str, default="bce", help="Loss func of Linear Probe." + ) + + parser.add_argument( + "--lp-metrics", + type=str, + default="map,mauc,acc", + help="Metrics of Linear Probe.", + ) + + parser.add_argument( + "--lp-lr", type=float, default=1e-4, help="learning rate of linear probe" + ) + parser.add_argument( + "--kappa", + type=float, + default=0, + help="the kappa in the weighted contrastive loss, default is to turn off the weighted contrastive loss", + ) + + parser.add_argument( + "--data-filling", + type=str, + default="pad", + help="type of data filling when the audio length is shorter than the max length." + "Can be one of the following: repeat, repeatpad, pad", + ) + parser.add_argument( + "--data-truncating", + type=str, + default="rand_trunc", + help="type of data truncation when the audio length is longer than the max length." + "Can be one of the following: rand_trunc, fusion", + ) + + parser.add_argument( + "--clap-mlploss", + default=False, + action="store_true", + help="Using MLP loss for CLAP model or not", + ) + + parser.add_argument( + "--wandb-id", + type=str, + default=None, + help="the id of wandb experiment to restore.", + ) + + parser.add_argument( + "--sleep", type=float, default=0, help="sleep n seconds before start training" + ) + + # variable length processing + parser.add_argument( + "--enable-fusion", + default=False, + action="store_true", + help="Enable feature funsion for variable-length data", + ) + + parser.add_argument( + "--fusion-type", + type=str, + default="None", + help="Type is among ['channel_map', 'daf_1d','aff_1d','iaff_1d','daf_2d','aff_2d','iaff_2d']", + ) + + parser.add_argument( + "--mixup", + default=False, + action="store_true", + help="Enable mixup in finetuning training.", + ) + parser.add_argument( + "--text-augment-selection", + type=str, + default=None, + help="For selecting levels of augmented text. Type is among ['all', 'augment_only', 'none']", + ) + + args = parser.parse_args() + + # If some params are not passed, we use the default values based on model name. + default_params = get_default_params(args.amodel) + for name, val in default_params.items(): + if getattr(args, name) is None: + setattr(args, name, val) + + return args diff --git a/audioldm/clap/training/scheduler.py b/audioldm/clap/training/scheduler.py new file mode 100644 index 0000000000000000000000000000000000000000..7151ffbab25a113673b7627027b443b27f22cb0f --- /dev/null +++ b/audioldm/clap/training/scheduler.py @@ -0,0 +1,24 @@ +import numpy as np + + +def assign_learning_rate(optimizer, new_lr): + for param_group in optimizer.param_groups: + param_group["lr"] = new_lr + + +def _warmup_lr(base_lr, warmup_length, step): + return base_lr * (step + 1) / warmup_length + + +def cosine_lr(optimizer, base_lr, warmup_length, steps): + def _lr_adjuster(step): + if step < warmup_length: + lr = _warmup_lr(base_lr, warmup_length, step) + else: + e = step - warmup_length + es = steps - warmup_length + lr = 0.5 * (1 + np.cos(np.pi * e / es)) * base_lr + assign_learning_rate(optimizer, lr) + return lr + + return _lr_adjuster diff --git a/audioldm/clap/training/train.py b/audioldm/clap/training/train.py new file mode 100644 index 0000000000000000000000000000000000000000..f5759c4679d2ee9c0748444adf66b8453cf09728 --- /dev/null +++ b/audioldm/clap/training/train.py @@ -0,0 +1,838 @@ +import json +import logging +import math +import os +import time +from contextlib import suppress + +import numpy as np +import torch +import torch.nn.functional as F + +try: + import wandb +except ImportError: + wandb = None + +from open_clip import ClipLoss, gather_features +from .distributed import is_master +from .zero_shot import zero_shot_eval + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def unwrap_model(model): + if hasattr(model, "module"): + return model.module + else: + return model + + +def train_one_epoch( + model, data, epoch, optimizer, scaler, scheduler, args, tb_writer=None +): + device = torch.device(args.device) + autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress + model.train() + loss = ClipLoss( + local_loss=args.local_loss, + gather_with_grad=args.gather_with_grad, + cache_labels=True, + rank=args.rank, + world_size=args.world_size, + use_horovod=args.horovod, + mlp_loss=args.clap_mlploss, + weight_loss_kappa=args.kappa, + ) + + dataloader, sampler = data["train"].dataloader, data["train"].sampler + if args.distributed and sampler is not None: + sampler.set_epoch(epoch) + num_batches_per_epoch = dataloader.num_batches + sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10)) + + # for toy dataset + if args.dataset_type == "toy": + dataloader.dataset.generate_queue() + + loss_m = AverageMeter() + batch_time_m = AverageMeter() + data_time_m = AverageMeter() + end = time.time() + + for i, batch in enumerate(dataloader): + # logging.info(f"batch {i} of {num_batches_per_epoch}") + step = num_batches_per_epoch * epoch + i + if isinstance(scheduler, dict): + for s in scheduler.values(): + s(step) + else: + scheduler(step) + audios = batch # contains mel_spec, wavform, and longer list + texts = batch["text"] + # audios = audios.to(device=device, non_blocking=True) + # texts = texts.to(device=device, non_blocking=True) + + data_time_m.update(time.time() - end) + if isinstance(optimizer, dict): + for o_ in optimizer.values(): + o_.zero_grad() + else: + optimizer.zero_grad() + + with autocast(): + ( + audio_features, + text_features, + audio_features_mlp, + text_features_mlp, + logit_scale_a, + logit_scale_t, + ) = model(audios, texts, device) + + if args.clap_mlploss: + total_loss = loss( + audio_features=audio_features, + text_features=text_features, + logit_scale_a=logit_scale_a, + logit_scale_t=logit_scale_t, + audio_features_mlp=audio_features_mlp, + text_features_mlp=text_features_mlp, + ) + else: + total_loss = loss( + audio_features=audio_features, + text_features=text_features, + logit_scale_a=logit_scale_a, + ) + if isinstance(optimizer, dict): + if scaler is not None: + scaler.scale(total_loss).backward() + for o_ in optimizer.values(): + if args.horovod: + o_.synchronize() + scaler.unscale_(o_) + with o_.skip_synchronize(): + scaler.step(o_) + else: + scaler.step(o_) + scaler.update() + else: + total_loss.backward() + for o_ in optimizer.values(): + o_.step() + else: + if scaler is not None: + scaler.scale(total_loss).backward() + if args.horovod: + optimizer.synchronize() + scaler.unscale_(optimizer) + with optimizer.skip_synchronize(): + scaler.step(optimizer) + else: + scaler.step(optimizer) + scaler.update() + else: + total_loss.backward() + optimizer.step() + + # Note: we clamp to 4.6052 = ln(100), as in the original paper. + with torch.no_grad(): + unwrap_model(model).logit_scale_a.clamp_(0, math.log(100)) + if args.clap_mlploss: + unwrap_model(model).logit_scale_t.clamp_(0, math.log(100)) + + batch_time_m.update(time.time() - end) + end = time.time() + batch_count = i + 1 + if is_master(args) and (i % 100 == 0 or batch_count == num_batches_per_epoch): + if isinstance(audios, dict): + batch_size = len(audios["waveform"]) + else: + batch_size = len(audios) + num_samples = batch_count * batch_size * args.world_size + samples_per_epoch = dataloader.num_samples + percent_complete = 100.0 * batch_count / num_batches_per_epoch + + # NOTE loss is coarsely sampled, just master node and per log update + loss_m.update(total_loss.item(), batch_size) + logit_scale_scalar_a = logit_scale_a.item() + logit_scale_scalar_t = logit_scale_t.item() + if isinstance(optimizer, dict): + if args.clap_mlploss: + logging.info( + f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " + f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " + f"Data (t): {data_time_m.avg:.3f} " + f"Batch (t): {batch_time_m.avg:.3f} " + f"LR: {[o_.param_groups[0]['lr'] for o_ in optimizer.values()]} " + f"Logit Scale Audio: {logit_scale_scalar_a:.3f}" + f"Logit Scale Text: {logit_scale_scalar_t:.3f}" + ) + log_data = { + "loss": loss_m.val, + "data_time": data_time_m.val, + "batch_time": batch_time_m.val, + "scale_audio": logit_scale_scalar_a, + "scale_text": logit_scale_scalar_t, + "lr": [o_.param_groups[0]["lr"] for o_ in optimizer.values()], + } + else: + logging.info( + f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " + f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " + f"Data (t): {data_time_m.avg:.3f} " + f"Batch (t): {batch_time_m.avg:.3f} " + f"LR: {[o_.param_groups[0]['lr'] for o_ in optimizer.values()]} " + f"Logit Scale Audio: {logit_scale_scalar_a:.3f}" + ) + log_data = { + "loss": loss_m.val, + "data_time": data_time_m.val, + "batch_time": batch_time_m.val, + "scale_audio": logit_scale_scalar_a, + "lr": [o_.param_groups[0]["lr"] for o_ in optimizer.values()], + } + + else: + if args.clap_mlploss: + logging.info( + f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " + f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " + f"Data (t): {data_time_m.avg:.3f} " + f"Batch (t): {batch_time_m.avg:.3f} " + f"LR: {optimizer.param_groups[0]['lr']:5f} " + f"Logit Scale Audio: {logit_scale_scalar_a:.3f}" + f"Logit Scale Text: {logit_scale_scalar_t:.3f}" + ) + + # Save train loss / etc. Using non avg meter values as loggers have their own smoothing + log_data = { + "loss": loss_m.val, + "data_time": data_time_m.val, + "batch_time": batch_time_m.val, + "scale_audio": logit_scale_scalar_a, + "scale_text": logit_scale_scalar_t, + "lr": optimizer.param_groups[0]["lr"], + } + else: + logging.info( + f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " + f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) " + f"Data (t): {data_time_m.avg:.3f} " + f"Batch (t): {batch_time_m.avg:.3f} " + f"LR: {optimizer.param_groups[0]['lr']:5f} " + f"Logit Scale Audio: {logit_scale_scalar_a:.3f}" + ) + + # Save train loss / etc. Using non avg meter values as loggers have their own smoothing + log_data = { + "loss": loss_m.val, + "data_time": data_time_m.val, + "batch_time": batch_time_m.val, + "scale_audio": logit_scale_scalar_a, + "lr": optimizer.param_groups[0]["lr"], + } + for name, val in log_data.items(): + name = "train/" + name + if tb_writer is not None: + tb_writer.add_scalar(name, val, step) + if args.wandb: + assert wandb is not None, "Please install wandb." + wandb.log({name: val, "step": step}) + + # resetting batch / data time meters per log window + batch_time_m.reset() + data_time_m.reset() + # end for + + +def evaluate(model, data, epoch, args, tb_writer=None): + metrics = {} + if not args.parallel_eval: + if not is_master(args): + return metrics + device = torch.device(args.device) + model.eval() + + # CHANGE + # zero_shot_metrics = zero_shot_eval(model, data, epoch, args) + # metrics.update(zero_shot_metrics) + if is_master(args): + print("Evaluating...") + autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress + if args.val_dataset_names == ["Clotho", "audiocaps"]: + # if only clotho and audiocaps are used, then we will use a different evaluation function. + # This is because in the Clotho and audiocaps valid and test set, there are 5 text for 1 audio. + if args.parallel_eval: + # (yusong): just a hack here. Don't use parallel eval when evaluating only clotho and audiocaps. + raise NotImplementedError( + "Parallel evaluation not supported for eval only Clotho and audiocaps." + ) + val_metrics_per_dataset = evaluate_clotho_audiocaps( + model, data, epoch, args, autocast, device, tb_writer + ) + for m in val_metrics_per_dataset.values(): + metrics.update(m) + if "epoch" not in metrics.keys(): + metrics.update({"epoch": epoch}) + metrics = select_top_metric_clotho_audiocaps( + metrics, val_metrics_per_dataset, args + ) + elif "val" in data and ( + args.val_frequency + and ((epoch % args.val_frequency) == 0 or epoch == args.epochs) + ): + dataloader = data["val"].dataloader + num_samples = 0 + samples_per_val = dataloader.num_samples + + # FIXME this does not scale past small eval datasets + # all_audio_features @ all_text_features will blow up memory and compute very quickly + eval_info = {} + if args.clap_mlploss: + eval_info["all"] = { + "cumulative_loss": 0.0, + "num_samples": 0, + "all_audio_features": [], + "all_text_features": [], + "all_audio_features_mlp": [], + "all_text_features_mlp": [], + } # cumulative_loss = 0.0 + else: + eval_info["all"] = { + "cumulative_loss": 0.0, + "num_samples": 0, + "all_audio_features": [], + "all_text_features": [], + } # cumu + # all_audio_features, all_text_features, all_audio_features_mlp, all_text_features_mlp = [], [], [], [] + with torch.no_grad(): + for i, batch in enumerate(dataloader): + audios = batch # contains mel_spec, wavform, and longer list + texts = batch["text"] + # audios = audios.to(device=device, non_blocking=True) + + all_names = list( + set(["-".join(b.split("/")[-3:-1]) for b in batch["__url__"]]) + ) + for name in all_names: + if name not in eval_info.keys(): + if args.clap_mlploss: + eval_info[name] = { + "cumulative_loss": 0.0, + "num_samples": 0, + "all_audio_features": [], + "all_text_features": [], + "all_audio_features_mlp": [], + "all_text_features_mlp": [], + } + else: + eval_info[name] = { + "cumulative_loss": 0.0, + "num_samples": 0, + "all_audio_features": [], + "all_text_features": [], + } + with autocast(): + ( + audio_features, + text_features, + audio_features_mlp, + text_features_mlp, + logit_scale_a, + logit_scale_t, + ) = model(audios, texts, device) + + if args.parallel_eval: + # multi-GPU eval + if args.clap_mlploss: + ( + audio_features, + text_features, + audio_features_mlp, + text_features_mlp, + ) = gather_features( + audio_features=audio_features, + text_features=text_features, + audio_features_mlp=audio_features_mlp, + text_features_mlp=text_features_mlp, + local_loss=False, + gather_with_grad=False, + rank=args.rank, + world_size=args.world_size, + use_horovod=args.horovod, + mlp_loss=args.clap_mlploss, + ) + else: + (audio_features, text_features,) = gather_features( + audio_features=audio_features, + text_features=text_features, + local_loss=False, + gather_with_grad=False, + rank=args.rank, + world_size=args.world_size, + use_horovod=args.horovod, + mlp_loss=args.clap_mlploss, + ) + + if is_master(args): + num_samples += audio_features.shape[0] + for n in [*all_names, "all"]: + if n == "all": + eval_info[n]["all_audio_features"].append( + audio_features.cpu() + ) + eval_info[n]["all_text_features"].append( + text_features.cpu() + ) + if args.clap_mlploss: + eval_info[n]["all_audio_features_mlp"].append( + audio_features_mlp.cpu() + ) + eval_info[n]["all_text_features_mlp"].append( + text_features_mlp.cpu() + ) + else: + idx = np.where( + np.array( + [ + "-".join(b.split("/")[-3:-1]) + for b in batch["__url__"] + ] + ) + == n + )[0] + eval_info[n]["all_audio_features"].append( + audio_features.cpu().index_select( + 0, torch.tensor(idx).long() + ) + ) + eval_info[n]["all_text_features"].append( + text_features.cpu().index_select( + 0, torch.tensor(idx).long() + ) + ) + if args.clap_mlploss: + eval_info[n]["all_audio_features_mlp"].append( + audio_features_mlp.cpu().index_select( + 0, torch.tensor(idx).long() + ) + ) + eval_info[n]["all_text_features_mlp"].append( + text_features_mlp.cpu().index_select( + 0, torch.tensor(idx).long() + ) + ) + # print(f'eval step {i}') # (yusong): for debug + + # cumulative_loss += total_loss * batch_size + # num_samples += batch_size + if is_master(args) and (i % 100) == 0: # and i != 0: + logging.info( + f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]" + ) + if is_master(args): + val_metrics_per_dataset = {} + for n in eval_info.keys(): + if args.clap_mlploss: + metrics_single_dataset = get_metrics( + audio_features=torch.cat( + eval_info[n]["all_audio_features"] + ), + text_features=torch.cat(eval_info[n]["all_text_features"]), + logit_scale_a=logit_scale_a.cpu(), + audio_features_mlp=torch.cat( + eval_info[n]["all_audio_features_mlp"] + ), + text_features_mlp=torch.cat( + eval_info[n]["all_text_features_mlp"] + ), + logit_scale_t=logit_scale_t.cpu(), + mlp_loss=args.clap_mlploss, + ) + else: + metrics_single_dataset = get_metrics( + audio_features=torch.cat( + eval_info[n]["all_audio_features"] + ), + text_features=torch.cat(eval_info[n]["all_text_features"]), + logit_scale_a=logit_scale_a.cpu(), + mlp_loss=args.clap_mlploss, + ) + val_metrics_per_dataset[n] = { + n + "/" + k: v for k, v in metrics_single_dataset.items() + } + metrics.update(val_metrics_per_dataset[n]) + if "epoch" not in metrics.keys(): + metrics.update({"epoch": epoch}) + if is_master(args): + if not metrics: + return metrics + + logging.info( + f"Eval Epoch: {epoch} " + + "\n".join( + [ + "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in m.items()]) + for m in val_metrics_per_dataset.values() + ] + ) + ) + + if args.save_logs: + for name, val in metrics.items(): + if tb_writer is not None: + tb_writer.add_scalar(f"val/{name}", val, epoch) + + with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f: + f.write(json.dumps(metrics)) + f.write("\n") + + if args.wandb: + assert wandb is not None, "Please install wandb." + for name, val in metrics.items(): + wandb.log({f"val/{name}": val, "epoch": epoch}) + + return metrics + else: + return metrics + + +def get_metrics( + audio_features, + text_features, + logit_scale_a, + audio_features_mlp=None, + text_features_mlp=None, + logit_scale_t=None, + mlp_loss=False, +): + metrics = {} + if mlp_loss: + # Set up audio to text & text to audio similary matrice + a_logits_per_audio = ( + (logit_scale_a * audio_features @ text_features_mlp.t()).detach().cpu() + ) + a_logits_per_text = a_logits_per_audio.t().detach().cpu() + t_logits_per_audio = ( + (logit_scale_t * audio_features_mlp @ text_features.t()).detach().cpu() + ) + t_logits_per_text = t_logits_per_audio.t().detach().cpu() + + labels = torch.arange(audio_features.shape[0]).long() + # Change the loss from two terms into four terms with 2x2 combined CE loss + total_loss = ( + F.cross_entropy(a_logits_per_audio, labels) + + F.cross_entropy(a_logits_per_text, labels) + + F.cross_entropy(t_logits_per_audio, labels) + + F.cross_entropy(t_logits_per_text, labels) + ) / 4 + + metrics[f"cumulative_loss"] = total_loss.item() + metrics[f"num_samples"] = audio_features.shape[0] + + logits = { + "audio_to_text": (a_logits_per_audio + t_logits_per_audio) / 2, + "text_to_audio": (a_logits_per_text + t_logits_per_text) / 2, + } + ground_truth = torch.arange(len(text_features)).view(-1, 1) + + else: + # print("text_features", text_features) + # print("text_features.shape", text_features.shape) + logits_per_audio = ( + (logit_scale_a * audio_features @ text_features.t()).detach().cpu() + ) + logits_per_text = logits_per_audio.t().detach().cpu() + + labels = torch.arange(audio_features.shape[0]).long() + # Change the loss from two terms into four terms with 2x2 combined CE loss + total_loss = ( + F.cross_entropy(logits_per_audio, labels) + + F.cross_entropy(logits_per_text, labels) + ) / 2 + + metrics[f"cumulative_loss"] = total_loss.item() + metrics[f"num_samples"] = audio_features.shape[0] + + logits = {"audio_to_text": logits_per_audio, "text_to_audio": logits_per_text} + + ground_truth = torch.arange(len(text_features)).view(-1, 1) + + for name, logit in logits.items(): + ranking = torch.argsort(logit, descending=True) + preds = torch.where(ranking == ground_truth)[ + 1 + ] # (yusong) this line is slow because it uses single thread + preds = preds.detach().cpu().numpy() + metrics[f"{name}_mean_rank"] = preds.mean() + 1 + metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1 + for k in [1, 5, 10]: + metrics[f"{name}_R@{k}"] = np.mean(preds < k) + # map@10 + metrics[f"{name}_mAP@10"] = np.mean(np.where(preds < 10, 1 / (preds + 1), 0.0)) + + return metrics + + +def evaluate_clotho_audiocaps( + model, data, epoch, args, autocast, device, tb_writer=None +): + """ + Adapted from https://github.com/XinhaoMei/audio-text_retrieval/blob/main/tools/utils.py. + 1. for text-to-audio retrieval, do 5 times and average the results + 2. for R@1, R@5, R@10 in audio-to-text retrieval, take the best rank among 5 text + 3. for map@10 in audio-to-text retrieval: + 3.1: sort the rank of 5 text + 3.2: exclude the rank >=10 (0-index) + 3.3: compute the map regarding the remaining ranks: np.mean(np.arange(1, len(ranks)+1) / ranks). + (3.3) That is, take the top ranks of 5 text that is < 10, and assign the descending number as ground truth. + (3.3) E.g.: the ground truth of first rank of the 5 text should be 1, the second rank should be 2, etc. + """ + # TODO: (yusong) only support single GPU evaluation and only support non-mlp case for now. + dataloader = data["val"].dataloader + with torch.no_grad(): + eval_info = {} + for i, batch in enumerate(dataloader): + audios = batch # contains mel_spec, wavform, and longer list + + # each item in the list has 5 texts + if args.tmodel == "transformer": + from open_clip import tokenize + + texts = [tokenize(t) for t in batch["full_text"]] + texts = torch.cat(texts) + else: + from .data import tokenizer + + texts = [ + tokenizer(t) for t in batch["full_text"] + ] # 5 texts for each audio + texts = { + k: torch.cat([t[k] for t in texts]) for k in texts[0].keys() + } # 5 x batch + + # audios = audios.to(device=device, non_blocking=True) + + all_names = list( + set(["-".join(b.split("/")[-3:-1]) for b in batch["__url__"]]) + ) + for name in all_names: + if name not in eval_info.keys(): + # we will not use mlp outputs even if args.clap_mlploss=True + eval_info[name] = { + "cumulative_loss": 0.0, + "num_samples": 0, + "all_audio_features": [], + "all_text_features": [], + } + with autocast(): + audio_features = model(audios, None, device) + text_features = model(None, texts, device) + audio_features = F.normalize(audio_features, dim=-1) + text_features = F.normalize(text_features, dim=-1) + + all_names = list( + set(["-".join(b.split("/")[-3:-1]) for b in batch["__url__"]]) + ) + for n in all_names: + idx = np.where( + np.array( + ["-".join(b.split("/")[-3:-1]) for b in batch["__url__"]] + ) + == n + )[0] + eval_info[n]["all_audio_features"].append( + audio_features.cpu().index_select(0, torch.tensor(idx).long()) + ) + # (yusong) please double-check. This is for selecting 5 text features at once. + # because idx is a list of indices in size of num_samples, + # and text_features is a tensor of size (5*num_samples, dim) + # so we need to select 5 consecutive indices at once for a single index in idx. + eval_info[n]["all_text_features"].append( + text_features.cpu() + .reshape([-1, 5, text_features.shape[1]]) + .index_select(0, torch.tensor(idx).long()) + .reshape([-1, text_features.shape[1]]) + ) + + val_metrics_all = {} + + for n in eval_info.keys(): + logit_scale_a, logit_scale_t = model(None, None, device) + logit_scale_a = logit_scale_a.cpu() + + audio_features = torch.cat(eval_info[n]["all_audio_features"], dim=0) + text_features = torch.cat(eval_info[n]["all_text_features"], dim=0) + + logits_per_audio = ( + (logit_scale_a * audio_features @ text_features.t()).detach().cpu() + ) + logits_per_text = logits_per_audio.t().detach().cpu() + + # logits_per_audio shape: [num_samples, num_samples*5] + # logits_per_text shape: [num_samples*5, num_samples] + + logging.info( + f"dataset {n}, logits_per_audio shape: {logits_per_audio.shape}, " + f"logits_per_text shape: {logits_per_text.shape}" + ) + + metrics = {} + num_samples = audio_features.shape[0] + metrics[f"num_samples"] = num_samples + + # (yusong) the following code is very important, please double-check: + # logits_per_audio.reshape(num_samples, num_samples, 5)[:, :, d] + # logits_per_text.reshape(num_samples, 5, num_samples)[:, d, :] + # Those two are retrieving one of the 5 text for each audio. + labels = torch.arange(audio_features.shape[0]).long() + audio_to_text_loss = [ + F.cross_entropy( + logits_per_audio.reshape(num_samples, num_samples, 5)[:, :, d], + labels, + ) + for d in range(5) + ] + text_to_audio_loss = [ + F.cross_entropy( + logits_per_text.reshape(num_samples, 5, num_samples)[:, d, :], + labels, + ) + for d in range(5) + ] + total_loss = (np.mean(audio_to_text_loss) + np.mean(text_to_audio_loss)) / 2 + + metrics[f"cumulative_loss"] = total_loss.item() + + # text to audio: do 5 times + pred_text = [] + for d in range(5): + logit = logits_per_text.reshape(num_samples, 5, num_samples)[:, d, :] + ground_truth = torch.arange(len(logit)).view(-1, 1) + ranking = torch.argsort( + logit, descending=True + ) # [num_samples, num_samples] + preds = torch.where(ranking == ground_truth)[1] + pred_text.append(preds.detach().cpu().numpy()) + pred_text_concat = np.concatenate(pred_text, axis=0) # [5*num_samples] + metrics[f"text_to_audio_mean_rank"] = pred_text_concat.mean() + 1 + metrics[f"text_to_audio_median_rank"] = ( + np.floor(np.median(pred_text_concat)) + 1 + ) + for k in [1, 5, 10]: + metrics[f"text_to_audio_R@{k}"] = np.mean(pred_text_concat < k) + # map@10 + metrics[f"text_to_audio_mAP@10"] = np.mean( + np.where(pred_text_concat < 10, 1 / (pred_text_concat + 1), 0.0) + ) + + # audio to text: take the best result + # for audio to text map 10, sort and assign descending ground truth. + # see https://github.com/XinhaoMei/audio-text_retrieval/blob/main/tools/utils.py#L103 + # map@10 + map_all = [] + pred_audio_all = [] + for d in range(num_samples): + # logits_per_audio: [num_samples, num_samples*5] + logit_single = logits_per_audio[d, :] # [5*num_samples] + # Ground-truth index: [d*5, d*5+1, d*5+2, d*5+3, d*5+4] + ranking = torch.argsort( + logit_single, descending=True + ) # [5*num_samples] + # ranking: the index of first match, second match, ... + ground_truth = torch.arange(d * 5, d * 5 + 5)[None] + all_pred = torch.where( + torch.stack([ranking] * 5) == ground_truth.view(-1, 1) + )[1] + min_pred = torch.min(all_pred) + pred_audio_all.append(min_pred.detach().cpu().numpy()) + all_pred_filter = all_pred[all_pred < 10].detach().cpu().numpy() + # /5 because we have 5 text, so it means for the text rank >=10 we count as 0. + map_single = ( + np.sum( + (np.arange(1, len(all_pred_filter) + 1) / (all_pred_filter + 1)) + ) + / 5 + ) + map_all.append(map_single) + metrics[f"audio_to_text_mAP@10"] = np.mean(map_all) + for k in [1, 5, 10]: + metrics[f"audio_to_text_R@{k}"] = np.mean(np.array(pred_audio_all) < k) + + val_metrics_all[n] = {n + "/" + k: v for k, v in metrics.items()} + return val_metrics_all + + +def calculate_selection_performance_clotho_audiocaps(val_metrics_per_dataset): + """ + Calculate performance for Clotho+AudioCaps for model selection. + """ + selection_performance_all = [] + for n in val_metrics_per_dataset.keys(): + selection_performance = ( + val_metrics_per_dataset[n][f"{n}/audio_to_text_mAP@10"] + + val_metrics_per_dataset[n][f"{n}/text_to_audio_mAP@10"] + ) / 2 + selection_performance_all.append(selection_performance) + return np.mean(selection_performance_all) + + +def select_top_metric_clotho_audiocaps(metrics, val_metrics_per_dataset, args): + # val_metrics_per_dataset: dict, key: dataset name, value: dict, key: metric name, value: metric value + # metrics: dict, key: metric name, value: metric value + # Hack: use args to save the top performance + if not hasattr(args, "top_selection_performance"): + selection_performance = calculate_selection_performance_clotho_audiocaps( + val_metrics_per_dataset + ) + # TODO: write the if and else together + metric_update = {} + for n in val_metrics_per_dataset.keys(): + for k in val_metrics_per_dataset[n].keys(): + metric_update[ + k.split("/")[0] + "-top" + "/" + k.split("/")[1] + ] = val_metrics_per_dataset[n][k] + metric_update["top_selection_performance"] = selection_performance + metric_update["top-selection-epoch"] = metrics["epoch"] + metrics.update(metric_update) + args.top_metric = metric_update + args.top_selection_performance = selection_performance + else: + selection_performance_new = calculate_selection_performance_clotho_audiocaps( + val_metrics_per_dataset + ) + selection_performance_old = args.top_selection_performance + if selection_performance_new > selection_performance_old: + metric_update = {} + for n in val_metrics_per_dataset.keys(): + for k in val_metrics_per_dataset[n].keys(): + metric_update[ + k.split("/")[0] + "-top" + "/" + k.split("/")[1] + ] = val_metrics_per_dataset[n][k] + metric_update["top_selection_performance"] = selection_performance_new + metric_update["top-selection-epoch"] = metrics["epoch"] + metrics.update(metric_update) + args.top_metric = metric_update + args.top_selection_performance = selection_performance_new + else: + metrics.update(args.top_metric) + return metrics diff --git a/audioldm/clap/training/zero_shot.py b/audioldm/clap/training/zero_shot.py new file mode 100644 index 0000000000000000000000000000000000000000..28b8fccc1af17fc69002857a7f529ac041c374f2 --- /dev/null +++ b/audioldm/clap/training/zero_shot.py @@ -0,0 +1,95 @@ +# NOTE: This script is currently not supported for CLAP. +import logging +from contextlib import suppress + +import torch +import torch.nn.functional as F +from tqdm import tqdm + +from open_clip import tokenize +from .imagenet_zeroshot_data import imagenet_classnames, openai_imagenet_template + + +def zero_shot_classifier(model, classnames, templates, args): + with torch.no_grad(): + zeroshot_weights = [] + for classname in tqdm(classnames): + texts = [template(classname) for template in templates] # format with class + texts = tokenize(texts).to(args.device) # tokenize + if args.distributed and not args.horovod: + class_embeddings = model.module.encode_text(texts) + else: + class_embeddings = model.encode_text(texts) + class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(args.device) + return zeroshot_weights + + +def accuracy(output, target, topk=(1,)): + pred = output.topk(max(topk), 1, True, True)[1].t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + return [ + float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) + for k in topk + ] + + +def run(model, classifier, dataloader, args): + autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress + with torch.no_grad(): + top1, top5, n = 0.0, 0.0, 0.0 + for images, target in tqdm(dataloader, unit_scale=args.batch_size): + images = images.to(args.device) + target = target.to(args.device) + + with autocast(): + # predict + if args.distributed and not args.horovod: + image_features = model.module.encode_image(images) + else: + image_features = model.encode_image(images) + image_features = F.normalize(image_features, dim=-1) + logits = 100.0 * image_features @ classifier + + # measure accuracy + acc1, acc5 = accuracy(logits, target, topk=(1, 5)) + top1 += acc1 + top5 += acc5 + n += images.size(0) + + top1 = top1 / n + top5 = top5 / n + return top1, top5 + + +def zero_shot_eval(model, data, epoch, args): + if "imagenet-val" not in data and "imagenet-v2" not in data: + return {} + if args.zeroshot_frequency == 0: + return {} + if (epoch % args.zeroshot_frequency) != 0 and epoch != args.epochs: + return {} + + logging.info("Starting zero-shot imagenet.") + + logging.info("Building zero-shot classifier") + classifier = zero_shot_classifier( + model, imagenet_classnames, openai_imagenet_template, args + ) + + logging.info("Using classifier") + results = {} + if "imagenet-val" in data: + top1, top5 = run(model, classifier, data["imagenet-val"].dataloader, args) + results["imagenet-zeroshot-val-top1"] = top1 + results["imagenet-zeroshot-val-top5"] = top5 + if "imagenet-v2" in data: + top1, top5 = run(model, classifier, data["imagenet-v2"].dataloader, args) + results["imagenetv2-zeroshot-val-top1"] = top1 + results["imagenetv2-zeroshot-val-top5"] = top5 + + logging.info("Finished zero-shot imagenet.") + + return results diff --git a/audioldm/hifigan/__init__.py b/audioldm/hifigan/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e0ae476fe58c48e998c56234a55b871beba4042d --- /dev/null +++ b/audioldm/hifigan/__init__.py @@ -0,0 +1,7 @@ +from .models import Generator + + +class AttrDict(dict): + def __init__(self, *args, **kwargs): + super(AttrDict, self).__init__(*args, **kwargs) + self.__dict__ = self diff --git a/audioldm/hifigan/__pycache__/__init__.cpython-310.pyc b/audioldm/hifigan/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..82a66c070a05db0798068d750b2e9741af425fca Binary files /dev/null and b/audioldm/hifigan/__pycache__/__init__.cpython-310.pyc differ diff --git a/audioldm/hifigan/__pycache__/models.cpython-310.pyc b/audioldm/hifigan/__pycache__/models.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b43c7481ef23bec3e301cb134dbe0ac8848d6e0 Binary files /dev/null and b/audioldm/hifigan/__pycache__/models.cpython-310.pyc differ diff --git a/audioldm/hifigan/__pycache__/utilities.cpython-310.pyc b/audioldm/hifigan/__pycache__/utilities.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..03b513236472f512a7337eddecc121db5c99d9ca Binary files /dev/null and b/audioldm/hifigan/__pycache__/utilities.cpython-310.pyc differ diff --git a/audioldm/hifigan/models.py b/audioldm/hifigan/models.py new file mode 100644 index 0000000000000000000000000000000000000000..c4382cc39de0463f9b7c0f33f037dbc233e7cb36 --- /dev/null +++ b/audioldm/hifigan/models.py @@ -0,0 +1,174 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.nn import Conv1d, ConvTranspose1d +from torch.nn.utils import weight_norm, remove_weight_norm + +LRELU_SLOPE = 0.1 + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + + +class ResBlock(torch.nn.Module): + def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock, self).__init__() + self.h = h + self.convs1 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]), + ) + ), + ] + ) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + ] + ) + self.convs2.apply(init_weights) + + def forward(self, x): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + xt = c2(xt) + x = xt + x + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class Generator(torch.nn.Module): + def __init__(self, h): + super(Generator, self).__init__() + self.h = h + self.num_kernels = len(h.resblock_kernel_sizes) + self.num_upsamples = len(h.upsample_rates) + self.conv_pre = weight_norm( + Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3) + ) + resblock = ResBlock + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + h.upsample_initial_channel // (2**i), + h.upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = h.upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes) + ): + self.resblocks.append(resblock(h, ch, k, d)) + + self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) + self.ups.apply(init_weights) + self.conv_post.apply(init_weights) + + def forward(self, x): + x = self.conv_pre(x) + for i in range(self.num_upsamples): + x = F.leaky_relu(x, LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + # print("Removing weight norm...") + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + remove_weight_norm(self.conv_pre) + remove_weight_norm(self.conv_post) diff --git a/audioldm/hifigan/utilities.py b/audioldm/hifigan/utilities.py new file mode 100644 index 0000000000000000000000000000000000000000..ea9f958e460a77fd4936a6edf59403dd3ea617ab --- /dev/null +++ b/audioldm/hifigan/utilities.py @@ -0,0 +1,86 @@ +import os +import json + +import torch +import numpy as np + +import audioldm.hifigan as hifigan + +HIFIGAN_16K_64 = { + "resblock": "1", + "num_gpus": 6, + "batch_size": 16, + "learning_rate": 0.0002, + "adam_b1": 0.8, + "adam_b2": 0.99, + "lr_decay": 0.999, + "seed": 1234, + "upsample_rates": [5, 4, 2, 2, 2], + "upsample_kernel_sizes": [16, 16, 8, 4, 4], + "upsample_initial_channel": 1024, + "resblock_kernel_sizes": [3, 7, 11], + "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], + "segment_size": 8192, + "num_mels": 64, + "num_freq": 1025, + "n_fft": 1024, + "hop_size": 160, + "win_size": 1024, + "sampling_rate": 16000, + "fmin": 0, + "fmax": 8000, + "fmax_for_loss": None, + "num_workers": 4, + "dist_config": { + "dist_backend": "nccl", + "dist_url": "tcp://localhost:54321", + "world_size": 1, + }, +} + + +def get_available_checkpoint_keys(model, ckpt): + print("==> Attemp to reload from %s" % ckpt) + state_dict = torch.load(ckpt)["state_dict"] + current_state_dict = model.state_dict() + new_state_dict = {} + for k in state_dict.keys(): + if ( + k in current_state_dict.keys() + and current_state_dict[k].size() == state_dict[k].size() + ): + new_state_dict[k] = state_dict[k] + else: + print("==> WARNING: Skipping %s" % k) + print( + "%s out of %s keys are matched" + % (len(new_state_dict.keys()), len(state_dict.keys())) + ) + return new_state_dict + + +def get_param_num(model): + num_param = sum(param.numel() for param in model.parameters()) + return num_param + + +def get_vocoder(config, device): + config = hifigan.AttrDict(HIFIGAN_16K_64) + vocoder = hifigan.Generator(config) + vocoder.eval() + vocoder.remove_weight_norm() + vocoder.to(device) + return vocoder + + +def vocoder_infer(mels, vocoder, lengths=None): + vocoder.eval() + with torch.no_grad(): + wavs = vocoder(mels).squeeze(1) + + wavs = (wavs.cpu().numpy() * 32768).astype("int16") + + if lengths is not None: + wavs = wavs[:, :lengths] + + return wavs diff --git a/audioldm/latent_diffusion/__init__.py b/audioldm/latent_diffusion/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/audioldm/latent_diffusion/__pycache__/__init__.cpython-310.pyc b/audioldm/latent_diffusion/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bf62ec3293e92b5756b960c8151669368552678a Binary files /dev/null and b/audioldm/latent_diffusion/__pycache__/__init__.cpython-310.pyc differ diff --git a/audioldm/latent_diffusion/__pycache__/attention.cpython-310.pyc b/audioldm/latent_diffusion/__pycache__/attention.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f72f332ef322e86806ac7220ddf9353cbbfca458 Binary files /dev/null and b/audioldm/latent_diffusion/__pycache__/attention.cpython-310.pyc differ diff --git a/audioldm/latent_diffusion/__pycache__/ddim.cpython-310.pyc b/audioldm/latent_diffusion/__pycache__/ddim.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..552143c13a0bb28a7592701e0ba98c7948621225 Binary files /dev/null and b/audioldm/latent_diffusion/__pycache__/ddim.cpython-310.pyc differ diff --git a/audioldm/latent_diffusion/__pycache__/ddpm.cpython-310.pyc b/audioldm/latent_diffusion/__pycache__/ddpm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a5573eecc4fd0c7eb05d97eef904e0267931d9b3 Binary files /dev/null and b/audioldm/latent_diffusion/__pycache__/ddpm.cpython-310.pyc differ diff --git a/audioldm/latent_diffusion/__pycache__/ema.cpython-310.pyc b/audioldm/latent_diffusion/__pycache__/ema.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4a96ed73325d7c8b7191cb59f64e4701764f1687 Binary files /dev/null and b/audioldm/latent_diffusion/__pycache__/ema.cpython-310.pyc differ diff --git a/audioldm/latent_diffusion/__pycache__/util.cpython-310.pyc b/audioldm/latent_diffusion/__pycache__/util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..52110072bae06e7926cefd635634eafcd8d1cba0 Binary files /dev/null and b/audioldm/latent_diffusion/__pycache__/util.cpython-310.pyc differ diff --git a/audioldm/latent_diffusion/attention.py b/audioldm/latent_diffusion/attention.py new file mode 100644 index 0000000000000000000000000000000000000000..27886f5ee3c7eb856100503b838399106ef00051 --- /dev/null +++ b/audioldm/latent_diffusion/attention.py @@ -0,0 +1,469 @@ +from inspect import isfunction +import math +import torch +import torch.nn.functional as F +from torch import nn +from einops import rearrange + +from audioldm.latent_diffusion.util import checkpoint + + +def exists(val): + return val is not None + + +def uniq(arr): + return {el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = ( + nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) + if not glu + else GEGLU(dim, inner_dim) + ) + + self.net = nn.Sequential( + project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def Normalize(in_channels): + return torch.nn.GroupNorm( + num_groups=32, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class LinearAttention(nn.Module): + def __init__(self, dim, heads=4, dim_head=32): + super().__init__() + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x) + q, k, v = rearrange( + qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 + ) + k = k.softmax(dim=-1) + context = torch.einsum("bhdn,bhen->bhde", k, v) + out = torch.einsum("bhde,bhdn->bhen", context, q) + out = rearrange( + out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w + ) + return self.to_out(out) + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = rearrange(q, "b c h w -> b (h w) c") + k = rearrange(k, "b c h w -> b c (h w)") + w_ = torch.einsum("bij,bjk->bik", q, k) + + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, "b c h w -> b c (h w)") + w_ = rearrange(w_, "b i j -> b j i") + h_ = torch.einsum("bij,bjk->bik", v, w_) + h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) + h_ = self.proj_out(h_) + + return x + h_ + + +class CrossAttention(nn.Module): + """ + ### Cross Attention Layer + This falls-back to self-attention when conditional embeddings are not specified. + """ + + # use_flash_attention: bool = True + use_flash_attention: bool = False + + def __init__( + self, + query_dim, + context_dim=None, + heads=8, + dim_head=64, + dropout=0.0, + is_inplace: bool = True, + ): + # def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = True): + """ + :param d_model: is the input embedding size + :param n_heads: is the number of attention heads + :param d_head: is the size of a attention head + :param d_cond: is the size of the conditional embeddings + :param is_inplace: specifies whether to perform the attention softmax computation inplace to + save memory + """ + super().__init__() + + self.is_inplace = is_inplace + self.n_heads = heads + self.d_head = dim_head + + # Attention scaling factor + self.scale = dim_head**-0.5 + + # The normal self-attention layer + if context_dim is None: + context_dim = query_dim + + # Query, key and value mappings + d_attn = dim_head * heads + self.to_q = nn.Linear(query_dim, d_attn, bias=False) + self.to_k = nn.Linear(context_dim, d_attn, bias=False) + self.to_v = nn.Linear(context_dim, d_attn, bias=False) + + # Final linear layer + self.to_out = nn.Sequential(nn.Linear(d_attn, query_dim), nn.Dropout(dropout)) + + # Setup [flash attention](https://github.com/HazyResearch/flash-attention). + # Flash attention is only used if it's installed + # and `CrossAttention.use_flash_attention` is set to `True`. + try: + # You can install flash attention by cloning their Github repo, + # [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention) + # and then running `python setup.py install` + from flash_attn.flash_attention import FlashAttention + + self.flash = FlashAttention() + # Set the scale for scaled dot-product attention. + self.flash.softmax_scale = self.scale + # Set to `None` if it's not installed + except ImportError: + self.flash = None + + def forward(self, x, context=None, mask=None): + """ + :param x: are the input embeddings of shape `[batch_size, height * width, d_model]` + :param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]` + """ + + # If `cond` is `None` we perform self attention + has_cond = context is not None + if not has_cond: + context = x + + # Get query, key and value vectors + q = self.to_q(x) + k = self.to_k(context) + v = self.to_v(context) + + # Use flash attention if it's available and the head size is less than or equal to `128` + if ( + CrossAttention.use_flash_attention + and self.flash is not None + and not has_cond + and self.d_head <= 128 + ): + return self.flash_attention(q, k, v) + # Otherwise, fallback to normal attention + else: + return self.normal_attention(q, k, v) + + def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): + """ + #### Flash Attention + :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` + :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` + :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` + """ + + # Get batch size and number of elements along sequence axis (`width * height`) + batch_size, seq_len, _ = q.shape + + # Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of + # shape `[batch_size, seq_len, 3, n_heads * d_head]` + qkv = torch.stack((q, k, v), dim=2) + # Split the heads + qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head) + + # Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to + # fit this size. + if self.d_head <= 32: + pad = 32 - self.d_head + elif self.d_head <= 64: + pad = 64 - self.d_head + elif self.d_head <= 128: + pad = 128 - self.d_head + else: + raise ValueError(f"Head size ${self.d_head} too large for Flash Attention") + + # Pad the heads + if pad: + qkv = torch.cat( + (qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim=-1 + ) + + # Compute attention + # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ + # This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]` + # TODO here I add the dtype changing + out, _ = self.flash(qkv.type(torch.float16)) + # Truncate the extra head size + out = out[:, :, :, : self.d_head].float() + # Reshape to `[batch_size, seq_len, n_heads * d_head]` + out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head) + + # Map to `[batch_size, height * width, d_model]` with a linear layer + return self.to_out(out) + + def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): + """ + #### Normal Attention + + :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` + :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` + :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` + """ + + # Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]` + q = q.view(*q.shape[:2], self.n_heads, -1) # [bs, 64, 20, 32] + k = k.view(*k.shape[:2], self.n_heads, -1) # [bs, 1, 20, 32] + v = v.view(*v.shape[:2], self.n_heads, -1) + + # Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$ + attn = torch.einsum("bihd,bjhd->bhij", q, k) * self.scale + + # Compute softmax + # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$ + if self.is_inplace: + half = attn.shape[0] // 2 + attn[half:] = attn[half:].softmax(dim=-1) + attn[:half] = attn[:half].softmax(dim=-1) + else: + attn = attn.softmax(dim=-1) + + # Compute attention output + # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ + # attn: [bs, 20, 64, 1] + # v: [bs, 1, 20, 32] + out = torch.einsum("bhij,bjhd->bihd", attn, v) + # Reshape to `[batch_size, height * width, n_heads * d_head]` + out = out.reshape(*out.shape[:2], -1) + # Map to `[batch_size, height * width, d_model]` with a linear layer + return self.to_out(out) + + +# class CrossAttention(nn.Module): +# def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): +# super().__init__() +# inner_dim = dim_head * heads +# context_dim = default(context_dim, query_dim) + +# self.scale = dim_head ** -0.5 +# self.heads = heads + +# self.to_q = nn.Linear(query_dim, inner_dim, bias=False) +# self.to_k = nn.Linear(context_dim, inner_dim, bias=False) +# self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + +# self.to_out = nn.Sequential( +# nn.Linear(inner_dim, query_dim), +# nn.Dropout(dropout) +# ) + +# def forward(self, x, context=None, mask=None): +# h = self.heads + +# q = self.to_q(x) +# context = default(context, x) +# k = self.to_k(context) +# v = self.to_v(context) + +# q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + +# sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + +# if exists(mask): +# mask = rearrange(mask, 'b ... -> b (...)') +# max_neg_value = -torch.finfo(sim.dtype).max +# mask = repeat(mask, 'b j -> (b h) () j', h=h) +# sim.masked_fill_(~mask, max_neg_value) + +# # attention, what we cannot get enough of +# attn = sim.softmax(dim=-1) + +# out = einsum('b i j, b j d -> b i d', attn, v) +# out = rearrange(out, '(b h) n d -> b n (h d)', h=h) +# return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + def __init__( + self, + dim, + n_heads, + d_head, + dropout=0.0, + context_dim=None, + gated_ff=True, + checkpoint=True, + ): + super().__init__() + self.attn1 = CrossAttention( + query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout + ) # is a self-attention + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = CrossAttention( + query_dim=dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) # is self-attn if context is none + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def forward(self, x, context=None): + if context is None: + return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint) + else: + return checkpoint( + self._forward, (x, context), self.parameters(), self.checkpoint + ) + + def _forward(self, x, context=None): + x = self.attn1(self.norm1(x)) + x + x = self.attn2(self.norm2(x), context=context) + x + x = self.ff(self.norm3(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + """ + + def __init__( + self, + in_channels, + n_heads, + d_head, + depth=1, + dropout=0.0, + context_dim=None, + no_context=False, + ): + super().__init__() + + if no_context: + context_dim = None + + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = Normalize(in_channels) + + self.proj_in = nn.Conv2d( + in_channels, inner_dim, kernel_size=1, stride=1, padding=0 + ) + + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim + ) + for d in range(depth) + ] + ) + + self.proj_out = zero_module( + nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) + ) + + def forward(self, x, context=None): + # note: if no context is given, cross-attention defaults to self-attention + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + x = self.proj_in(x) + x = rearrange(x, "b c h w -> b (h w) c") + for block in self.transformer_blocks: + x = block(x, context=context) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + x = self.proj_out(x) + return x + x_in diff --git a/audioldm/latent_diffusion/ddim.py b/audioldm/latent_diffusion/ddim.py new file mode 100644 index 0000000000000000000000000000000000000000..732002b048e9a193313aa0ef9a353d4fc078be72 --- /dev/null +++ b/audioldm/latent_diffusion/ddim.py @@ -0,0 +1,377 @@ +"""SAMPLING ONLY.""" + +import torch +import numpy as np +from tqdm import tqdm + +from audioldm.latent_diffusion.util import ( + make_ddim_sampling_parameters, + make_ddim_timesteps, + noise_like, + extract_into_tensor, +) + + +class DDIMSampler(object): + def __init__(self, model, schedule="linear", **kwargs): + super().__init__() + self.model = model + self.ddpm_num_timesteps = model.num_timesteps + self.schedule = schedule + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device("cuda"): + attr = attr.to(torch.device("cuda")) + setattr(self, name, attr) + + def make_schedule( + self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True + ): + self.ddim_timesteps = make_ddim_timesteps( + ddim_discr_method=ddim_discretize, + num_ddim_timesteps=ddim_num_steps, + num_ddpm_timesteps=self.ddpm_num_timesteps, + verbose=verbose, + ) + alphas_cumprod = self.model.alphas_cumprod + assert ( + alphas_cumprod.shape[0] == self.ddpm_num_timesteps + ), "alphas have to be defined for each timestep" + to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) + + self.register_buffer("betas", to_torch(self.model.betas)) + self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) + self.register_buffer( + "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) + ) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer( + "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_one_minus_alphas_cumprod", + to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), + ) + self.register_buffer( + "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_recipm1_alphas_cumprod", + to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), + ) + + # ddim sampling parameters + ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( + alphacums=alphas_cumprod.cpu(), + ddim_timesteps=self.ddim_timesteps, + eta=ddim_eta, + verbose=verbose, + ) + self.register_buffer("ddim_sigmas", ddim_sigmas) + self.register_buffer("ddim_alphas", ddim_alphas) + self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) + self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) + sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( + (1 - self.alphas_cumprod_prev) + / (1 - self.alphas_cumprod) + * (1 - self.alphas_cumprod / self.alphas_cumprod_prev) + ) + self.register_buffer( + "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps + ) + + @torch.no_grad() + def sample( + self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + normals_sequence=None, + img_callback=None, + quantize_x0=False, + eta=0.0, + mask=None, + x0=None, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + verbose=True, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... + **kwargs, + ): + if conditioning is not None: + if isinstance(conditioning, dict): + cbs = conditioning[list(conditioning.keys())[0]].shape[0] + if cbs != batch_size: + print( + f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" + ) + else: + if conditioning.shape[0] != batch_size: + print( + f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" + ) + + self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) + # sampling + C, H, W = shape + size = (batch_size, C, H, W) + samples, intermediates = self.ddim_sampling( + conditioning, + size, + callback=callback, + img_callback=img_callback, + quantize_denoised=quantize_x0, + mask=mask, + x0=x0, + ddim_use_original_steps=False, + noise_dropout=noise_dropout, + temperature=temperature, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + x_T=x_T, + log_every_t=log_every_t, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + ) + return samples, intermediates + + @torch.no_grad() + def ddim_sampling( + self, + cond, + shape, + x_T=None, + ddim_use_original_steps=False, + callback=None, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + img_callback=None, + log_every_t=100, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + ): + device = self.model.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + if timesteps is None: + timesteps = ( + self.ddpm_num_timesteps + if ddim_use_original_steps + else self.ddim_timesteps + ) + elif timesteps is not None and not ddim_use_original_steps: + subset_end = ( + int( + min(timesteps / self.ddim_timesteps.shape[0], 1) + * self.ddim_timesteps.shape[0] + ) + - 1 + ) + timesteps = self.ddim_timesteps[:subset_end] + + intermediates = {"x_inter": [img], "pred_x0": [img]} + time_range = ( + reversed(range(0, timesteps)) + if ddim_use_original_steps + else np.flip(timesteps) + ) + total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] + # print(f"Running DDIM Sampling with {total_steps} timesteps") + + # iterator = gr.Progress().tqdm(time_range, desc="DDIM Sampler", total=total_steps) + iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps, leave=False) + + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((b,), step, device=device, dtype=torch.long) + if mask is not None: + assert x0 is not None + img_orig = self.model.q_sample( + x0, ts + ) # TODO deterministic forward pass? + img = ( + img_orig * mask + (1.0 - mask) * img + ) # In the first sampling step, img is pure gaussian noise + + outs = self.p_sample_ddim( + img, + cond, + ts, + index=index, + use_original_steps=ddim_use_original_steps, + quantize_denoised=quantize_denoised, + temperature=temperature, + noise_dropout=noise_dropout, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + ) + img, pred_x0 = outs + if callback: + callback(i) + if img_callback: + img_callback(pred_x0, i) + + if index % log_every_t == 0 or index == total_steps - 1: + intermediates["x_inter"].append(img) + intermediates["pred_x0"].append(pred_x0) + + return img, intermediates + + @torch.no_grad() + def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): + # fast, but does not allow for exact reconstruction + # t serves as an index to gather the correct alphas + if use_original_steps: + sqrt_alphas_cumprod = self.sqrt_alphas_cumprod + sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod + else: + sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) + sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas + + if noise is None: + noise = torch.randn_like(x0) + + return ( + extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise + ) + + @torch.no_grad() + def decode( + self, + x_latent, + cond, + t_start, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + use_original_steps=False, + ): + + timesteps = ( + np.arange(self.ddpm_num_timesteps) + if use_original_steps + else self.ddim_timesteps + ) + timesteps = timesteps[:t_start] + + time_range = np.flip(timesteps) + total_steps = timesteps.shape[0] + # print(f"Running DDIM Sampling with {total_steps} timesteps") + + # iterator = gr.Progress().tqdm(time_range, desc="Decoding image", total=total_steps) + iterator = tqdm(time_range, desc="Decoding image", total=total_steps) + x_dec = x_latent + + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full( + (x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long + ) + x_dec, _ = self.p_sample_ddim( + x_dec, + cond, + ts, + index=index, + use_original_steps=use_original_steps, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + ) + return x_dec + + @torch.no_grad() + def p_sample_ddim( + self, + x, + c, + t, + index, + repeat_noise=False, + use_original_steps=False, + quantize_denoised=False, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + ): + b, *_, device = *x.shape, x.device + + if unconditional_conditioning is None or unconditional_guidance_scale == 1.0: + e_t = self.model.apply_model(x, t, c) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t] * 2) + c_in = torch.cat([unconditional_conditioning, c]) + e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) + # When unconditional_guidance_scale == 1: only e_t + # When unconditional_guidance_scale == 0: only unconditional + # When unconditional_guidance_scale > 1: add more unconditional guidance + e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) + + if score_corrector is not None: + assert self.model.parameterization == "eps" + e_t = score_corrector.modify_score( + self.model, e_t, x, t, c, **corrector_kwargs + ) + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + alphas_prev = ( + self.model.alphas_cumprod_prev + if use_original_steps + else self.ddim_alphas_prev + ) + sqrt_one_minus_alphas = ( + self.model.sqrt_one_minus_alphas_cumprod + if use_original_steps + else self.ddim_sqrt_one_minus_alphas + ) + sigmas = ( + self.model.ddim_sigmas_for_original_num_steps + if use_original_steps + else self.ddim_sigmas + ) + # select parameters corresponding to the currently considered timestep + a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) + a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) + sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) + sqrt_one_minus_at = torch.full( + (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device + ) + + # current prediction for x_0 + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + # direction pointing to x_t + dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t + noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.0: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise # TODO + return x_prev, pred_x0 diff --git a/audioldm/latent_diffusion/ddpm.py b/audioldm/latent_diffusion/ddpm.py new file mode 100644 index 0000000000000000000000000000000000000000..ffca031c27d413698adee5a58547b7d0ea4069c3 --- /dev/null +++ b/audioldm/latent_diffusion/ddpm.py @@ -0,0 +1,441 @@ +""" +wild mixture of +https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py +https://github.com/CompVis/taming-transformers +-- merci +""" +import sys +import os + +import torch +import torch.nn as nn +import numpy as np +from contextlib import contextmanager +from functools import partial +from tqdm import tqdm + +from audioldm.utils import exists, default, count_params, instantiate_from_config +from audioldm.latent_diffusion.ema import LitEma +from audioldm.latent_diffusion.util import ( + make_beta_schedule, + extract_into_tensor, + noise_like, +) +import soundfile as sf +import os + + +__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"} + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +def uniform_on_device(r1, r2, shape, device): + return (r1 - r2) * torch.rand(*shape, device=device) + r2 + + +class DiffusionWrapper(nn.Module): + def __init__(self, diff_model_config, conditioning_key): + super().__init__() + self.diffusion_model = instantiate_from_config(diff_model_config) + self.conditioning_key = conditioning_key + assert self.conditioning_key in [ + None, + "concat", + "crossattn", + "hybrid", + "adm", + "film", + ] + + def forward( + self, x, t, c_concat: list = None, c_crossattn: list = None, c_film: list = None + ): + x = x.contiguous() + t = t.contiguous() + + if self.conditioning_key is None: + out = self.diffusion_model(x, t) + elif self.conditioning_key == "concat": + xc = torch.cat([x] + c_concat, dim=1) + out = self.diffusion_model(xc, t) + elif self.conditioning_key == "crossattn": + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(x, t, context=cc) + elif self.conditioning_key == "hybrid": + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc) + elif ( + self.conditioning_key == "film" + ): # The condition is assumed to be a global token, which wil pass through a linear layer and added with the time embedding for the FILM + cc = c_film[0].squeeze(1) # only has one token + out = self.diffusion_model(x, t, y=cc) + elif self.conditioning_key == "adm": + cc = c_crossattn[0] + out = self.diffusion_model(x, t, y=cc) + else: + raise NotImplementedError() + + return out + + +class DDPM(nn.Module): + # classic DDPM with Gaussian diffusion, in image space + def __init__( + self, + unet_config, + timesteps=1000, + beta_schedule="linear", + loss_type="l2", + ckpt_path=None, + ignore_keys=[], + load_only_unet=False, + monitor="val/loss", + use_ema=True, + first_stage_key="image", + latent_t_size=256, + latent_f_size=16, + channels=3, + log_every_t=100, + clip_denoised=True, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + given_betas=None, + original_elbo_weight=0.0, + v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta + l_simple_weight=1.0, + conditioning_key=None, + parameterization="eps", # all assuming fixed variance schedules + scheduler_config=None, + use_positional_encodings=False, + learn_logvar=False, + logvar_init=0.0, + ): + super().__init__() + assert parameterization in [ + "eps", + "x0", + ], 'currently only supporting "eps" and "x0"' + self.parameterization = parameterization + self.state = None + # print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") + self.cond_stage_model = None + self.clip_denoised = clip_denoised + self.log_every_t = log_every_t + self.first_stage_key = first_stage_key + + self.latent_t_size = latent_t_size + self.latent_f_size = latent_f_size + + self.channels = channels + self.use_positional_encodings = use_positional_encodings + self.model = DiffusionWrapper(unet_config, conditioning_key) + count_params(self.model, verbose=True) + self.use_ema = use_ema + if self.use_ema: + self.model_ema = LitEma(self.model) + # print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + self.use_scheduler = scheduler_config is not None + if self.use_scheduler: + self.scheduler_config = scheduler_config + + self.v_posterior = v_posterior + self.original_elbo_weight = original_elbo_weight + self.l_simple_weight = l_simple_weight + + if monitor is not None: + self.monitor = monitor + + self.register_schedule( + given_betas=given_betas, + beta_schedule=beta_schedule, + timesteps=timesteps, + linear_start=linear_start, + linear_end=linear_end, + cosine_s=cosine_s, + ) + + self.loss_type = loss_type + + self.learn_logvar = learn_logvar + self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) + if self.learn_logvar: + self.logvar = nn.Parameter(self.logvar, requires_grad=True) + else: + self.logvar = nn.Parameter(self.logvar, requires_grad=False) + + self.logger_save_dir = None + self.logger_project = None + self.logger_version = None + self.label_indices_total = None + # To avoid the system cannot find metric value for checkpoint + self.metrics_buffer = { + "val/kullback_leibler_divergence_sigmoid": 15.0, + "val/kullback_leibler_divergence_softmax": 10.0, + "val/psnr": 0.0, + "val/ssim": 0.0, + "val/inception_score_mean": 1.0, + "val/inception_score_std": 0.0, + "val/kernel_inception_distance_mean": 0.0, + "val/kernel_inception_distance_std": 0.0, + "val/frechet_inception_distance": 133.0, + "val/frechet_audio_distance": 32.0, + } + self.initial_learning_rate = None + + def get_log_dir(self): + if ( + self.logger_save_dir is None + and self.logger_project is None + and self.logger_version is None + ): + return os.path.join( + self.logger.save_dir, self.logger._project, self.logger.version + ) + else: + return os.path.join( + self.logger_save_dir, self.logger_project, self.logger_version + ) + + def set_log_dir(self, save_dir, project, version): + self.logger_save_dir = save_dir + self.logger_project = project + self.logger_version = version + + def register_schedule( + self, + given_betas=None, + beta_schedule="linear", + timesteps=1000, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + ): + if exists(given_betas): + betas = given_betas + else: + betas = make_beta_schedule( + beta_schedule, + timesteps, + linear_start=linear_start, + linear_end=linear_end, + cosine_s=cosine_s, + ) + alphas = 1.0 - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) + + (timesteps,) = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert ( + alphas_cumprod.shape[0] == self.num_timesteps + ), "alphas have to be defined for each timestep" + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer("betas", to_torch(betas)) + self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) + self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer( + "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) + ) + self.register_buffer( + "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) + ) + self.register_buffer( + "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)) + ) + self.register_buffer( + "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)) + ) + + # calculations for posterior q(x_{t-1} | x_t, x_0) + posterior_variance = (1 - self.v_posterior) * betas * ( + 1.0 - alphas_cumprod_prev + ) / (1.0 - alphas_cumprod) + self.v_posterior * betas + # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) + self.register_buffer("posterior_variance", to_torch(posterior_variance)) + # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain + self.register_buffer( + "posterior_log_variance_clipped", + to_torch(np.log(np.maximum(posterior_variance, 1e-20))), + ) + self.register_buffer( + "posterior_mean_coef1", + to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)), + ) + self.register_buffer( + "posterior_mean_coef2", + to_torch( + (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod) + ), + ) + + if self.parameterization == "eps": + lvlb_weights = self.betas**2 / ( + 2 + * self.posterior_variance + * to_torch(alphas) + * (1 - self.alphas_cumprod) + ) + elif self.parameterization == "x0": + lvlb_weights = ( + 0.5 + * np.sqrt(torch.Tensor(alphas_cumprod)) + / (2.0 * 1 - torch.Tensor(alphas_cumprod)) + ) + else: + raise NotImplementedError("mu not supported") + # TODO how to choose this term + lvlb_weights[0] = lvlb_weights[1] + self.register_buffer("lvlb_weights", lvlb_weights, persistent=False) + assert not torch.isnan(self.lvlb_weights).all() + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.model.parameters()) + self.model_ema.copy_to(self.model) + if context is not None: + # print(f"{context}: Switched to EMA weights") + pass + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.model.parameters()) + if context is not None: + # print(f"{context}: Restored training weights") + pass + + def q_mean_variance(self, x_start, t): + """ + Get the distribution q(x_t | x_0). + :param x_start: the [N x C x ...] tensor of noiseless inputs. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :return: A tuple (mean, variance, log_variance), all of x_start's shape. + """ + mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) + log_variance = extract_into_tensor( + self.log_one_minus_alphas_cumprod, t, x_start.shape + ) + return mean, variance, log_variance + + def predict_start_from_noise(self, x_t, t, noise): + return ( + extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t + - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + * noise + ) + + def q_posterior(self, x_start, x_t, t): + posterior_mean = ( + extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t + ) + posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) + posterior_log_variance_clipped = extract_into_tensor( + self.posterior_log_variance_clipped, t, x_t.shape + ) + return posterior_mean, posterior_variance, posterior_log_variance_clipped + + def p_mean_variance(self, x, t, clip_denoised: bool): + model_out = self.model(x, t) + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + if clip_denoised: + x_recon.clamp_(-1.0, 1.0) + + model_mean, posterior_variance, posterior_log_variance = self.q_posterior( + x_start=x_recon, x_t=x, t=t + ) + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): + b, *_, device = *x.shape, x.device + model_mean, _, model_log_variance = self.p_mean_variance( + x=x, t=t, clip_denoised=clip_denoised + ) + noise = noise_like(x.shape, device, repeat_noise) + # no noise when t == 0 + nonzero_mask = ( + (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() + ) + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def p_sample_loop(self, shape, return_intermediates=False): + device = self.betas.device + b = shape[0] + img = torch.randn(shape, device=device) + intermediates = [img] + for i in tqdm( + reversed(range(0, self.num_timesteps)), + desc="Sampling t", + total=self.num_timesteps, + ): + img = self.p_sample( + img, + torch.full((b,), i, device=device, dtype=torch.long), + clip_denoised=self.clip_denoised, + ) + if i % self.log_every_t == 0 or i == self.num_timesteps - 1: + intermediates.append(img) + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample(self, batch_size=16, return_intermediates=False): + shape = (batch_size, channels, self.latent_t_size, self.latent_f_size) + channels = self.channels + return self.p_sample_loop(shape, return_intermediates=return_intermediates) + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) + * noise + ) + + def forward(self, x, *args, **kwargs): + t = torch.randint( + 0, self.num_timesteps, (x.shape[0],), device=self.device + ).long() + return self.p_losses(x, t, *args, **kwargs) + + def get_input(self, batch, k): + # fbank, log_magnitudes_stft, label_indices, fname, waveform, clip_label, text = batch + fbank, log_magnitudes_stft, label_indices, fname, waveform, text = batch + ret = {} + + ret["fbank"] = ( + fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float() + ) + ret["stft"] = log_magnitudes_stft.to( + memory_format=torch.contiguous_format + ).float() + # ret["clip_label"] = clip_label.to(memory_format=torch.contiguous_format).float() + ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float() + ret["text"] = list(text) + ret["fname"] = fname + + return ret[k] diff --git a/audioldm/latent_diffusion/ema.py b/audioldm/latent_diffusion/ema.py new file mode 100644 index 0000000000000000000000000000000000000000..880ca3d205d9b4d7450e146930a93f2e63c58b70 --- /dev/null +++ b/audioldm/latent_diffusion/ema.py @@ -0,0 +1,82 @@ +import torch +from torch import nn + + +class LitEma(nn.Module): + def __init__(self, model, decay=0.9999, use_num_upates=True): + super().__init__() + if decay < 0.0 or decay > 1.0: + raise ValueError("Decay must be between 0 and 1") + + self.m_name2s_name = {} + self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32)) + self.register_buffer( + "num_updates", + torch.tensor(0, dtype=torch.int) + if use_num_upates + else torch.tensor(-1, dtype=torch.int), + ) + + for name, p in model.named_parameters(): + if p.requires_grad: + # remove as '.'-character is not allowed in buffers + s_name = name.replace(".", "") + self.m_name2s_name.update({name: s_name}) + self.register_buffer(s_name, p.clone().detach().data) + + self.collected_params = [] + + def forward(self, model): + decay = self.decay + + if self.num_updates >= 0: + self.num_updates += 1 + decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) + + one_minus_decay = 1.0 - decay + + with torch.no_grad(): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + + for key in m_param: + if m_param[key].requires_grad: + sname = self.m_name2s_name[key] + shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) + shadow_params[sname].sub_( + one_minus_decay * (shadow_params[sname] - m_param[key]) + ) + else: + assert not key in self.m_name2s_name + + def copy_to(self, model): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + for key in m_param: + if m_param[key].requires_grad: + m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) + else: + assert not key in self.m_name2s_name + + def store(self, parameters): + """ + Save the current parameters for restoring later. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + temporarily stored. + """ + self.collected_params = [param.clone() for param in parameters] + + def restore(self, parameters): + """ + Restore the parameters stored with the `store` method. + Useful to validate the model with EMA parameters without affecting the + original optimization process. Store the parameters before the + `copy_to` method. After validation (or model saving), use this to + restore the former parameters. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + updated with the stored parameters. + """ + for c_param, param in zip(self.collected_params, parameters): + param.data.copy_(c_param.data) diff --git a/audioldm/latent_diffusion/openaimodel.py b/audioldm/latent_diffusion/openaimodel.py new file mode 100644 index 0000000000000000000000000000000000000000..831d7aafb36bba16888e4389153979a6c13639f5 --- /dev/null +++ b/audioldm/latent_diffusion/openaimodel.py @@ -0,0 +1,1069 @@ +from abc import abstractmethod +import math + +import numpy as np +import torch as th +import torch.nn as nn +import torch.nn.functional as F + +from audioldm.latent_diffusion.util import ( + checkpoint, + conv_nd, + linear, + avg_pool_nd, + zero_module, + normalization, + timestep_embedding, +) +from audioldm.latent_diffusion.attention import SpatialTransformer + + +# dummy replace +def convert_module_to_f16(x): + pass + + +def convert_module_to_f32(x): + pass + + +## go +class AttentionPool2d(nn.Module): + """ + Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py + """ + + def __init__( + self, + spacial_dim: int, + embed_dim: int, + num_heads_channels: int, + output_dim: int = None, + ): + super().__init__() + self.positional_embedding = nn.Parameter( + th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5 + ) + self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) + self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) + self.num_heads = embed_dim // num_heads_channels + self.attention = QKVAttention(self.num_heads) + + def forward(self, x): + b, c, *_spatial = x.shape + x = x.reshape(b, c, -1).contiguous() # NC(HW) + x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) + x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) + x = self.qkv_proj(x) + x = self.attention(x) + x = self.c_proj(x) + return x[:, :, 0] + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, x, emb, context=None): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb) + elif isinstance(layer, SpatialTransformer): + x = layer(x, context) + else: + x = layer(x) + return x + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = conv_nd( + dims, self.channels, self.out_channels, 3, padding=padding + ) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.dims == 3: + x = F.interpolate( + x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" + ) + else: + x = F.interpolate(x, scale_factor=2, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + + +class TransposedUpsample(nn.Module): + "Learned 2x upsampling without padding" + + def __init__(self, channels, out_channels=None, ks=5): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + + self.up = nn.ConvTranspose2d( + self.channels, self.out_channels, kernel_size=ks, stride=2 + ) + + def forward(self, x): + return self.up(x) + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, + self.channels, + self.out_channels, + 3, + stride=stride, + padding=padding, + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param use_checkpoint: if True, use gradient checkpointing on this module. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + up=False, + down=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd( + dims, channels, self.out_channels, 3, padding=1 + ) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + return checkpoint( + self._forward, (x, emb), self.parameters(), self.use_checkpoint + ) + + def _forward(self, x, emb): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = th.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class AttentionBlock(nn.Module): + """ + An attention block that allows spatial positions to attend to each other. + Originally ported from here, but adapted to the N-d case. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + """ + + def __init__( + self, + channels, + num_heads=1, + num_head_channels=-1, + use_checkpoint=False, + use_new_attention_order=False, + ): + super().__init__() + self.channels = channels + if num_head_channels == -1: + self.num_heads = num_heads + else: + assert ( + channels % num_head_channels == 0 + ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" + self.num_heads = channels // num_head_channels + self.use_checkpoint = use_checkpoint + self.norm = normalization(channels) + self.qkv = conv_nd(1, channels, channels * 3, 1) + if use_new_attention_order: + # split qkv before split heads + self.attention = QKVAttention(self.num_heads) + else: + # split heads before split qkv + self.attention = QKVAttentionLegacy(self.num_heads) + + self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) + + def forward(self, x): + return checkpoint( + self._forward, (x,), self.parameters(), True + ) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! + # return pt_checkpoint(self._forward, x) # pytorch + + def _forward(self, x): + b, c, *spatial = x.shape + x = x.reshape(b, c, -1).contiguous() + qkv = self.qkv(self.norm(x)).contiguous() + h = self.attention(qkv).contiguous() + h = self.proj_out(h).contiguous() + return (x + h).reshape(b, c, *spatial).contiguous() + + +def count_flops_attn(model, _x, y): + """ + A counter for the `thop` package to count the operations in an + attention operation. + Meant to be used like: + macs, params = thop.profile( + model, + inputs=(inputs, timestamps), + custom_ops={QKVAttention: QKVAttention.count_flops}, + ) + """ + b, c, *spatial = y[0].shape + num_spatial = int(np.prod(spatial)) + # We perform two matmuls with the same number of ops. + # The first computes the weight matrix, the second computes + # the combination of the value vectors. + matmul_ops = 2 * b * (num_spatial**2) * c + model.total_ops += th.DoubleTensor([matmul_ops]) + + +class QKVAttentionLegacy(nn.Module): + """ + A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = ( + qkv.reshape(bs * self.n_heads, ch * 3, length).contiguous().split(ch, dim=1) + ) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", q * scale, k * scale + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v) + return a.reshape(bs, -1, length).contiguous() + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class QKVAttention(nn.Module): + """ + A module which performs QKV attention and splits in a different order. + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.chunk(3, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", + (q * scale).view(bs * self.n_heads, ch, length), + (k * scale).view(bs * self.n_heads, ch, length), + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum( + "bts,bcs->bct", + weight, + v.reshape(bs * self.n_heads, ch, length).contiguous(), + ) + return a.reshape(bs, -1, length).contiguous() + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class UNetModel(nn.Module): + """ + The full UNet model with attention and timestep embedding. + :param in_channels: channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param attention_resolutions: a collection of downsample rates at which + attention will take place. May be a set, list, or tuple. + For example, if this contains 4, then at 4x downsampling, attention + will be used. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param use_checkpoint: use gradient checkpointing to reduce memory usage. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + extra_film_condition_dim=None, + use_checkpoint=False, + use_fp16=False, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + extra_film_use_concat=False, # If true, concatenate extrafilm condition with time embedding, else addition + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + ): + super().__init__() + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert ( + num_head_channels != -1 + ), "Either num_heads or num_head_channels has to be set" + + if num_head_channels == -1: + assert ( + num_heads != -1 + ), "Either num_heads or num_head_channels has to be set" + + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.extra_film_condition_dim = extra_film_condition_dim + self.use_checkpoint = use_checkpoint + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.predict_codebook_ids = n_embed is not None + self.extra_film_use_concat = extra_film_use_concat + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + assert not ( + self.num_classes is not None and self.extra_film_condition_dim is not None + ), "As for the condition of theh UNet model, you can only set using class label or an extra embedding vector (such as from CLAP). You cannot set both num_classes and extra_film_condition_dim." + + if self.num_classes is not None: + self.label_emb = nn.Embedding(num_classes, time_embed_dim) + + self.use_extra_film_by_concat = ( + self.extra_film_condition_dim is not None and self.extra_film_use_concat + ) + self.use_extra_film_by_addition = ( + self.extra_film_condition_dim is not None and not self.extra_film_use_concat + ) + + if self.extra_film_condition_dim is not None: + self.film_emb = nn.Linear(self.extra_film_condition_dim, time_embed_dim) + # print("+ Use extra condition on UNet channel using Film. Extra condition dimension is %s. " % self.extra_film_condition_dim) + # if(self.use_extra_film_by_concat): + # print("\t By concatenation with time embedding") + # elif(self.use_extra_film_by_concat): + # print("\t By addition with time embedding") + + if use_spatial_transformer and ( + self.use_extra_film_by_concat or self.use_extra_film_by_addition + ): + # print("+ Spatial transformer will only be used as self-attention. Because you have choose to use film as your global condition.") + spatial_transformer_no_context = True + else: + spatial_transformer_no_context = False + + if use_spatial_transformer and not spatial_transformer_no_context: + assert ( + context_dim is not None + ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..." + + if context_dim is not None and not spatial_transformer_no_context: + assert ( + use_spatial_transformer + ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..." + from omegaconf.listconfig import ListConfig + + if type(context_dim) == ListConfig: + context_dim = list(context_dim) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim + if (not self.use_extra_film_by_concat) + else time_embed_dim * 2, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + dim_head = ( + ch // num_heads + if use_spatial_transformer + else num_head_channels + ) + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) + if not use_spatial_transformer + else SpatialTransformer( + ch, + num_heads, + dim_head, + depth=transformer_depth, + context_dim=context_dim, + no_context=spatial_transformer_no_context, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim + if (not self.use_extra_film_by_concat) + else time_embed_dim * 2, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + # num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim + if (not self.use_extra_film_by_concat) + else time_embed_dim * 2, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) + if not use_spatial_transformer + else SpatialTransformer( + ch, + num_heads, + dim_head, + depth=transformer_depth, + context_dim=context_dim, + no_context=spatial_transformer_no_context, + ), + ResBlock( + ch, + time_embed_dim + if (not self.use_extra_film_by_concat) + else time_embed_dim * 2, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(num_res_blocks + 1): + ich = input_block_chans.pop() + layers = [ + ResBlock( + ch + ich, + time_embed_dim + if (not self.use_extra_film_by_concat) + else time_embed_dim * 2, + dropout, + out_channels=model_channels * mult, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = model_channels * mult + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + # num_heads = 1 + dim_head = ( + ch // num_heads + if use_spatial_transformer + else num_head_channels + ) + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads_upsample, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) + if not use_spatial_transformer + else SpatialTransformer( + ch, + num_heads, + dim_head, + depth=transformer_depth, + context_dim=context_dim, + no_context=spatial_transformer_no_context, + ) + ) + if level and i == num_res_blocks: + out_ch = ch + layers.append( + ResBlock( + ch, + time_embed_dim + if (not self.use_extra_film_by_concat) + else time_embed_dim * 2, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True, + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), + ) + if self.predict_codebook_ids: + self.id_predictor = nn.Sequential( + normalization(ch), + conv_nd(dims, model_channels, n_embed, 1), + # nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits + ) + + self.shape_reported = False + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + self.output_blocks.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + self.output_blocks.apply(convert_module_to_f32) + + def forward(self, x, timesteps=None, context=None, y=None, **kwargs): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param context: conditioning plugged in via crossattn + :param y: an [N] Tensor of labels, if class-conditional. an [N, extra_film_condition_dim] Tensor if film-embed conditional + :return: an [N x C x ...] Tensor of outputs. + """ + if not self.shape_reported: + # print("The shape of UNet input is", x.size()) + self.shape_reported = True + + assert (y is not None) == ( + self.num_classes is not None or self.extra_film_condition_dim is not None + ), "must specify y if and only if the model is class-conditional or film embedding conditional" + hs = [] + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) + emb = self.time_embed(t_emb) + + if self.num_classes is not None: + assert y.shape == (x.shape[0],) + emb = emb + self.label_emb(y) + + if self.use_extra_film_by_addition: + emb = emb + self.film_emb(y) + elif self.use_extra_film_by_concat: + emb = th.cat([emb, self.film_emb(y)], dim=-1) + + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb, context) + hs.append(h) + h = self.middle_block(h, emb, context) + for module in self.output_blocks: + h = th.cat([h, hs.pop()], dim=1) + h = module(h, emb, context) + h = h.type(x.dtype) + if self.predict_codebook_ids: + return self.id_predictor(h) + else: + return self.out(h) + + +class EncoderUNetModel(nn.Module): + """ + The half UNet model with attention and timestep embedding. + For usage, see UNet. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + use_checkpoint=False, + use_fp16=False, + num_heads=1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + pool="adaptive", + *args, + **kwargs, + ): + super().__init__() + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.use_checkpoint = use_checkpoint + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + self.pool = pool + if pool == "adaptive": + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + nn.AdaptiveAvgPool2d((1, 1)), + zero_module(conv_nd(dims, ch, out_channels, 1)), + nn.Flatten(), + ) + elif pool == "attention": + assert num_head_channels != -1 + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + AttentionPool2d( + (image_size // ds), ch, num_head_channels, out_channels + ), + ) + elif pool == "spatial": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + nn.ReLU(), + nn.Linear(2048, self.out_channels), + ) + elif pool == "spatial_v2": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + normalization(2048), + nn.SiLU(), + nn.Linear(2048, self.out_channels), + ) + else: + raise NotImplementedError(f"Unexpected {pool} pooling") + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + + def forward(self, x, timesteps): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :return: an [N x K] Tensor of outputs. + """ + emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + + results = [] + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = self.middle_block(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = th.cat(results, axis=-1) + return self.out(h) + else: + h = h.type(x.dtype) + return self.out(h) diff --git a/audioldm/latent_diffusion/util.py b/audioldm/latent_diffusion/util.py new file mode 100644 index 0000000000000000000000000000000000000000..8b289f6aa7f22a070870d8a706f944dc8547e936 --- /dev/null +++ b/audioldm/latent_diffusion/util.py @@ -0,0 +1,295 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + + +import os +import math +import torch +import torch.nn as nn +import numpy as np +from einops import repeat + +from audioldm.utils import instantiate_from_config + + +def make_beta_schedule( + schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3 +): + if schedule == "linear": + betas = ( + torch.linspace( + linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 + ) + ** 2 + ) + + elif schedule == "cosine": + timesteps = ( + torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s + ) + alphas = timesteps / (1 + cosine_s) * np.pi / 2 + alphas = torch.cos(alphas).pow(2) + alphas = alphas / alphas[0] + betas = 1 - alphas[1:] / alphas[:-1] + betas = np.clip(betas, a_min=0, a_max=0.999) + + elif schedule == "sqrt_linear": + betas = torch.linspace( + linear_start, linear_end, n_timestep, dtype=torch.float64 + ) + elif schedule == "sqrt": + betas = ( + torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) + ** 0.5 + ) + else: + raise ValueError(f"schedule '{schedule}' unknown.") + return betas.numpy() + + +def make_ddim_timesteps( + ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True +): + if ddim_discr_method == "uniform": + c = num_ddpm_timesteps // num_ddim_timesteps + ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) + elif ddim_discr_method == "quad": + ddim_timesteps = ( + (np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2 + ).astype(int) + else: + raise NotImplementedError( + f'There is no ddim discretization method called "{ddim_discr_method}"' + ) + + # assert ddim_timesteps.shape[0] == num_ddim_timesteps + # add one to get the final alpha values right (the ones from first scale to data during sampling) + steps_out = ddim_timesteps + 1 + if verbose: + print(f"Selected timesteps for ddim sampler: {steps_out}") + return steps_out + + +def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): + # select alphas for computing the variance schedule + alphas = alphacums[ddim_timesteps] + alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) + + # according the the formula provided in https://arxiv.org/abs/2010.02502 + sigmas = eta * np.sqrt( + (1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev) + ) + if verbose: + print( + f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}" + ) + print( + f"For the chosen value of eta, which is {eta}, " + f"this results in the following sigma_t schedule for ddim sampler {sigmas}" + ) + return sigmas, alphas, alphas_prev + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t).contiguous() + return out.reshape(b, *((1,) * (len(x_shape) - 1))).contiguous() + + +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + args = tuple(inputs) + tuple(params) + return CheckpointFunction.apply(func, len(inputs), *args) + else: + return func(*inputs) + + +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors + + @staticmethod + def backward(ctx, *output_grads): + ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] + with torch.enable_grad(): + # Fixes a bug where the first op in run_function modifies the + # Tensor storage in place, which is not allowed for detach()'d + # Tensors. + shallow_copies = [x.view_as(x) for x in ctx.input_tensors] + output_tensors = ctx.run_function(*shallow_copies) + input_grads = torch.autograd.grad( + output_tensors, + ctx.input_tensors + ctx.input_params, + output_grads, + allow_unused=True, + ) + del ctx.input_tensors + del ctx.input_params + del output_tensors + return (None, None) + input_grads + + +def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): + """ + Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) + * torch.arange(start=0, end=half, dtype=torch.float32) + / half + ).to(device=timesteps.device) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat( + [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 + ) + else: + embedding = repeat(timesteps, "b -> b d", d=dim) + return embedding + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def normalization(channels): + """ + Make a standard normalization layer. + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + return GroupNorm32(32, channels) + + +# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. +class SiLU(nn.Module): + def forward(self, x): + return x * torch.sigmoid(x) + + +class GroupNorm32(nn.GroupNorm): + def forward(self, x): + return super().forward(x.float()).type(x.dtype) + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class HybridConditioner(nn.Module): + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]} + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat( + shape[0], *((1,) * (len(shape) - 1)) + ) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() diff --git a/audioldm/ldm.py b/audioldm/ldm.py new file mode 100644 index 0000000000000000000000000000000000000000..e0179fd5a506052ac9db22bd37f3db6b910aded5 --- /dev/null +++ b/audioldm/ldm.py @@ -0,0 +1,818 @@ +import os + +import torch +import numpy as np +from tqdm import tqdm +from audioldm.utils import default, instantiate_from_config, save_wave +from audioldm.latent_diffusion.ddpm import DDPM +from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution +from audioldm.latent_diffusion.util import noise_like +from audioldm.latent_diffusion.ddim import DDIMSampler +import os + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +class LatentDiffusion(DDPM): + """main class""" + + def __init__( + self, + device="cuda", + first_stage_config=None, + cond_stage_config=None, + num_timesteps_cond=None, + cond_stage_key="image", + cond_stage_trainable=False, + concat_mode=True, + cond_stage_forward=None, + conditioning_key=None, + scale_factor=1.0, + scale_by_std=False, + base_learning_rate=None, + *args, + **kwargs, + ): + self.device = device + self.learning_rate = base_learning_rate + self.num_timesteps_cond = default(num_timesteps_cond, 1) + self.scale_by_std = scale_by_std + assert self.num_timesteps_cond <= kwargs["timesteps"] + # for backwards compatibility after implementation of DiffusionWrapper + if conditioning_key is None: + conditioning_key = "concat" if concat_mode else "crossattn" + if cond_stage_config == "__is_unconditional__": + conditioning_key = None + ckpt_path = kwargs.pop("ckpt_path", None) + ignore_keys = kwargs.pop("ignore_keys", []) + super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + self.concat_mode = concat_mode + self.cond_stage_trainable = cond_stage_trainable + self.cond_stage_key = cond_stage_key + self.cond_stage_key_orig = cond_stage_key + try: + self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 + except: + self.num_downs = 0 + if not scale_by_std: + self.scale_factor = scale_factor + else: + self.register_buffer("scale_factor", torch.tensor(scale_factor)) + self.instantiate_first_stage(first_stage_config) + self.instantiate_cond_stage(cond_stage_config) + self.cond_stage_forward = cond_stage_forward + self.clip_denoised = False + + def make_cond_schedule( + self, + ): + self.cond_ids = torch.full( + size=(self.num_timesteps,), + fill_value=self.num_timesteps - 1, + dtype=torch.long, + ) + ids = torch.round( + torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond) + ).long() + self.cond_ids[: self.num_timesteps_cond] = ids + + def register_schedule( + self, + given_betas=None, + beta_schedule="linear", + timesteps=1000, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + ): + super().register_schedule( + given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s + ) + + self.shorten_cond_schedule = self.num_timesteps_cond > 1 + if self.shorten_cond_schedule: + self.make_cond_schedule() + + def instantiate_first_stage(self, config): + model = instantiate_from_config(config) + self.first_stage_model = model.eval() + self.first_stage_model.train = disabled_train + for param in self.first_stage_model.parameters(): + param.requires_grad = False + + def instantiate_cond_stage(self, config): + if not self.cond_stage_trainable: + if config == "__is_first_stage__": + print("Using first stage also as cond stage.") + self.cond_stage_model = self.first_stage_model + elif config == "__is_unconditional__": + print(f"Training {self.__class__.__name__} as an unconditional model.") + self.cond_stage_model = None + # self.be_unconditional = True + else: + model = instantiate_from_config(config) + self.cond_stage_model = model.eval() + self.cond_stage_model.train = disabled_train + for param in self.cond_stage_model.parameters(): + param.requires_grad = False + else: + assert config != "__is_first_stage__" + assert config != "__is_unconditional__" + model = instantiate_from_config(config) + self.cond_stage_model = model + self.cond_stage_model = self.cond_stage_model.to(self.device) + + def get_first_stage_encoding(self, encoder_posterior): + if isinstance(encoder_posterior, DiagonalGaussianDistribution): + z = encoder_posterior.sample() + elif isinstance(encoder_posterior, torch.Tensor): + z = encoder_posterior + else: + raise NotImplementedError( + f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" + ) + return self.scale_factor * z + + def get_learned_conditioning(self, c): + if self.cond_stage_forward is None: + if hasattr(self.cond_stage_model, "encode") and callable( + self.cond_stage_model.encode + ): + c = self.cond_stage_model.encode(c) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + else: + # Text input is list + if type(c) == list and len(c) == 1: + c = self.cond_stage_model([c[0], c[0]]) + c = c[0:1] + else: + c = self.cond_stage_model(c) + else: + assert hasattr(self.cond_stage_model, self.cond_stage_forward) + c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) + return c + + @torch.no_grad() + def get_input( + self, + batch, + k, + return_first_stage_encode=True, + return_first_stage_outputs=False, + force_c_encode=False, + cond_key=None, + return_original_cond=False, + bs=None, + ): + x = super().get_input(batch, k) + + if bs is not None: + x = x[:bs] + + x = x.to(self.device) + + if return_first_stage_encode: + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + else: + z = None + + if self.model.conditioning_key is not None: + if cond_key is None: + cond_key = self.cond_stage_key + if cond_key != self.first_stage_key: + if cond_key in ["caption", "coordinates_bbox"]: + xc = batch[cond_key] + elif cond_key == "class_label": + xc = batch + else: + # [bs, 1, 527] + xc = super().get_input(batch, cond_key) + if type(xc) == torch.Tensor: + xc = xc.to(self.device) + else: + xc = x + if not self.cond_stage_trainable or force_c_encode: + if isinstance(xc, dict) or isinstance(xc, list): + c = self.get_learned_conditioning(xc) + else: + c = self.get_learned_conditioning(xc.to(self.device)) + else: + c = xc + + if bs is not None: + c = c[:bs] + + else: + c = None + xc = None + if self.use_positional_encodings: + pos_x, pos_y = self.compute_latent_shifts(batch) + c = {"pos_x": pos_x, "pos_y": pos_y} + out = [z, c] + if return_first_stage_outputs: + xrec = self.decode_first_stage(z) + out.extend([x, xrec]) + if return_original_cond: + out.append(xc) + return out + + @torch.no_grad() + def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, "b h w c -> b c h w").contiguous() + + z = 1.0 / self.scale_factor * z + return self.first_stage_model.decode(z) + + def mel_spectrogram_to_waveform(self, mel): + # Mel: [bs, 1, t-steps, fbins] + if len(mel.size()) == 4: + mel = mel.squeeze(1) + mel = mel.permute(0, 2, 1) + waveform = self.first_stage_model.vocoder(mel) + waveform = waveform.cpu().detach().numpy() + return waveform + + @torch.no_grad() + def encode_first_stage(self, x): + return self.first_stage_model.encode(x) + + def apply_model(self, x_noisy, t, cond, return_ids=False): + + if isinstance(cond, dict): + # hybrid case, cond is exptected to be a dict + pass + else: + if not isinstance(cond, list): + cond = [cond] + if self.model.conditioning_key == "concat": + key = "c_concat" + elif self.model.conditioning_key == "crossattn": + key = "c_crossattn" + else: + key = "c_film" + + cond = {key: cond} + + x_recon = self.model(x_noisy, t, **cond) + + if isinstance(x_recon, tuple) and not return_ids: + return x_recon[0] + else: + return x_recon + + def p_mean_variance( + self, + x, + c, + t, + clip_denoised: bool, + return_codebook_ids=False, + quantize_denoised=False, + return_x0=False, + score_corrector=None, + corrector_kwargs=None, + ): + t_in = t + model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) + + if score_corrector is not None: + assert self.parameterization == "eps" + model_out = score_corrector.modify_score( + self, model_out, x, t, c, **corrector_kwargs + ) + + if return_codebook_ids: + model_out, logits = model_out + + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + else: + raise NotImplementedError() + + if clip_denoised: + x_recon.clamp_(-1.0, 1.0) + if quantize_denoised: + x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) + model_mean, posterior_variance, posterior_log_variance = self.q_posterior( + x_start=x_recon, x_t=x, t=t + ) + if return_codebook_ids: + return model_mean, posterior_variance, posterior_log_variance, logits + elif return_x0: + return model_mean, posterior_variance, posterior_log_variance, x_recon + else: + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample( + self, + x, + c, + t, + clip_denoised=False, + repeat_noise=False, + return_codebook_ids=False, + quantize_denoised=False, + return_x0=False, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + ): + b, *_, device = *x.shape, x.device + outputs = self.p_mean_variance( + x=x, + c=c, + t=t, + clip_denoised=clip_denoised, + return_codebook_ids=return_codebook_ids, + quantize_denoised=quantize_denoised, + return_x0=return_x0, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + ) + if return_codebook_ids: + raise DeprecationWarning("Support dropped.") + model_mean, _, model_log_variance, logits = outputs + elif return_x0: + model_mean, _, model_log_variance, x0 = outputs + else: + model_mean, _, model_log_variance = outputs + + noise = noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.0: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + # no noise when t == 0 + nonzero_mask = ( + (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() + ) + + if return_codebook_ids: + return model_mean + nonzero_mask * ( + 0.5 * model_log_variance + ).exp() * noise, logits.argmax(dim=1) + if return_x0: + return ( + model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, + x0, + ) + else: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def progressive_denoising( + self, + cond, + shape, + verbose=True, + callback=None, + quantize_denoised=False, + img_callback=None, + mask=None, + x0=None, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + batch_size=None, + x_T=None, + start_T=None, + log_every_t=None, + ): + if not log_every_t: + log_every_t = self.log_every_t + timesteps = self.num_timesteps + if batch_size is not None: + b = batch_size if batch_size is not None else shape[0] + shape = [batch_size] + list(shape) + else: + b = batch_size = shape[0] + if x_T is None: + img = torch.randn(shape, device=self.device) + else: + img = x_T + intermediates = [] + if cond is not None: + if isinstance(cond, dict): + cond = { + key: cond[key][:batch_size] + if not isinstance(cond[key], list) + else list(map(lambda x: x[:batch_size], cond[key])) + for key in cond + } + else: + cond = ( + [c[:batch_size] for c in cond] + if isinstance(cond, list) + else cond[:batch_size] + ) + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = ( + tqdm( + reversed(range(0, timesteps)), + desc="Progressive Generation", + total=timesteps, + ) + if verbose + else reversed(range(0, timesteps)) + ) + if type(temperature) == float: + temperature = [temperature] * timesteps + + for i in iterator: + ts = torch.full((b,), i, device=self.device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != "hybrid" + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img, x0_partial = self.p_sample( + img, + cond, + ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised, + return_x0=True, + temperature=temperature[i], + noise_dropout=noise_dropout, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + ) + if mask is not None: + assert x0 is not None + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1.0 - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(x0_partial) + if callback: + callback(i) + if img_callback: + img_callback(img, i) + return img, intermediates + + @torch.no_grad() + def p_sample_loop( + self, + cond, + shape, + return_intermediates=False, + x_T=None, + verbose=True, + callback=None, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + img_callback=None, + start_T=None, + log_every_t=None, + ): + + if not log_every_t: + log_every_t = self.log_every_t + device = self.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + intermediates = [img] + if timesteps is None: + timesteps = self.num_timesteps + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = ( + tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps) + if verbose + else reversed(range(0, timesteps)) + ) + + if mask is not None: + assert x0 is not None + assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match + + for i in iterator: + ts = torch.full((b,), i, device=device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != "hybrid" + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img = self.p_sample( + img, + cond, + ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised, + ) + if mask is not None: + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1.0 - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(img) + if callback: + callback(i) + if img_callback: + img_callback(img, i) + + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample( + self, + cond, + batch_size=16, + return_intermediates=False, + x_T=None, + verbose=True, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + shape=None, + **kwargs, + ): + if shape is None: + shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size) + if cond is not None: + if isinstance(cond, dict): + cond = { + key: cond[key][:batch_size] + if not isinstance(cond[key], list) + else list(map(lambda x: x[:batch_size], cond[key])) + for key in cond + } + else: + cond = ( + [c[:batch_size] for c in cond] + if isinstance(cond, list) + else cond[:batch_size] + ) + return self.p_sample_loop( + cond, + shape, + return_intermediates=return_intermediates, + x_T=x_T, + verbose=verbose, + timesteps=timesteps, + quantize_denoised=quantize_denoised, + mask=mask, + x0=x0, + **kwargs, + ) + + @torch.no_grad() + def sample_log( + self, + cond, + batch_size, + ddim, + ddim_steps, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + use_plms=False, + mask=None, + **kwargs, + ): + + if mask is not None: + shape = (self.channels, mask.size()[-2], mask.size()[-1]) + else: + shape = (self.channels, self.latent_t_size, self.latent_f_size) + + intermediate = None + if ddim and not use_plms: + # print("Use ddim sampler") + + ddim_sampler = DDIMSampler(self) + samples, intermediates = ddim_sampler.sample( + ddim_steps, + batch_size, + shape, + cond, + verbose=False, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + mask=mask, + **kwargs, + ) + + else: + # print("Use DDPM sampler") + samples, intermediates = self.sample( + cond=cond, + batch_size=batch_size, + return_intermediates=True, + unconditional_guidance_scale=unconditional_guidance_scale, + mask=mask, + unconditional_conditioning=unconditional_conditioning, + **kwargs, + ) + + return samples, intermediate + + @torch.no_grad() + def generate_sample( + self, + batchs, + ddim_steps=200, + ddim_eta=1.0, + x_T=None, + n_candidate_gen_per_text=1, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + name="waveform", + use_plms=False, + save=False, + **kwargs, + ): + # Generate n_candidate_gen_per_text times and select the best + # Batch: audio, text, fnames + assert x_T is None + try: + batchs = iter(batchs) + except TypeError: + raise ValueError("The first input argument should be an iterable object") + + if use_plms: + assert ddim_steps is not None + use_ddim = ddim_steps is not None + # waveform_save_path = os.path.join(self.get_log_dir(), name) + # os.makedirs(waveform_save_path, exist_ok=True) + # print("Waveform save path: ", waveform_save_path) + + with self.ema_scope("Generate"): + for batch in batchs: + z, c = self.get_input( + batch, + self.first_stage_key, + cond_key=self.cond_stage_key, + return_first_stage_outputs=False, + force_c_encode=True, + return_original_cond=False, + bs=None, + ) + text = super().get_input(batch, "text") + + # Generate multiple samples + batch_size = z.shape[0] * n_candidate_gen_per_text + c = torch.cat([c] * n_candidate_gen_per_text, dim=0) + text = text * n_candidate_gen_per_text + + if unconditional_guidance_scale != 1.0: + unconditional_conditioning = ( + self.cond_stage_model.get_unconditional_condition(batch_size) + ) + + samples, _ = self.sample_log( + cond=c, + batch_size=batch_size, + x_T=x_T, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + use_plms=use_plms, + ) + + if(torch.max(torch.abs(samples)) > 1e2): + samples = torch.clip(samples, min=-10, max=10) + + mel = self.decode_first_stage(samples) + + waveform = self.mel_spectrogram_to_waveform(mel) + + if waveform.shape[0] > 1: + similarity = self.cond_stage_model.cos_similarity( + torch.FloatTensor(waveform).squeeze(1), text + ) + + best_index = [] + for i in range(z.shape[0]): + candidates = similarity[i :: z.shape[0]] + max_index = torch.argmax(candidates).item() + best_index.append(i + max_index * z.shape[0]) + + waveform = waveform[best_index] + # print("Similarity between generated audio and text", similarity) + # print("Choose the following indexes:", best_index) + + return waveform + + @torch.no_grad() + def generate_sample_masked( + self, + batchs, + ddim_steps=200, + ddim_eta=1.0, + x_T=None, + n_candidate_gen_per_text=1, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + name="waveform", + use_plms=False, + time_mask_ratio_start_and_end=(0.25, 0.75), + freq_mask_ratio_start_and_end=(0.75, 1.0), + save=False, + **kwargs, + ): + # Generate n_candidate_gen_per_text times and select the best + # Batch: audio, text, fnames + assert x_T is None + try: + batchs = iter(batchs) + except TypeError: + raise ValueError("The first input argument should be an iterable object") + + if use_plms: + assert ddim_steps is not None + use_ddim = ddim_steps is not None + # waveform_save_path = os.path.join(self.get_log_dir(), name) + # os.makedirs(waveform_save_path, exist_ok=True) + # print("Waveform save path: ", waveform_save_path) + + with self.ema_scope("Generate"): + for batch in batchs: + z, c = self.get_input( + batch, + self.first_stage_key, + cond_key=self.cond_stage_key, + return_first_stage_outputs=False, + force_c_encode=True, + return_original_cond=False, + bs=None, + ) + text = super().get_input(batch, "text") + + # Generate multiple samples + batch_size = z.shape[0] * n_candidate_gen_per_text + + _, h, w = z.shape[0], z.shape[2], z.shape[3] + + mask = torch.ones(batch_size, h, w).to(self.device) + + mask[:, int(h * time_mask_ratio_start_and_end[0]) : int(h * time_mask_ratio_start_and_end[1]), :] = 0 + mask[:, :, int(w * freq_mask_ratio_start_and_end[0]) : int(w * freq_mask_ratio_start_and_end[1])] = 0 + mask = mask[:, None, ...] + + c = torch.cat([c] * n_candidate_gen_per_text, dim=0) + text = text * n_candidate_gen_per_text + + if unconditional_guidance_scale != 1.0: + unconditional_conditioning = ( + self.cond_stage_model.get_unconditional_condition(batch_size) + ) + + samples, _ = self.sample_log( + cond=c, + batch_size=batch_size, + x_T=x_T, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + use_plms=use_plms, mask=mask, x0=torch.cat([z] * n_candidate_gen_per_text) + ) + + mel = self.decode_first_stage(samples) + + waveform = self.mel_spectrogram_to_waveform(mel) + + if waveform.shape[0] > 1: + similarity = self.cond_stage_model.cos_similarity( + torch.FloatTensor(waveform).squeeze(1), text + ) + + best_index = [] + for i in range(z.shape[0]): + candidates = similarity[i :: z.shape[0]] + max_index = torch.argmax(candidates).item() + best_index.append(i + max_index * z.shape[0]) + + waveform = waveform[best_index] + # print("Similarity between generated audio and text", similarity) + # print("Choose the following indexes:", best_index) + + return waveform \ No newline at end of file diff --git a/audioldm/pipeline.py b/audioldm/pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..b08e1f77206483025ce027588c2dea1de78ae26c --- /dev/null +++ b/audioldm/pipeline.py @@ -0,0 +1,301 @@ +import os + +import argparse +import yaml +import torch +from torch import autocast +from tqdm import tqdm, trange + +from audioldm import LatentDiffusion, seed_everything +from audioldm.utils import default_audioldm_config, get_duration, get_bit_depth, get_metadata, download_checkpoint +from audioldm.audio import wav_to_fbank, TacotronSTFT, read_wav_file +from audioldm.latent_diffusion.ddim import DDIMSampler +from einops import repeat +import os + +def make_batch_for_text_to_audio(text, waveform=None, fbank=None, batchsize=1): + text = [text] * batchsize + if batchsize < 1: + print("Warning: Batchsize must be at least 1. Batchsize is set to .") + + if(fbank is None): + fbank = torch.zeros((batchsize, 1024, 64)) # Not used, here to keep the code format + else: + fbank = torch.FloatTensor(fbank) + fbank = fbank.expand(batchsize, 1024, 64) + assert fbank.size(0) == batchsize + + stft = torch.zeros((batchsize, 1024, 512)) # Not used + + if(waveform is None): + waveform = torch.zeros((batchsize, 160000)) # Not used + else: + waveform = torch.FloatTensor(waveform) + waveform = waveform.expand(batchsize, -1) + assert waveform.size(0) == batchsize + + fname = [""] * batchsize # Not used + + batch = ( + fbank, + stft, + None, + fname, + waveform, + text, + ) + return batch + +def round_up_duration(duration): + return int(round(duration/2.5) + 1) * 2.5 + +def build_model( + ckpt_path=None, + config=None, + model_name="audioldm-s-full" +): + print("Load AudioLDM: %s", model_name) + + if(ckpt_path is None): + ckpt_path = get_metadata()[model_name]["path"] + + if(not os.path.exists(ckpt_path)): + download_checkpoint(model_name) + + if torch.cuda.is_available(): + device = torch.device("cuda:0") + else: + device = torch.device("cpu") + + if config is not None: + assert type(config) is str + config = yaml.load(open(config, "r"), Loader=yaml.FullLoader) + else: + config = default_audioldm_config(model_name) + + # Use text as condition instead of using waveform during training + config["model"]["params"]["device"] = device + config["model"]["params"]["cond_stage_key"] = "text" + + # No normalization here + latent_diffusion = LatentDiffusion(**config["model"]["params"]) + + resume_from_checkpoint = ckpt_path + + checkpoint = torch.load(resume_from_checkpoint, map_location=device) + latent_diffusion.load_state_dict(checkpoint["state_dict"]) + + latent_diffusion.eval() + latent_diffusion = latent_diffusion.to(device) + + latent_diffusion.cond_stage_model.embed_mode = "text" + return latent_diffusion + +def duration_to_latent_t_size(duration): + return int(duration * 25.6) + +def set_cond_audio(latent_diffusion): + latent_diffusion.cond_stage_key = "waveform" + latent_diffusion.cond_stage_model.embed_mode="audio" + return latent_diffusion + +def set_cond_text(latent_diffusion): + latent_diffusion.cond_stage_key = "text" + latent_diffusion.cond_stage_model.embed_mode="text" + return latent_diffusion + +def text_to_audio( + latent_diffusion, + text, + original_audio_file_path = None, + seed=42, + ddim_steps=200, + duration=10, + batchsize=1, + guidance_scale=2.5, + n_candidate_gen_per_text=3, + config=None, +): + seed_everything(int(seed)) + waveform = None + if(original_audio_file_path is not None): + waveform = read_wav_file(original_audio_file_path, int(duration * 102.4) * 160) + + batch = make_batch_for_text_to_audio(text, waveform=waveform, batchsize=batchsize) + + latent_diffusion.latent_t_size = duration_to_latent_t_size(duration) + + if(waveform is not None): + print("Generate audio that has similar content as %s" % original_audio_file_path) + latent_diffusion = set_cond_audio(latent_diffusion) + else: + print("Generate audio using text %s" % text) + latent_diffusion = set_cond_text(latent_diffusion) + + with torch.no_grad(): + waveform = latent_diffusion.generate_sample( + [batch], + unconditional_guidance_scale=guidance_scale, + ddim_steps=ddim_steps, + n_candidate_gen_per_text=n_candidate_gen_per_text, + duration=duration, + ) + return waveform + +def style_transfer( + latent_diffusion, + text, + original_audio_file_path, + transfer_strength, + seed=42, + duration=10, + batchsize=1, + guidance_scale=2.5, + ddim_steps=200, + config=None, +): + if torch.cuda.is_available(): + device = torch.device("cuda:0") + else: + device = torch.device("cpu") + + assert original_audio_file_path is not None, "You need to provide the original audio file path" + + audio_file_duration = get_duration(original_audio_file_path) + + assert get_bit_depth(original_audio_file_path) == 16, "The bit depth of the original audio file %s must be 16" % original_audio_file_path + + # if(duration > 20): + # print("Warning: The duration of the audio file %s must be less than 20 seconds. Longer duration will result in Nan in model output (we are still debugging that); Automatically set duration to 20 seconds") + # duration = 20 + + if(duration >= audio_file_duration): + print("Warning: Duration you specified %s-seconds must equal or smaller than the audio file duration %ss" % (duration, audio_file_duration)) + duration = round_up_duration(audio_file_duration) + print("Set new duration as %s-seconds" % duration) + + # duration = round_up_duration(duration) + + latent_diffusion = set_cond_text(latent_diffusion) + + if config is not None: + assert type(config) is str + config = yaml.load(open(config, "r"), Loader=yaml.FullLoader) + else: + config = default_audioldm_config() + + seed_everything(int(seed)) + # latent_diffusion.latent_t_size = duration_to_latent_t_size(duration) + latent_diffusion.cond_stage_model.embed_mode = "text" + + fn_STFT = TacotronSTFT( + config["preprocessing"]["stft"]["filter_length"], + config["preprocessing"]["stft"]["hop_length"], + config["preprocessing"]["stft"]["win_length"], + config["preprocessing"]["mel"]["n_mel_channels"], + config["preprocessing"]["audio"]["sampling_rate"], + config["preprocessing"]["mel"]["mel_fmin"], + config["preprocessing"]["mel"]["mel_fmax"], + ) + + mel, _, _ = wav_to_fbank( + original_audio_file_path, target_length=int(duration * 102.4), fn_STFT=fn_STFT + ) + mel = mel.unsqueeze(0).unsqueeze(0).to(device) + mel = repeat(mel, "1 ... -> b ...", b=batchsize) + init_latent = latent_diffusion.get_first_stage_encoding( + latent_diffusion.encode_first_stage(mel) + ) # move to latent space, encode and sample + if(torch.max(torch.abs(init_latent)) > 1e2): + init_latent = torch.clip(init_latent, min=-10, max=10) + sampler = DDIMSampler(latent_diffusion) + sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=1.0, verbose=False) + + t_enc = int(transfer_strength * ddim_steps) + prompts = text + + with torch.no_grad(): + with autocast("cuda"): + with latent_diffusion.ema_scope(): + uc = None + if guidance_scale != 1.0: + uc = latent_diffusion.cond_stage_model.get_unconditional_condition( + batchsize + ) + + c = latent_diffusion.get_learned_conditioning([prompts] * batchsize) + z_enc = sampler.stochastic_encode( + init_latent, torch.tensor([t_enc] * batchsize).to(device) + ) + samples = sampler.decode( + z_enc, + c, + t_enc, + unconditional_guidance_scale=guidance_scale, + unconditional_conditioning=uc, + ) + # x_samples = latent_diffusion.decode_first_stage(samples) # Will result in Nan in output + # print(torch.sum(torch.isnan(samples))) + x_samples = latent_diffusion.decode_first_stage(samples) + # print(x_samples) + x_samples = latent_diffusion.decode_first_stage(samples[:,:,:-3,:]) + # print(x_samples) + waveform = latent_diffusion.first_stage_model.decode_to_waveform( + x_samples + ) + + return waveform + +def super_resolution_and_inpainting( + latent_diffusion, + text, + original_audio_file_path = None, + seed=42, + ddim_steps=200, + duration=None, + batchsize=1, + guidance_scale=2.5, + n_candidate_gen_per_text=3, + time_mask_ratio_start_and_end=(0.10, 0.15), # regenerate the 10% to 15% of the time steps in the spectrogram + # time_mask_ratio_start_and_end=(1.0, 1.0), # no inpainting + # freq_mask_ratio_start_and_end=(0.75, 1.0), # regenerate the higher 75% to 100% mel bins + freq_mask_ratio_start_and_end=(1.0, 1.0), # no super-resolution + config=None, +): + seed_everything(int(seed)) + if config is not None: + assert type(config) is str + config = yaml.load(open(config, "r"), Loader=yaml.FullLoader) + else: + config = default_audioldm_config() + fn_STFT = TacotronSTFT( + config["preprocessing"]["stft"]["filter_length"], + config["preprocessing"]["stft"]["hop_length"], + config["preprocessing"]["stft"]["win_length"], + config["preprocessing"]["mel"]["n_mel_channels"], + config["preprocessing"]["audio"]["sampling_rate"], + config["preprocessing"]["mel"]["mel_fmin"], + config["preprocessing"]["mel"]["mel_fmax"], + ) + + # waveform = read_wav_file(original_audio_file_path, None) + mel, _, _ = wav_to_fbank( + original_audio_file_path, target_length=int(duration * 102.4), fn_STFT=fn_STFT + ) + + batch = make_batch_for_text_to_audio(text, fbank=mel[None,...], batchsize=batchsize) + + # latent_diffusion.latent_t_size = duration_to_latent_t_size(duration) + latent_diffusion = set_cond_text(latent_diffusion) + + with torch.no_grad(): + waveform = latent_diffusion.generate_sample_masked( + [batch], + unconditional_guidance_scale=guidance_scale, + ddim_steps=ddim_steps, + n_candidate_gen_per_text=n_candidate_gen_per_text, + duration=duration, + time_mask_ratio_start_and_end=time_mask_ratio_start_and_end, + freq_mask_ratio_start_and_end=freq_mask_ratio_start_and_end + ) + return waveform \ No newline at end of file diff --git a/audioldm/utils.py b/audioldm/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..5401b29d4366774233f1bf4a9e7fcb7ce214187e --- /dev/null +++ b/audioldm/utils.py @@ -0,0 +1,281 @@ +import contextlib +import importlib + +from inspect import isfunction +import os +import soundfile as sf +import time +import wave + +import urllib.request +import progressbar + +CACHE_DIR = os.getenv( + "AUDIOLDM_CACHE_DIR", + os.path.join(os.path.expanduser("~"), ".cache/audioldm")) + +def get_duration(fname): + with contextlib.closing(wave.open(fname, 'r')) as f: + frames = f.getnframes() + rate = f.getframerate() + return frames / float(rate) + +def get_bit_depth(fname): + with contextlib.closing(wave.open(fname, 'r')) as f: + bit_depth = f.getsampwidth() * 8 + return bit_depth + +def get_time(): + t = time.localtime() + return time.strftime("%d_%m_%Y_%H_%M_%S", t) + +def seed_everything(seed): + import random, os + import numpy as np + import torch + + random.seed(seed) + os.environ["PYTHONHASHSEED"] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = True + + +def save_wave(waveform, savepath, name="outwav"): + if type(name) is not list: + name = [name] * waveform.shape[0] + + for i in range(waveform.shape[0]): + path = os.path.join( + savepath, + "%s_%s.wav" + % ( + os.path.basename(name[i]) + if (not ".wav" in name[i]) + else os.path.basename(name[i]).split(".")[0], + i, + ), + ) + print("Save audio to %s" % path) + sf.write(path, waveform[i, 0], samplerate=16000) + + +def exists(x): + return x is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") + return total_params + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +def instantiate_from_config(config): + if not "target" in config: + if config == "__is_first_stage__": + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def default_audioldm_config(model_name="audioldm-s-full"): + basic_config = { + "wave_file_save_path": "./output", + "id": { + "version": "v1", + "name": "default", + "root": "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/AudioLDM-python/config/default/latent_diffusion.yaml", + }, + "preprocessing": { + "audio": {"sampling_rate": 16000, "max_wav_value": 32768}, + "stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024}, + "mel": { + "n_mel_channels": 64, + "mel_fmin": 0, + "mel_fmax": 8000, + "freqm": 0, + "timem": 0, + "blur": False, + "mean": -4.63, + "std": 2.74, + "target_length": 1024, + }, + }, + "model": { + "device": "cuda", + "target": "audioldm.pipline.LatentDiffusion", + "params": { + "base_learning_rate": 5e-06, + "linear_start": 0.0015, + "linear_end": 0.0195, + "num_timesteps_cond": 1, + "log_every_t": 200, + "timesteps": 1000, + "first_stage_key": "fbank", + "cond_stage_key": "waveform", + "latent_t_size": 256, + "latent_f_size": 16, + "channels": 8, + "cond_stage_trainable": True, + "conditioning_key": "film", + "monitor": "val/loss_simple_ema", + "scale_by_std": True, + "unet_config": { + "target": "audioldm.latent_diffusion.openaimodel.UNetModel", + "params": { + "image_size": 64, + "extra_film_condition_dim": 512, + "extra_film_use_concat": True, + "in_channels": 8, + "out_channels": 8, + "model_channels": 128, + "attention_resolutions": [8, 4, 2], + "num_res_blocks": 2, + "channel_mult": [1, 2, 3, 5], + "num_head_channels": 32, + "use_spatial_transformer": True, + }, + }, + "first_stage_config": { + "base_learning_rate": 4.5e-05, + "target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL", + "params": { + "monitor": "val/rec_loss", + "image_key": "fbank", + "subband": 1, + "embed_dim": 8, + "time_shuffle": 1, + "ddconfig": { + "double_z": True, + "z_channels": 8, + "resolution": 256, + "downsample_time": False, + "in_channels": 1, + "out_ch": 1, + "ch": 128, + "ch_mult": [1, 2, 4], + "num_res_blocks": 2, + "attn_resolutions": [], + "dropout": 0.0, + }, + }, + }, + "cond_stage_config": { + "target": "audioldm.clap.encoders.CLAPAudioEmbeddingClassifierFreev2", + "params": { + "key": "waveform", + "sampling_rate": 16000, + "embed_mode": "audio", + "unconditional_prob": 0.1, + }, + }, + }, + }, + } + + if("-l-" in model_name): + basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 256 + basic_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = 64 + elif("-m-" in model_name): + basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 192 + basic_config["model"]["params"]["cond_stage_config"]["params"]["amodel"] = "HTSAT-base" # This model use a larger HTAST + + return basic_config + +def get_metadata(): + return { + "audioldm-s-full": { + "path": os.path.join( + CACHE_DIR, + "audioldm-s-full.ckpt", + ), + "url": "https://zenodo.org/record/7600541/files/audioldm-s-full?download=1", + }, + "audioldm-l-full": { + "path": os.path.join( + CACHE_DIR, + "audioldm-l-full.ckpt", + ), + "url": "https://zenodo.org/record/7698295/files/audioldm-full-l.ckpt?download=1", + }, + "audioldm-s-full-v2": { + "path": os.path.join( + CACHE_DIR, + "audioldm-s-full-v2.ckpt", + ), + "url": "https://zenodo.org/record/7698295/files/audioldm-full-s-v2.ckpt?download=1", + }, + "audioldm-m-text-ft": { + "path": os.path.join( + CACHE_DIR, + "audioldm-m-text-ft.ckpt", + ), + "url": "https://zenodo.org/record/7813012/files/audioldm-m-text-ft.ckpt?download=1", + }, + "audioldm-s-text-ft": { + "path": os.path.join( + CACHE_DIR, + "audioldm-s-text-ft.ckpt", + ), + "url": "https://zenodo.org/record/7813012/files/audioldm-s-text-ft.ckpt?download=1", + }, + "audioldm-m-full": { + "path": os.path.join( + CACHE_DIR, + "audioldm-m-full.ckpt", + ), + "url": "https://zenodo.org/record/7813012/files/audioldm-m-full.ckpt?download=1", + }, + } + +class MyProgressBar(): + def __init__(self): + self.pbar = None + + def __call__(self, block_num, block_size, total_size): + if not self.pbar: + self.pbar=progressbar.ProgressBar(maxval=total_size) + self.pbar.start() + + downloaded = block_num * block_size + if downloaded < total_size: + self.pbar.update(downloaded) + else: + self.pbar.finish() + +def download_checkpoint(checkpoint_name="audioldm-s-full"): + meta = get_metadata() + if(checkpoint_name not in meta.keys()): + print("The model name you provided is not supported. Please use one of the following: ", meta.keys()) + + if not os.path.exists(meta[checkpoint_name]["path"]) or os.path.getsize(meta[checkpoint_name]["path"]) < 2*10**9: + os.makedirs(os.path.dirname(meta[checkpoint_name]["path"]), exist_ok=True) + print(f"Downloading the main structure of {checkpoint_name} into {os.path.dirname(meta[checkpoint_name]['path'])}") + + urllib.request.urlretrieve(meta[checkpoint_name]["url"], meta[checkpoint_name]["path"], MyProgressBar()) + print( + "Weights downloaded in: {} Size: {}".format( + meta[checkpoint_name]["path"], + os.path.getsize(meta[checkpoint_name]["path"]), + ) + ) + \ No newline at end of file diff --git a/audioldm/variational_autoencoder/__init__.py b/audioldm/variational_autoencoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..08b2a9b9698e02918d7b0dd9fe0431b2847e5aa2 --- /dev/null +++ b/audioldm/variational_autoencoder/__init__.py @@ -0,0 +1 @@ +from .autoencoder import AutoencoderKL \ No newline at end of file diff --git a/audioldm/variational_autoencoder/__pycache__/__init__.cpython-310.pyc b/audioldm/variational_autoencoder/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bb81d2d1b8f4e3d6bb161d5861ff6494c1bdecbf Binary files /dev/null and b/audioldm/variational_autoencoder/__pycache__/__init__.cpython-310.pyc differ diff --git a/audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-310.pyc b/audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2ec08171f8ba332e1bc509325ef625248ec081e Binary files /dev/null and b/audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-310.pyc differ diff --git a/audioldm/variational_autoencoder/__pycache__/distributions.cpython-310.pyc b/audioldm/variational_autoencoder/__pycache__/distributions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6cb6aa80272bf44284bbf369f9cee9b2f48cc601 Binary files /dev/null and b/audioldm/variational_autoencoder/__pycache__/distributions.cpython-310.pyc differ diff --git a/audioldm/variational_autoencoder/__pycache__/modules.cpython-310.pyc b/audioldm/variational_autoencoder/__pycache__/modules.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..64a50a7a5bf52af461703ffc4c0a562297b38cff Binary files /dev/null and b/audioldm/variational_autoencoder/__pycache__/modules.cpython-310.pyc differ diff --git a/audioldm/variational_autoencoder/autoencoder.py b/audioldm/variational_autoencoder/autoencoder.py new file mode 100644 index 0000000000000000000000000000000000000000..9dadc849da65d1f9eb82dc75dc777250bf738151 --- /dev/null +++ b/audioldm/variational_autoencoder/autoencoder.py @@ -0,0 +1,135 @@ +import torch +from audioldm.latent_diffusion.ema import * +from audioldm.variational_autoencoder.modules import Encoder, Decoder +from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution + +from audioldm.hifigan.utilities import get_vocoder, vocoder_infer + + +class AutoencoderKL(nn.Module): + def __init__( + self, + ddconfig=None, + lossconfig=None, + image_key="fbank", + embed_dim=None, + time_shuffle=1, + subband=1, + ckpt_path=None, + reload_from_ckpt=None, + ignore_keys=[], + colorize_nlabels=None, + monitor=None, + base_learning_rate=1e-5, + scale_factor=1 + ): + super().__init__() + + self.encoder = Encoder(**ddconfig) + self.decoder = Decoder(**ddconfig) + + self.subband = int(subband) + + if self.subband > 1: + print("Use subband decomposition %s" % self.subband) + + self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) + + self.vocoder = get_vocoder(None, "cpu") + self.embed_dim = embed_dim + + if monitor is not None: + self.monitor = monitor + + self.time_shuffle = time_shuffle + self.reload_from_ckpt = reload_from_ckpt + self.reloaded = False + self.mean, self.std = None, None + + self.scale_factor = scale_factor + + def encode(self, x): + # x = self.time_shuffle_operation(x) + x = self.freq_split_subband(x) + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + return posterior + + def decode(self, z): + z = self.post_quant_conv(z) + dec = self.decoder(z) + dec = self.freq_merge_subband(dec) + return dec + + def decode_to_waveform(self, dec): + dec = dec.squeeze(1).permute(0, 2, 1) + wav_reconstruction = vocoder_infer(dec, self.vocoder) + return wav_reconstruction + + def forward(self, input, sample_posterior=True): + posterior = self.encode(input) + if sample_posterior: + z = posterior.sample() + else: + z = posterior.mode() + + if self.flag_first_run: + print("Latent size: ", z.size()) + self.flag_first_run = False + + dec = self.decode(z) + + return dec, posterior + + def freq_split_subband(self, fbank): + if self.subband == 1 or self.image_key != "stft": + return fbank + + bs, ch, tstep, fbins = fbank.size() + + assert fbank.size(-1) % self.subband == 0 + assert ch == 1 + + return ( + fbank.squeeze(1) + .reshape(bs, tstep, self.subband, fbins // self.subband) + .permute(0, 2, 1, 3) + ) + + def freq_merge_subband(self, subband_fbank): + if self.subband == 1 or self.image_key != "stft": + return subband_fbank + assert subband_fbank.size(1) == self.subband # Channel dimension + bs, sub_ch, tstep, fbins = subband_fbank.size() + return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1) + + def device(self): + return next(self.parameters()).device + + @torch.no_grad() + def encode_first_stage(self, x): + return self.encode(x) + + @torch.no_grad() + def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, "b h w c -> b c h w").contiguous() + + z = 1.0 / self.scale_factor * z + return self.decode(z) + + def get_first_stage_encoding(self, encoder_posterior): + if isinstance(encoder_posterior, DiagonalGaussianDistribution): + z = encoder_posterior.sample() + elif isinstance(encoder_posterior, torch.Tensor): + z = encoder_posterior + else: + raise NotImplementedError( + f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" + ) + return self.scale_factor * z \ No newline at end of file diff --git a/audioldm/variational_autoencoder/distributions.py b/audioldm/variational_autoencoder/distributions.py new file mode 100644 index 0000000000000000000000000000000000000000..58eb535e7769f402169ddff77ee45c96ba3650d9 --- /dev/null +++ b/audioldm/variational_autoencoder/distributions.py @@ -0,0 +1,102 @@ +import torch +import numpy as np + + +class AbstractDistribution: + def sample(self): + raise NotImplementedError() + + def mode(self): + raise NotImplementedError() + + +class DiracDistribution(AbstractDistribution): + def __init__(self, value): + self.value = value + + def sample(self): + return self.value + + def mode(self): + return self.value + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean).to( + device=self.parameters.device + ) + + def sample(self): + x = self.mean + self.std * torch.randn(self.mean.shape).to( + device=self.parameters.device + ) + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.0]) + else: + if other is None: + return 0.5 * torch.mean( + torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, + dim=[1, 2, 3], + ) + else: + return 0.5 * torch.mean( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var + - 1.0 + - self.logvar + + other.logvar, + dim=[1, 2, 3], + ) + + def nll(self, sample, dims=[1, 2, 3]): + if self.deterministic: + return torch.Tensor([0.0]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum( + logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, + dim=dims, + ) + + def mode(self): + return self.mean + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 + Compute the KL divergence between two gaussians. + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, torch.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for torch.exp(). + logvar1, logvar2 = [ + x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) + for x in (logvar1, logvar2) + ] + + return 0.5 * ( + -1.0 + + logvar2 + - logvar1 + + torch.exp(logvar1 - logvar2) + + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) + ) diff --git a/audioldm/variational_autoencoder/modules.py b/audioldm/variational_autoencoder/modules.py new file mode 100644 index 0000000000000000000000000000000000000000..e48386d045c1d0e159de33db02af1035159c3447 --- /dev/null +++ b/audioldm/variational_autoencoder/modules.py @@ -0,0 +1,1066 @@ +# pytorch_diffusion + derived encoder decoder +import math +import torch +import torch.nn as nn +import numpy as np +from einops import rearrange + +from audioldm.utils import instantiate_from_config +from audioldm.latent_diffusion.attention import LinearAttention + + +def get_timestep_embedding(timesteps, embedding_dim): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: + From Fairseq. + Build sinusoidal embeddings. + This matches the implementation in tensor2tensor, but differs slightly + from the description in Section 3.5 of "Attention Is All You Need". + """ + assert len(timesteps.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) + emb = emb.to(device=timesteps.device) + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) + return emb + + +def nonlinearity(x): + # swish + return x * torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return torch.nn.GroupNorm( + num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + return x + + +class UpsampleTimeStride4(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=5, stride=1, padding=2 + ) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=(4.0, 2.0), mode="nearest") + if self.with_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # Do time downsampling here + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=2, padding=0 + ) + + def forward(self, x): + if self.with_conv: + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + + +class DownsampleTimeStride4(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # Do time downsampling here + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=5, stride=(4, 2), padding=1 + ) + + def forward(self, x): + if self.with_conv: + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=(4, 2), stride=(4, 2)) + return x + + +class ResnetBlock(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout, + temb_channels=512, + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if temb_channels > 0: + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d( + out_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + else: + self.nin_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class LinAttnBlock(LinearAttention): + """to match AttnBlock usage""" + + def __init__(self, in_channels): + super().__init__(dim=in_channels, heads=1, dim_head=in_channels) + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h * w).contiguous() + q = q.permute(0, 2, 1).contiguous() # b,hw,c + k = k.reshape(b, c, h * w).contiguous() # b,c,hw + w_ = torch.bmm(q, k).contiguous() # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h * w).contiguous() + w_ = w_.permute(0, 2, 1).contiguous() # b,hw,hw (first hw of k, second of q) + h_ = torch.bmm( + v, w_ + ).contiguous() # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + h_ = h_.reshape(b, c, h, w).contiguous() + + h_ = self.proj_out(h_) + + return x + h_ + + +def make_attn(in_channels, attn_type="vanilla"): + assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown" + # print(f"making attention of type '{attn_type}' with {in_channels} in_channels") + if attn_type == "vanilla": + return AttnBlock(in_channels) + elif attn_type == "none": + return nn.Identity(in_channels) + else: + return LinAttnBlock(in_channels) + + +class Model(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + use_timestep=True, + use_linear_attn=False, + attn_type="vanilla", + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = self.ch * 4 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + self.use_timestep = use_timestep + if self.use_timestep: + # timestep embedding + self.temb = nn.Module() + self.temb.dense = nn.ModuleList( + [ + torch.nn.Linear(self.ch, self.temb_ch), + torch.nn.Linear(self.temb_ch, self.temb_ch), + ] + ) + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + skip_in = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + if i_block == self.num_res_blocks: + skip_in = ch * in_ch_mult[i_level] + block.append( + ResnetBlock( + in_channels=block_in + skip_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x, t=None, context=None): + # assert x.shape[2] == x.shape[3] == self.resolution + if context is not None: + # assume aligned context, cat along channel axis + x = torch.cat((x, context), dim=1) + if self.use_timestep: + # timestep embedding + assert t is not None + temb = get_timestep_embedding(t, self.ch) + temb = self.temb.dense[0](temb) + temb = nonlinearity(temb) + temb = self.temb.dense[1](temb) + else: + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block]( + torch.cat([h, hs.pop()], dim=1), temb + ) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + def get_last_layer(self): + return self.conv_out.weight + + +class Encoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + double_z=True, + use_linear_attn=False, + attn_type="vanilla", + downsample_time_stride4_levels=[], + **ignore_kwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.downsample_time_stride4_levels = downsample_time_stride4_levels + + if len(self.downsample_time_stride4_levels) > 0: + assert max(self.downsample_time_stride4_levels) < self.num_resolutions, ( + "The level to perform downsample 4 operation need to be smaller than the total resolution number %s" + % str(self.num_resolutions) + ) + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + if i_level in self.downsample_time_stride4_levels: + down.downsample = DownsampleTimeStride4(block_in, resamp_with_conv) + else: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, + 2 * z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + def forward(self, x): + # timestep embedding + temb = None + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class Decoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + give_pre_end=False, + tanh_out=False, + use_linear_attn=False, + downsample_time_stride4_levels=[], + attn_type="vanilla", + **ignorekwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + self.downsample_time_stride4_levels = downsample_time_stride4_levels + + if len(self.downsample_time_stride4_levels) > 0: + assert max(self.downsample_time_stride4_levels) < self.num_resolutions, ( + "The level to perform downsample 4 operation need to be smaller than the total resolution number %s" + % str(self.num_resolutions) + ) + + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,) + tuple(ch_mult) + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + # print("Working with z of shape {} = {} dimensions.".format( + # self.z_shape, np.prod(self.z_shape))) + + # z to block_in + self.conv_in = torch.nn.Conv2d( + z_channels, block_in, kernel_size=3, stride=1, padding=1 + ) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + if i_level - 1 in self.downsample_time_stride4_levels: + up.upsample = UpsampleTimeStride4(block_in, resamp_with_conv) + else: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, z): + # assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + + # middle + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h, temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + if self.tanh_out: + h = torch.tanh(h) + return h + + +class SimpleDecoder(nn.Module): + def __init__(self, in_channels, out_channels, *args, **kwargs): + super().__init__() + self.model = nn.ModuleList( + [ + nn.Conv2d(in_channels, in_channels, 1), + ResnetBlock( + in_channels=in_channels, + out_channels=2 * in_channels, + temb_channels=0, + dropout=0.0, + ), + ResnetBlock( + in_channels=2 * in_channels, + out_channels=4 * in_channels, + temb_channels=0, + dropout=0.0, + ), + ResnetBlock( + in_channels=4 * in_channels, + out_channels=2 * in_channels, + temb_channels=0, + dropout=0.0, + ), + nn.Conv2d(2 * in_channels, in_channels, 1), + Upsample(in_channels, with_conv=True), + ] + ) + # end + self.norm_out = Normalize(in_channels) + self.conv_out = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + for i, layer in enumerate(self.model): + if i in [1, 2, 3]: + x = layer(x, None) + else: + x = layer(x) + + h = self.norm_out(x) + h = nonlinearity(h) + x = self.conv_out(h) + return x + + +class UpsampleDecoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + ch, + num_res_blocks, + resolution, + ch_mult=(2, 2), + dropout=0.0, + ): + super().__init__() + # upsampling + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + block_in = in_channels + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.res_blocks = nn.ModuleList() + self.upsample_blocks = nn.ModuleList() + for i_level in range(self.num_resolutions): + res_block = [] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + res_block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + self.res_blocks.append(nn.ModuleList(res_block)) + if i_level != self.num_resolutions - 1: + self.upsample_blocks.append(Upsample(block_in, True)) + curr_res = curr_res * 2 + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + # upsampling + h = x + for k, i_level in enumerate(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.res_blocks[i_level][i_block](h, None) + if i_level != self.num_resolutions - 1: + h = self.upsample_blocks[k](h) + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class LatentRescaler(nn.Module): + def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): + super().__init__() + # residual block, interpolate, residual block + self.factor = factor + self.conv_in = nn.Conv2d( + in_channels, mid_channels, kernel_size=3, stride=1, padding=1 + ) + self.res_block1 = nn.ModuleList( + [ + ResnetBlock( + in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0, + ) + for _ in range(depth) + ] + ) + self.attn = AttnBlock(mid_channels) + self.res_block2 = nn.ModuleList( + [ + ResnetBlock( + in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0, + ) + for _ in range(depth) + ] + ) + + self.conv_out = nn.Conv2d( + mid_channels, + out_channels, + kernel_size=1, + ) + + def forward(self, x): + x = self.conv_in(x) + for block in self.res_block1: + x = block(x, None) + x = torch.nn.functional.interpolate( + x, + size=( + int(round(x.shape[2] * self.factor)), + int(round(x.shape[3] * self.factor)), + ), + ) + x = self.attn(x).contiguous() + for block in self.res_block2: + x = block(x, None) + x = self.conv_out(x) + return x + + +class MergedRescaleEncoder(nn.Module): + def __init__( + self, + in_channels, + ch, + resolution, + out_ch, + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + ch_mult=(1, 2, 4, 8), + rescale_factor=1.0, + rescale_module_depth=1, + ): + super().__init__() + intermediate_chn = ch * ch_mult[-1] + self.encoder = Encoder( + in_channels=in_channels, + num_res_blocks=num_res_blocks, + ch=ch, + ch_mult=ch_mult, + z_channels=intermediate_chn, + double_z=False, + resolution=resolution, + attn_resolutions=attn_resolutions, + dropout=dropout, + resamp_with_conv=resamp_with_conv, + out_ch=None, + ) + self.rescaler = LatentRescaler( + factor=rescale_factor, + in_channels=intermediate_chn, + mid_channels=intermediate_chn, + out_channels=out_ch, + depth=rescale_module_depth, + ) + + def forward(self, x): + x = self.encoder(x) + x = self.rescaler(x) + return x + + +class MergedRescaleDecoder(nn.Module): + def __init__( + self, + z_channels, + out_ch, + resolution, + num_res_blocks, + attn_resolutions, + ch, + ch_mult=(1, 2, 4, 8), + dropout=0.0, + resamp_with_conv=True, + rescale_factor=1.0, + rescale_module_depth=1, + ): + super().__init__() + tmp_chn = z_channels * ch_mult[-1] + self.decoder = Decoder( + out_ch=out_ch, + z_channels=tmp_chn, + attn_resolutions=attn_resolutions, + dropout=dropout, + resamp_with_conv=resamp_with_conv, + in_channels=None, + num_res_blocks=num_res_blocks, + ch_mult=ch_mult, + resolution=resolution, + ch=ch, + ) + self.rescaler = LatentRescaler( + factor=rescale_factor, + in_channels=z_channels, + mid_channels=tmp_chn, + out_channels=tmp_chn, + depth=rescale_module_depth, + ) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Upsampler(nn.Module): + def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): + super().__init__() + assert out_size >= in_size + num_blocks = int(np.log2(out_size // in_size)) + 1 + factor_up = 1.0 + (out_size % in_size) + print( + f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}" + ) + self.rescaler = LatentRescaler( + factor=factor_up, + in_channels=in_channels, + mid_channels=2 * in_channels, + out_channels=in_channels, + ) + self.decoder = Decoder( + out_ch=out_channels, + resolution=out_size, + z_channels=in_channels, + num_res_blocks=2, + attn_resolutions=[], + in_channels=None, + ch=in_channels, + ch_mult=[ch_mult for _ in range(num_blocks)], + ) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Resize(nn.Module): + def __init__(self, in_channels=None, learned=False, mode="bilinear"): + super().__init__() + self.with_conv = learned + self.mode = mode + if self.with_conv: + print( + f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode" + ) + raise NotImplementedError() + assert in_channels is not None + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=4, stride=2, padding=1 + ) + + def forward(self, x, scale_factor=1.0): + if scale_factor == 1.0: + return x + else: + x = torch.nn.functional.interpolate( + x, mode=self.mode, align_corners=False, scale_factor=scale_factor + ) + return x + + +class FirstStagePostProcessor(nn.Module): + def __init__( + self, + ch_mult: list, + in_channels, + pretrained_model: nn.Module = None, + reshape=False, + n_channels=None, + dropout=0.0, + pretrained_config=None, + ): + super().__init__() + if pretrained_config is None: + assert ( + pretrained_model is not None + ), 'Either "pretrained_model" or "pretrained_config" must not be None' + self.pretrained_model = pretrained_model + else: + assert ( + pretrained_config is not None + ), 'Either "pretrained_model" or "pretrained_config" must not be None' + self.instantiate_pretrained(pretrained_config) + + self.do_reshape = reshape + + if n_channels is None: + n_channels = self.pretrained_model.encoder.ch + + self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2) + self.proj = nn.Conv2d( + in_channels, n_channels, kernel_size=3, stride=1, padding=1 + ) + + blocks = [] + downs = [] + ch_in = n_channels + for m in ch_mult: + blocks.append( + ResnetBlock( + in_channels=ch_in, out_channels=m * n_channels, dropout=dropout + ) + ) + ch_in = m * n_channels + downs.append(Downsample(ch_in, with_conv=False)) + + self.model = nn.ModuleList(blocks) + self.downsampler = nn.ModuleList(downs) + + def instantiate_pretrained(self, config): + model = instantiate_from_config(config) + self.pretrained_model = model.eval() + # self.pretrained_model.train = False + for param in self.pretrained_model.parameters(): + param.requires_grad = False + + @torch.no_grad() + def encode_with_pretrained(self, x): + c = self.pretrained_model.encode(x) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + return c + + def forward(self, x): + z_fs = self.encode_with_pretrained(x) + z = self.proj_norm(z_fs) + z = self.proj(z) + z = nonlinearity(z) + + for submodel, downmodel in zip(self.model, self.downsampler): + z = submodel(z, temb=None) + z = downmodel(z) + + if self.do_reshape: + z = rearrange(z, "b c h w -> b (h w) c") + return z diff --git a/configs/diffusion_model_config.json b/configs/diffusion_model_config.json new file mode 100644 index 0000000000000000000000000000000000000000..b38463e010df1ac433d9bb7326cf3bf4e82fa754 --- /dev/null +++ b/configs/diffusion_model_config.json @@ -0,0 +1,46 @@ +{ + "_class_name": "UNet2DConditionModel", + "_diffusers_version": "0.10.0.dev0", + "act_fn": "silu", + "attention_head_dim": [ + 5, + 10, + 10, + 20 + ], + "block_out_channels": [ + 320, + 640, + 640, + 1280 + ], + "center_input_sample": false, + "cross_attention_dim": 1024, + "down_block_types": [ + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D" + ], + "downsample_padding": 1, + "dual_cross_attention": false, + "flip_sin_to_cos": true, + "freq_shift": 0, + "in_channels": 16, + "layers_per_block": 2, + "mid_block_scale_factor": 1, + "norm_eps": 1e-05, + "norm_num_groups": 32, + "num_class_embeds": null, + "only_cross_attention": false, + "out_channels": 16, + "sample_size": [32, 2], + "up_block_types": [ + "UpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D" + ], + "use_linear_projection": true, + "upcast_attention": true +} diff --git a/configs/diffusion_model_config_large.json b/configs/diffusion_model_config_large.json new file mode 100644 index 0000000000000000000000000000000000000000..41efea4aeb01b3beba167c834d67076878d67936 --- /dev/null +++ b/configs/diffusion_model_config_large.json @@ -0,0 +1,46 @@ +{ + "_class_name": "UNet2DConditionModel", + "_diffusers_version": "0.10.0.dev0", + "act_fn": "silu", + "attention_head_dim": [ + 5, + 10, + 20, + 20 + ], + "block_out_channels": [ + 320, + 640, + 640, + 1280 + ], + "center_input_sample": false, + "cross_attention_dim": 1024, + "down_block_types": [ + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D" + ], + "downsample_padding": 1, + "dual_cross_attention": false, + "flip_sin_to_cos": true, + "freq_shift": 0, + "in_channels": 8, + "layers_per_block": 2, + "mid_block_scale_factor": 1, + "norm_eps": 1e-05, + "norm_num_groups": 32, + "num_class_embeds": null, + "only_cross_attention": false, + "out_channels": 8, + "sample_size": [32, 2], + "up_block_types": [ + "UpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D" + ], + "use_linear_projection": true, + "upcast_attention": true +} diff --git a/configs/diffusion_model_config_large_2048.json b/configs/diffusion_model_config_large_2048.json new file mode 100644 index 0000000000000000000000000000000000000000..1b3c3aa82591555a9a4231ab23565c19986be80f --- /dev/null +++ b/configs/diffusion_model_config_large_2048.json @@ -0,0 +1,46 @@ +{ + "_class_name": "UNet2DConditionModel", + "_diffusers_version": "0.10.0.dev0", + "act_fn": "silu", + "attention_head_dim": [ + 5, + 10, + 20, + 20 + ], + "block_out_channels": [ + 320, + 640, + 640, + 1280 + ], + "center_input_sample": false, + "cross_attention_dim": 2048, + "down_block_types": [ + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D" + ], + "downsample_padding": 1, + "dual_cross_attention": false, + "flip_sin_to_cos": true, + "freq_shift": 0, + "in_channels": 8, + "layers_per_block": 2, + "mid_block_scale_factor": 1, + "norm_eps": 1e-05, + "norm_num_groups": 32, + "num_class_embeds": null, + "only_cross_attention": false, + "out_channels": 8, + "sample_size": [32, 2], + "up_block_types": [ + "UpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D" + ], + "use_linear_projection": true, + "upcast_attention": true +} diff --git a/configs/diffusion_model_config_pretrain.json b/configs/diffusion_model_config_pretrain.json new file mode 100644 index 0000000000000000000000000000000000000000..c97fd7fb4588f44008c7fc65ec4d7a84f79ab66f --- /dev/null +++ b/configs/diffusion_model_config_pretrain.json @@ -0,0 +1,61 @@ +{ + "_class_name": "UNet2DConditionModel", + "_diffusers_version": "0.20.0.dev0", + "act_fn": "silu", + "addition_embed_type": null, + "addition_embed_type_num_heads": 64, + "addition_time_embed_dim": null, + "attention_head_dim": 8, + "block_out_channels": [ + 128, + 256, + 384, + 640 + ], + "center_input_sample": false, + "conv_in_kernel": 3, + "conv_out_kernel": 3, + "cross_attention_dim": 1024, + "cross_attention_norm": null, + "down_block_types": [ + "DownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D" + ], + "downsample_padding": 1, + "dual_cross_attention": false, + "encoder_hid_dim": null, + "encoder_hid_dim_type": null, + "flip_sin_to_cos": true, + "freq_shift": 0, + "in_channels": 8, + "layers_per_block": 2, + "mid_block_only_cross_attention": null, + "mid_block_scale_factor": 1, + "mid_block_type": "UNetMidBlock2DCrossAttn", + "norm_eps": 1e-05, + "norm_num_groups": 32, + "num_attention_heads": null, + "num_class_embeds": null, + "only_cross_attention": false, + "out_channels": 8, + "resnet_out_scale_factor": 1.0, + "resnet_skip_time_act": false, + "resnet_time_scale_shift": "default", + "sample_size": 128, + "time_cond_proj_dim": null, + "time_embedding_act_fn": null, + "time_embedding_dim": null, + "time_embedding_type": "positional", + "timestep_post_act": null, + "transformer_layers_per_block": 1, + "up_block_types": [ + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "UpBlock2D" + ], + "upcast_attention": false, + "use_linear_projection": false +} diff --git a/configs/stable-diffusion-2-1.scheduler_48k.json b/configs/stable-diffusion-2-1.scheduler_48k.json new file mode 100644 index 0000000000000000000000000000000000000000..829265aba074379b79b6795bca25f450e5949b8c --- /dev/null +++ b/configs/stable-diffusion-2-1.scheduler_48k.json @@ -0,0 +1,14 @@ +{ + "_class_name": "DDPMScheduler", + "_diffusers_version": "0.8.0", + "beta_end": 0.02, + "beta_schedule": "scaled_linear", + "beta_start": 0.0015, + "clip_sample": false, + "num_train_timesteps": 1000, + "prediction_type": "v_prediction", + "set_alpha_to_one": false, + "skip_prk_steps": true, + "steps_offset": 1, + "trained_betas": null +} diff --git a/configs/stable_diffusion_2.1.json b/configs/stable_diffusion_2.1.json new file mode 100644 index 0000000000000000000000000000000000000000..9b1458658e8651398962171a8c5c56c5c0bd5aea --- /dev/null +++ b/configs/stable_diffusion_2.1.json @@ -0,0 +1,46 @@ +{ + "_class_name": "UNet2DConditionModel", + "_diffusers_version": "0.10.0.dev0", + "act_fn": "silu", + "attention_head_dim": [ + 5, + 10, + 20, + 20 + ], + "block_out_channels": [ + 320, + 640, + 1280, + 1280 + ], + "center_input_sample": false, + "cross_attention_dim": 1024, + "down_block_types": [ + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D" + ], + "downsample_padding": 1, + "dual_cross_attention": false, + "flip_sin_to_cos": true, + "freq_shift": 0, + "in_channels": 4, + "layers_per_block": 2, + "mid_block_scale_factor": 1, + "norm_eps": 1e-05, + "norm_num_groups": 32, + "num_class_embeds": null, + "only_cross_attention": false, + "out_channels": 4, + "sample_size": 96, + "up_block_types": [ + "UpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D" + ], + "use_linear_projection": true, + "upcast_attention": true +} diff --git a/configs/stable_diffusion_sdxl_scheduler_config.json b/configs/stable_diffusion_sdxl_scheduler_config.json new file mode 100644 index 0000000000000000000000000000000000000000..e5bc8421e047838523be7acfb6720f167f7382f6 --- /dev/null +++ b/configs/stable_diffusion_sdxl_scheduler_config.json @@ -0,0 +1,18 @@ +{ + "_class_name": "EulerDiscreteScheduler", + "_diffusers_version": "0.19.0.dev0", + "beta_end": 0.012, + "beta_schedule": "scaled_linear", + "beta_start": 0.00085, + "clip_sample": false, + "interpolation_type": "linear", + "num_train_timesteps": 1000, + "prediction_type": "epsilon", + "sample_max_value": 1.0, + "set_alpha_to_one": false, + "skip_prk_steps": true, + "steps_offset": 1, + "timestep_spacing": "leading", + "trained_betas": null, + "use_karras_sigmas": false +} diff --git a/data/-26aVYRtEAc_000030.mp4 b/data/-26aVYRtEAc_000030.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..1eb4d84fd3980f36ae1903cb970d8935bad678cc --- /dev/null +++ b/data/-26aVYRtEAc_000030.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d14a1a521462ccba17f07c8abe5069d91e10033dd701f17b0a9f46c49039703 +size 1037905 diff --git a/data/-BAKe6QGTUk_000030.mp4 b/data/-BAKe6QGTUk_000030.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..c0f4b5b2e27d52ee31685e322aa0cabcbe89450c Binary files /dev/null and b/data/-BAKe6QGTUk_000030.mp4 differ diff --git a/data/-yoaSondvkw_000071.mp4 b/data/-yoaSondvkw_000071.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..321f50e97456eb3d3df0d9a81217339435a1f01f --- /dev/null +++ b/data/-yoaSondvkw_000071.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d27b48c1b1c0c6ac5ad04c73f1a035d58ac7fd94e47f90e3b55539aecf2560d5 +size 1989725 diff --git a/data/0Bp8c3PfAAA_000053.mp4 b/data/0Bp8c3PfAAA_000053.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..0ab685cdbb465fdf0c810ef92a2b72126bba8ae6 --- /dev/null +++ b/data/0Bp8c3PfAAA_000053.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9cd18cf3c1cff720d7cdc4fec588d0f75294481cf6a69dd8d8b8f3d9edfd0c84 +size 2485403 diff --git a/data/0DCit2EBtjs_000030.mp4 b/data/0DCit2EBtjs_000030.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..9b86f756b4017551ab41b896ef86445edd344336 Binary files /dev/null and b/data/0DCit2EBtjs_000030.mp4 differ diff --git a/inference_from_video.py b/inference_from_video.py new file mode 100644 index 0000000000000000000000000000000000000000..96cbbbd7c020ea6580aa894d5c8a344af7ba30e5 --- /dev/null +++ b/inference_from_video.py @@ -0,0 +1,221 @@ +import os +import copy +import json +import time +import torch +import argparse +from PIL import Image +import numpy as np +import soundfile as sf +#import wandb +from tqdm import tqdm +from diffusers import DDPMScheduler +from models import build_pretrained_models, AudioDiffusion +from transformers import AutoProcessor, ClapModel +import torchaudio +import tools.torch_tools as torch_tools +from datasets import load_dataset + +class dotdict(dict): + """dot.notation access to dictionary attributes""" + __getattr__ = dict.get + __setattr__ = dict.__setitem__ + __delattr__ = dict.__delitem__ + +def chunks(lst, n): + """Yield successive n-sized chunks from lst.""" + for i in range(0, len(lst), n): + yield lst[i:i + n] + +def parse_args(): + parser = argparse.ArgumentParser(description="Inference for text to audio generation task.") + parser.add_argument( + "--original_args", type=str, default=None, + help="Path for summary jsonl file saved during training." + ) + parser.add_argument( + "--model", type=str, default=None, + help="Path for saved model bin file." + ) + parser.add_argument( + "--vae_model", type=str, default="audioldm-s-full", + help="Path for saved model bin file." + ) + parser.add_argument( + "--num_steps", type=int, default=200, + help="How many denoising steps for generation.", + ) + parser.add_argument( + "--guidance", type=float, default=3, + help="Guidance scale for classifier free guidance." + ) + parser.add_argument( + "--batch_size", type=int, default=1, + help="Batch size for generation.", + ) + parser.add_argument( + "--num_samples", type=int, default=1, + help="How many samples per prompt.", + ) + parser.add_argument( + "--num_test_instances", type=int, default=-1, + help="How many test instances to evaluate.", + ) + parser.add_argument( + "--sample_rate", type=int, default=-1, + help="How many test instances to evaluate.", + ) + parser.add_argument( + "--save_dir", type=str, default="./outputs/tmp", + help="output save dir" + ) + parser.add_argument( + "--data_path", type=str, default="data/video_processed/video_gt_augment", + help="inference data path" + ) + + args = parser.parse_args() + + return args + +def main(): + args = parse_args() + + train_args = dotdict(json.loads(open(args.original_args).readlines()[0])) + if "hf_model" not in train_args: + train_args["hf_model"] = None + + # Load Models # + name = train_args.vae_model + vae, stft = build_pretrained_models(name) + vae, stft = vae.cuda(), stft.cuda() + model_class = AudioDiffusion + if train_args.ib: + print("*****USING MODEL IMAGEBIND*****") + from models_imagebind import AudioDiffusion_IB + model_class = AudioDiffusion if not train_args.ib else AudioDiffusion_IB + elif train_args.lb: + print("*****USING MODEL LANGUAGEBIND*****") + from models_languagebind import AudioDiffusion_LB + model_class = AudioDiffusion_LB + elif train_args.jepa: + print("*****USING MODEL JEPA*****") + from models_vjepa import AudioDiffusion_JEPA + model_class = AudioDiffusion_JEPA + + model = model_class( + train_args.fea_encoder_name, + train_args.scheduler_name, + train_args.unet_model_name, + train_args.unet_model_config, + train_args.snr_gamma, + train_args.freeze_text_encoder, + train_args.uncondition, + train_args.img_pretrained_model_path, + train_args.task, + train_args.embedding_dim, + train_args.pe + ) + + model.eval() + + # Load Trained Weight # + device = torch.device("cuda:0") #vae.device() + if args.model.endswith(".pt") or args.model.endswith(".bin"): + model.load_state_dict(torch.load(args.model), strict=False) + else: + from safetensors.torch import load_model + load_model(model, args.model, strict=False) + + model.to(device) + + scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler") + sample_rate = args.sample_rate + #evaluator = EvaluationHelper(16000, "cuda:0") + + + def audio_text_matching(waveforms, text, sample_freq=24000, max_len_in_seconds=10): + new_freq = 48000 + resampled = [] + + for wav in waveforms: + x = torchaudio.functional.resample(torch.tensor(wav, dtype=torch.float).reshape(1, -1), orig_freq=sample_freq, new_freq=new_freq)[0].numpy() + resampled.append(x[:new_freq*max_len_in_seconds]) + + inputs = clap_processor(text=text, audios=resampled, return_tensors="pt", padding=True, sampling_rate=48000) + inputs = {k: v.to(device) for k, v in inputs.items()} + + with torch.no_grad(): + outputs = clap(**inputs) + + logits_per_audio = outputs.logits_per_audio + ranks = torch.argsort(logits_per_audio.flatten(), descending=True).cpu().numpy() + return ranks + + # Load Data # + if train_args.prefix: + prefix = train_args.prefix + else: + prefix = "" + + # data_path = "data/video_test/" + data_path = args.data_path + wavname = [f"{name.split('.')[0]}.wav" for name in os.listdir(data_path)] + video_features = [] + for video_file in os.listdir(data_path): + video_path = os.path.join(data_path, video_file) + video_feature = torch_tools.load_video(video_path, frame_rate=2, size=224) + print(video_feature.shape) + video_features.append(video_feature) + + # Generate # + num_steps, guidance, batch_size, num_samples = args.num_steps, args.guidance, args.batch_size, args.num_samples + all_outputs = [] + + for k in tqdm(range(0, len(wavname), batch_size)): + + with torch.no_grad(): + # if train_args.task == 'image2audio': + # prompt = text_prompts[k: k+batch_size] + # imgs = [] + # for img_path in prompt: + # img = Image.open(img_path) + # imgs.append(np.array(img)) + # prompt = imgs + # elif train_args.task == 'video2audio': + prompt = video_features[k: k+batch_size] + + latents = model.inference(scheduler, None, prompt, None, num_steps, guidance, num_samples, disable_progress=True, device=device) + mel = vae.decode_first_stage(latents) + wave = vae.decode_to_waveform(mel) + + all_outputs += [item for item in wave] + + # Save # + exp_id = str(int(time.time())) + if not os.path.exists("outputs"): + os.makedirs("outputs") + + if num_samples == 1: + output_dir = "{}/{}_{}_steps_{}_guidance_{}_sampleRate_{}_augment".format(args.save_dir, exp_id, "_".join(args.model.split("/")[1:-1]), num_steps, guidance, sample_rate) + os.makedirs(output_dir, exist_ok=True) + for j, wav in enumerate(all_outputs): + sf.write("{}/{}".format(output_dir, wavname[j]), wav, samplerate=sample_rate) + + else: + for i in range(num_samples): + output_dir = "{}/{}_{}_steps_{}_guidance_{}_sampleRate_{}/rank_{}".format(args.save_dir, exp_id, "_".join(args.model.split("/")[1:-1]), num_steps, guidance, sample_rate, i+1) + os.makedirs(output_dir, exist_ok=True) + + groups = list(chunks(all_outputs, num_samples)) + for k in tqdm(range(len(groups))): + wavs_for_text = groups[k] + rank = audio_text_matching(wavs_for_text, text_prompts[k]) + ranked_wavs_for_text = [wavs_for_text[r] for r in rank] + + for i, wav in enumerate(ranked_wavs_for_text): + output_dir = "{}/{}_{}_steps_{}_guidance_{}_sampleRate_{}/rank_{}".format(args.save_dir, exp_id, "_".join(args.model.split("/")[1:-1]), num_steps, guidance, sample_rate, i+1) + sf.write("{}/{}".format(output_dir, wavname[k]), wav, samplerate=sample_rate) + +if __name__ == "__main__": + main() diff --git a/inference_from_video.sh b/inference_from_video.sh new file mode 100644 index 0000000000000000000000000000000000000000..027cd593387d7ab62f93881870503cbf12dbc44e --- /dev/null +++ b/inference_from_video.sh @@ -0,0 +1,21 @@ +steps=300 +guidance=3 +num_samples=1 +model="vta-ldm-clip4clip-v-large" +# model="vta_ldm_clip4clip_augment_pe" +# model="vta_ldm_clip4clip_augment_ib" +# model="vta_ldm_clip4clip_ib" +# model="vta_ldm_clip4clip_lb" +# model="vta_ldm_clip4clip_pe" +# model="vta_ldm_clip4clip_text" +# model="vta_ldm_youtube" +# model="vta_ldm_vjepa" +CUDA_VISIBLE_DEVICES=2 python3.10 inference_from_video.py --original_args="ckpt/$model/summary.jsonl" \ +--model="ckpt/$model/pytorch_model_2.bin" \ +--sample_rate 16000 \ +--data_path "data" \ +--save_dir outputs/$model \ +--num_steps $steps \ +--guidance $guidance \ +--num_samples $num_samples \ +--batch_size 8 diff --git a/models.py b/models.py new file mode 100644 index 0000000000000000000000000000000000000000..d669dc254ef433825092fe7d1bcdc2d148604456 --- /dev/null +++ b/models.py @@ -0,0 +1,616 @@ +import random +import numpy as np +from tqdm import tqdm +import os +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np +from einops import repeat +import time +from tools.torch_tools import wav_to_fbank, sinusoidal_positional_embedding + +from audioldm.audio.stft import TacotronSTFT +from audioldm.variational_autoencoder import AutoencoderKL +from audioldm.utils import default_audioldm_config, get_metadata + +from transformers import CLIPTokenizer, AutoTokenizer, T5Tokenizer +from transformers import CLIPTextModel, T5EncoderModel, AutoModel +from transformers import CLIPVisionModelWithProjection, CLIPTextModelWithProjection +from transformers import CLIPProcessor, CLIPModel + +import diffusers +from diffusers.utils.torch_utils import randn_tensor +from diffusers import DDPMScheduler, UNet2DConditionModel +from diffusers import AutoencoderKL as DiffuserAutoencoderKL +from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode, RandomResizedCrop +from diffusers import AudioLDMPipeline + +def build_pretrained_models(name): + checkpoint = torch.load(name, map_location="cpu") + scale_factor = checkpoint["state_dict"]["scale_factor"].item() + + vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k} + + config = default_audioldm_config(name) + vae_config = config["model"]["params"]["first_stage_config"]["params"] + vae_config["scale_factor"] = scale_factor + + vae = AutoencoderKL(**vae_config) + vae.load_state_dict(vae_state_dict) + + fn_STFT = TacotronSTFT( + config["preprocessing"]["stft"]["filter_length"], + config["preprocessing"]["stft"]["hop_length"], + config["preprocessing"]["stft"]["win_length"], + config["preprocessing"]["mel"]["n_mel_channels"], + config["preprocessing"]["audio"]["sampling_rate"], + config["preprocessing"]["mel"]["mel_fmin"], + config["preprocessing"]["mel"]["mel_fmax"], + ) + + vae.eval() + fn_STFT.eval() + return vae, fn_STFT + + +class EffNetb3(nn.Module): + def __init__(self, pretrained_model_path, embedding_dim=1024, pretrained=True): + super(EffNetb3, self).__init__() + self.model_name = 'effnetb3' + self.pretrained = pretrained + # Create model + # self.effnet = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b3', pretrained=self.pretrained) + # torch.save(self.effnet, 'model.pth') + self.effnet = torch.hub.load(pretrained_model_path, 'efficientnet_b3', trust_repo=True, source='local') + #self.effnet.conv_stem = nn.Conv2d(1, 40, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) + self.embedder = nn.Conv2d(384, embedding_dim, kernel_size=1, stride=1, padding=0) + + def forward(self, x): + #out = self.effnet(x) + out = self.effnet.conv_stem(x) + out = self.effnet.bn1(out) + out = self.effnet.act1(out) + for i in range(len(self.effnet.blocks)): + out = self.effnet.blocks[i](out) + out = self.embedder(out) + return out + + +class EffNetb3_last_layer(nn.Module): + def __init__(self, pretrained_model_path, embedding_dim=1024, pretrained=True): + super(EffNetb3_last_layer, self).__init__() + self.model_name = 'effnetb3' + self.pretrained = pretrained + self.effnet = torch.hub.load(pretrained_model_path, 'efficientnet_b3', trust_repo=True, source='local') + self.effnet.classifier = nn.Linear(1536, embedding_dim) + + def forward(self, x): + out = self.effnet(x) + return out.unsqueeze(-1) + + +class Clip4Video(nn.Module): + def __init__(self, model, embedding_dim=1024, pretrained=True, pe=False): + super(Clip4Video, self).__init__() + self.pretrained = pretrained + self.clip_vision = CLIPVisionModelWithProjection.from_pretrained(model) + self.clip_text = CLIPTextModelWithProjection.from_pretrained(model) + self.tokenizer = AutoTokenizer.from_pretrained(model) + + input_dim = 512 if "clip-vit-base" in model else 768 + self.linear_layer = nn.Linear(input_dim, embedding_dim) + self.pe = sinusoidal_positional_embedding(30, input_dim) if pe else None + print("*****PE*****") if pe else print("*****W/O PE*****") + + def forward(self, text=None, image=None, video=None): + assert text is not None or image is not None or video is not None, "At least one of text, image or video should be provided" + if text is not None and video is None: + inputs = self.tokenizer([text], padding=True, truncation=True, return_tensors="pt", max_length=77).to(self.clip_text.device) + out = self.clip_text(**inputs) + out = out.text_embeds.repeat(20, 1) + elif video is not None and text is None: + out = self.clip_vision(video.to(self.clip_vision.device)) # input video x: t * 3 * w * h + out = out.image_embeds # t * 512 + if self.pe is not None: + out = out + self.pe[:out.shape[0], :].to(self.clip_vision.device) + # out['last_hidden_state'].shape # t * 50 * 768 + # out['image_embeds'].shape # t * 512 + elif text is not None and video is not None: + text_inputs = self.tokenizer([text], padding=True, truncation=True, return_tensors="pt", max_length=77).to(self.clip_text.device) + video_out = self.clip_vision(video.to(self.clip_vision.device)) + video_out = video_out.image_embeds + text_out = self.clip_text(**text_inputs) + text_out = text_out.text_embeds.repeat(video_out.shape[0], 1) + # out = text_out + video_out + # concat + out = torch.cat([text_out, video_out], dim=0) + out = self.linear_layer(out) # t * 1024 + return out + + +class AudioDiffusion(nn.Module): + def __init__( + self, + fea_encoder_name, + scheduler_name, + unet_model_name=None, + unet_model_config_path=None, + snr_gamma=None, + freeze_text_encoder=True, + uncondition=False, + img_pretrained_model_path=None, + task=None, + embedding_dim=1024, + pe=False + ): + super().__init__() + + assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required" + + self.fea_encoder_name = fea_encoder_name + self.scheduler_name = scheduler_name + self.unet_model_name = unet_model_name + self.unet_model_config_path = unet_model_config_path + self.snr_gamma = snr_gamma + self.freeze_text_encoder = freeze_text_encoder + self.uncondition = uncondition + self.task = task + self.pe = pe + + # https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview + self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") + self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") + + if unet_model_config_path: + unet_config = UNet2DConditionModel.load_config(unet_model_config_path) + print("unet_config", unet_config) + self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet") + self.set_from = "random" + print("UNet initialized randomly.") + else: + self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet") + self.set_from = "pre-trained" + self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4)) + self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8)) + print("UNet initialized from stable diffusion checkpoint.") + + if self.task == "text2audio": + if "stable-diffusion" in self.fea_encoder_name: + self.tokenizer = CLIPTokenizer.from_pretrained(self.fea_encoder_name, subfolder="tokenizer") + self.text_encoder = CLIPTextModel.from_pretrained(self.fea_encoder_name, subfolder="text_encoder") + elif "t5" in self.fea_encoder_name and "Chinese" not in self.fea_encoder_name: + self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name) + self.text_encoder = T5EncoderModel.from_pretrained(self.fea_encoder_name) + elif "Chinese" in self.fea_encoder_name: + self.tokenizer = T5Tokenizer.from_pretrained(self.fea_encoder_name) + self.text_encoder = T5EncoderModel.from_pretrained(self.fea_encoder_name) + elif "clap" in self.fea_encoder_name: + self.tokenizer = RobertaTokenizer.from_pretrained("roberta-base") + self.CLAP_model = laion_clap.CLAP_Module(enable_fusion=False) + self.CLAP_model.load_ckpt(self.fea_encoder_name) + elif "clip-vit" in self.fea_encoder_name: + # self.CLIP_model = CLIPModel.from_pretrained(self.fea_encoder_name) + # self.CLIP_processor = CLIPProcessor.from_pretrained(self.fea_encoder_name) + self.CLIP_model = CLIPTextModelWithProjection.from_pretrained(self.fea_encoder_name) + self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name) + if "base" in self.fea_encoder_name: + self.linear_layer = nn.Linear(512, embedding_dim) + else: + self.linear_layer = nn.Linear(768, embedding_dim) + else: + self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name) + self.text_encoder = AutoModel.from_pretrained(self.fea_encoder_name) + elif self.task == "image2audio": + if "clip-vit" in self.fea_encoder_name: + self.CLIP_model = CLIPModel.from_pretrained(self.fea_encoder_name) + self.CLIP_processor = CLIPProcessor.from_pretrained(self.fea_encoder_name) + self.linear_layer = nn.Linear(512, embedding_dim) + # self.img_fea_extractor = EffNetb3(img_pretrained_model_path) + else: + self.img_fea_extractor = EffNetb3_last_layer(img_pretrained_model_path) + elif self.task == "video2audio": + self.vid_fea_extractor = Clip4Video(model=self.fea_encoder_name, embedding_dim=embedding_dim, pe=pe) + + def compute_snr(self, timesteps): + """ + Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 + """ + alphas_cumprod = self.noise_scheduler.alphas_cumprod + sqrt_alphas_cumprod = alphas_cumprod**0.5 + sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 + + # Expand the tensors. + # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 + sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() + while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): + sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] + alpha = sqrt_alphas_cumprod.expand(timesteps.shape) + + sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() + while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): + sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] + sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) + + # Compute SNR. + snr = (alpha / sigma) ** 2 + return snr + + def encode_text(self, prompt): + device = self.text_encoder.device + batch = self.tokenizer( + prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" + ) + input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) + + if self.freeze_text_encoder: + with torch.no_grad(): + encoder_hidden_states = self.text_encoder( + input_ids=input_ids, attention_mask=attention_mask + )[0] + else: + encoder_hidden_states = self.text_encoder( + input_ids=input_ids, attention_mask=attention_mask + )[0] + + boolean_encoder_mask = (attention_mask == 1).to(device) + return encoder_hidden_states, boolean_encoder_mask + + def encode_text_CLAP(self, prompt): + device = self.text_encoder.device + batch = self.tokenizer(prompt, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt") + input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) + + if self.freeze_text_encoder: + with torch.no_grad(): + encoder_hidden_states = self.CLAP_model.model.get_text_embedding(prompt) + else: + encoder_hidden_states = self.CLAP_model.model.get_text_embedding(prompt) + + boolean_encoder_mask = (attention_mask == 1).to(device) + return encoder_hidden_states, boolean_encoder_mask + + def encode_image(self, prompt, device): + if "clip-vit" in self.fea_encoder_name: + with torch.no_grad(): + inputs = self.CLIP_processor(text=["aaa"], images=prompt, return_tensors="pt", padding=True).to(device) + encoder_hidden_states = self.CLIP_model(**inputs).image_embeds + encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024 + encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device) + else: + img_fea = self.img_fea_extractor(prompt) + encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1) + boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool) + boolean_encoder_mask = boolean_encoder_mask.to(device) + + return encoder_hidden_states, boolean_encoder_mask + + def encode_video(self, video_batch, text=None, device=None): + vid_feas = [] + for i, video in enumerate(video_batch): + if text: + vid_fea = self.vid_fea_extractor(video=video, text=text[i]) # t * fea_dim + else: + vid_fea = self.vid_fea_extractor(video=video) + vid_feas.append(vid_fea) + + padding = 0 + size = max(v.size(0) for v in vid_feas) + batch_size = len(vid_feas) + embed_size = vid_feas[0].size(1) + encoder_hidden_states = vid_feas[0].new(batch_size, size, embed_size).fill_(padding) + boolean_encoder_mask = torch.ones((batch_size, size), dtype=torch.bool) + + def copy_tensor(src, dst): + assert dst.numel() == src.numel() + dst.copy_(src) + + for i, v in enumerate(vid_feas): + copy_tensor(v, encoder_hidden_states[i][: len(v)]) + boolean_encoder_mask[i, len(v):] = False + return encoder_hidden_states.to(device), boolean_encoder_mask.to(device) + + def encode_text_CLIP(self, prompt, device): + # tmp_image = np.ones((512, 512, 3)) + # with torch.no_grad(): + # inputs = self.CLIP_processor(text=prompt, images=tmp_image, return_tensors="pt", padding=True, max_length=77, truncation=True).to(device) + # encoder_hidden_states = self.CLIP_model(**inputs).text_embeds # b * 768 + text_inputs = self.tokenizer(prompt, padding=True, truncation=True, return_tensors="pt", max_length=77).to(device) + encoder_hidden_states = self.CLIP_model(**text_inputs).text_embeds + encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024 + encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device) + boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool) + boolean_encoder_mask = boolean_encoder_mask.to(device) + + return encoder_hidden_states, boolean_encoder_mask + + def forward(self, latents, text=None, video=None, image=None, validation_mode=False, device=None): + num_train_timesteps = self.noise_scheduler.num_train_timesteps + self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) + # encoder_hidden_states.shape [b, t, f] + if self.task == "text2audio": + if "clip-vit" in self.fea_encoder_name: + encoder_hidden_states, boolean_encoder_mask = self.encode_text_CLIP(text, device) + else: + encoder_hidden_states, boolean_encoder_mask = self.encode_text(text) + if self.uncondition: + mask_indices = [k for k in range(len(text)) if random.random() < 0.1] + # mask_indices = [k for k in range(len(prompt))] + if len(mask_indices) > 0: + encoder_hidden_states[mask_indices] = 0 + elif self.task == "image2audio": + encoder_hidden_states, boolean_encoder_mask = self.encode_image(image, device=device) + elif self.task == "video2audio": + encoder_hidden_states, boolean_encoder_mask = self.encode_video(video, text, device=device) + + bsz = latents.shape[0] + if validation_mode: + timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device) + else: + # Sample a random timestep for each instance + timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device) + timesteps = timesteps.long() + + noise = torch.randn_like(latents) + noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) + + # Get the target for loss depending on the prediction type + if self.noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif self.noise_scheduler.config.prediction_type == "v_prediction": + target = self.noise_scheduler.get_velocity(latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") + + if self.set_from == "random": + model_pred = self.unet( + noisy_latents, timesteps, encoder_hidden_states, + encoder_attention_mask=boolean_encoder_mask + ).sample + + elif self.set_from == "pre-trained": + compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() + model_pred = self.unet( + compressed_latents, timesteps, encoder_hidden_states, + encoder_attention_mask=boolean_encoder_mask + ).sample + model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() + + if self.snr_gamma is None: + loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") + else: + # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. + # Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py + snr = self.compute_snr(timesteps) + mse_loss_weights = ( + torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr + ) + loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") + loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights + loss = loss.mean() + + return loss + + @torch.no_grad() + def inference(self, inference_scheduler, text=None, video=None, image=None, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, + disable_progress=True, device=None): + start = time.time() + classifier_free_guidance = guidance_scale > 1.0 + + #print("ldm time 0", time.time()-start, prompt) + if self.task == "text2audio": + batch_size = len(text) * num_samples_per_prompt + + if classifier_free_guidance: + if "clip-vit" in self.fea_encoder_name: + encoder_hidden_states, boolean_encoder_mask = self.encode_text_clip_classifier_free(text, num_samples_per_prompt, device=device) + else: + encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(text, num_samples_per_prompt) + else: + encoder_hidden_states, boolean_encoder_mask = self.encode_text(text) + encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0) + boolean_encoder_mask = boolean_encoder_mask.repeat_interleave(num_samples_per_prompt, 0) + elif self.task == "image2audio": + if classifier_free_guidance: + encoder_hidden_states, boolean_encoder_mask = self.encode_image_classifier_free(image, num_samples_per_prompt, device=device) + else: + encoder_hidden_states, boolean_encoder_mask = self.encode_image_no_grad(image, device=device) + encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0) + boolean_encoder_mask = boolean_encoder_mask.repeat_interleave(num_samples_per_prompt, 0) + elif self.task == "video2audio": + batch_size = len(video) * num_samples_per_prompt + encoder_hidden_states, boolean_encoder_mask = self.encode_video_classifier_free(video, text, num_samples_per_prompt, device=device) + # import pdb;pdb.set_trace() + #print("ldm time 1", time.time()-start) + inference_scheduler.set_timesteps(num_steps, device=device) + timesteps = inference_scheduler.timesteps + + num_channels_latents = self.unet.in_channels + latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, encoder_hidden_states.dtype, device) + num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order + progress_bar = tqdm(range(num_steps), disable=disable_progress) + + #print("ldm time 2", time.time()-start, timesteps) + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents + latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) + + #print("ldm emu", i, time.time()-start) + noise_pred = self.unet( + latent_model_input, t, encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=boolean_encoder_mask + ).sample + + # perform guidance + if classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = inference_scheduler.step(noise_pred, t, latents).prev_sample + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): + progress_bar.update(1) + + #print("ldm time 3", time.time()-start) + if self.set_from == "pre-trained": + latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() + return latents + + def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): + shape = (batch_size, num_channels_latents, 256, 16) + latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * inference_scheduler.init_noise_sigma + return latents + + def encode_text_classifier_free(self, prompt, num_samples_per_prompt): + device = self.text_encoder.device + batch = self.tokenizer( + prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" + ) + input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) + + with torch.no_grad(): + prompt_embeds = self.text_encoder( + input_ids=input_ids, attention_mask=attention_mask + )[0] + + prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) + attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) + + # get unconditional embeddings for classifier free guidance + uncond_tokens = [""] * len(prompt) + + max_length = prompt_embeds.shape[1] + uncond_batch = self.tokenizer( + uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", + ) + uncond_input_ids = uncond_batch.input_ids.to(device) + uncond_attention_mask = uncond_batch.attention_mask.to(device) + + with torch.no_grad(): + negative_prompt_embeds = self.text_encoder( + input_ids=uncond_input_ids, attention_mask=uncond_attention_mask + )[0] + + negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) + uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) + + # For classifier free guidance, we need to do two forward passes. + # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) + boolean_prompt_mask = (prompt_mask == 1).to(device) + + # import pdb;pdb.set_trace() + return prompt_embeds, boolean_prompt_mask + + def encode_image_no_grad(self, prompt, device): + with torch.no_grad(): + img_fea = self.img_fea_extractor(prompt) + encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1) + boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool) + boolean_encoder_mask = boolean_encoder_mask.to(device) + + return encoder_hidden_states, boolean_encoder_mask + + def encode_text_clip_classifier_free(self, prompt, num_samples_per_prompt, device): + # 如果想测试输入文本的效果,就用下面两行 + with torch.no_grad(): + encoder_hidden_states, boolean_encoder_mask = self.encode_text_CLIP(prompt, device) + # if "clip-vit" in self.fea_encoder_name: + # with torch.no_grad(): + # inputs = self.CLIP_processor(text=['aaa'], images=prompt, return_tensors="pt", padding=True).to(device) + # encoder_hidden_states = self.CLIP_model(**inputs).image_embeds # b * 768 + # encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024 + # encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device) + # boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool) + # boolean_encoder_mask = boolean_encoder_mask.to(device) + + b, t, n = encoder_hidden_states.shape + attention_mask = boolean_encoder_mask.to(device) + prompt_embeds = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0) + attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) + + negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0) + uncond_attention_mask = torch.ones((b, t), dtype=torch.bool).to(device) + + negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) + uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) + + # For classifier free guidance, we need to do two forward passes. + # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + boolean_prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) + + return prompt_embeds.to(device), boolean_prompt_mask.to(device) + + + def encode_image_classifier_free(self, prompt, num_samples_per_prompt, device): + with torch.no_grad(): + if "clip-vit" in self.fea_encoder_name: + inputs = self.CLIP_processor(text=["aaa"], images=prompt, return_tensors="pt", padding=True).to(device) + img_fea = self.CLIP_model(**inputs).image_embeds + img_fea = self.linear_layer(img_fea) + else: + img_fea = self.img_fea_extractor(prompt) + encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1) + b, t, n = encoder_hidden_states.shape + boolean_encoder_mask = torch.ones((b, t), dtype=torch.bool) + attention_mask = boolean_encoder_mask.to(device) + prompt_embeds = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0) + attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) + + negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0) + uncond_attention_mask = torch.ones((b, t), dtype=torch.bool).to(device) + + negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) + uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) + + # For classifier free guidance, we need to do two forward passes. + # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + boolean_prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) + + return prompt_embeds.to(device), boolean_prompt_mask.to(device) + + def encode_video_classifier_free(self, video_batch, text_batch, num_samples_per_prompt, device): + vid_feas = [] + for i, video in enumerate(video_batch): + if text_batch: + vid_fea = self.vid_fea_extractor(video=video.to(device), text=text_batch[i]) + else: + vid_fea = self.vid_fea_extractor(video=video.to(device)) + vid_feas.append(vid_fea) + + padding = 0 + size = max(v.size(0) for v in vid_feas) + batch_size = len(vid_feas) + embed_size = vid_feas[0].size(1) + encoder_hidden_states = vid_feas[0].new(batch_size, size, embed_size).fill_(padding) + boolean_encoder_mask = torch.ones((batch_size, size), dtype=torch.bool) + + def copy_tensor(src, dst): + assert dst.numel() == src.numel() + dst.copy_(src) + + for i, v in enumerate(vid_feas): + copy_tensor(v, encoder_hidden_states[i][: len(v)]) + boolean_encoder_mask[i, len(v):] = False + + b, t, n = encoder_hidden_states.shape + negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0) + uncond_attention_mask = torch.ones((b, t), dtype=torch.bool) + + negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) + uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) + + # For classifier free guidance, we need to do two forward passes. + # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes + encoder_hidden_states = torch.cat([negative_prompt_embeds, encoder_hidden_states]) + boolean_encoder_mask = torch.cat([uncond_attention_mask, boolean_encoder_mask]) + + return encoder_hidden_states.to(device), boolean_encoder_mask.to(device) \ No newline at end of file diff --git a/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-26aVYRtEAc_000030.wav b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-26aVYRtEAc_000030.wav new file mode 100644 index 0000000000000000000000000000000000000000..af97ec705e040e3ca55d54582d37b8261ec21acb Binary files /dev/null and b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-26aVYRtEAc_000030.wav differ diff --git a/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-BAKe6QGTUk_000030.wav b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-BAKe6QGTUk_000030.wav new file mode 100644 index 0000000000000000000000000000000000000000..7f8538c03136c02e99a49226ff364afb69cd719e Binary files /dev/null and b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-BAKe6QGTUk_000030.wav differ diff --git a/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-yoaSondvkw_000071.wav b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-yoaSondvkw_000071.wav new file mode 100644 index 0000000000000000000000000000000000000000..b059147cd8d1a0af970eb62943964d9463a002eb Binary files /dev/null and b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/-yoaSondvkw_000071.wav differ diff --git a/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/0Bp8c3PfAAA_000053.wav b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/0Bp8c3PfAAA_000053.wav new file mode 100644 index 0000000000000000000000000000000000000000..28dad07d903aa7f02065408db9bc3c4a368db072 Binary files /dev/null and b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/0Bp8c3PfAAA_000053.wav differ diff --git a/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/0DCit2EBtjs_000030.wav b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/0DCit2EBtjs_000030.wav new file mode 100644 index 0000000000000000000000000000000000000000..c32e4285f539559b70cc139b1987b2bd781c7a51 Binary files /dev/null and b/outputs/vta-ldm-clip4clip-v-large/1720614438_vta-ldm-clip4clip-v-large_steps_300_guidance_3.0_sampleRate_16000_augment/0DCit2EBtjs_000030.wav differ diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..e65908dfee5cc18b886e510db77872ef92e8e443 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,8 @@ +moviepy +datasets +tqdm +torch +numpy +diffusers +transformers +opencv-python \ No newline at end of file diff --git a/tools/__init__.py b/tools/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/tools/__pycache__/__init__.cpython-310.pyc b/tools/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..edb6d27e0d2c8392c6b7a67b4e207673feabc23b Binary files /dev/null and b/tools/__pycache__/__init__.cpython-310.pyc differ diff --git a/tools/__pycache__/mix.cpython-310.pyc b/tools/__pycache__/mix.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4ed589f77fcdddcfe53f9b572d0c65caf3f26758 Binary files /dev/null and b/tools/__pycache__/mix.cpython-310.pyc differ diff --git a/tools/__pycache__/torch_tools.cpython-310.pyc b/tools/__pycache__/torch_tools.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d31d063214527b998de8a4f1e9cf074434a3e1ad Binary files /dev/null and b/tools/__pycache__/torch_tools.cpython-310.pyc differ diff --git a/tools/base_config.py b/tools/base_config.py new file mode 100644 index 0000000000000000000000000000000000000000..d494c9ae1697ef1d1fdcf34d3b3b30546d06ae1a --- /dev/null +++ b/tools/base_config.py @@ -0,0 +1,135 @@ + +import os + +def default_vae_config(): + basic_config = { + "model": { + "params": { + "first_stage_config": { + "base_learning_rate": 4.5e-05, + "target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL", + "params": { + "monitor": "val/rec_loss", + "image_key": "fbank", + "subband": 1, + "embed_dim": 8, + "time_shuffle": 1, + "ddconfig": { + "double_z": True, + "z_channels": 8, + "resolution": 256, + "downsample_time": False, + "in_channels": 1, + "out_ch": 1, + "ch": 128, + "ch_mult": [1, 2, 4], + "num_res_blocks": 2, + "attn_resolutions": [], + "dropout": 0.0, + }, + }, + }, + }, + }, + } + + + return basic_config + +def default_stft_config(): + + basic_config = { + "preprocessing_16k": { + "audio": {"sampling_rate": 16000, "max_wav_value": 32768}, + "stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024}, + "mel": { + "n_mel_channels": 64, + "mel_fmin": 0, + "mel_fmax": 8000, + "freqm": 0, + "timem": 0, + "blur": False, + "mean": -4.63, + "std": 2.74, + "target_length": 1024, + }, + }, + "preprocessing_24k": { + "audio": {"sampling_rate": 24000, "max_wav_value": 32768}, + "stft": {"filter_length": 2048, "hop_length": 240, "win_length": 2048}, + "mel": { + "n_mel_channels": 64, + "mel_fmin": 0, + "mel_fmax": 12000, + "target_length": 1024, + }, + }, + "preprocessing_32k": { + "audio": {"sampling_rate": 32000, "max_wav_value": 32768}, + "stft": {"filter_length": 2048, "hop_length": 320, "win_length": 2048}, + "mel": { + "n_mel_channels": 64, + "mel_fmin": 0, + "mel_fmax": 16000, + "target_length": 1024, + }, + }, + "preprocessing_48k": { + "audio": {"sampling_rate": 48000, "max_wav_value": 32768, "duration": 10.00}, + "stft": {"filter_length": 2048, "hop_length": 480, "win_length": 2048}, + "mel": { + "n_mel_channels": 64, + "mel_fmin": 20, + "mel_fmax": 24000 + } + }, + } + + return basic_config + +def get_metadata(): + return { + "audioldm-s-full": { + "path": os.path.join( + CACHE_DIR, + "audioldm-s-full.ckpt", + ), + "url": "https://zenodo.org/record/7600541/files/audioldm-s-full?download=1", + }, + "audioldm-l-full": { + "path": os.path.join( + CACHE_DIR, + "audioldm-l-full.ckpt", + ), + "url": "https://zenodo.org/record/7698295/files/audioldm-full-l.ckpt?download=1", + }, + "audioldm-s-full-v2": { + "path": os.path.join( + CACHE_DIR, + "audioldm-s-full-v2.ckpt", + ), + "url": "https://zenodo.org/record/7698295/files/audioldm-full-s-v2.ckpt?download=1", + }, + "audioldm-m-text-ft": { + "path": os.path.join( + CACHE_DIR, + "audioldm-m-text-ft.ckpt", + ), + "url": "https://zenodo.org/record/7813012/files/audioldm-m-text-ft.ckpt?download=1", + }, + "audioldm-s-text-ft": { + "path": os.path.join( + CACHE_DIR, + "audioldm-s-text-ft.ckpt", + ), + "url": "https://zenodo.org/record/7813012/files/audioldm-s-text-ft.ckpt?download=1", + }, + "audioldm-m-full": { + "path": os.path.join( + CACHE_DIR, + "audioldm-m-full.ckpt", + ), + "url": "https://zenodo.org/record/7813012/files/audioldm-m-full.ckpt?download=1", + }, + } + diff --git a/tools/get_audio_from_video.sh b/tools/get_audio_from_video.sh new file mode 100644 index 0000000000000000000000000000000000000000..a6c5952bb6cc08a59afb76056a91674913a01cb9 --- /dev/null +++ b/tools/get_audio_from_video.sh @@ -0,0 +1,10 @@ +video_paths="../data/video_processed/video_gt_augment" +save_dir="../data/video_processed/audio_gt_augment" + +# get wav audio from video +for video_path in $video_paths/*; do + video_name=$(basename $video_path) + audio_name="${video_name%.*}.wav" + audio_path="$save_dir/$audio_name" + ffmpeg -i $video_path -vn -acodec pcm_s16le -ar 16000 -ac 1 $audio_path +done \ No newline at end of file diff --git a/tools/merge_video_audio.sh b/tools/merge_video_audio.sh new file mode 100644 index 0000000000000000000000000000000000000000..a5cdcde2dabda253a10a28cc653aad879309f2d2 --- /dev/null +++ b/tools/merge_video_audio.sh @@ -0,0 +1,24 @@ +video_folder="../data" +audio_folder="../outputs/vta-ldm-clip4clip-v-large" +output_folder="../outputs/merged_video" +# output_folder="outputs/merge_video_youtube_example" +if [ ! -d $output_folder ]; then + mkdir -p $output_folder +fi +# for video in $video_folder/*; do +# for the first 30 video files +for video in $(ls $video_folder | head -30); do + video="$video_folder/$video" + video_name=$(basename $video) + audio_name=$(basename "$video_name" .mp4) + # audio_name=$video_name + audio_name="$audio_name.wav" + audio_path="$audio_folder/$audio_name" + echo $audio_path + if [ -f $audio_path ]; then + echo "Processing $video_name" + ffmpeg -y -i $video -i $audio_path -c:a aac -map 0:v:0 -map 1:a:0 $output_folder/$video_name.mkv + ffmpeg -y -i $output_folder/$video_name.mkv -c:a aac $output_folder/$video_name + rm $output_folder/$video_name.mkv + fi +done \ No newline at end of file diff --git a/tools/mix.py b/tools/mix.py new file mode 100644 index 0000000000000000000000000000000000000000..07c4cf6ba2a0c899bd53387dd6b116f46daa34a6 --- /dev/null +++ b/tools/mix.py @@ -0,0 +1,57 @@ +import numpy as np + + +def a_weight(fs, n_fft, min_db=-80.0): + freq = np.linspace(0, fs // 2, n_fft // 2 + 1) + freq_sq = np.power(freq, 2) + freq_sq[0] = 1.0 + weight = 2.0 + 20.0 * (2 * np.log10(12194) + 2 * np.log10(freq_sq) + - np.log10(freq_sq + 12194 ** 2) + - np.log10(freq_sq + 20.6 ** 2) + - 0.5 * np.log10(freq_sq + 107.7 ** 2) + - 0.5 * np.log10(freq_sq + 737.9 ** 2)) + weight = np.maximum(weight, min_db) + + return weight + + +def compute_gain(sound, fs, min_db=-80.0, mode="A_weighting"): + if fs == 16000: + n_fft = 2048 + elif fs == 24000: + n_fft = 4096 + elif fs == 32000: + n_fft = 2048 + elif fs == 44100: + n_fft = 2048 + elif fs == 48000: + n_fft = 4096 + else: + raise Exception("Invalid fs {}".format(fs)) + stride = n_fft // 2 + + gain = [] + for i in range(0, len(sound) - n_fft + 1, stride): + if mode == "RMSE": + g = np.mean(sound[i: i + n_fft] ** 2) + elif mode == "A_weighting": + spec = np.fft.rfft(np.hanning(n_fft + 1)[:-1] * sound[i: i + n_fft]) + power_spec = np.abs(spec) ** 2 + a_weighted_spec = power_spec * np.power(10, a_weight(fs, n_fft) / 10) + g = np.sum(a_weighted_spec) + else: + raise Exception("Invalid mode {}".format(mode)) + gain.append(g) + + gain = np.array(gain) + gain = np.maximum(gain, np.power(10, min_db / 10)) + gain_db = 10 * np.log10(gain) + return gain_db + + +def mix(sound1, sound2, r, fs): + gain1 = np.max(compute_gain(sound1, fs)) # Decibel + gain2 = np.max(compute_gain(sound2, fs)) + t = 1.0 / (1 + np.power(10, (gain1 - gain2) / 20.) * (1 - r) / r) + sound = ((sound1 * t + sound2 * (1 - t)) / np.sqrt(t ** 2 + (1 - t) ** 2)) + return sound diff --git a/tools/show_audio_spec.ipynb b/tools/show_audio_spec.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..b265c2ae1c645c84d0a28ea1567c3858667c0217 --- /dev/null +++ b/tools/show_audio_spec.ipynb @@ -0,0 +1,591 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.io.wavfile import read, write\n", + "import torch\n", + "from librosa.util import normalize\n", + "from librosa.filters import mel as librosa_mel_fn\n", + "import numpy as np\n", + "import librosa\n", + "from IPython.display import Audio\n", + "from tqdm import tqdm, trange\n", + "import os\n", + "import matplotlib.pyplot as plt\n", + "import cv2" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "MAX_WAV_VALUE = 32768.0\n", + "\n", + "def load_wav(full_path):\n", + " sampling_rate, data = read(full_path)\n", + " return data, sampling_rate\n", + "\n", + "def dynamic_range_compression(x, C=1, clip_val=1e-5):\n", + " return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)\n", + "\n", + "def dynamic_range_decompression(x, C=1):\n", + " return np.exp(x) / C\n", + "\n", + "def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):\n", + " return torch.log(torch.clamp(x, min=clip_val) * C)\n", + "\n", + "def dynamic_range_decompression_torch(x, C=1):\n", + " return torch.exp(x) / C\n", + "\n", + "def spectral_normalize_torch(magnitudes):\n", + " output = dynamic_range_compression_torch(magnitudes)\n", + " return output\n", + "\n", + "def spectral_de_normalize_torch(magnitudes):\n", + " output = dynamic_range_decompression_torch(magnitudes)\n", + " return output\n", + "\n", + "mel_basis = {}\n", + "hann_window = {}\n", + "\n", + "def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):\n", + " if torch.min(y) < -1.:\n", + " print('min value is ', torch.min(y))\n", + " if torch.max(y) > 1.:\n", + " print('max value is ', torch.max(y))\n", + "\n", + " global mel_basis, hann_window\n", + " if fmax not in mel_basis:\n", + " mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)\n", + " mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)\n", + " hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)\n", + "\n", + " y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')\n", + " y = y.squeeze(1)\n", + "\n", + " spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],\n", + " center=center, pad_mode='reflect', normalized=False, onesided=True)\n", + "\n", + " spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))\n", + "\n", + " spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)\n", + " spec = spectral_normalize_torch(spec)\n", + "\n", + " return spec\n", + "\n", + "def show_mel(audio_file, save_name=None, sr=16000):\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n", + " ori_wav = np.clip(ori_wav, -1, 1)\n", + " x = torch.FloatTensor(ori_wav)\n", + " x = mel_spectrogram(x.unsqueeze(0), n_fft=2048, num_mels=80, sampling_rate=16000,\n", + " hop_size=128, win_size=128, fmin=0, fmax=8000)\n", + " # hide x axis\n", + " plt.xticks([])\n", + " # hide y axis\n", + " plt.yticks([])\n", + " # more clear\n", + " spec = x.cpu().numpy()[0]\n", + " # reverse y\n", + " spec = spec[::-1,:]\n", + " in_mel = spec[:,:]\n", + " # in_mel = spec[:,:624]\n", + " print(in_mel.shape)\n", + " plt.imshow(in_mel)\n", + " # save as pdf\n", + " if save_name is not None:\n", + " plt.savefig(save_name, bbox_inches='tight', pad_inches=0)\n", + "\n", + "def show_melfb(audio_file, save_name=None):\n", + " ori_wav = librosa.load(audio_file, sr=16000)[0]\n", + " ori_wav = np.clip(ori_wav, -1, 1)\n", + " x = torch.FloatTensor(ori_wav)\n", + " x = mel_spectrogram(x.unsqueeze(0), n_fft=2048, num_mels=80, sampling_rate=16000,\n", + " hop_size=256, win_size=128, fmin=0, fmax=8000)\n", + " # hide x axis\n", + " plt.xticks([])\n", + " # hide y axis\n", + " plt.yticks([])\n", + " # more clear\n", + " spec = x.cpu().numpy()[0]\n", + " # in_mel = spec[:,:]\n", + " in_mel = spec[:,:624]\n", + " plt.imshow(in_mel)\n", + " # save as pdf\n", + " if save_name is not None:\n", + " plt.savefig(save_name, bbox_inches='tight', pad_inches=0)\n", + " \n", + "def show_video_frames(video_path, frame_rate=1.0, size=224, save_name=None):\n", + " videos = []\n", + " # for video_path in video_paths:\n", + " # cap = cv2.VideoCapture(video_path)\n", + " cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG)\n", + " frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n", + " fps = int(cap.get(cv2.CAP_PROP_FPS))\n", + " if fps < 1:\n", + " images = np.zeros([3, size, size], dtype=np.float32) \n", + " print(\"ERROR: problem reading video file: \", video_path)\n", + " else:\n", + " total_duration = (frameCount + fps - 1) // fps\n", + " start_sec, end_sec = 0, total_duration\n", + " interval = fps / frame_rate\n", + " frames_idx = np.floor(np.arange(start_sec*fps, end_sec*fps, interval))\n", + " ret = True \n", + " \n", + " for i, idx in enumerate(frames_idx):\n", + " cap.set(cv2.CAP_PROP_POS_FRAMES , idx)\n", + " ret, frame = cap.read() \n", + " if not ret: break\n", + " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) \n", + " videos.append(frame)\n", + " \n", + " cap.release()\n", + " \n", + " # concat all images and show in one figure\n", + " # videos = videos[:10]\n", + " images = np.concatenate(videos, axis=1)\n", + " # print(images.shape)\n", + " plt.imshow(images)\n", + " if save_name is not None:\n", + " plt.savefig(save_name, bbox_inches='tight', pad_inches=0, dpi=900)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_3407931/2796252854.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAvCAYAAAB+KskzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB45ElEQVR4nOz9d7Rl13Xeif5W2OGke8+NlRMKhUwQJECQhBjFJFIiJVLRkmm3k56f3ENuvTfaHm63Rtv93HbbbbccJJuSLVOylYNJUZRIigkEQBAgUMipcq5bN5+80wrvj7XvrQJMSoBsP483VBMDqerWOTusteac3/zmN4X33nPdrtt1u27X7bpdtz+zJv97X8B1u27X7bpdt+t23f772vVg4Lpdt+t23a7bdfszbteDget23a7bdbtu1+3PuF0PBq7bdbtu1+26Xbc/43Y9GLhu1+26Xbfrdt3+jNv1YOC6Xbfrdt2u23X7M27Xg4Hrdt2u23W7btftz7jpV/NDzjkuX75Mp9NBCPHf+pqu23W7btftul236/Zfwbz3DIdDdu/ejZTfPv9/VcHA5cuX2bdv33+1i7tu1+26Xbfrdt2u2//v7MKFC+zdu/fb/v6rCgY6nQ4At3an+JvvfAfvve8erPN4a3nypeN88cmnaXoNeFaqjHs7C3xtcw1hBUVRsGozfvqON7LnoWNciQS/fHObgalQOuLEufNMTU/T6/d535vewPvvej3OOM6vbPB//sbvUFnD7p3z7Jmf5fB6yd1LQ57xOQMcBrgkDCvCkglB1G0zPzONQOCcBwRSBmRj//w8b11Y4BYp6aeK3saAxy4s89Rmn4XZWbLJgB84cIQ3Hz3L090GvzfviFTKxvIGyxub9MuMVCm01pTe4yUsLs6ys53yvhMlx8sNehg2gLPCIJKIxUN7USpEYgIPHvAScBhrwv96jxPQ623y5k2JLh2nyDghDJe9RSMQIvxRALznLTcfZq7VIhsV9Ncn5M7g8LQaCZM8I/OWTrfDYee560LBc67PGMFJYSjbKfsP7kapq+/XC4EDTOUAiRAwmgy5ZWnCtFF81fU5JipaXrFDJpwrxy9bH06AkOGZv1o5y6k04U37DxAnCU4YZkYFb7joWLNDWkmKTRJWb93B/luOMBW3mVQFx86f5eLqCuDxeLSKaGpN5BS/c/SbaCk54hoMlCX3niSJyV1FaRwIgZKCWILEh1+zHuE9lXcUeHLvcfVrcvXfW6YQKKnAmfDM6l//n973br733jcyyiasFgVfeeFForhB0kgQWqJVxEynTaIipJBUleU//uEXOLO2wp02oow1p/MRi90ZSmspyorKVDQTzZ65DpNhhe2PaXuBF56+At9OSdKE9eGYqNFEac3mcMB0q0OqYwaDPkkaMTPVYnM4oSwrEJLKO4wxOB/2rvMO7zzdVpO/9yM/yPT8DL3xiKdOneTU+QuUheE73/QmmkpjjOWZU6f53aOPs8Nr3mI0V7RnyVZMNdoMi5LcGlCSmU6CLQqqwtCyAoEAqRCzDUbWY5VEaU0vy5lOUtI4Zb23TrfbphEnLK2v00gTGq0Oa2ubgAA8pqxopDFJmrC6vslUd5qltVW8h1anzV1HDvH6Q3u5sLLOdJTwuiM3YIqMfFLyKw88zOVejzcWknkfcSyqyBG0GjGDcY6xDq0EC1MtJnkJeU7sFR6JiQV6usHYWJASFcf0Rxlz012U1qyvXmFudgYlBGubG7RbHXTSYH1jM1x5ZTDe0W03mFQVmfNIIMtzGkmKVophNkFKSaIF60VFYezL9ktDKuJIU1QVhXOvep/9aWxxcZFWq4UxhmazSa/XY0uoVmtNWZZEUUSj0cAYQ5ZltFothsMhSZJw+fJlhBBEWtFptVFCUBYF46LAOYf38N/2DkAIwQ033EBZlsRxjPeeXq+H1hopJd57vPekaYoQAmstVVXRbDYZDAY459jc3CSNYrSUGFtRWY/1DgFIEc51690ffyH/hTY1NcXCwgJlWdJqtRiNRuR5jpSSKIrI85w4jmk2m5RlSVmWJElCWZZIKVldXaWqKuCqH/929qqCga3SQCIl4yKnESfgBbYsWL+ywsRBno34wYW9/NKVTS6rMZMix0tNJR0KSTuKaQtBSwoipYm8J9IRWkp6mz2ElNx8YB/fcdtNXLp8hZsO7Of//k+fwuSWSClipUiEoAUkCGIECtBCIKVEAEqFAx8AH4KB3bOzFHnOpJiQVRmV93SbM6hGgsKipSCfjClMhVaCtlRMCUmkoPSG8+srZNZTKolTnshbchMO0kUhUErRFDGpEKReEAnQCJwU4QwTIvyrfpaSsKHmjGTgSyYSwKOkoIlkLCpWvaVPODAQdTDga0dbf6cUkkaSMNYF2XiMxyOEwzlLrBSRkkTC0RSCFEGFRAqJ8w6hJFLL+jF58BLlwQuD9x4hBAJPA0FkHEZ4pBA4CX1f4evoRNQbeiuoQVy9zz/JnHWsrW2QlYap7hQzcQNpxqy7itOTnLNZQXqpoucrIqXRccSoKJD1+7XWYY2lGme0M42sv7yLxOFZsRlyUuHw+DpIUUoy9h7rffj1+tpF/e+tQGDrzkR9d0JIIqVpt1oUkwHG2frdSnpff4YXnzpHe2oan6Ys7J9iescseEt/OOD85SucswYBaKlQyPozBbEQtKygoyJsGdaUcxYlJN4JRpMC6yQ+jimdx3nPkIrJcIQdjMJ9TLJwxUpS5AUSEZz9BFY2N/FInHMEfxz+23nBtSrkhXG0tObok0+QW0sriXnDjYcROiZOY1CaVGoarRbCe2IECYKBM2woIFGMLFgEWkpanRaZc9jSEguJA0opsF7gBOSVQSPw1lJah6tKnBDkpSVKBEiJFZK1zR7GO5wIL8c6i6gqSu+wQjDKihCwCTCmYn1lhWJ2isV2hySO2RiOaDZT4tkmOo7xQCoViRUMXEWhI6JIkmtB6aGhBWm7gfFgi5IIiQUyBV4onPBU1iErg/WOSZ6jtMYgKJ1Ha4WIYrKqoshzjAwBjHcO60FVhsJUGATeWCoPwlikc5TWoLzEeepEpj57gdlOmxv27kEQAtTljQ1WNjYpKoMQL3+Xf5xt7c0/6ad37tzJ4cOHWV9fZ3Z2Fu99OGOFYHNzk507dzIajeh0OmRZxmg0otvtsrq6ShRFLC8vo5XithsP04giojjm0sVLNMuc/mhEUdntPXn12gSvPpX4ky2KIm666SaEEFRVRbfbZTweE8cxAP1+nz179jAcDpmZmeHs2bN0Oh0ajQZra2tcvHgx3OviPLNTHVbX1sjKisFkjDEuPPdXPMxX+3yv/nxIDP+4n+92u9x5552sr6/T7XaJ45iyLNFaMx6PaTabCCHQWqOUYmlpiW63y2QyQWvN/fffjzFXz/U/zl5VMLBt3vPo6dO8/cpt7JhfZFQWZIOM5Y1N5psthkJwuNXh7VGHK0nOZlUx9C44MhFeOIja2YB3oISiyCekaUKZFxhTsTkc0ZIRHo+U4YARvNypbj1OL64e2ghRR57BAQgB64M+dx44xEavj1Wauc4037hwjqwEITXOe8Z5QW5KSqnwAqQLDgAlcZGg2U6ZTVPy0Zgkjhhv9LEehJA4AVaA9CHjDK/YUQmH3XIa9XXHUcRM0qCZRMzsmeKFc+cweU7lHMJB0ysGQC7A1EvECY8XAlsfEEqG5+eFZ623yfpgRL+c4IHcKKgP/tZMG6U0WhhkvewkHovHWMu2G/TgvQPvUc5TUuGdoKwM1jlGeCZ1NFzhGUgHSuGtRdWr2LEde12zVsK/5DUL0G272vDehY6IZQRCIL1DixDBWiEYSIetSvpFARQwYdt5O+dw1uEA0RvgV2z9qWGDlt5hvMcKD95vs2StfXm2hRThwuto4OrVXcusDcGrEpJUK/bt2EE7TVE6Ioki4gsbfGPtIuP1iywpz4K+hd02p91MkFLhvKC0IQtRWmCzHFOWYT17z4zXJEoxqgqkv3ooltZypV/gXLguI8D4cJGGgGC87FasC8hHkmxnDkLG4b0rR1WVOOdxzqNUODh8/XnSeK78wcPY+Qa777qDSMFGb8CZixc5Vp0P6wPBpZVVIgtKAkKhhEeKEBwXztYPzbHaG6AdGKnIfHgffV8y7BdU9TVsWW883g7GNsdj/Npa/SKGoEJg4B047xFIxrYAXEAmq3L7vY2zgu7MPLff9jpW13s8f/I4xtoQAAnHZr+Hdw4lJFoK2jqmwDMpK4z3qCTCScHycAilCwGJF5TesFlaivUSVweSW1c/nIxRUmGcpZ9N6vXnwwpSEltn8GGJKbLR8GpQH3YzZZGDCH+mMjYgUtfsmZl2m9ffchONOKIoCpwHYzpIKVhZDwHBt3ImAogizb49uzm8dwfHT5wliSOO3HiIF4+f5PzyGtUr0IctM8Zwyy230Ov1SJKEN77xjTz++ONEUcSNN97IrbfeyuOPP87u3bt55JFHuPXWW1FKcejQITY2NrYDh0hJ4kiRT4YYUyC9oxnHOF/h64DqTzIpBc1Gg9fddhM2G3Px8iqHD+1DKMmzL5ygP8letp62rKoqZmZm2LVrF/1+n1tvvRWtNS+88ALdbpdGo8HMzAynTp1idnaW4XDIzp07SdOUw4cPk+c5x48fJ4k13ek2g0FYPzQb9EeT7WNja+3+Saa1YmFuljtvOsKpM6cpqorX33ozpy8sBRTu27zHLMu48cYb2bt3L2VZct999/HCCy+Q5zmNRoODBw9y4sQJms0mZ86c4fbbb0cpRRzHOOd4+OGHybLsVVzhawwGrHWcuLLBP/ndz/HGWw9y4uJlzPoYax2n+xv8voAP7d7DpPDs9i3esncfv/rU41QCfDhBEEJt+SBMVWGMoTs1RVkUFEWJtZ4dC3OcW93A1weX8FCWJX5rc11zTc55hKyhasLG8z5kUcJ7xlnBUn+dxGuevXiZU/YiN6RNLk4yFhpNDkwZvFcsD/vbzjsyFYiIKFJ0plpY5zm4a5G//sH3oxH8xz/6Kp8/ehTwSLflVrf+ClbhMThcvWg0EuE9izPTpEoT64jKWawzGOuIhST2AonAipClUjt+AFGvOln/TCU8fVOwaXNUKwXv8EoxGI3wwIJ3CBWDF1sABZFw4BzWOZSUOBecoVKWdpIw5SPODdeppMdUIJVik4L8midurcM5hwRSpXHeoYDKu6tBQW0KiITcvoeK8N1TaYMDCzvorW5ivGNGt3HNFkY3UDYj8gGGM5XFmHCtFgteYoN/x1kwGNp1Ro1wWCd5QozDNSiN8B7vQ1ZuXxEUe0DJCO9N7exe+bsAAq0UcRShBOybnuZ77r2bxU6XSCpQkqU//Bqn+j2sg3VRUfb75Fog1+tgzju8U+E9e8toMKAaZYDCCLDC03eGoTXI+mv9NWWha5GL7TX/LU4NKSCRmplWGxsnRJEGIYm0JstzeoM+cbPJJM+IooAsKSGIVUQxnvCrF47Tyec4kGp0pHECxmVB5ez285kYixMCUwf2s0hOuIJiPAQf9qCRksk4IDKm/nMeoN4n9pVBDJAmMcbYENgLiVIS78FYizUOKRRaRUB4n9KHHHkLFdhCdZaWr/Do0cfwXlFaQ2U9wnmcCMHV9nc6y7yHZWvom7pcZy1OwKAAZy2WkMBs3YDzL3/uAoiUJI0iTGlBq0DO8sEReWvBg1JqO0j2yDoQ33qPdvvzt861a91zpBT7d+5Ai4D2AGR5xmQyRhjDVLPJen/4n+WWkVJEkURKwcbaKrce2sW999zFZDTAmYKNXo9ISbQWVJXD2Jev/7e97W185CMf4dKlSzQaDc6fP893fdd3obVmenoapRQ33ngjURRRVRX33nsvO3bswDnHM888wyc/+UkEnpXlFYTwVGWBMQ6tNcYGNLZ6FS40jjVaCbAVl86f54PvfQeN+CSH9u/im089S1UZkkjhvKeq3PYzAkjTlI997GNMTU3hnKOqKl588UW+//u/n3a7TZIkFEXBfffdx9GjR7nhhhvYv38/3W6XPM958cUXARgMh1R5Rp7naK1xxhApTWVdjchc3Z2eGkW/5jqUlMSxRkmY9PuMhuu88zvu5fSpM3RaMeurKygBjVRTVZbqFRvk1ltv5WMf+xjnz59nenqaXq/H3XffTaPRYGFhgTiOueWWW+h2u/z2b/82b37zm9m5cydaa5aXl/nkJz/5Jz7nLXtNwYCuHfPl4ZCLjz6DsY7dacTOdoezkx4iSTgfxzxw8jlm44So3wB8gAm9u+oqa4dtvcdYw/RMF+ccQivGokS2I1bPBees0HgRnI1wW3G3v+a4viZCExKHpBnH7J1Z4Ep/k95oyOrmgLsO3cjJE+tU1uOcY1ZKmnlOwxjOFENK4cBUKA8jLXBCIr0EB5v9Ia87nHLbgX2M+gNu3LMH8cQTSCGJK4lwBVJswcwhO3UiZLAAwnmmpzskQtIbjEjSBs2WRlaWRtpg3B8ggUI4SuGp8Di5vcbQUrGjO8fljTWs92jrKZ2lM9XC+FBGeMeddzDfnebxF4/z9RdexDmH8RUCFyD0reflPMYYhPAIHxzPobkdpFGEjlPO9FaorEV6jyIEHiEb90i5hSKARBALhReSKFaUxlI6R+W2Ngnb8KKUEqUU01HMbKfFkd07aWrNF1ZXycucxKZkSYxmiKtRjMgLjDFMKoNS4fCXQpNojfKCoTE4a1mLDB0RVoSQgqr+bmvN9gNMlCbzILzD47bRpEQ5mkmLXbOzlFIwHAyYaTQZjTOu9Ht4JdFKESkRMso45nKZM95cIxYRWVWQ5gVJAOeRLmRVbqum6wXOW7z1lHWKX5Ul1lqsNxzTEcfdhPyaw+PaQICrS+DqGxQgUfjakQgBWgpiqZmKUu7Zt4+33nk7rbRJbhw7FufZGI148NFHuOP22xlv9hlkYyZliTEVvdGYR154iQkGY0vakwyEBxzOCbwPAZlHklcGAzgEa8Kz6RwFFuepUQ3A2u31fy1Y9K0CASUFSaLZOzNLJ00h0iCg2Whw8sx5ZKwoiwpM+KRGlJCZguFkvP1crv3M0nk2srw+ixXWOMBjENsIywiPVbBuPSP3rbO6sGPq08oHFx3qxFfPeSUhVREH5mbpdjpEcUTpHHHU5PmTx+i02oxGo220stNosTzcZOIs3n/r7w1XXSNtwHS7zXgy4ootsNZhjMV5T1GWGBMQP6UExlzz55WgkUYIIC8LClvy1a8f5Tvffi+3v+4Ofv03/xOjvEQIQXeqhXWO8aQkL6vtz3jggQc4ceIEBw8e5Pjx47RaLfbu3cuJEyfQWpMkCRDWelmWPPDAA0RRRFmWrK+vY61FCs1wOAxrVIYgDy8CCiplCLSueQivLBGkSUysAtKSlyVXVjf49B98iR/9oe9laWmFC5dWKI1DR5rpdoOqsvRH2XZAYK3ln//zf06SJBw4cIATJ06wa9cuvvrVr5LnOUqpbXh9PB6TJMk2j2ArqAEYDsdkIpR2hVAhQUXgENitM/ra+7g2EBCCVhojvKcwhtxYnnj2ONYKPvC+d/Opz342oGEoOmmDVuLJC8MwL7Y/4/Tp0/zdv/t3mZ2dZTAYAHDw4EGee+45kiQhSRKstQghmEwmPProoyilKMuSLMvo9/vfZqX95/aagoGJtcHj6ah+mJ7SO97ZneWOmVl8s8HqZEyBZrrRYG19g0FekMQxTgmc8Di2IOoA/ZXW0B8OMVXFOMvYHGXYyrDWH2Md4eeFIIpjlHC4+kVcjcb8VcTbe6rK0O3OYp1lOklYaLdJopi4juoGWcljVcUbF2a5tTnNQA7o7NrFIydfwhqLlyp8qrcBjnaORhIzGQwpbYmTjvX+BkqEhVo4g6DahvXl9rWAsx7vHNJ6Vjd6HDl8AxfOX2A8ybjxwAH27dlDASxvboJ3WC9DIBBubLvOI4VgZm6WtUGPwlQIb5FO0ohirhThWr7/nffRTWN2zc3yjedfuubA2aLCBeDbiVAm8MKhECxMz5BnJZGKkR6UF0jvEcLgncIhKAHrQhgWS41XAlsZnPAkkaLVaJBVBZQVwoTsxtfEPCc8CphpNLn9wG5uXZhn7/QUMlIQp3z2G1/HOls7yLA21FYAYm2od9XV0pmpNnONFrFWvHDuPIUtETg0CoUI2V/9zDwQCUVbK7SMAqrkAgHI4sAaFmbmeNP+3bz74EGmZ6fZf9tNfPmxpzm/tslzJ05yfOkKHkEiFUprvLf83ue/hBOOhpe0reR9phEOBct2fbK0Zrv00tIRzTimX1UMqpyKkFk75whX7+rMTpGK8O4tIVAG6mx5i28g6LZb7OpO0WkknLuyxupgiIwiUq1p6YTSey73+rTiisxWXBhs0pmeJm61qUrD3oUdXFlagWwDE6dczDcQHlInKIwhM1VAobBIFwiTzjsKQtnLe8Eyng2VUXlHiFoFygcWRoC5r56PgfcCXgjaccp0I6Wf5UyKHK0V7Sjltl27eddb3kozSjDO0p7p8uSJEyw0G7TTJiubPZY31jDGc/+TjzMqCoRz4E2ouvrwJc55ysrhhENiUcZhvCOnLis5x4uiCL8mQwohrUGIsM59fYZ4bxFCE5BMaOiIt91yhEhYzvdGnLx8Baki2knKLfv28ba776HdaDKuKpJmg+fPHmbf3AKxUKyur9IbjdjsD/j8Y48yqZ/Lt4KYX1nRbcQR1lo2+hllUSGExLiAoEgvtslw1+IJUoQA1jtHoiO8hk4j5UPf9V5GwwEf/7Ef4Nd+81Nkk5xmmiAjhfPjlwUDL730Ei+99NLL+AivhZuwZV4IvHcoNEKIwIeRIpRavsVntdttJpMJrkYulQzfmcYxeLj58EHuuvN2brnpRgaDAU8+8zxSSlrNlMKZwCGpSx9lWfLQQw+97Nr/VPfgPUIppFJY50JJWIH0PnCH/jiEow42hLOAIpaKSHre9953Mt1p8Zc//qP8u1/8JVY3hzQaEUkS0xtOXhYMXLx4kYsXL/4XvYtXKwfwmoIBDyHzKwoirRDes0nElTxjf6OByw0Pry2zb2aGG1pNvn7uLKV1xN6TeUcZJeSpQMQJAoHJCjLjyAdDmknMH379Ub78+NNUxrCy0cc4kDWnW7xy50B9+HgEoiaKOaypOLd0mTjSzDRaKDwowcrGGkkc01aa9aqgbLT51MolKmuZShUGT07NdPYV3ju8C+zrqVYLhyM3BVE7ZliMED5A5rksga0sWwQnXB+G1lhmp7ukUcT6xjrZeIKua4znLp7n8N69HDt1GmdtIOjV0GqMRNUlBu89pal46fQJ0jShcpbIgRECZ12oyXvPcDKi3ZhmUozRKrBlzTbr+OqDc96HTM8JrIeqcpSR49kTJ9m7cxcH9+3j3Noyo/EYi8TWDt3XtYZmq0mz2eTy5SvBcWjJTBzjnIUItPRk1lKYKjiGOg2PtObGXTs4NDNNR8HePbu586438bWnnggBj3WhdrqNsIRrtdbiETQaCQ2hUIBxFiU8xnlSJN67bUKgQJImKXlZhuBGSlqNmMhUdXQOeI9TMJVE3LJrJ+1Es3umyesO7qarIz7xu5+j22zSjCKM9URSoYVmWgqchxtll7f4GUYqo+MrMpNdLQ9ZQ2kqJJ5YKha6s3SShHx1FTMpX9ahgJA4bzHOo4QiVRqlQ+lgUhRYL7Yhel2TQt9w4BDvPXyIxekmrb37+D8/+R84udlHK41SsLq2zjPHX6ShItpGEElFS0WcKoasxF20M2xai5che1pLA24Ue8+kzvSkEuAtU2lMM2kwnIwZTkahBl6vK3R9/dagELSiGC8cmbVhzXgQUhJFCRJoxJp3334Lt+7cAVrw6Uce5/xmn4aKWR8M+cxXvoRWkgTFuCoQMqLtPTvn59jcHGAd5LJe8/V5sFW33TLrHKWt0Eoy25mioSMuLi+TF2UgWzrHBB8CO+fwDmIpSbTCek9pHYb683FoFaOl4J7DB/ipd7+THTfv5cqpy/ydX/lPXMrGJHHM+Sur/MrvfZo00oGg6xxj69gbN+m2WqwPB+A96y6cVFKq0HXjHVL852jJtVbWAXdhqgBL1MGW9xBJSaeRkltLVjtyKUQocThPI02ItWJ+us2dt9/EHbfdwq/+yn/gB374z3H44D5+7dd/h9XNPpOyIs/Lb33eX4tY/SmcqJUqcKmkRGxBR1LgjPuWpa5bbrmZ48dPMBoOKcuSxlSHWAvSOOLgnkU+9MH3gK04e/IY/+D/89P88i9+km8efYrBJGeSuZeVYL7VfbzWe4CwhvEerSRlZcB7vJfYmvvy7T4ydCxAVRnazYSmkky3Um4+coB3vvM+/vD3Ps2b3vQW/tE/+j/4hZ//eS4tLTMuKvLyj7+HP+19vBp7bQRCahKTcygfMs2xMTy4vkJLa/plTpok/PD+m1m5tMTZSYGQgSG7qiSP3LPAnu+4hduSCDcpqCYFjVbEY88eJ68sxmYwynA+MI6TOAJXk6p8DV1yLSYg6s0RMqlIRxxY2MHGsIdAMKlyVCzIRgWHd+0l6w+4I0roNNqcrcYsWcOhRoPl1TUKY5kIj9MaKyq8C4dyURlyM6IRR3z16edxznPuyjrGOYSAZpLipLkKpwt/9ZqMQTlL6hVHdu6klSbYWLNiDHErZDxlWWKdJY6SsNCEJ/awXSXwniRNkTisdbTShNgFToL1DqkjpHdsjnMO7N/PKCsCcuUdlQ91ypcdmR6s9SzMziOcYzQa01mYY1xWnF9aYu/iAsura3XLo79ajxTBsZZlSZ7ldBoNqrIkLw3GebSOA1scgy1LjHdcpe5B5QzCOxZnplGuYMe+HVxaH4RuEASuquqrFDgRHKBzDmsMAkk+yZDNaY6dPcPM3BwHdu3hmdOn0VZghMf7wK+QSCKpIfbkk4wMT6fdJJUaLQVaWXqFASHo9/uM85zZI4eYnZ0h3j/DXh2xe2aGLz1xFI2k3WgE2BNBZAU6isj2dfnSRp936FmSzSGqPkslAuMdZWVQ3tOdnWY8GVNkGVJCM03JJ1sMjJApSSHYubjIysoalTM04xShwsGfG4831XbAG2nNQrvJDXvnueW2g8zMLfKeN9zBxQceQ+kIqT2RjImIucd2iKXiPBMiK3BScs5PeL1r0beedVcxko5IxQjhAwTuPGVVob2ilUa00oSpRkp/PMJXngB2+MBP8Sp07yiJcJ5IKdIkgrKirCqMI5TapEIJmO10uH3HPO+79w4WdszTVjE/9/n7iVTMuDLkl9a5W06zoisiIVkqJ6wIDxd7TEzFhoBNafCpJiTD1/ARarPOYqylkzZIophGkoZSTd2J4X1AXYT3RFrX/21paEUUR4zygqysQlXCO5SAVCtmlOTAXJt9t+6DjR5T3SlWiwIpJIV1qNUhu6IOG76gLWNWzZgzasgNssmyGYMTrEUCoRWivJrJf6sjXYirdeeirEI9QkiEDKijEgprHTPTUxzat5cDSvHYM88gPezatROlFCfPnMU6x64dc7z7XW/nL3z8Y1RlIDafeOEZPvajf4nV1RV++Tc+w8XLq9vBxH9N8x6KqiJWkkiEhMA6RyQkmfnPvy9Sijtu2EPW20Du3kl/OODK8ipTnRb79szz43/1L3DPm+/h/i98mf7mJuVkyF/9H/8GS3/vH/Dgo0+yvNH7to75v/Q+UKr2Nb7m2igyX37LgKaRxCSRpjszg1YRV65cYTDKmJ+b5nWvv4Of/Bt/jZmZGRBw7PiL/LW/8VP8YL/Pv/rZn+fyhRVGk/y//k28SntNwYCgziydw1qLqrOVwjjGZcZsmnBvd4G1Kyvcv3KR9arASYFII+4fDui5Md/3xkXs2pDR0pBsNMLt6PKNJ0PhxXuItSSVimZT02g0GEwmoVffe4R3WHEVYvLbJJ9AujOmZKHbZX56ikgJYgHLwz7CBTZ16T3PbfTYnVY8O1zjln372S0URy8vhzYxW3L00DRru/az2JK4UnB+Y52ly1e4sLrOz/zap0N2UVQoFToRnPehfiQCdKQEgWXvYSptMhyMGTGk2+4wmWRMT3U4KBXttMmzJ46HNiMP2oFyMEPEPJ5lDFlN1KrKElH352opAowuBJlz9EYjIi353Ncf4ZvHT/D08dOU1uKswzdVKNhd45S99zhrGQ/6dJsp+xcXsdYQScn0bJfzy0uUBhIl8EIhRVTXTz0Rkm7apDcc4nFoIYmEZHljE6VUgLh9gGPxIERgAMSRRkrPuMxJgF27F5ne0eWllbW63mUpdc2TAIQPzAtnHVIKds3Okuc5QgvKsmJ5bZ3ReMSomBAJxUgIjJcoqdkx3cFUFmcrkhpGnZSGVAmMExgLhfEgPFlVcnr5Cnfu282dtx6AyQDtLFOxQCWatmzibOhM0NqHUony/PAPfw+xF5x58nmGDz+HnHhw4b1ba/EO0mab/nBElcasr/XYs2snk1G43+AKJMKL0J3S75MmEaUxFNYynTbxXmBcQYZHevDOoZ1nmA9pxYK9N+/DbI7ZOTXFbKdLXlQoFWDLQ7fezPRNhxEnLnPDxRW+WfWYLVJuIaEvKkbK0MNQCY9WgHTYGpINfBKBKR0jkXF5ZZ1d87P0xlkIxUWooXsXNDdUJMmynMwbpuMOHQSZh0FZYaxBlzlxnNCwFqqKIwsLxItdWq2UTrNDXoXArLNvB94m7C88T46uUBECo4ExjGRotzUeNBoh5HavuCQEgjVpCFd5hJMsra8hSsfc3DxrF85vB7VbbbGJ0lgseVFRWkcnTgMKIySjPKvLj6FE2ZURjz77PDqRPPPSOQbDPs0owTuPlo7OzfvJdMzBnuX5/hW8l7SShImxGAHLvkTKqGa9h7KdqM+tgHIIbM0vksDU9DRFnvPD7/xOFtsN/vAb38A6y76FBWa70wyKjLjV5KWTp3n7O9/CxsYldi/uoNGcZunKFZQQ5HnBqbOX+aXf+ixf/+bTRFKy3tvki994np/7lc+wdHmZjd7gVdD4/pQmoJE2MEWOqyqkEMy2O9xy42H+6LHHuLa0oaVkOo256eAuqmyM8ZInnn4B7wUbvRG9wXH+zj/4WQ7u3cmwP6A3GPLA0f+FwgUY/b9FMLNlpXUY6ymMAwxaSPbv2sXk0kWq8irOJ4QgVpK5Tot7XnczM/M7WF7bYGN9lcG44vzSGutffIjnj5+j25mi39tkMsn41OcfZm19neW1jZBo/3e01xYM1NCccZZKSrTy3NzqEknBxWpCKjxH15YZVCVnxhOEiihxVGXBw8dewuUFf/d//VVarZgiM1RFwVpvGKJwJUMLnfEkkaCZJsx3u6FFq05sRe18t7rErRDgBcILnA4IxJPHj2Od267nCCxGeg7uKImF4PSgx4v9TXY1Wuws4djGKleKAiUV5yvH2mLJT/ylt3DzxVX6l9fxawv8/sUl8soRSU+kJPOdJlIqtBQIL7EuISI0FpVCIJxAeGg3GkzNtWjFmnHdD661RgtJf7hJ6bKacBjq3esCpFfMCI31W3UjTyQ0UovQn4tgz3tv566ZLpurQz77+a+xsjrgoeeO4QkM7IaOAJA2tBK+/CXCYneaRAoSFZHnGbPTXW7Zt5uxM5zKRri65dI6x7QXKAnSAViy4QBjLYUN2eDEGTSSqH5JzjmklGjriZWmnTRoRhEdr1la6XF8+hL33nKQyxvL/MN//5sMJwXNpkdqSaZCoIMIbXcT6Vjwgisr68x12kjj2DEzS9xscuz8+VBOUBK8QRCCxGI4YcoKxrakEJbSCcqxI4nVNiybSIn1Hqk1Z1dWefjkWXbOz3Dfzi7eGE5eOMfs7CKrGz2KsqBwDtmZ5kyV02x0+LVf+nU+/vE/z8nVFd4yNc14fYNtvMo5hPckQtDstHHOEUWajdGIQZYR1aUOsHR0g27SZDQZ0zcF3nuGpSEzIxBQGRPKTkpuB72Xrqzx+DPHeN3Nh/C25MXzKxhT4WyJTCNGwtJbvsIHPvBenllZ5e53fDc3Fo7f+8rneNc9b2dzZZUzZkLlPccvnmOpv4FzikzYUI92jrnOFMo7lFKMxmNWIsHGKLz3EOTBbJyQRBG9fEyqNMILNsZ5CCSEosICDh1HxFrjS8P585c588QJmnvmePjo05RljhQCbzxpO+VN3/e9PHv/Q3z8prfze489wuvSKUpruJANaHnDpeX1QAAUcrsGHMUJM50piqJgvt1mYXoGrRSVd6yP18kFjPKrrVUtFDONDlIr1rIRkdZU3rExGuEFFNZgCKWhTtqkIT1TaYon5Ve+8DAvbYywxHhfoqOIyimKyvKeD7yb5x4/yvff+i5+64Evc+++Q1T9ATOuYrGccPr8ebIiQMxgUVrTbXVqVNOxORhst+fOtjqIZpunT51AOIuRgRQ9PT1FoxGzWWbc/80nyMuMD3WarK0PGQ8L/twPfZQXXjqBqcw2YrPR63P0mUFoKdURZVUit7RZ/hQ19FdrkdIsTs9QFhU2H2NFcP8nTp8mloKCqwRTpQSTsmCjN2K608YgWVvfAO+II01ZVZy/eJkLFy8jZeBNbJ0z15Kj/1tYp9lCCoFxBukEjaTFOC+Y7UyxMRiSVQEWVDIkGOv9Pi+dOstPvOsd/Oan/4Asy9FCIKRiPMl58dhpnHPoKKIoi/AuhKiD1P8/CgaUkGigrGF5a2GtKlibDBi5ICRhHJTeklcGb4PyW2UqiixHIHj69ARnQy+8EBItqdvCAgwtVahTj4qc9UsXcNZyYNdi2Py+RgPq2tkWjWCrBcgjyE3J1jIL9WeJd44zl6+wEDc5OD3HZpGRO8cfXDjN2fGIPODqPHbhLPKC5fTfukgkFFVuWN0c4pVG4JEiCkFAHKG0Dj3QWJzI6qNP1uQ7iROC86vL4Rp9qGdLIdhb7cCLIAhjfO0WnGPDF5wGrLQ4ITG25h0IkFLR1DHKTlBC0NEO1V+jWh9iTVBidM6RasVss81Mt4uxFXaLsClC2xSECHZ9MCSJI6pqiLWG+WxEksQMsxyLwjlHZixn7IQUsR3Dqyhipt1Cj8aMihLlBF6GNklbcxucczSimG4jCM9sZBOkbNKSlo1Bj+fPSZ575iTRnlmubI6YnZ5CKw8usL4jHwKpLXGhqakOAsGozKjGA6baLfqjMRNTYr2jKjxLdcui8IYkbYI2xKXEGLe92aQQVMYG9rUPeaLwUBQVL5w+T291HZ2XzHdmOLG0zrmVVbQM7VnjfIzMUqwNteTxqORf/POfx0vYn0dE2zvEghHMTk0RS4mpKtrtNnt3pbx47iyls4EDUv+0qSoqUYSgzVqkDDVnLyXOBprsVNpAak1vNCSXgSH/1MmLPPSVR7BJmwePPc/IBKXPTBggiNz83Cd+AQk8d/oMxljStQHHkuc4V01YKgsaScp4UqCcQlpHywtGzpLqiGyc0W4maK3Yv2snZ1Yu46yte/1DC2PiBT4rcZWh8hYjBIWpiKKQASdK0IzbTE91GE0mREmCkCm/9/TTrH6j5NFz5xhVAhlpxhPLejbh3/6H/4gxhnNlztKVZV53YAo31cBHlrlGi9V+HzEeIW2B8jrs/cqTZyWjyYTYefJOh2azwUyzQWvfbk6eO1vzTsJZu6A0xhaYyuPKCuMsVgRSmxAC7wJK0EmbtFotBoMNHjp3ho0iY2AdT507j5MaUxmEbyCcZXXY59//8n9ECMGp5RVWLi1R0OS8yBnYgHh5r9DOhhKgiiiNJc8ypNZkkwnddptRluGcJdIRkVIM8hytNDKOGVnLEydO0WikPFtzsRItGQ5G3LB7J+/8zu8gmwx5zzvfzJ1rh3nk8adYWh9SWUN93LJjbpYjhw6yY3GO6e4UAsnZC5d4/MmnWdvc/K+KEkRa00waRCqiijRKCXSkQ2eUlIjNTQZ1/7sSgnaasGvHAlNHDnP06JP8tY//CF976EFOXVhis6pC+7APn3vT4UPs272Lxfk5Wq0GkyzjuRdP8NyLx8irb81/+NNaoqNQKnQVWsW0Wi2iSIF3zEx32RwMmeQ5k3xCrBXTnQYf//7vAZdz5+2HObBvF49+8wmWeiMqY0L7uodOq8k9r7uNvTvm6Ha7RFHEldU1Hn/qOS4sLf83Vzb8VvaagoFYKm6YnqWfZzgZ6m7DKkNIgXYglKbwFYO8CA7E+23in68PYAnESgGC3FRY60lk4I9r4enEGomiNxlTebctxEGdQ3uxxVYPLU5umwFcBwnO11lDuGbvA47ggH6V0x8Nyb3DGc/QOMbWhMBCCPJ+qFsPeuO6rUgE0SMRSnexDu11m4MRxjn27dlRC4vYa9oKr6rbGXf1hW5F4GcuX8LjqUxdOZYh+PEWhhqkFXhn2eLQK4K6mvWOZpJireVnfvGLWG9ROJRz4EPPuBKQ5znnL1xkdmYaF3eCZgEeX0siOTyjyYRJXisQ4jm/sgIeSmPxIrwL4xw9AXqLDCYAYxkORkgknSQlN4aJDe1mCBBS0IobdBpNlJKsrq9TOMfaeIxuJDTimNPrG/zBY09w05V99beD8QLjDThHhcVQi6/gOX/xUtBEEB6hgsRpVuQYG7KsvjEgbL2YPaYssMKjlaYpNbk1FM4GxElHJDpiXBgq51gZTujMdIK0b17waw8/xuHde8mqnNmFeRaabT7yvg/wz375k6hmyuZGL7TQOYPHIbXEeEm0FdELj3GGy8vL4B2VDXKuUirGeYZ1flvMKfRH1MqAUtKOUypnKH3dn+890602rSQl946N4YhBnpPNzuJbLb5+apOJ7JE0O7z79js4e/ESFzfX6fcHSA9VUSGlJF9bD2tHC56/fJGNwYiz5JTOksiQvbW0ollYhIBxnlE5y2Y2IInjoFNQGayvu2MIpcLcVnSilAYWTd1VoyQohfCG6UaLVpQQC83QCc4Nh0w1G/SiGa6sr3LToRvpzO7ggWefCEx571lbnyCEoP/CC+A8z1w4x0Y+4lI+wjqII0UzVnilcCrGEjL5VqsZNDukYDMfszzYpNtqQaQYl+V2JikE5Hhc3dLb8KB8aIl1MgShzSRlqtmioaLQv+7g9GaP9XFGp9Oi2WpxaP8hFmdn+dJTTzDOCyLnGI7GCCEYjsbg4cX1FS6P+6wVGcY7ptMmqVKopIGX4bpRMrS21WqGW1K9xhq0kqRJEroFhCBJElwjZTSeMNXq0B+PMMayvLLOvXe/nsM33IBH8aU/+hI333IHX//mMxTVVens2248zF/8kR9kYWaKRCdMz0wx3Z0mSRPWNnv8j3/7pzl55tz2eSWFoNVs0GqklJUhLwqMDeVh6/5kR+W8x9gKvCOJI5SWCClQQjE7M0e3O8NwMqE/HLLR2yROGuyYnyXSTXbvPshwMuTWO+7g+dPntztrIq35vu96P++47x6acUIjbbC4cwFwLOzYxW986jP8X//q35AXVwMCrRTTnRZKKvKypKyq0KZp7atCRaSkFk9qBIVJPNaEvdVuNmg1W3g8a5s91tZX2bWwg/ve8lYuri2zefRZbrvjLo4+/SJ5ucnWy9i5MMdf+fiPcWDPTtJY0Wm3mJufC23aSYu/9dN/nwcf+eZ2cCYRpGlEp92iMi7wzIzBGHtV2OpPvJM/2V6bzgCSSEAaKXQUWp0aSjEoCyZlhYgkhXMUW5kw1Nr6AZbSUuGNBesQdauGAxpC0NaKllbc0Ozy4mAdFWnyOqgImX/dA0rdh1sz9p242pcbgoIQBVxlkF59UErFzHY6LA962EbEsNejckG5bUspL7RhhOu1xoRuiEgzJRW7mh0uTUZopcnKSVA5JNT1t4KSEBr4gBR4/zLo5+ri25qdANTs+co61qxj2okgVhR+i8XZWRRQTnJyU1GWFS4KrS5FaVEImlIwHUeoOrvPTYWxNnQBUJMIfSAiWe/qroer11U5XyubhTp/qKcbvPFEUodardbMTs/gipLxZEJlLFZLjCdAaARIrR2nNOKE3FZUzmK8Z2Jhs7Lc1JpiutHgwihj9fQZhBD0hmOkBDvXQbsaccIFYRsfhIq2girnYVKVIbjzYEyY8aBEYIB3p6Zoy5jNQQ8joHQWEWmMC/oKnbRJM0kprWN1PCL3nuWsZK+IaE+1kN15Pvf8S8wt7mQy6NNOU/Yv7CSSmnGeg3BMT01hipJJNkZLDVIhvUAIjxJBCnlchhKPE5CNxjjnqaylNKFlzQpoJA06aZNynGMrE0iQotbeqCpirUmiCI3E21ATrYCTKytQ5KzMjigMmMqwdPEizjjGk9BJ0mw0GA2GRElKEscMszGjsuCUm9ATxTbHxUrBKJ+glULXIfcoy6DMA5KUTepuFoO1ntLYoAjXbmGLikmRh9ZI70AK8qpCOcdMs0UrbRDVIG6axFxYW+UbZc7u8ZC20uxrzzA93aUoK7QUpHFCPp4QNxoIKdkc9LngCzJrMEJiZOilNtbTanZIkgZrvR7WVUyyEZNsjIs1a6Owrkf5hMJaSmPqVmRBmjYgbVD0BpAVWG9xMswZKauKVEe0khRdS3dLIei2p8htQdJoEMURrihppSlYy2gyRumINEnJJhadpigh6I1HnClHFLbuAvCC0lsi55ianqJylvHmev1MK6wnEGUD9QRrDLZWiJTbLXEOKYPWf7vZYpBNOH/pEheWrtDfWOcXfu1TdDpthqMJ7gsPBGS23t+RVvyVv/hjvPOtb0IIy2iwidKSAwd30+5McSOSu++6k5NnzhEpxa1HDvCxD72L937n25jfuZ+j33ySBx58kLMXQvfVzMw0670hjx59jqz4dp0IDmfN9hnsXHBq7pqzp91ohnWiJGvr63zpj77Gg488Se5hXEwojSErr4ooHNy/jx//y3+eqU4DW2WMRgO6Mwl79x0kihr84Ec/zL/5xf9AXpRMtZu88y138dEPvZ03veUtTDLH/V9+gKNPPs3q+gZxEjE13eXJ545x+tyllwkWveJOQnnchSDAO1tnRoItOXYpJVPNJtmkwbFjJ/jMpz7D73/tATYHIz735YcoKrt93gsBH/3wh/jIB9+Lkp5sMsTail27FphfWMSjed973sVDj3wTKQT79+zkez7wNj74/vs4fOPtvPTSGe7/yv28dPIMkyyjW880+cY3n6Q/HP0XBQWvKRhwOE4NN+hXQSZVerHdCwrgypJeFaqFdRcJQghULSeMCzLB1oa2va34MvOWHarB4alpNsqMzTJjvtFhqp2wNhnXLViBxWz9lob1ltMPGfk2ocFvvaKrtaSt/98YT1jKN0FAmU3I66hKQC15THB+VYU34QW6OktemJ5lUlQMi4Jd0zOksu7Hd0HVrxIhANiqXfj6ml9Z0dqShHUuzAgIbVieAZ5cOGykcDY4u0gqiiLI1MZJQi/L8IAyLvAknMfg6eqEhVaby8MBKoqYVhK1PaqyJhAKAV6F51OXW0StbObrdpkQu3icd0ycx8cRxjqcDe+5NxnR1jFGBjU6iQhBoZBgXZhvQCDRlVV1DdETRlXJ2mBMO2lgraSh25jK0mk2MVWB8DKgS/XbsjKQKp3w2w818FUElXE45xkVJalUFD5wDvKiINEQxxG5M5TOo5wljhSLrRapgiiStBoN1sZjHEGk5sFTJ9g5M8XC+jpWSOJJSjduEqcpn3vgqwwmE3IlEc6RFwU2D4pqzhsyr+l6CcJtv+ttnkZdw7JGkBlHURliLSicJXEB4WjFGqkkvarc1qhoxAmRVEFkJgpyxVorSmMYGcvxwQDZboWWODznr6yyMR4wcSaQL2Wowa6Mx2gh8TgWZro4oYmTBCUlkTOMJhMqZ4gs7AOMBCHrNevDYvaemmEfyitCKfKipCkkSaKZmJKisggviaOAvAiC3oLSUeiGiRTTzSZCStpJinCOs0tLbJw4RjbJgwAWQfFwZTwGIYgjRYVDpzEdYqqqZJhleB0xrCZ0pGRsSipvGYyHbIW9W2vOCkFpYZhVqCQBFM5LJmWo9adxQl5lFHU7WjNNaeoYTZARtniUlDSThAaSKNJIGZDC4+dO0xuMyYsKWZUomvTznNFwiPKediPFKUmr06GrJINJxnAyRktJmY1QWpMTzkBFkB9uxhENpRlW5bbuhntFBr5V5wdIpGJxboa19U2m9u1klJcYPw6Kl1wtnQIkccyunfPccPgAeENvIyWfZCgV0LwLFy6zdOkys90p9u1c4KZDe9k9P8XBG48wv/d2onSOZ55+it075/nuj3yYVMKXPv9FBpt9zly6Qm8w/s+dkAdjAtrknKv5gnX5llAihuAfOs02qZS87chtPPLEc6xtblAhttVbt06A2e4Ue/fvZGFuhqqYsLa6HMoodcvvNx99jGaasHtxnsP7d3NoscuBXTs5eOROdDLLypUex44d48CBO/jwh7+Hl559Bp9NqGzFleWN0L3xyvPah4QD74MIFx5fs34kYUYBdRlytt3mO+9+A2/afwOfdQ9ROuo5KFfvQynJjsV5Dt9wAKksk8EGm4M+cSJAOIaDES889xwz3SkWZrvcdGAPe2cbHDp4mP1H7mJ2x4288PRTrK22ecf3fohD+/fy5S//EcONDY6fu8Da5vCPCWz+eHtNwcDQVigd0xGSYa3pbX1g0TeSJMDFVYXiajbuvSeWGrwLWW0N5+PDlxugdI7VYoIcwdBUNGVEU2k6rSZpHJPUjgon2FL4q7f+tlhI+LJwEL9SzWoLSLF4Ki9C5loVxLI+QlzYmLGKsFUVNOxFgLSEN5TGcn7UR0vFtNLE0tOcahEpSSkdhRSIGisvgUoGZvnLekMRYTFZhw0EaqyxGBl+blxVeA95HDNxJcoL4iimrMLgGiHc9qAhg99uS3M+yBJfGg+pjGE6jWmnKT6Kt+WdnAArPfgqQNnebJdvtgIT764yyR2htbOqbBAIEUFW2DpHM4mwPiGf1P3klSeOEmIdBcQHKKuSyl6lLnqgcJ4nV6+wPJmwo90mznMSKWjHGpFojPb0E7BblI967WxB6h6oaphIeYV3FmsdQ2tryF1QeINoxNy8Y57nl1fJqxLvPYnSKKFRKgILnSilE8WMqhKPr9UTwaoIV1VcuLzERj7BydAXvlnkOCUD81sKYiEZVoYqzxhpiVcK48NkOu801njYKh05vV3GqqyjcgWVB0pLK41YaDdpN2PWz10KGhJK0YhilAiT1Ky0NJuahek2Sxv90DFRcxJ0zUb33jMpLRkOJRxN52imKZvlIHxmzewWVcXe+Vm67TZrgxEXiitBlnUyQRKyUGtMUIhD4Gwg6lkbsn4vCGUk70jShH3z0+hJztnVFfCeTpQG3gOewlZIJYm9Jo00+xfmQwIhJWVl6a+tsjYeUJnQHguSOI7ZLAKq0plqMdXpYPKM+e40vV4/TP8TIrTa1e9ibnqOREdkWYZwBlvLCzurAmrlPVWRU3mBMQ4qz552h4Mzc5wf9+mt9xBY4lST6iiUrbDYLKORpsRxjBRJQMwIGW5/NGJ9MsS5oGyY6Jh2o8mo7OMQLHZnmZudob+6yo6ZOaQFbwxZWdTtuYGwPDM9g3eOSZZhyiogbNbVjge2Cpzee7Zns9TBgBTQ0DFTieSN+w/xyFMvETUS8iy0pqm6FNtKYw7u2cFnf+8P2L24gxuPHKIzs5OkUTAYZTz/wnP81m/+DlWesWOmQxJ5lleX+d0/+AqPP3OSD3/shzh8+EZk1GD/wSM8+8wxHn7oISbjMQrP4kwHKSUb/eHL+G+eQNYVhKy6Pom2f1dyNRgQQvCht93H973xbp6/eJH/+KUvUeVFQJNVSCTnpjt04phf+eXf5Ad/6KPs3LnI/OJ+8izn7NkrPPHUc3zm03/IjukpxsUIZzOeOXaKC8tr3P7oC/zwj/4FhI5QUYODN9zGJ3/pNzh18iRlWdJtNPBz06xtDsLEymvMe4nzqh4pZOqSRUArLISsBVDS0YxT3nzjTbzl1pv5vne9g1/47GdxNvCfIqVJIsXuxTmeOvo49998mHvuuZtOexERTTMZZzz3zEk+8/t/yNK5i+yc7xJryWDY50tfe4IXTizxrvcf5+3veAcyabOwsIfRsORf/qtPsN7bpLSW2ekmSkpWNgavqpTzSntNwcDbjhyh3QgSw+dW1+kXxTaEK6TgyuYGngQhFMOqDGxo53HG1gepxJiqbsPQpEIG9q53WAQTa/FCUDpHVpWoMUihSKRC1l1NoSRQM9fxdbkg/GUJn7M9Lri2mrPB/m6XW2/exbgs+ObZ0xRGkRnLqCwD5K/qrFkKtNKkQhHrBlIEPXPnPWtVgRlLOjpmPk5CQcAHESB8PTtACIR3mNLU0XyYWoYHZwPE5GonK71AeIXEUDjDZJLXKouOLMtRStJttZlRKUNGeDw6CrLQTaVpRyl4jzIVmXWsjzKqOGFhulEf3vWiJtQBZ5IIrxxxFFFVll4JILc3csgqwvTGhpOMMYy9Z1IYiDz7Z2c5vbocFBe9Qsqg+ldZGxyYC6Q9Y6/RSK2t8p5L4z4ukUyRspnnFM4z02yh6ilmMopQ1rMnSfDdBlEk6DQbHL24SuWop52FFdBKkwDBV4bCeQrnyIxjbExdEwS8p5HEmLoUUlZBQ2L39AxnN9corSWK4qBp4Q3GhiC3kzSx3jE2Fu0lzgHe4YxldmGOkbFkE4ORYJEor9nRSdnXbZNK8GmDh8+cC6p9olYxTBKqLYeLoKwq+kVB4W2NoCnaSSOgAs7WMGnBtIvptpq0FhO8E3QaEa6Gkq21WOtpRCr03vsAcdstYCh4EHbs3MHlcxd46cIFds3MkecFStca/sYQNVu8ZXERHUlE3OZrZ0+zpeGSqohIKoal2X6mlbf0ipJhnocgud0h1RF5WaCVCuhSllFqTVelSBRSKKQTlJWlcKFNK1ZB8c+YcrvGDTDOC9b7ffobm2wMhoH8qTVFWQeyeU5WlpS9UIu1Dg50WtyyMM+jSysBeQPaaYp1nlEZ1PCFEIETUU7Ii5xIeOZbbVIdbyNm47JAeo+OI7QLnU66FuAypsDYIuy5+pwZjUehRCIEFs+F9XV6kxHleMzmeExhLVIrCmvwZRHmrCBZ29zYFtUSoUmyZt0LzNbZ5sOulLXsOM5unx9KSd5z1z385Pd8H8+8dJpTvTV23HSEIzcdZs/uXbSbKbbIOH38OIOlVb7+27/JhTtex0YheOKhB1HS4YqCi5cuM6kqhA+qpFVZMhqOWVpa49TZsxw8eJAbDt3I4489wbPPPkdhDO1WkziOSOKY6Zalso7B8OWjzYFrzhVRJ26hpFc5A55tyfNzV1bpe8PrjxzmwRefZ+eePRw+fJCd8wtILKNBj5PHjnPl2Sf5ss/Zc/NtHH3qGJdPHydR0FvfYNAfMSgmpI0UZy2T0tI7t8TJM+d58aUXObD/ALNzc/z6r/0KZ89eQseaTruJVIpGpJmfmWZpdeMVA5yCP3HYupU86INQowLGhFHB1oLwjm889xzvuut2ZtMWr7v5Zg4dvoH9+/YyO92lLDIuXrjA0rkzPP253ydfuoRrzfK1L38Zm2dIa7l86SKZtZiyoJm2yYuCsbUsP/scJ06d4ctf/CI33niE1Y11vvClL9IfDmm2EtI0IYk0zSRivjvFykbvZQn5q7HXFAzcN79IK9Jk3jBlHaOiIjMlzjnyomSAZGLqGm/N/vRsKcsJrLGBZNZskU0mNCLNdBpmvTvnqGyBtZbMGBA52gsS6fHG4qOoJg1e/bveJ8E5yFCjD0N0xDaLH0RwwMIjN8Yk6+fJXYXCYouKa/NX6Q1SOlKCyIezJVHNZ+imLeaShLODEStFhkjq+rvXVMpjvCQTAq8ct8/NMN1JKI2l04gphOZLZ85tE2HYhr5DW6THM68CC7vAM/TboGcteOMpfBW2lBBMxQovgnY/ouRA2mS+M8fQC55dXsL6cJhUxrHe0ZRVwkh5Ds4usr/bxiGJkiZnNzZ48MLFELNfE0lGSpImDVqlC211dZuZFJJLkwG9IsN7j5aQqjDvW4pakKiqQl05bRDneX14bZmkqRXtuEFHRbhmk0Fe4hGY3NFrxciZlNFmj5t27WKq02Ity1jNxngbVBOv7lFBhMIpj7EO7wxaheE8FklDxdhIsDDTRQrBOMspTIU3YV2macqu6WnGZUGsI1Kh0F7R7LS5PF7DOiitxeNIJJgtWqj3rG5uUJnAkzDNGDk/T6+3yvz0DNPNJhcGm1zurwf1xatvGi1reLEyWBFKPFk9Onuh3WJQVsRKg/eUZcWwyBFC0kgiGhYUASaWfmuIk6UwQbcgiSMmwwyECP3vQtLWmsIYrPM88fSzNHVMWRpWegOysgjol5IoJajiCJM2uDQasLa0QWWvArRSCISQxFKQGYOTktI5enlGK9FEskOSNpBCUtmQmeeVYVJWtLwnyzVJJIhTDRaqKqOZxmT5JHy2DFl5unUOOEeVF0xUhEeSlVU9XTBHSUWqNZUJMsJxnJLX5LtBaTi7OQhiMCLMQlEiqP0rEbp2VJSQe+iXBa1IMTfVIo10LagksLWqZyQUzlQQKyIZBV0DQhshQCvSWCnIi4pISZpph3gyoTBBjtq5BCdCADAuCnwhSHWQCTYuKNp5oSi9rZFMt72ut8jQnjCt1HsL9cAoJYLmypZi6bnlZbJsxF/80PuxB3fz9rffR6vZCPIiAgSKtdV1nnz0m3zj0/+J8dJZ1irBlCu5OMwYT/IwsCoO094CMddgamEgY0refO9bOHzTEQ7deDPnL/xjZmZmaMSCA0eO4JznySefAqUZjSbbEHXAxrbq7WEok/NXkY6t1sDKOmKlubR0haPHT7EwO8MnfuYfs+/gAaJYIWqCrTGOM6fOcP9nP8u5Jx5n/fjzrI1LGlXBuWGOzzJ03CQhCs7beCpTYWyFkoKpqRa33XYb73rvB1hdX6U0Fd12i9nZKfYcPMLFc2d48eRZJlnGeu9q7d35IGkdtCACIut9eBfO+XoAU+guUFJxYXWDK+sD3nrvG/nh/+mvM9XtIqVACR80LIZjXnjmGb70m7/BC1/5PJmISbMR61nBxihHGYeMNDpWOBukp8uiCImILXnDG+5i9979vPcDH+Rv/9RPsbhjgTTy7Du4j0ZrlueeOsrS6iabgyHlt5lK+e3sNQUD2R99E1CsCsuGLdniqor6xKtSizUWSxix66l1w51D6HCQpVKSWEMpAsnEO4elJFWSg1NTdHXES/0Bl8YjMudpp0m98EPlxXnCZ9fte7GC/XMLyHaA+IVUNBsxqVd87eJFcksNs4EzBldatIAoCexhUW9D52H/9DTTUtJNEjLvWBr0iKTgpoVZpmLF81d6GBdawApjavKTZLy3y2JzgbOrSzgtuXXvXiJyeqVnaCouDjOs8XUGUD+slw3JhSYCLTUDBWNTYZ0PGuN4xlmGjcI8duHhDdMzJFqTV4apOGV+us0LG6tc6o+Z1TE2jjDeURUV6d5d7JcLXDhzks3xmDgSLOcZq5MJ/bzA16jAdjDgPTiP8AKhQCiFL+r+ckAiaUYJWgdEIpGarMiJtMIqSV6FUa+psSFzzybbG0tLxXSjSaI0ubPISDIbt5EK8tLgZ+fYGzc4sbzCw+dPUaQRo9LUkKlke6Ft/zM42TiOyUyYgFlUJcPBgKkkQUgY5yO0Fyihg8IegeU/GRXMTk/V6EItoKQ0P/3//sv8m5/59zx1/lIgKTqL8xatwkhtpRSNZhMvJNI75HSL+bl5OucvcbJ3nguRw8sI4be4Gi/fQ7ImqxbOBm0MF1QlxWTC0DqiWNBsdCiqjZD9CciKikgUNJMEpVWdHIbS23g8Jmqkgby45SRcCN7mmi0qB8NiUjuz+qAWKpDyTIV2koaEcX/IycEGWawRQWv4Fbs/cH8CQTYMDlNas9BocDHboDfIkUKjtWardj/VbtOKIyKhiOPAJVBKcvPuRX7i//mX+cQv/zqPPH2MvKrIc0ESxcy2WlgPo2yMKUI3+tb9bN2fsYbSeCrnMFkezhHv6ZdlGFtdu6Kt460u64INjnhiHV0ks62EUb/PYJQjZUSj0UQJQcAxVJiap4POhpISIaAVKe6+/QgnT59neTTCxRFVWSEQNOKYhtZkVWB7ixotTKIoKDL6oMpnnKW09mrHU/Da2/tvq9C5rbpaO6GqqoLsdOiZJooiTiyv8uCxYxx53REOveUelJaYqqAsc6JIo6MGjUbKd77//aRpg1/9mX+BFoYq0ojK0NKaCT6UKawjTROUiOh22hy64QDf/b0f46Vnn0MqiVIJP/QD7+dj3/9RrIXu3BzWSX7xX/9L+sMR1it+49NfYnlts15nW8dJcKDO2+1ur7IsieM4iNdJySDPeODpZ/nxH/84cbvBxvoKURycbKvdQamYHbt28mM/8df5N//on3LmiW+SxJrSehJncXFCKUPCiQalE9qxZGZ6nrvedA9vfvN9fOnzX2DfwRs4fHAv3/XeN3Lf295Pf/0Se2+8m6cf/Qq//TufpjszzVPPnuaLDz1GXpe1tzhrgVPl2OKF+5oXQV1EqKxjbTzhy888zY985H1kox5lGQjSjTSh2ZpCa8kb3/Qmdizu5P/+336auFgP5PXK05AxLgpt0tYaRBK6eVqNlH27d/K+D32QfFJw+uQJ4ljzvg/cx4c//F10p3cglWBqdi+/+u9/jmMnT/K9U7N86rNf4vi5y99yxPO3stcmR+yuEvWuLtmrGboWqj42wv9v5ZpNpTgw1UHimW2kSOW4PMhYHmVEwnLrTJcbplrkRcWF4QjtLbFU5FXJqMyRhSDWMesRJAtNnIpYNRVWCm5cmGVXqpAEPfdOkpA0JQ0R8cgVtS196X0IJBx1Pb8K9XPpg863w7Ov0eKOmS5jV7FZFcw0Fmudf8fJ4Yh1QDdbLGoNzm1H79GOafaKiGOnznK5yPjieg/aDVYmVQ1Ph0Bm2435bak9PKC8RwgfhiQ1FGocMnJ8yCDSRoCOde3wWo0Y6UJv91AVLPdzRk7QbnfCIWIsRVUhiGg3Umye0xwUnB5MeHazj6vrdELIwI94hVlr0Upj2ylRVuAJ8sLGw3g8ohvFZHlJ3xisDPVJU0PzuTGBfKUUzTgNvIhaya0VJXQazXrGH+goDT26oxFCeA7EDWa9omkgk47euEToiGvPym9l3l4dUyyVZFe3yzjPGBQVJQ7nBZGENEmxVZiTEcugRy+FCKiHUsgoYt++Bb7/PW+n86WHOD0YcWY8wFQCJROMr3DOYqqSREt0q8l6PmFleS10ngDW1kIo3/aCwwEvPJTGILRib7fLJVuRlgYpLB/5nrdRxYJPfvI/oYVGK0Wn0yKqY4tYRpTO0k5TtHboVJPnPmShWcZ4MiaqhxfFWtO2UeguwaIihfEWLSVKR1cdjndUAF5tl5bEK656q4On8p7cOKYbLXa1W2yOBlhrKAtDkiZ0mgmMhiA9ZVGgkgRfBwrCWIphwdq5k7z3jbfz7IunoDJBfbGqkAKU1kRSghJ1u10QtlZSUVTFNhfGhLrbFvSCE46gVvHtn3zlLKYyzCZzLLRjNrMCa0tKY7HGsHfHLDOzXS6evxKGZDkPKjhmJSS371ngp3/qf+Cf/eyvcnJ5nZdOn6c0hkFRhPJnFFFZQxSF4NE76vKBobL1oLA6e95KCZTY4td5EGFiaggGXJ2Jupe1HTohwIY9NshyHjt5kjvf9RZGozFxHOFdQW9zHR1HzM7uIEkbKK04cvsdrFiBrizduuTWaHdCN9FkExUFqeediwu8+e438kN/8a8w6A+5/4++wNce/DqD0Ygokhw/eY4f+MEfYumho5w9f5ndiwsszs/xtYefZNfOBRyC0ThjKygMaMAWF8JvB2/WBol1GwV1z+fPnGOzN2RuuoUXniIbkBc54Gl3urRaDZSK2HnkFu6//0GmUstMHJDJxvQsw94waJQoSZLG7N+7g498+Ht49wc/yh986rdZXV3hH/0f/4jKFHQeSjl2/DLvfc/7+Kf/8J8Qx543vekuTp04yzjP2L93J5eX18K6qZGMEADIOnFS16ADpg5WQ/Lw1InTvGt1jT275ylNTlmMGccJC0KSNjtEsWbPgX1MdIO1tU2mIhGQvDSh1DF+c5NIheFOszNdbr/1Jv7cx/88c/M7+bf/8md5+vnn+dznvwACXnrhJN/70Y/QbHR59JFfZXY24Q133sbD33yaqek2u3bOs7LyytLHt7bXFAyYmly2BWq9LN4QhL7S2rbyXg/EQvCGhQUmeR9UkI49Mt3ipm6bhtY0VRAQeXxlgxVjibRmutXGe8JoTA9RZhnPT+GmOtyRRJw+cQznJP3hgCOtuQC5CjjWHzJcqVjLJgxywytnZTpgIqCUAUpVWnFoegoVKSblhL5vMTIF63nGyniCTpt4BN5pOmmEwzPJc4ZZFvq5GzHD6RnyqIHMS7CeVVswsa6W8q2fhrj2qdX80q1qgYfKSWgnZEW2nX2ZLWJjZGglmpmZGfrjEWuTHCEFw6JARRG9ylJVBiUVk6JgUITJbEWU8lR0iSm3RaIMpEWvrrKSv515KRnnRXBY9a81pebgbJdsPGboSgobZpTjw2FWek/pg356VZYYIZlOG9sT1pSURDJApXmW08/H5KakMg6lBBfXNtFqhHO1wJQK1Tr5yvkK15j0YcCM23qeVrC70+EKno3xiO3ZDFJRVgXCBrEfoXzoPmg16tY6SZkVfOZTf8j3fuj9lFnGzFOniFauMC5KBmVJTsQ4K8jzIoxxFQKXV6z3ViidIJch8JBbC39r3Ymre8LbcG+KWr1SCBaTBnZqikFRURnDd+zew70/8h76axv8/u8/iFKSPK9QSYyWDiENsfA4Kg7u7PL3/tn/zO/+5hf5t7/4ezSkwggVsu0izAZRUqIQRCKoY1obWgARgtwaqrrjxFDhrA1TSbf3zFYI67dbw5QPQ8F8WbE4NcXmaEB/fYPMGGRRcuuh3fzPf+tv8HOf+LdsrE1IkjgQC63F+Ip1PF959jhv2LeTm/cscvziKr4mqE68DeOV67JPrOrA2zm8BCk83qs60TAvu0al1CtWSUAJtlqbrXUoX6G9YKOc8Pr2LBt5wSAPY6WzrOQHvvNt/NBP/iD/+l/9Kn/02fthq/NHBCb4albwjaNPc9vhHTz50jG0dSQqRkWSwlkyW+KsJXdbw7hl3XLsrs4bqS9tq2oYSRFGi9e/5ZzFOBn4MW7LGYU7q6rAudJah24Lazm5tM7S+WWmgGanwa6diyzsSABBFCUoFeEdPPHk07i0SaE0mwKmWwlOK7KVZQ7FEUMlyaXgjtfdwY/8pb/Kjt0HOfPc75KXFcvrPayzVGPH2lPHefHEP+PAvgPg4cGvL9FsTyFjTWUqZqabJJG+Sk72W63BgZMV+NmKsgyy7t5JjIP18YRHjj7F65M3sHfvbha6O0EKpNL1fUgGgwEnTp2janTY8BanG0y1I8ZFhc4mHG40WZOWOG7xoe/+Hj7wfT/KpL9JNeyzst6jPxpRWcfmMGPp01/gkcefJVIxzWaTz33xAXbv209Z68sszHcp89DZsa1l40MZZWtHB5EtVwtWhWBnebPP6UurxLt3sXvvHmZndxBFAq1jlFQ4B88+9yJZJRiqBmPrmOm0aMYRw9V1diCoogYDJHv37OfH/sJf4uY738SLj9yPs4bllTUy6zDG0RtmnPwXP8+RwzdSFobJJKOwFZ2ZGQrjaScJYnaaiysb3/6wr+01BQN/IMd8wLe26/Rb220LCQjzwwkcAe9Z6HTQUmKzjJk45XWLs6wOe6zmFWfGY0pnccZR2ZzKOkgT5uuHHMagChQS4ypiqZgVEan0dK1k11pB38EZ0ePUygaymTIyhsoGCmGAdbYOMrF9rUYKfCq5oz1P0UiJFMTSc/vNBxltblKUFo0mMjFTiWXiDEu9IRNriYQMrVVlxaSqsD6IrZxc38RHE4wVV0V+vKduMQBkHZQIgkCO4toQxUoopSSqFe+2J9URWMNz7SCQMiwyrDHMpCmJFCw0m6z2h1wZTRhZi1Ch/az0Lug7KEW2NqCqSiye4hr9gj/JjDWh9onYvs5YKXa126xYQ5TlqKpESh9gUC/oZxNsfc1K6XpGgSeJE+I4RjgXaqDKo2IJJQF+F5bdCwvsnhh0P8N7hxUOJyVXiynbK23bRF27EIRgJKBtBVEk2dFp0c8yNvIweCaSEVooJmVGEid0kpRYyyApjUOgsNbwmc89xFSryXo55KtnTrMxzii9DfVPJcJs9ryinwfpXR03iJyiUpADlWB7+FIsNToCrwPMaPKCbtIgN4bSGRIlqYqKpSJjppnQajU5cXmFv/eJX+Kfdrv8nZ/8HzAbQ549eZ4yr5BYpjoddu2aZu+uHVgvccWI3XMzxKYWK0KQSkUah8l8ma0oqorS104RcXXveo/2HiEdE+kpvSJWCiUl7WaKliKQZwl13cw5hpdXUFpzcKrD5qjPuY01kjQlVhrhCso8ZyFJeOtte3njL/x9/vf/7ROcevEC1nh0JLjpyCE2NlZ49JFvcvfuj/Iv/+5P8q9/9/N85aHHMHhUKejqiI1igndgbD3p0Xuk1PWeDgOGYkIXidlaGs4RxxFxHJOq8L6tN3gt0UNJVo2YiSNmmglVNuTCYERDxwgVCJs4z69/+o/YOd/ib/6//gq3HT7Ai0+e4PlTZyjzATcc3Mt6b8gf/sGX+Zs/9sPs7HT5F7/xGQbjDJxBC0cjThnnFaVzlM6EDgEpiaUOHJ96nQal+8C4V/We2Vrfxph6DHFABYIzCu9W66j+75owqiwb/R6XLlxmGDtunbsNITRaRzV5WdEfTPjc577AZ37ttzAmdFz0soxeFuOKih0Nzd52Qne6zXIc8+bX38aufUc4/syTHH3yaZZXNimr0B2SSMW+vTu45+57OLBvF3e87k6OPvk8Tzz9NMPJhJtvuYWXXnyRJHFkE7u9zkIOFBQeIZTLhAioa2DPKEpTcvHcBV537510pqZIWg2EkAhCm+3SlWV+7l/+LM89fQwVScaTjMlmyRVvSYEb220OTDcoGhHl7AJvvvetKJXwyAP3c/zEacbjDGtCF1a71eTmmw/zprvfyM5dO9izew9ffeBRnnjyCd5w1108/MgjMBriKk8+yYkiWY+0DyGdqJM7pQJS5owh1hHOW2IVSmrtqSma7RaNRoLSGuEVk0nO40cf5Zd+9t+xPhog8fTHI8ZlgS9KZhspR2Y6zE21uALcdethjtx6B6uXzvPIw9/kwtJK0IARAqUEO+ZnuPsNr+fIjTdw0y23cOnyGkeffIoz585xzz13841vPELq4ldx4r/GYOAhO8FKx3fSfBky4AGEJ440LaGII00ah5rtocV5esMBz66vcKKvKL1nUhp6ZUnmLO12C6QOLHQdNnRlLZOsYFxVCKXQHkRqGds2Xd1lNM4QNmQqXsC4MhTZGFmzZjxXR0uKaxxIFUmyTkrVitBRFLoTnCNHcObSKgf27GT1/HmkczScI02bZB6KtCIbjzFC4YyjMIHR20pjmkoi1/ssmeAwRsKSh9WOF5It5vtWzV34q+5tyzyQ2YLRMKi/2S2BCkKtcrY1RVVkUJWAY2U8RkqFkRrVmEIZQ2oD1OaFQKNpRBFz3Wn2LBWsVBUFUIjQ0fFqzNZs/JfJYkrJVJpQ2Sb9smJsAtTXaIXMqD8O/IJIShpxTKI0jTghiWO2JJm3SEFOOqwQCCloxBHYktgJtBCMtaBw9ZQwINIRaRqT6EBirKqSPM+JVcR0GnF5OGY0CnVbbz2Xe2MOz02TaBkULKVAO4fQgiTVaDzSGYTTmMKitMJrg8cytzhDswE/8pMf57s+/B5+9t/+Nl964AmQErPVKRIHMp+xnkkkWW5FjMY5rhJI6RHa0m232dGdYSaJcc6Q6oh22qQoDWvPvUjfVCy0UubTmJWlS6huF1MZnHe8uLnJ3/6//gX/7qd+gn/893+Ck8t9fuvXPk2kUwpXcvnSKo89/gyjUUYrFjzx4OO88PwJkihkXs6WICVSQCuKSXREWZYYa+sJjwGO1jURDzw+lkx5QXemw67ONLtmpoLiWRGY9Q2pOLG6zgtLKzSU5JYdC1TVBFzFZlaG4NgF8vDvPvw4p//q3+F/+Zs/zj/733+Ki+cvcuryCl9/+Amef+oYS8urZJXlE7/7GcbjMXumOhzeNUfUboIXTMYlJ5ZXGI3HeB+UMY2zCO/RhLJbpCPwDiE1mTWUzpHGMQcW59k73WV+uoPJSyIhiVXMg+fOsjQY0UhT7tyxkzwfgynoZRVZnodynoBnlpb4m//kk/zo48f4yT/3YT7yE3dyMZ/wR7/zBc5cOIe0JSpt8ftffoi33Xone/buYa4qiQj16rGxnDm/BBUIEaGlw5tQhlEEedtOq0VDgdSazaxkYzjEwPasAO+3gMQtVdWrKAIIrAOHJZIa6yyR9CxfvshvfeGzdBbmuenITRw5ciPSWfrra5w+eY5yOGLKwbl+H6xFWMf0VJfX7Z9l93STmVihlOIdO7t0LpzjG7/yCzx54hiPPfMi2XhAt5USt1Le96638L0f/Rgr58/RnIq4+fBeWjML3HJkJ5/97Be45Q3v59zpsygvGA6G2xySLU6Sx263FXqCumocRXhnibymGo/4+U/8IgduvIEDBw6wsLCAy3LOnj7L5uomxbmLKO+4vN5DWEcap+zcscgbds0xE0fMdxpIBfsXprj05c/zjP4KDzx2lBdOnaWZJlhrOHhoD9//0Q/yxje+macefYi3vf1N2Lziez78IQ7vaXPi4iZv+46387Uvf5FS2rpsJq8hPooaWQ3lG4Vgkk+YbrfYNzPD3bfczDcff4IvP/kYe/bu4Y477iBNEkabm5x64SUmeUajKBiPx5iqCKXfdptb9+zllrkOnSSimcbc006YKsYc/Y1f4aWVKzz8+JOsrm3QbTexQnDfm1/HD/zQ96OtYG11iTfedSd79vQ4fGg3n/vspzlw65s5fuI4g/X1V3Xmv0bRIRjUEPYW2dgLgUkVRSNiXytFRoHNGQOlLTmyOENr3wIbGwO8dYyLikFlcEWEH40ps5KNLGNSliAE7STB+TA6eFiEITFaCKyznI973DDVohyOa5W+uh96a2WJq9Dmt8p+O1Nt5mdmKHD4OGJ1EAiBg0nB+c0NLq1sMComNJIGWWXIfEy7O8NYKNJmM0SvZUUqQ0Q7M9Vmv4655UrOWR9mphsvMQSntkV422qFDJ0DV68tPMKw870ArUL06IUNs7MJWUQ7SvFCMSxzIgWXs5xBVpE0mjQSR+4ceRlkNpWSxCpom+dFRh5JJl4yBjIb2rLCoBJBEgf4NolqtrR3bPZ7OAHTUYx1jl5ZMamvd5RleA9zSYN+q2JQGFYGI+aaDX7gz38IIyX/8B/+AhUCby1J2gx91JMJWmta7WZQG7QGVznGWU6kFImS5KbiUiOhoSPWjYFc0Iw1aRSxe6rD4tQUnVYY5ewqSyNJiaRic2OdUWVgFJjp860mZ9eXSIVB1pkHQqO0pJmmNJoRh286yPFjp6hyFzTuvccbR6udsP/wXn7+F3+PbCT5jjtv4Aff/x2cOXWe1fVBgJOdR2pFJBWJlGRSstqQxCJloYD3HrmZXfNzJFKi8IhUsL6xQZUXKFuirAkEMKAVK44szFNZw+Z4wlqvj7ehDrk+qXjqiRMcHk5YMRMWnOT48bOcG4ZWNY9Hebj3nru47fBh9hzYDUefRKkIFcltomJlw7aQWmOQlM5QslW/DSG9FJKFmSlunZ3h9ftvwDhDUQUxICMC6a3wBbIqiAEvFUm7yWKl2ewP2Bj0MdbgA68NLxTnRyU//TO/yF9//9t597vfQPvAHEe/2uPIwV0oJJc3Nymqit+6/+vcuGcnveGQuSQhLws2NvtErqKVxFSVQXofWncBRJhe2JCC2w/fwGK7SS8veO7yFfa2O3z3TbeSuwJtYSIMZRmCPLetnyCZjZqIOGJ9NGKtPwgKi95jsEglWVzcwZeeP87GP/kEH/zO+zh56TL3P38aWcJaf41hPuIZHfGNF05QSdi7MMeu2RmqynD68hW6rYSssJSeMBtAVEEp1XsiLdk51eCtt97KpKo4vznioeeepzTVtsffQm6cc/i686iO3+qShyDLM9pT00w3W9x+8ACXly+zurTM0sUrXHzuGI91OhzascDOyJFWFb3KkMUaZy2LC/O85b57eet93xEQpjLM+VhfXuPYCy9w8sGjLIhvcHljwLyOuHvfTqJGCznX4cd+/Cc4/fyLnDt9gu/+oR9gbDQvHn+enYsLfOBDH+DkhT67d+9mc2WF5bVhuJ9rkWR/VSpe1GRXvOfgzh3cvGc3Zjzk3PGTXDx2mqfThPbsLDfPtGkpR9YfYuMmhQ/DwO648w7eet+bufuNb6DdTCjzAusF5146xleffYbq6BdwZcZgUnI4ibjl9htYzyvu+a53ce87v4sv//6nmJ1t0l3cx3NPPMGFtYybXv8GdOcyk6ePMd+dIS/WYFLivdhGpXyN8or63Qg8SgoEln075ykmQ55/6UWyIufMMy/w7IOPsm/3DnYrQ+w9q6MMl8Y4a2g0U97y5jfzHe94G4cPHcDbCms82WDEqeef48UnH2f28aNc2RjQFIJ7F2aZX7iBoYQ/9//4cbLc8Y2v/iHv+cB7QKUcO3mKZrvNez/4Pk5dGLJn117Uq5zX8JqCgVaSoIyiRFIJQR4JqmZElSqU0rTT4MirKpBchNZcWu9zw95ZZndNs3R+jVak8LYgiWBft8354YSLZUFWhX5sa31g2zq3Xeu0PqjNXRmPONfrYzb6WDxGeCoCQ1ygwob5Fte9FSLkozG9vGItVhRJxHA8DO0bUcy5YcZ6aWnGMX40ZmWS0WjE5MMKjyCvDGUVpkwpIQNRx1aU1uOEoxCeAkFVk4G02NrYV2uuToSZ5NdyLYT3eOFQUmO9I8tLKu+vCRgEaQSJThjmDcqy4MxoQoVkxnsawmEqhzWGwho0OvSZW0XlFC/NKqosZpQZfOgmQ0pop0kY9ayDgqCzDh0rbtq9yFSUMBn1KcqCU70hm2u9oBgp4KHTp3nLvn2kAlqxJq8qbtq5wI98+D6SHbM8+9gL/M7nvkba7lBVJUoIoihGCEFZBN0EKSWJ0GgnyFytM+ESLrUiFhsx82im45y33vl6uq12mNzmK5SC0XjCxOdIZ3CmJJFie2KikoKb5+dpR2G40rg3DMS0osSmjlRF3HX4Zv7pJ/5XrlxZ4St/9A0e/upjCFOxc+cicSR54P4HWR1X/Kv/8LtcfO87edNt++jOpOw6tBPnNWsrq1y4dIUsL3BCMCojKBWvn+qQqDYLkSOpxngfYHs7cihb4Zyp2zFDOQgAKZlVMSMpODke4whIiXeeleGAf/zFz3HHs7vojcdsFjkiiknjhJnpLjd3ptgjLPtm23g34UNvej1PPv4klYopq4qZTptIac4vrzIYjTFWEinQRqJcaPOyBKZ0JASL7SZzzYTmQgcnBF0hsUWBjiKGgwHR/7e9c4mR7Drr+O887r31uPXoZ/VMT8+Mx56M3yaJY4cQkFjkIUFYRIIFUiREFAlkRBYQFAUhFmyQECLZIIHYRKAsogiBZBmIEkUB7CTYJnbi93jGM909/azqelfd1zmHxakeB0KUyS6K728706MeVdW5X53v/4hCVrcK1KW7GMiQ1toSm0nKRsVR746YGcdw4sN9ZBCy0mqyHC/x3GTGyb+9QLUSopM6D54/y90XrpDUqhTzhPnBLuvtmADfzDjPc8ZTQ3fQ58bBPgcnA/JCYYwP3GqGmo3VJndvrHH3RofxeILsD1iuasjnzCZ96hsbqFbbhyMZQ6A0W40K8eUrNLSgs9ZB1BRxlqKPBozSHKe010cjWK82aMYxO719vvTKdS5vbPLIo6uYPKM76LPfO2br4gU2VlY5u7aK7PcwoyFCaTZW1xnPU7YPj7i+e4v+eEQRKqqVCkutmIe2tnjk/HlGkwmvHhwwHo1/YBH39oHl7dPCn0+LXbu1hbepSUmgFEWW8eBdl7h4Zp1reze4dPc56pUIbR1BoOk0qqzFMRZLf39Id3uHS+fO8ZnPfZb3vO9BlFDYomA6mTAYjGjEDYQKIW5x/L1naaYZBYqlWgUpobfT44t/+dfs9o84u7nMZJLw/Td3eOaZZ6nW48WD3XJu6xzjrv82KqTEGYEQCmuL26exkD5bIdAB6XzOhfUVVtpVtkdH3PeuCwsdD1TrNdaadZrVCDFq8vLeCWk642Mf/QhPfPoJVtbaPrcgS+j1TkiTnPDBBxBRg92rrzJ640WaFqJqlVYU4JKc7371Gb7zzKuMZiM+8P576Z0M+Ma3XuTwqMcLtZg8z0EIOp0OO/vH/vc9HVw4dXn4gcCLIS1hqIm0wMicUZGztbVOoxkTLVpqV9sNzsQBQkmygwkvvHWDZlzj9z79BB/+yIeoRAHGFsxncwYnQ/J2k0JIbL3F/veepzkvSFxBu16hoQXZaMqX//YfOJxOaMYhg/GU7hs3+Y9nniMIKiB8Qd/ZjbOMDnfv6Pn+Ew0DFSF5kRkNIWk2K8g4YqvRIs9zcmNInCMxficzyjP6k4S98ZjDkx4VrTmZplhX0AoDjIAoWiFu1XlIB1wbjZifyphNQZ5mWOc9v624TlUKzicSu33E2GRYgR8EnCFH3s5B/1EbcQfkWUF/mvMCCblUaHx0q9WG3MLMSbrD8e3UO5U7vL/OYoxjniUoIYmCEGVABIqpsBw2FCdGMSkc4+w0Ztl/xKMwpFatoyXemYDPDiiMoT8cARAFFTSOLE/IJPyg8DMMAtbaMfl0ylpcZ5IlKJmTGsNoNoHCi5+aMmRQWOaZVy0nxg9KKoho1iusyoQ4rPO+Rx6mVat4NbxwaO0HuYOD44UF0+GsYRxo5s5SDd5+i7QrFUIteKt3jECS5zkOx7+++CKPfeEr/Obnfps/+JNP8vobN7l6c5dGvYYUYG2GlCHG+D2hEIoESzuu02k2OBgO6c1n9Jyj0o65v1GnGteQWUK+yFeARfFTkYPxeg2H1ytoIfAZdrBarRC6gqvdEw4HIxL8NXM6nZKYgl9fbjN75U3Ob3b41O9+nE988qPIwqKBt17b5dWXXuVkmFA4wT9+7Zu8/uY6xmqeff4q9Ypia6vDe959L0Ho6Ha7vLU/YTKdIeIGDR2SJQW2mBIoRaCEL0pRISjf3Gatoh4FMF2oyYXAZhnrjdjrTZz1r50xvN49od1sc3FphY5jsWOVRKFiSStOphPGr22TPfkddvsTHr5yP/VKwFKzgVjEfvcuXmTvpM/2/gH7R12SwhHakDTLKTBo5agGAbWgRoDEpobxPKHVapGlKYHWRFoRV0Ia9RqzyYh5Oieun2M5rGDIWL20xnbvhGM14mQ0BunPgKqWCGJuzmdUjSVcWsZU6izFMVEUkqgh4myHOK6TJYvGy6ygEcJKXOfMyjLd8ZSr27u8uX2Lar1CtRJSE47LW+eYDEa8fHOP68ddeuMxd7Vi8iwlTxJqtQxhWfweguValVtHA86cPUOzWkMoRz3UNLca7PV7JMaytL7B9s4eqckRecr9nbPoQFNYS6vVpBmG3HfxAtPZDCcFG6tr5C5D1GsMxyMCrViqRsRRhbgacfFMh+u3Dnj+2lvkRc5Bf0CeGUaJ4ZXtHW6c9JhkGT+s835b9Oicz3OViwHS2IK8MF4/IQT9eR8Vb3L//ZdoN2JCHVCrBkjhnTJaeYfX2iTh7I0Ov/Dhj/LY4w/5fyufkydzFIZGHDGcWjpn1ukPh4iH38fRC9+moaDIcrJsRDKcMNo74JqVbO8e8fr1vyJNM7IkpRrH6EDT63aROMLwNJvhVO0jFiJI5S2G+WIdgs8kUaGk0a7wc2v3s7K0RL1aIQi9O0MLiVaKuwvLhe6A7aMTPvX7T7C8vIS1BpMmFNmcWsXrKSr1CitrSxh3mfl0TH10jHSG0XDIdDQjTzOuXdum72B/v8u/fOMlkumUNC9Y63QYDPokkwlaKaIwROkUZ93i9Th9LRYBdc47MJSwNGs17rtnk1oUEijJUrtNo15DSUEt9Foc5+DMZcO5S2dY3rqbX/nVj6CUwhSZXwWbnFo9YDJ1rHVWOe712Hr3Y1z/1pwV5btopoMB89GY+f4x13OLU5rtW1/EOkkyn6ODgEa7xdHhEc7khMGdPeZ/omHACIex8G0x4dGZ4L5qjE58QEVUCVlaXuLa4SEWRwVFK6hwkCT0kyktrbFYzjTq3BiM6SYZ9boiDCOyZIJQGo2PYJXCZ4I7wFjH6lKThlI8sD9H5Rkj4RbCIUsufOra6Qzw9rb9h8mlZBQ4pJNEWvurW6l8c6D1xSOnrlEJzFMf2SkcxFZSC+scJBOMS7E2QEmBqgTcqEmSPKJIUiLr99qB9Ha1eqipCkNVh0TCUVhHoSRBJeTCygr1Wg2RJswnI4qizjgreKU3ZJz5q50kL0jzgmoUEJCj5gY1k5BYMmOYGAO2YJhn1LXmXavruDxnezBiZnJGUtKIq5xfXkIbWMcS5hk2837W3PnkRlGkt/sicmuQwlIN3x6xANbjOpeXWiTGcjiccjyakwOH05TPP/k1Ll65wgd/68N89g8/wR//6RcYTFOEVGihUMKglAb8twfpCtbiKpebTc7Vq7w86HEwmjJNMuLWEqFwzEZjiiBAKUklAIGiogKiSBFKyBa9DuvhqSDTZzUI59XfrWadZDIlkT4jfJak/MWX/4mvPPVV7tk6w7sfuZdf+6XHeddDl0EL1mSVn3/vA1w5f4bMJFi8DqSzucmjjz3Mm2++RbXZ5tn/+i7NRoNWu0UQWAo3RytJqxoRaI0QEqm88l0rCJz310ehd15Eyh8mFa3oNOusyYjObIZShkoQMJymjNOMmXXUdEigNK4oKIy3bQo0Lw18tXZ6PMLeOuby1nnOd85grSFJEgprcAGsCkEtCNhotxlsTbm5t8+1g0NS6wOjlpoxjSgi1FA1hsFb14l0gDnpEigBgyGNUKKnIwaThG8+/TxGKT6oFJFyOOmYZpb9WzfZHs0YpzmTrKDRXEJvnePSyiqbrSa1akjUqpPlCXqYUVhLu1bDRHXyJCfQGozDKMs09aLBWhTRQRDffZHlpSY3Dw44GI7Z6Q959eTfmYzGjBcPUwNsKUUrDAiGQ9x4Ql1CqCSREKjegOeef4luq80vPv4ILETGOENvZ5eD0ZRZbhglKa16g3DrLJ2NM6y1Gr7ESmTkk7kfWKRCKQkH+/6GSkAcx8ySlJ2TEXma02jGKCE431ljeanN0UmPt44O6WcZz+3ucvVg/20hwA84e/wKzz/AT1XqgZCLCHJHoANC6YOHIqWJ4ypSWgJdQS5uF9OsgIXtDRzTecKtwx6FjHj4kYf9TYPJMSZnPh8znUxpLa2xvtEhaaQ0mjG9bp8vPfc8F2TOuD8gN4Yi9UmtTRWROMug16NaC8iSCVkyJqpGCFswmU5wQqG11zSc/u+8o8OfsFqLxcrS90LEjRpRGBBojVysphyKPDNeSGot/eGE3eMeD733Mdrtpq/VNgVZkTIadLEo2isdGi1FI26yeW6DLJ3x+jf2WVEZo8SHLLnMEghHU4YkaQ6jIThIp2O6+94iavKUZJ4RqgCNIivS29HJSqnbVkOtNUopPww0Y6QMCHREoP1qe54mCOdIEokQkjQv2D3scjJJ+NDHH0Up5QPVTE6ajBkPB1Sby6ytrZKmBbV6jelkyksvPkdtPmY+HOOwpEmCyR11KSmkZtgfUq9XKdIZs2lGlk0Q1jKbTpBa3dHz/Y6GgdM4w2ma+g54B6+mU5b3LVI4ZsLxujJMt28irfU2GSGoVioczeYUxrDZqKOc42CvSz8vqEUh1s1xtsAJyTxLyYzfx+jFYSmEIIoU/dEQG0ak1hfxZs7bcFIsmQMr3aJCGP6P4fF/UdQiRL1GM5my1z0hcL4Uxmj9Qz8phCB3jsl8Rig1J4sc+wLvG3Z5jsNiha9gblSrVEWAEjOuXNzkvru2iMLw9htWCUkrbnBtb580yRbho17wN0wK75NWkqASEAWSQba4KiwKnvr+S3zwzFnCWoDIfUveqSCvsBbpHKvLq+jZlAeXlhlmU9brMd+9tccoSWhrgWpUCbVgOPGiHrEQ7+H8LjPLfLGQEz5QxjvjxNtd8Pg3vnOW49GQm70hU+eDm5yDN07G/NHn/4a/a8c8+v4H+LPP/A5PPfVNnv7vl+gmc0KjWQ4kVy52eOTKecIg4u+ffJrdyYiGkMSBRsoACkGgFHEYLJogIcu9l1wKXyctvc2aMAihMEjnldlaOIwQhELTWW7DYAQColnKSeLjaOtxm3EY8dzuCV9/+Um++M/f4M9/42NMZc7Vq4d8/c2X6CV9RG5xhChbYXm1yy9+4D5qUUAkNb/82GOElQrGWfYGM/LCUVjhverO22FDBFr7TPKalAjhBa/oRZGdcwRKUa+EIAS1oMm4MEzyLlmoyZ0jCqsUp8NgoKhXqsStOsvtFpkpqAW+Fno4HGBzQ5p525nDB+RkhW94FDjiahUpFdUwYmPjLP/5vRfpj8dMkpDZdM7jrQahWrgNnCN1UBUSLSyRkkSBJnPRQgQLS9IwMTP64xl9a5nnPoRrfW2NS7UaF9bWuGfzDMIVRDrEWEOWWsSiKTHPfQyy1Jo8y8jSjDDQzNOM670B33ntdVrNKvdvblBVFTZaLZaaMaNpQjcxjIuM1wavekX+4jN7ml4oBQTal2hVtCQKBMtTn2Ba2JyZy9g57DHIClwgGWcFtjBsrixzX7PF2c4qWytLSGMRUcAoSxC5/6wUxjJPEqSUVCoRN7peD7LRWWM+nWGKgqevvUF3OOaec5vc3ekgnWG52aTaiJnOE46HY24qRbpwF5wOBYHwok+tvHK9WORnCOWjnFUQ4dsLpU+OdI7cOroTSySnXoQtJSb36wRjfN3treMee0cn1JptTvojCutwtsDawqezqoB5miFtAkhqcZ2d3QOu7h8wI2EpxNtQ05RuIegrAdpXE0vhbzqjil9P5XmKs74x1DvMjH+dFxHvSslFnK9Aa4WWAhUo5k5wNC1oBsY3G+L7UnyGiWE0nbN964DhbM7y5kUGw7E/r6zF2gwnA5wTTGcJSO2/HTeb7Nza5/s7t7i3GYIx3h5pLAcEpNYQ1hy5TahVIhwWHWgGgyGBUmS58fkphRfHCuHPnNPsi9PbGyG8qNBJRX9mmKUz2jVNbh1uPLvdOlkUBUe9ITuHXZxQHPf6tJdXFi6FDFM4rA7IcoeZJ/5Lcb3OfJ5wffeAvUGP83Hkbw+zlHHuONIVEBMqtQpuZmER5gYwm/tEyDw9bY/80c9GAOHuILh4d3eXra2tH/fXSkpKSkpKSn4K2dnZ4dy5cz/yz+9oGLDWsre3R6PR+LFhNSUlJSUlJSU/HTjnGI/HnD179rb25P/jjoaBkpKSkpKSkp9d7iyBpqSkpKSkpORnlnIYKCkpKSkpeYdTDgMlJSUlJSXvcMphoKSkpKSk5B1OOQyUlJSUlJS8wymHgZKSkpKSknc45TBQUlJSUlLyDud/AJxiy43OwsBkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_augment_2/1719298626_tango_video2audio_clip4clip_augment_2_best_steps_300_guidance_3.0_sampleRate_16000_augment/-BAKe6QGTUk_000030_V6-xlXRhkI0_000050_7.wav\"\n", + "show_mel(file, save_name=\"1_wav.pdf\")\n", + "show_video_frames(\"../data/video_processed/video_gt_augment/-BAKe6QGTUk_000030_V6-xlXRhkI0_000050_7.mp4\", save_name=\"1_video.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_3407931/2796252854.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAvCAYAAAB+KskzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJ7UlEQVR4nOz9Z5SnWXbWif6Oed3fh4/IjLSVleV9VXe1b6lb7dTIohYgCSchMdJg5oo7GGGEuczAYgAJEAKBhJAQamSQ65Ztr+qu6vImK70Pk+Ej/u41x82H918lcWexBtZt7nxQ7rXqQ2VVRL7mvGfv/ezneY4IIQRux+24HbfjdtyO2/EHNuT/0xdwO27H7bgdt+N23I7/Z+N2MXA7bsftuB2343b8AY/bxcDtuB2343bcjtvxBzxuFwO343bcjttxO27HH/C4XQzcjttxO27H7bgdf8DjdjFwO27H7bgdt+N2/AGP28XA7bgdt+N23I7b8Qc89H/L/+S9Z21tjXa7jRDif/Q13Y7bcTtux+24HbfjKxAhBAaDAYcOHULK/3r//99UDKytrXHkyJGv2MXdjttxO27H7bgdt+P/f3Hz5k2Wl5f/q//9v6kYaLfbAHz3+56k1WggA+RVhVISKRTWO9IkRiuB9wHnYGdvj9PLU3zfX5on7EpQJbgR5taY62sFF28aOovTHGyP6Q8r9vYL+oVGasfGvuLIiTvodRps7vQp2nN8/Td8HeNRzmNvvQ8RQEgJSIIUBPSbiIUXAhCEIHHe40LAGot1lvVrV/ilH/qHBOspKoikQEeSwgbajQjvHTLSWGMpxw6hFQ8clnzLR5scbIyQUmBNQb8/ZmM/sDeAvX7J1FyP8SBHIqhcwLhA6etreP6y59CRRdJYs7W1g5s9zAfe9yHShuLxtzyMFxKlBCIIkBIICFH/rBcCgcCJ33tNznv+0ff8CaypKzytNc454kQiZYTWnhBqNGcwqGi1Yh6+B951OmZ/vyI4T3AFg3HJbt+zPwoUY0teSbrTKS4vSJoJxnpirTBeYW3Bp1/MuTI0JO0uD957H9Vgj3R6gbc8+VaaiebRxx9CRwovQQBSKQT1OxFoAgGBxEkIQhC85h/92T/z5nuz1pIkMUoFhAhopbAWrLPkeWCqF/OeByumGoHBoCRUFbmp8AF2+x5bCUoryUtLUDDdaeJsSTOJcC6QpjE+gFOa8WDErz67w4VBII5innjnu/Hes7V6gw9+4EP0em0aUcqRYwvMLM5NrlEg5Ruo2O+hY7/0o/+S1atXCcERAjgLWgeMDWRZjEIglUQJSV6WaKkYWYUKFi2HvPWuBoKS/mCMtRUgqCpLWQZKIyiNRymoXGB+rokUGhkscaQI3hNpAShkFGPyPp+72ubS2jaFg06ny3SvS5TGvO9r3sfXvOcdTDUauKoiiAhrHPnaKvsr1/m3v/gLEARKg7UVcazxxiJ0io5ACYEQMQjDaGQQQiHiFna8T6RG3H0kQghHf5AjAiA8QThcJcmLAuvAOIeUEu8FszNtdJySD7bpdlrI4FFSEkWKIjRIGGGd42p+mM++fJ2qcljrSSOBM5Y/+73fxfsfuRfdnabMWgTg7Pnr/Ppnnua59U9z4DZYXJzlZ//2L/Fj/+5z5HmfUZmTJZ7SBqSwBC8prSGhwOgO3W6MCnD46AL9/T5zS4u0shZRnCClwHuPlAohJFWZMz44IE4b9PsDBgd7LB89QaQVURTjnWVu7jCNRgdpKqQAJQrGhacwktN39Pj/xlit8exulvzdH/kRKj9k377K9f2LfOzbv5m3xt/Al1+6TD8fE0RBqiOKqkT6HBG38MKiHJTes7w0S5ImKAwuSA4fO0GqNTqKCBK8dUQqwZiCfDykykvirMHBwQG9TgelE7yxtFotWq0maaNDI2mibAkaIiyXr2+xuLDA0cPt/+IevA/YKrByc4cf/al/x7ntLzNQ61g35l//4L/jM59YYTA6YFDmZMqDTnFuQITkoLC0M4UNkqwd04wSlg7NYowjjlOmp2eItCaKIipnQUpUCFjjGA8GICW7ezsID7MLCygkkY5JkoSs0aTRmEIFh3IWpR1SODa3PHfeOUcS/V/fxXBg+aEf/0lGg13O7n2OW6MV3vbeh/nbf+hH+fH/9NsMx0O8G9OIBcPSkMYC5zVBeHw5QmUtZqbbSCHo9VrcvLnKY48+TpzExEmCkApjKqSUhCDIhwO2N9eYnT/Ezs4uMgSm5+YJVUXWbKMQdKfnaTc6SFsgNAhTsr4zpJ11uONk77+4hxDAGseF86u8890PvZnH/2vx31QMvLFhR0qRRBopBNY5lJIopUmEJkniyWJwBC1I45hEB9pjR3lQIpWlHBf0tx2jocAZ0MGiMcw0FVnUYMrEeF+xfWAJPrB/MMQ7g04znAvMzPRoNVt1sgSQkiBAhoggICAJkwTqBXgvccFjjcE5z0GzRaoUVRAkSUDJCIkgiwNSgVIJOhIo7/EyoGNJ1vCIMhCcxHtHUTjK0lOWGucMEBAuoKSjGWc455BKYwkc5IHNUZ+rF67y5BNvgV7g0MIySTMhiSRZlhGkJISAUgqlFCEECAopBULoutgRiiDAB0XlqvodBIGUAa01xkCWKAR1JlZK4b2niAJprGk2NFrUSdYHR2k8PkDwEm8NUgm0FiRaYWJBI5F4KUlTTWkFVaWonKPyloaOEO0uo2HBoV6PdtpAR544TdCRQkiBEBIlNUIGCHWhJmQAFE5Nll2QJJF+c31pKcjSGBUsIlJIIamkIfEJrjKkkSYRDiEkthoTRwppI6zxOO8BgQyOONL44NFSEfA04pgQPHGicEHhpMdHmiTNEMMxzWaDKNLgPceOLdPrdTm+fIhYQhoCba0JSYyQv2/rDhohQEhBrBMUCh1LrIFIQZAGVCCSmlhJvPNESYRzluAjWo0WJt+jmSiEDHgnUEpjjCWWAgsgBUJJlPNoAU4ItAikcQIBtBIoBErXzwoF2sbkViNUgvSealxwazTm7ntO8rGv+zDtRkaeV+g4ZW97j+3NXcrCks4vkyYRKgSkFpQhEEUKgsAEiFUCeJQAITXEgdwI4jQFo4lVTKxAEBPpCikEUjisCWgtcVoDZrKPBAyKSCuyOIWobiK0ilEEYqXQMsHZIYKUrWG9npxztJpNsCVpM6Fcv0X7wfvZH1m28wpUxCj3bG6usNTtspzNEC95/uO5f0NZHkYkGXGiSBoaJWJaDY2UDcpgmNKOvcKTaUsiAgcH+6RZxqULF4miCG89cRpjjaPbTFEyZmFhkd7MPEma4lxg+cgRpnpT9bfnPPlgQKPZYabbZLrZI4okCE9VSa5e26Hb7hDqqgmCxHvPcN+Tl2uM9td55drv8LFv/haaN1Je23+Ok+JdCDxxo4HSMVnWJlEw3YwZ2RgdFwgjyaucTAuSZsLm6lUefvwtnDlzHm9LdJRQmZJISJrNNt1uj2anw0xnGoQiBMHxkyeQUuMqg5QSJRSNZo+5dkq3PY2YoMyjXNFqJL8vwdTfx2jg2B3s45xnd3uD5eU2wbVRbfiHn/sB7i//OEppsmaDRhrj4pQsnaapM9rO0UsVu4UlExWR9xRlxf7BDsErNrduYU1FFDUYjg7oNFskcczS4jLd6WmiOKMoK2bn5piamibRMcE5gvOoOGOqlTHdymg2xZvXa8wurUaTNJVvJlCCYDS0DA42GO9v8/ql5zh0aoFOo0Hf7bE93MTZuoBCKLI0RcYRU82EymcIOaYRPAPj6KSKNE5YW7/CO9/1JC++cAapPF4IIqkAaCYpaaNJFCdMzSzR6c4QPHR6PXq9aXCubjTHBe1ml5luk5l2j/rHBXHWpyrN/+VdVIVndzAmBP9f5PH/n4qBN0IEQfAei4DJQws+oCKN83VlDwLvPBAQeEabJbs7OTIYhsMh2/uC3b4lLy3FqKQ0FZlOyLRARwJjPAeDEetXbnLf3XfR3x9yZLpLkRcsLMxgjEEIiRASrzwChceBnBQIQk6Khfrf65MXJitYCEzwhMmmRH0LOOuAGIIkGAsBTHBop5CyYjguGZcWZ3KGuWU0DvSHFYVxeCux1iNcAOFRStUJ2YOvKgrvGBSBQjc48H2OJDF4gXMOay1eCKSUCAHBT95jCIRQb6BIQVACD7jgCUG8+WKlVAjpJotYIYUjUP9u7wUqqLoj957RyDMaO4ytMNZS5FCUjqqyuCDxAqzz4AQ4Qf0mRX1dwWOsxTpHHDew3mNEqFGU4MEI1ldusbQ8j1ASKesNUSoBeAj1hh6igDAxUorJRgh4j1SSICVlWZGmEiUEYfKKXKgLPmcsAwOqlJSVpjAVVSkwJlCVNRrjg8T5gBRQGI9z9bwMwFqHiBT1H0Yc5BXBe+IoRtkxURRz+tS9fOA9b2O21UZOTSFWrjJaX2ffR5iFXv3xU69trSOCD7gQQDiC14RgQNYfnhYTiESAExrhHcZZBOr3sXYdRWVw1lO5QGE9ToEBjAk4Ai7U92ECOOvxMRAmz1eKeu3qmGBrlGScV3ggz0ta010GB/s0223sxg7V3CwmSRkNCnIpiWfnOdjcpQwGKcF5i7MBgUYg8dIjvECGgMdhJxgP0lOaQCgrtoc5vYUpRmaPVAXQGTpt0Gw2KSrL9tpVjPP1bhA8eIn1BucslTNEUYwgwk7emxUSJSWD0qLjmBtrWxhjaTYaaB2oKk+aJSy1Orz48lnSE6c5v3GT/WHB9tYmSdpCNftEjQbWHnC0d5KV8SalsyAD1U6JV5o8TQgiJuBQ7ZQximy6Tdpo0sgUadrgyOHj9fonMBqPuXHtGnY8xvkxq8MDdGeG4WhEJ8uo8hwtEppZgzRKmF06BDJhtpuhZJjsNzUKaK1hdXUPHwLOSKJYUxYF+ShHhACRJklanL96gXanw9LcEtVqxWC4T249WlWM5TZeSoZKEnRGnELwiqzdxPmIXreDlstUpeGeu+5FKTDWsrGxwdq1i4iqQJU5W2tryLRBcI7lw0dYuXaTbm+adtIg62XMdDqURtDrRryxbQYgTVPGwxHr65JgBcY5klgx6I8ZjcfoCGSiGY1LluYX2K62ODF9B2Z1zDAfYfGUKlCFQBSntOOEEQ6bpZS6QdQUdFodpjsNinzAnXfeRxTHmMpgjOXqtYv40ZDh4IDNomC3O8NoNCLSEd5U4AVTrS5JlNDrtYjjjHamaDZEnRQn9xEwrKxtkca6blCVwofA/t4BxpYQKZqtHiIG6SQnFk5hy8Bo1Kd0ASVKRsEikwaFUhg0jUxRKYVJYpppi6zRYHZmiioveOihRwCHCY793W1u3bxJVZWE8YiD0hDSJlcvX+bQ4hJlUaJlTFPFqEbK0eUlChMx140njVa9v2RZzKA/YGVtD+9B2ECUKMbDiuFwOMmE//fx31cMTKB5H0KdUIUAUaMBAo0L9UYZkJNuT7M/sPSHFd5WDHPPwcizP/JUNlAWAe9rdFwpAb5OPpX3XNve4Wjao2gaGkmGqaoanqvMJOFKgpdvdhtCagLuzWpJyLocCUHgqYsDEQQQIfCIN5KRqJOplOBtwIuAkpLgA0EYXIgYFoI8DxjjGJYwGAXyylEZKL2gspNEDiDqLt94g6kCZWWwXuO9x3tQSUxVlkhixkWBjiKUkngv65c2Kd4EDqV0vfHjYFLggJr8RR7vBdI6hFBoLfC+/mGlFODfLCzw0M89eQm2chQmUBSBUW4oLZMO0OBsUhdM3pNIjQuyRihCQEiPNbbuGJ1FC0mSpiBgfnaOOAiSEAimwkqNkwr55vvxgAMvQQaUSvAEwBGkJ1ICUwWSJCFQvw8lJIZACB5LIEjBoIiJsRTGU7r61Rnr8UFTGlcjHx6kDgihJ/fikEGDCAQr8cZhhcYnbRY0VHnJjfOX+XPf/328/eGHaUcxVV4w3l9hdGuHva1tBpXD7/c5dO+d6LiGi40p6839zY/DoSM9geCBAFLEOFcilUD4+p58AJ1l2GIfGRSmCjgnsAZcUAjnCKFGB5y1BEK9dpynshnZ5NO2BIQXaKUwpHgzBg+jsiKEQJqmiMlavHHuHG53lw0bGGQ9ojhle7tkUBrOv3yeO+49BSiU8gTnccIRfFQn78m70wiCqq/FOoeUCQJoJRHj/Vvc9bXfyr1vfQdJc5as1SVOEg72bvHP/qevx9mABwgSZ12N4CHQEoZVOSmIAamJRY14iRBRuIjdg22MDYAh0ZoQAlI6nnr1Fe5dOo4cC3x3CnzJ5sY6G9trrF25xohtHnrgfr760NfyBf4dVkoQgW67Rx5pkkYXKyCLFcI7YhVoaIkSga3tTQ4vL7O3u4kpDTKJKYuChaUlDi3MUxmPL0u607Ps7vTJoggpoZE0WOo06XZbtHsNnnvuAr3sMO2pBtZAPizYPSgxtmJzZ0SkFUomOG8py4rhuE+apeysrrHUupOXnn8F0bT8sz/xT3np5U2cF9jg6rFFpIjiNq20QSUFWRawRhLFNTRujOVgdxsBaBER0Bhv0QqO33U37WaPLEmIk4xgA8PhgPnFRTCOJGpw4tAMrU6TOIn47Odf4sj8w3gfqArL7t6Y8ajC2pKNzYIkySCAdzE7u1vEaUJwsLG6St8OePmll5lamONf/8BP8ndf/AmEUoSgSBoJkRbIbAohoJtGxEpAEHQyQRwnrK9e49DhQ+zt7kKw+FA3ntNT80Tzh2m1WgjnmJ5bor+3x/7ePnNzs2Rpm6lmg9mpFr2pNv39EVcu3OChh+/GWk+RW3b3cqqyIM9L9pyj2WiRJAnOOfYH+/Q6bbbX16ASPP/cCzjtePfXvJPN1QO8B0dAaU0jaVLplLTVQQtoZhJhQSiL8PU3o4Vn72CfYIcIJUAFyqLg0JFjpGmTdqOBrQwhSIy1HD60RH+/Tytrc6Sd0Jrq0GgmfP5zL3Fi8VFCCFSlY39/zO5+hTEVW1tj4iShykua7TbD4QBjSnww/035/b+rGPj9s9IaxgYImMoRNSImn3y9iQRBwDMcOQa5x5QVRQGDsaG0EuehrBzBqzqRygB4BI4oSqj6fayzlNYhpaY0Fetr60zNtHD1TovwUf0zQtTJXdVQF1IQvEDICez+RhkoZD2fweKcnHTNYdJlS4LwRFJhnas7O8AYQX9Qklee8dhRlJ7+oKA0CmclLtT3LyedvZB1UhYBBgWMy5KgBMLbGgLVmjiOSSLJeHeXRm8KkqhuIkV4cz4NNdTvhUdG9bNEpoBDobHCEbB4VI2EeEUIdlII1F19iDRgGeUwVL4uAsaC0gTKypGbQGEmhZCfJFLqytkFT3AOKSOkEJQuQmDxAqiGNNOIxfkFHr3/bo7NziCUxuzsMNxaZWw8bmGRRqdJCG6yTiRSBoIKOMSkePKEELDeAQEfTD3y8Z4g6sThnAIEtqwIJmYsDLn1VJVFhUBeeionMNYhpMc70EmMlBIdJNaDEBbQ+OCw3mGEpDL1DFtrRf9gxLseeZCk1SLPLfvFmOFgRJAaO3sYZSyD8YjhyOHHlnajHj0IIfGhmiRM9WYxIiQEWT9HEcQElZBIIRjnFS7POagqkm6XwuwBkDuJEyk61lT9A4wpCSHgXCBMijwXPM4YpLaTUqp+z8iYwnokGaXpU1YWpSK88yRJws7WLs+98ApTDzzClZ1tRnnBaHeP1vwc26OcvVfOA4bg6+LZBVAhTFCoGpXywROsnxTUAqEVUkracUSWRZw7c533fex7CVIipEZIx8ziEYRUOFGPvgKmLmxROBewvob3S+vxwSPxRJWnreqCwQTBwcE+VmiScoR3WY1ZSMm1vQOW0n2ki8iHY1ZWb9EaHDDV69FsPIDSmsenH6bKS9auXab0BlzFXqoRaYZOGkjdoN1J0UlCo9XCR5rWbJdy3MMay/TMLHGUkJeGoshRWnMwHKGQ2PEQJSJ6rRmW5qZoNWL644rDx+cnRX3g8OICm3sDtvdG7GwP8SiqsqAqBtj8gLKqIIpI0xRnPFoLnGtz5PAyZVnSTN5FnCZ86OQ38cnrf4mNwZBxVRAnETpSKN2g3W5h45huK0EnLTq9Bo2ZacBwcLDH8tHjTE/NsN8v0FozGg3reTWC8XgfUxVEusn89BIL3R5zsz2Gg4LpuW69hwRotlJurmyxtz/AloLSOkb9PtKPsNZQ+ZqjFAQo72m1WqSNJosLC3TzLkfVcWbaXbpxl9WrF7HeUfmK7ShCpSlR1kFrQdbukGUpUZqi23MkWcZBpHDOMjMzR5rE9IcFzjmcc/U+5RxVfoDaUWjV5IF77ieLBOiEI4dmiCYwXJqmoBVXb6yzuzkmCE2V5xzsbaJkxbgsieIGcZpiipzgHHjH0uIiG1ub3JO8E60lHz31R/jsF55ic+Ua42pMkI4sSXA6odvu4HVKuxWRpR0anZik3aDRbLB1a8RSd5apxVmMrfPjKN8j1i0AinJIWeSk8QzT3QWmWm1OLR9ma2/MwvIcTJqA3kyX66u3GI8rhv0K56EqClw5oKpGFN5PxlopvippZNkkt/7fx38nMjAhUgkQAYL3CKlA1LPLEMQEGRUIKXAhcDDwjAtPPqZOpHmgqCwuQGUcgoAPoFw9n3oj0VtrEa5CR5pGu8XhxUUOz87QLioKY8jTDJW+AbhKhDB1FaYAH2oUI8gaIPECPxkXKOVxNqDw9XULMdmeBF4EpKw73yBABE1lA6NcMRoZykJRlI6xgXFZd7DGeZyQyKBwXqAIBAkEhxMZadwkt47+5iqRbnLq+FHe99hDRM0MNq5xbXULOTtF2soI/o2RgQQMPkhErLGmqjsnZwjCIkVABFACIiXITf1hiDcoeyHgg0eIGk62Vcy4qNgflATrcL7uqEsLlbGoCBAe6+Wb81mHIsKBiLBB4pIuc1NNBhtbXB/1iZKYb/rIX6XVauEdjPpj9sqKAS2KfI/y+hrHH74XW+RvogNSSoSXYAVeyhpZ8h7j3WScowCHcwGFI3iBdbYmUwaL8yX52DIuPaEKGGHwHox1WO8J3oMXaJXgRagTZgAZAs6DEnXRZdwUgTFFUTI11cGYEreywe60R3anGVjBXiF4/dVLHLvzJM4Krm0esFNdRkrN4w8dnxS89dimJsXVRSlqAguIyYjC1+vMWUflLDYodAiMxgU3dgJf8x3fSndqnmxmkc7UHI12mx/+3q/FmhoD9ELgrCFKIkBR+hJKSSQ1QUmEFshQF6AmaMZ5BULSbMQYU9BIUzb3LVdu3KRtEsruDP2y5Oq1a4TVVQSBztwCo2GBR4APGOeRyiCcx4mAGNfEYCZrapyPmZntURQjmlIwHDvOfuZ3+d6/I/HO4cp6BJO2UoaVYFwIOkkNUhkXiJN6BLK3OySKJEmsiLUkjhroSGCDIUiNsRmV8zQbioYK9NKIJI5I4wSdNdgpCjLdJ+t00cYS4Tly8nhdEArNoZNLjArDI48+gvUGVD2qMM7jrKUoKgiesj+gPxywdWWIee4FQhiTxZJub5q00aYoCtI0odPt0ev1UEA7y5id6ZHoFqdPLSCF4OqNvUlRLShyx8bOHtsHu2xv3KLbnSZOExpZRpQ2iGZbWGsIHnZubZOKCKxnOBixcGQREDgXaEQpIcDp++9nsawwtkTGNWnYGgjeMRyP8IVhNN4h39ti7dJV+nubHFme56kvfJFmq4kIMWhBkmi6nRk6nQ74gqW5DvPT09x95x1kac2i6w/GeB8wJrB7MMIYz8tnz9Hf3Wdufok4UrR6KVJkoEC4wHg4ZG1lg9luB1t5Dqo+y8cPYZ1HipiZdgfvPQ8/9hjWVzhnUVpjvMO6gK0MpbUUgz55/4AX129SFCUCg8AyNztLnHWwZUXSSGk0mvR6PdJIoKSi3czQJNx76hBCwO5+gXMeEaCsPDdvbLLdH3DmwkV0kMzOzpEkMVOLsygp6NgSISMG/UENs+uIoiyZXpgh7jRwzhOriDhL6MzM8MDDD+KcRURgncPaGgEY5TnSBvJ+n/F+wcbVqwyGQ7LYc/ncdabmppEirdH0KDDdm6fb7SFCyezULIfmplmcW2ZpoQ0C9vZznA9Y5xmMDKPKcPPSZQbb+0zPzhApTZKlpK0ubdGFAMPRiO31bXrNDFxgMBp95YsBKeukb0xZM6vFG7OwelEKKWu2+qQgcA4GuWUwcpgyMK4847ImsLkgqKpAFEmsrWH9em4u2RyWNKKU3dVVRBTxwa96F4vTHWzh2F/fYrizx0AfsHDPHZiqnCADqv4dHpASIVVdEEiJDwIfAgSBFBEuVKjJxiCFQvhAcB4Z3riXyfwZjzOe4dgxGFucdZSVxVjxJixdmrqD8r4eb0RB1GxS6xFRhyQdYMcl1y5c4wf+xl/mfe9+O5QwHo6pQhMrhmzf3OL4XXdizbi+B2rGskDWSL+qf7+SllC3nUjp8MHjnYPgsM6gvCcoani88igV13Nm6xkUhrys78cHQ1V4jAkYb/EmECf1iMC6gHUghccJUS/aALm1WOuJ45i9nT5vf9fbaI3GDJ3CJm02+mM2t8bs7R3Q6GQMdncpzl7j6LFDRNLXxNIQavREuJpDGDwSiaSeFwshkcESiHDB4fHYoBA6woQSU9bJKTioQl0rWyewru4sna+RASdq4qhQmjxYMqExFlCy5hi4+n1nWYtYaUZVn6vnr1AsGq7sX2V80Aeh2djpc2Av4a3DB8mFK68zPT3Fg/ccQmmFoEZU3tDuhje4MkEglKqRCg/SB4IISASxVKRpyqGpLq14j0fe9200WykyTkAooETQwGNhgrWFoNBxSo2daayrORwAsoRO2+GdIkezubVFljax5ZAkisgSTdxps5PnjNfXcMOCrY0tukXOxf0B04cPc/n8BWZ9qIupSYHpQ/1MszStuRvOolRNEpY0cVTYqiSkiuHYMC7HNWnXOqQU6CgBZ1gfScYji+zGJFJgg2A8lhgJ7fgNPkJAOIGXjtx6hIqxJmAcvPfBUzQbGdLXmELlHEMnaaYZpTAsNhtgHXNZA9HTyJMd+jsDRlsFV25cQz8bU7mSKNIkcYxIFInSpGkDpEbr+h8bAsbUao7+3jZpmlJVJXme451kb++A/d0hK2IVKQLf9OH38dj9p/jUp59D3L9MkRuuXVvhyo0riCCRQmKtJS9zKlsSlK15JsGilKwVTtZiSoNQEVMLh2m3GqSJ5tWN5/AeCIrNyzv89mc+z8FoPEnmMTqJibUmyRpoVfOCsjQBqXE+QJAMhwcMBwccajSxpmA8HjMaDdk+6LO1cYBWdQH2ke96krlDx+o9zwf2dge8duYSl66C0Bl2XOCkJx+P0VoTsDUiJh0Sha0M3nj6B33mF5dYmJ2n2Y5JY82rm89xcDBge3WICoHPfv5pKlMRJ4o0TRBKMdvMEFLQyJp4L4jTGO8llSmQQjEej1ACSlNRFWOGcsRwMGBv94DVlTUUgbc8eD9PPHgnv/XbzyLEPVST5L+5t4UWIKOIKi+phMXkYzrTswjhqaqcVquFcxZv6z20ynNmFo/SbqU0GxE3x1fY2dsBJGuXdnnq2edY39jCBdCRIElT4iQhAFkaA5osy4i0xniP8w5TOXZ3NkiyBsIbRuMxg/GQwc6A/Z1rKCXRAr7n2+/n5B13sr62T6BFv59z4fINbt68RlAaZz02GIrxGGtznLckqUZMFFjGWpxxmDKn25tidm6BVqeBNf2vfDEA9cw3TGb7BD9hiddwb7BuQjaT9WJG0B85BmOHc548N1TGY6zHBYnxAulr2RR4lIQQNFZoXDnmyoVL/JE/+jEWZGDfSDa3d7l4dY3ZuRn2D/YYXLnF8qFuTboRHmTNBRAqQinqpBkEgpqxHwAhdN2sRYLgqNn/eKzTNUrhPdbWyEWwNd9gMDIMCgeVx3hbE71sDQXayQTCImrylQJhNT5IhlETH6DVbGLyMW958D4KGTOwFRevrLO9tU13eoad3SHXtl/g0FyHkyeWCNg3iYJKgK/Be4IyKBXhvJkQJBXBywlBSSCkxKPxLhCCBVGrLFwIjAtPZR3G1HCs8fXsu+7WPKnSBKVQKCrjiHRACAXWU9XcK4xxNFKQUczazRWuv3aZ1SjhwvqQra1N0naHm9dvMH94Ee88w/M3eGxQ8dD9y3j/BqkiTORNAYmEUKMcHoEUpp49hoDAQaiLLYujkJqdUcn8XJt29xCNqVmmFxZ4+lc/XhPUXN2lO++QQuKcRwaPqCQGkLFCBIUVMaXLGBWGOJYYa4i05svPvUy2tM92lnFrZYOsO81wNGS/Klm5voJQimH/gCyN+EMffAzn62RsTEVV2Xp9hUBl6qLZFzVnxIdAZQz4QFEWNJs9xqMROji29ip+/J//U/7nv/oD2NIQQgkETHuend0h7TigpcAJj9QxpS0pDwYkcUQca+I4IYolgRFeCHKrmZ9qMdVqMdOOieIEISTLJ0+xOx5xLOkRaU3DBdKq5M4s4+L6LXSzSZYpqhKkCmg1kVFO2MdSqpqPEmoiYJLEWOnwFoTwfPQ7voeFkydRUuK1JEpisAbvDPc/+ATnXniawdgiWxrrJRt7hv0bO7SbKUksaWeBZuZoZJ52pkmTOqHZEEhEzZ0YlBUjE7i1tUdQgoeXjnI0y8j72+jhiMgEKi1oJQmh6yn2RvQrwwtnXqfTnSKKU7JWkzRNyMcFSdogSFWTdUU91lOqVnzESZNRPkIIQZylyCgmbXWRWpFGKVmacNepk1y5tsLYS148u05ZQUnMwV6f0cFeTbitCvb39inNmBvXb9BII1CaqU6XSCmOHjlEr5kRnGeq1+L4qVkEivT5tEaaQgQq4rc+93niJKWTdiAIep0pdBwhpCbSui5IVS2ljrTCWlcXOwKKvETqmLStiRpNGp2KNElJ0gZZFCGU4tLVG+z2DVo3GOUVJYK9zT6j8QahqhgXQ/a2t9A6JtESpRTtboc0Sem2GhxZWqR7dJGN3Zx7HziCrDnURGlE06XsRwaL4Dc+8/kapVARjUaTLGsRlCSKJFoneOfrBkiA9VCVOVGkyccjnHFEcYN2FNFotvEC4iglTVIefOheXvz3LyLmmrx4bhVbSfaHhr1ByXh0QFXm+MrSH+6xt7tLo3GTNE4QQjA11SOOIg4vzDI7NcVMb4l8bLnnvmUE0L6cMShquaiMFC+eeR2pNd3uFFEc02610UnKwUGfNOvUDfGECCuERCqF1oZmu0N/2KedtciaCpWlpHGHrFHLDLM4ZXZqmvOfuMDKlGCjXzEuHFZH3NrbYTQaYoucoizY39shTSKur6wQSVXLP9OUJI45eXSZxek2NzeG3HnnIZqtiP4g+coXA4H6I63npTXRI4SAnNy4DY7ga6IdQhC8ZTC25JUjBDfRGnusBeMdJngSFNZ6oIY+ja9nlFmjgTcFG5cucuXVCzw3qLh06RoqaZDcWOfWrS2ss3zXn/w6GlmMFw7hBQjHBKxHBV0jAjJMtPd1sndBob2bgOo1pCulwLuAczX8r3WEE5bCQV4FSuPw1uFCzWD3wWJcrSutvCUCSicAhxARhQ0M+mOqqqLV1FQhsHXhGherS9zaGNMfjdnuHzAev05RFIxGA44fWWL58AdRStfws4gonEH6mmvgncA7V5PKgkcRUFpSX7KtSZJiQswLAZ3ElKVgZB3N4ChNnSRtUNiqpHKWgMSaWiZqbIUKb8zrA4nQ4DzGR5SmIE3rTSpSkI8Nzz7zIn7xEHulob+2xuXRZXSvw6uvnWOc5xTjEUcPzVNV88Ck85dRvQEzkU4EgZee4CUhKLw3tQacGmGf1JRICX0j+b6//hPEjYwoTkEEvviJX8BZQ+UEInhCqO9HCEVR1pLPIjikUbQwGAvXNnbY29sjTWKEb9JIIm7u7tGymmGjjb95g+LmGtcrS6UUzlqsK1FCsL2/U1NQavSf0aggH1cYU5P96u6eSZEzSTRCoLTElwKDgyonFpa9seXXP/FJvvd//Sv1eE1KdATv+bqP8S/+/t/DpIJuQ2Od5uLKiHammGpEeAE6VlgfKIemRoxChA+SR+46QTOJECJQWDBOMDU1S8dWSOFR/T5tJTm7ssrdd57mSJIyNTPPYOMCEZNvOQS8c/gQsLZeV7WJwkT5IUCGMY0oIo6bfPSP/XG8dFT5mDIfE8spQjAEH/i6b/rDXHn5GQYmUFWB0tZjQKSg8rX8aa8/mhTqBWkSEUdjsljhxJDBqMB5xYYx5Lljb2+PmV4bEDiV4qs+xg8xJqDSJrGKWdlY5eCgBGo5dHAeMaNQOkJIRWkMk7SDiKOJxwfISXHc6kxN/AP2caFuDEpjoSwpRMFwoPiPv/Y59vpDlhYPs3fmDFnaIopTglToVhthDcqkzGYNrKlqVEJNig4f2NrZ4kPvfoJmmvDcmRvcuHaNmYUWVWFrJUfl2d/dZTAcErwn0QUyaRBJSV4aUglRpGoiZqyRQqIQ2BCQMhBnGTrJkKpPVRRU1uKspxjkGGPZ2d5hZnaan/nlz6KTjCRtEscxjUa7ljrHDVIENk5opDFR0qjvQdYjVYC8LFluNDgy0+UgL1i7cZPB4N5a1lxYIh1x4eoa1UBQiBIh6sLY6xQdVaALtI+JdEYIIOOIgEIFj9YJZV6QNjvoKObmjWu0Wh2McVTWErylGBcMVcyvf/45tv7sM3TvPczmH7mD+MF5GkkDLyRR1iaoGJ8YulmKjFJ6U70313nNO7Dce3yZVqMBWZPf/K0vcPreY1SVpTKOOMrYWNlmeNAnBFn7hugY6xOiuEEqa14T1KoprRRBaIKUKG8RWtNpa6Su0bKqtDgLlSkIY8fOXp+Zbof/8J8/y9r3Ps/i15+m9eEjNJZ6Nf9NJkQZiEgjsoyo0aoRDyUnEnMoxjnXLp7lI+96jDTSPPvqZXZ2drCuzc7mwf+AYuD36RUDHiEFUoi6M7P15i4CWB+wPjCQCT3rqMjIOosc9C9jXD3/ME4QfE3w8gTChChXuIjhOKfVaFCYnKvrm3z2Nz7P8NAhwvnznCs8pY4Y5zmD4QH+j39tTcSRqoaaZai7aCLATkBoJmx+hw8GJeoZtZYS74BJYvLeAZIQJEQx/VHOZtFg6dAcWWuKuUPLnH3qU1QH69gQao5AVMM33jusDAQl0SLggmJjaxdrPbYySCH47G98msbJO1i7fIN8d8C6juiPx/iypCpzFnop1rpJcq/HDdIrnLQEaoKRQONFTTaUQuLerGdUPTLwDuEt1tQysa1xid2Lefejj3BkZpmZw0dJm4qf+0d/E+uokY3JWCR4ydgGlHcoLZG63khLJzjoD4jjmCxWqEaEk5qrm5tkFjaGBr16na5MWM0LjPE4V2LznKX5mZr/8UaXKTxWeVRQgMKKChVq8mkNjQbExMDHewdCoqSgHSlubW7RaE/jncNWDiEM977rQ3zhV38FTY0uWOuorGNc5aSRQmqF1lEtGZIG4zSD0ZilqQZHFufI4hgpNa+trfFo1qCnZhllKdsrG3SzFrOLy1jv8MExHvbZs4bN9W2mZjtEkSaOBXEiana9rJEbKQRBOJRUE05BDcHOJm280FhrQQu+86/9PQ4fOVkXO0ohlQaf8/b3fBX/4Z/8I4p8jIkjikqwsZezsulIJ+qTWA9oZCm9bkYjhqyRcFCVjPKKyjhu7A65ev0mvakub+3NcPL4KYYrK2g7QnrBiSOHkN4zn7YRwxEHB2NirYCAKw1a/54HhHPmTS4Qvta0eBFqVnbl6+djHfgSayuKvP9m8XfH6dNYD1JpjK2/fe9CjTyEusHwb0qfBNaDKQzDsk5eBI+MYrzXjPMhPgSiJEZHCemp0zgF47V1cmNo2pRyZQ09LKhGQ0KQDEzF+bNXWTh2jKMLM8RZE4BRf4DUsuaUqJgQIASLlBNzHu8xtgJZF6U1D0mjtSKLG3itsUFQOgfWUlQVSZJgqgqlFFWRU1QF3ljyoiDLGiRao+OoVuI0ujz3+nWMCxhTNyq/+POfopu2SPJ9yn7JeGPEcDjCG8PqaMB7H3knF579HMODPlkjrf0xZE3kFFEELsLLCpwnSTOCCBjja56U86hcItOIOI4pK0MUZfX7pWawW2upqhwhI0pToYOnMhVFVeGcYzga1bB4FBEphUeweTDgT33fn2dve593fvWHaHbnqMYj2kkTubPLVBDsEOiPxxhTcvHCFR78qqOUqzeJkgZKxUSxwot6FBolGXiJ9wVFVZKXBXjJaJyj44TgAsGFWqcfK7SO0UEikxb912/R/7vrLP/E+zFVjjMgRS1pt76WcpfWEvoDkiQh1QqQKAkvXbzJM5//LKPBiEff/X5+8T9/imaUYMstqv4OxWbBaNDHBUWV56i4xebaBlvZLWZm5xBKMujv16MUGcNkVYfgf+85eweYGrmlRpUjrVAuoNIUOyGt3/jl15GfeY3j//yDRFpT5DlxXEuvizzHeY8tK7JGo/b+iWPQis7cIk+/cpVxWdGY6vHMS6/jcous/gcQCEMIGGPxwb1pkBPe7K99vUkQML4mCq3vO/70X/4HdGbmaLab/MM//mFKYwlS4kytIR+V9Qwq8hIZG8ZWsbd/gPKGTiMjarW51d9jpjvDxnDE8aSDmF6gX4w4IDDsD+j0OggPXngQHhlqNXfwsnbkcxbjHNYYTOUnZj5uYlajESLG+zec/+oHJ1VEKgT9YcUf/ms/XEsAteDoXQ/w43/nf8VZXUs2dL3BvaFHJgjKskBKyfb2GsoJWjIim27w7LXL3OXAHuSMb91Ct6a5Z2kJGxzj3S12Ll5ld29Er5shZVIneuNwKkyklB6ogAgpLc4HIhHV4wEPEg+hxgiQCiU100lC5gq+4S/+70QqQigJ9oCfFf8fKl/VsLyvsBP7PCkEQQaCDORVTqw0hZOYIqeTCGYaGY1mk97yArv9A07PLTDjPbe8Y3GqRae7gKkqxqZg0N/muS98kYWlj5Cldbp2GoRT2BAY5zUzOIh6ZqdVTejyoe7QBsMxzd58fc9esLZVsr21RzNT6ChGR4H3f+t389M/9QvMNRVpXCecs6sDug1NK5N0gyIKDl9O+Ckm4sTiDLZyzPQ6DArD5v4BrdYUyljc1hraQ9ZMiFH0hCDPc0Z2jKwq2r0ZPvW5Vzh16hCPPHwKISFJNEp5pIgQXuCRWGcoq6Lu8oKru5BJSlWRJo5bvOv9X4N0Du8r8sKRJooQPCrIiaFUTFk5jPfEUmCEwE14HcPCszfM2R3VMLoQByAUhbFkaYu9sWFQFIhRVI8LpheJy4JidR1bGLKsw0F/QHMqparGxErVChJb81AcNfFyYjQBokbsrKuJeM4LdJLUJLgArjIEW6sfBv2CdichBI+PIqwL1FqUMEn7DoGv0aHAxJeECem1fkZBCCrrUAS09rTjiC1rAE8ra9DrzeGChZlpzM0VQrA0EsE3vO8eysrxQz/9ArrRwBjH/vAqrWaLXqvJ3JHjKK3IxzmD7XVOnLgDnXYoyhzvLUVeMs5zqtE+ReWQOqIyjq3NVV7+8pd56zveRmdqnkjVrpq729s1s0dKVq9dQArFkZOnsNbjbIUzjmE+rln3cUzqGrVBmxTc2OqjZUBRq5Ke/8QnOS4i/vjfei9j4xiVJT/2S5fqTnRvl+Wjy1x7KWH56CGa7R5aSHb3tnHjPsdO3EcIno3NFZrNDlVVsbOzzWg4oNVKqYxgdDDk5tp1qiLn8JEltkQtx24lLawPaK3wKKSsvS20ClhT4XzAWYtzDmMqdBSRpglpFJOXjisXz2KdZG93i739ba49/TRzw4Jv+svvpHr8BP/5qcusbNUE39HY0G61aIoe00tLRHFCVVVsrt9kbm6OuYVl8qJujnwIFLlBkSN9oMpLrLHs7+/x2gvPcvf999HpzTDwEjlrYVUST0fsbu8BbyC89TjUm4rSOKw1+LLEphk2jYmiGC0kK9u7/Pwv/iesFUwfvZMbr59lfmD41u99knRqltw6/uXHz6LSmHGeI7QibTRZWphhYfkoUimGgwGmv8WRk6cRSrK/v0cUaYqipN/vM96+hUwzhIwYFzk3b15j5fJlHnj0QbwxaBdBKojGCt2O2d3erkcm1hLFCmsM3jqMdRRFXnMdQqDTaZMmKa3eFDe292ppcZKAcWy88Ar+5spXvhgwxpJEtaSqds1yIMF4j3a1/rg28InIYk0oDzh05714a/DBES/ewdUzZ5lOA8Y7DvKSTDuyNEYqRWEMYxPx0NFDLM33GJYVcaNBwzoG167SjGK8tejBPq6/y9T8Ar/+W1/mAx94O512+qY80IWavKg0QH2dla2oJhrsWhGR4KjqMiZAsDWj1XtPWVriTpM41gxGfQQpVTlGloJTj7yVtaGgm2ggUJZgDyqyJNBMNCJWCOEoC8GDp09iQg25r+zuQKvNKO+Tes0wiWiZknjQx5oRQSpOPPwEv/brX+R973qUhcW5ev4kaydFa8DLNzo2T/Aa5x061AS6gMO5yQc7mX+G0hBJwdrqDkrGlPkA7y2JEqwMJaawLLZibIjpjwRKFCRS0GgmE3KopHKBykve/uDpiWWzYHtUL8pjM7Ps31rD5Z75TpdqOEbKA9x4zEHZJ5o/xL5RfP6pl3nfex6pOQghELCgJMHX45kQAipStUsbslathEDazAhRginGgOSP/k/fy7C/R6vZI84ygrW02h06ccQwdwig9BHX1w6IdEwUV0g3QMeaTjsljQJxnNIf52zt7rNXSa5vbXHQ7/PVb1/CZw3s/gFVBdPtFgMLw51Vxq5iO7ccffxJ+lXB5etXGA33WD40Qz4uGAzGdXcWAsHWHYF8wx47WJyvUQKExLjamOpgXNWcDWsASz4eI0VSKxOoxx1COsoQJqodMUFMonrU5eqC3BhT816kxDhLcAanK4KtHf+8d+goRUUxTHWwa+vkvqIYDVBKMhxssekcyhmco7YgFh6MIlKACHWBGMArOSFDRihZj3wa7TZ7O3uoWGJHBVmWonSY7BcVAkklNJoCbJgURSBDvV69r4lPSEmsaz+OovLEkSJRE+Mw72lFjqIoUErTarWI4xhvAj4IenefZvuVs4xGY1565VWkF2TNZm3GRIGOYqbnFki6XRB1Nzk91WR2ZrZ+LkJghmX9rBJFL+1RxYKO86g4pepbWk7jTg1pN2Bufg4BpEmMD4Lt1Zssn7iTf/9Pf5DSSv7y3/4HhHLISCb4GJqp4tmnn+HE6dOsD69zzwMPUeU5rWYLCQRr0VJz16lTxMHxwkuvYaxFRTFZllE5i5SS0dhy+MSd6CSrvUWSiEPLR5GiNmxzTtFstvChRuJm52ZppJq52SlGBRS9nEZTs72yRdcEZlvTeGVJ0trHZWdzlVN3P4wwJTZ4dvd36fe3afRmiaVmd3OXzz/1u3zgwx/mhdde4p4776LXmeUb3v0IXz67wsOPPIqKYxbn55EznldfPVNLeYt6LzWVBaWIkyZKtBEqQipFt9ej250mihVSxBTFHlLUCGmcabRosawVOm7gnKPX6+DKMVmWsjA/TZw04a/Os/N3zpP1mmQXS6SKCPMZHBI0Ek1e5IxGJaZSrFy5XDv+aUmzN0OWxhyZanNkKuXKep+FhTkSa0mHI85fuYaIKqTUZK0YJ2MoC7RuMDXXo9NtgBBorVlYXEQuLKDiuDbjm/i9KKWYm5ujmdRIopcNSlPRzGKakabbgKXFRYQIuL/dZfsHv8iwm3JoJUU0ISzGFCJnMNqh0ZjCe0+M5bc/8Wu8+71fxdkbVzl16m7ajYxmt8d4PMaUBYlKaGcJ4+OLX/liwDlLURS185r3NXOVGgK1tq7Eaol8RKwUPllgf3dEp5sSR4pv+M4/z9/7i99H4TzDSnD29W1ajZQkrmg2UtKkQNBgWIx57UbJ5dV1vvZrT2B605Rrt7C+JgoelDCcmebu++7kxvWrPPfcS7zlyYdJ47guVKSZeIlPRp3OTeBjQ1mWv28e6icbpq+92CcGSLVZkSPSms78Uc6evcjp08uoOMZ7Q+EEqgQtFVuDgt1+STuN0FoRR4JWIyWOY/ZHOYPCsT4qWLm1xYfvuAcdNaj2tpluNhlbx8HwgFGaIeZnaMy2KPb6XLl+i+n5WeSkC/MKpJcTuNkzGuaULiBFYDAqwDsiFdVJSNaGO9Z7dGxRwiEaPdZu3mR+rkOSJIgQWDpxD6tnXqYMNWHwzNkNEIF2IyWNC9IkppnVhVrlFQfDAaVvcvbmOvt7Qz565BhFa4rBYAVXjIiiBoX3VP0tbhmPml9g+Y4jXLlymXAl59rxRZaXD6EEOAkET5xIokijRI0mOWcmigOFCA5ncrwZ0UgyorTDH/tTfwbvS/oHu7VNrLMEa9BK4xAYGzDO1bPUUEu8SgNYj8NRmRJCXnM+vAVbMS7KOlknMdN338/ul59iZIYUZYFIU3aKnEGSIeYWeOG1Fzl2dJHZ2TadTsbZC5dqT4nJGgouUJUFQUhi+YYTJrUJkXMga3hTCU3QmrJ0uLygyPPJuReQZrW+vhARIpS4iXcUwiEB50ucFbhJNx1CwLt6Dh9FmoACb5hKE1YDxFFCpCOcr0mpU3ecYvzKKwhqhch6XhAfOkpYuziB72WthpDU8s+g8Kr2oySOEFqjVESkavVGf9hn2B+QdTJA0mxOMc53GY0K4tqjmPsef5RXn/kiBFDWYr2pSYl4rPWT7zRgZM03UlpM3A3q9yhEQHjLA3cc5dyNWzTaLXSSgPe16UuzQ9RpsJdbfvinXiEWgukjp7n7eI+N0aD2D9GCONGkkUZJSRrX3IsamQ30up3aTC3URXCpFX67ZPDUBqql6cYNnph/jHDL0D7RwaYOrQRV5bnj7vu46567+dAjd/DS9Q3e/8jjfP6153F5CUKQxA3e/8EPESUR+7v7dJptdLPNazcso8qT+RH33znH9CMPgPf87Kc+wfqNa0xNz9LsneDYsQ7r1TpFnqMiCd6SxVEN10dx7VRpLVEc0+l0cd5Qla72M4lTGs0GpRnQTJqIKy2WwiJhyhJvCOyGwc1XRKfa3H3fw9x9710ok9NrRrx4doWpXofRcIj3cMfpOzlx6iTNZpMXX7jBM5/ZYn/zIr3Wcaq8wzNPXeIdH5xm6v57QAr+2U//JFQ5c8fu5djRBby0WGPAQxxHRDIQy9riXgiJkBJTlUxPT9cdvHcTZa4gzZqAoJqMY976jndTVSVplkDu2f30GvPffze9uWm6yy2mp5YIZ9dYfWWb0SOBNG1grCNJFI+/5S2ISJEPBoyqioSM557dZnHmMVqtXXa2LYsnTmGo+I0vP8ulM6+SJTG9Q3dz+uQUuztbpGlEHNej6SzSdfMxMcUK3iKlotPpEKjVBG+oVtIkYjAco5WiubzMocNHUSqQJA2q8Zj+6+tMf+eDHL9/nmMnD5OSkD+zwjiK2T6cMhrn+OCZmZ7ij37Hd9T3H0fMzMww1Wrz7FXDcKC5c2pAa75J7+H7iUf2K18MVOYN4xyJ9IpEgVayhtgnBLzgPT6UaB3x5/+3H6LVTimKkhBplk+eRona/KayAesCByOLPSiJM4EPhuAOMMaSq4TS1QZEjTtOMdrbwwyG5DrBzU4TUzI/nXF46VGSrMUrL53j9KljtLodhKyJdSHUid16jzP1HN17j47AGEhTUR8q8oZ9YAjgA0GBMweIOOHv/PN/Q5QIRqM+TSEJvjZTGaxfnThp1ZvxuAKblyil2BsFAjmmsiQTT3Mh6nMcOnfey/74OQb7fYzUlN1Zsl6buUNTHFmY4o47TpLECZevrJBqWDy6hBTgcDXDWEp0FCGEnSAfIGWMFBNiF79Pu1/uI6OYH/6pnyRt1jKdVquN947v+K7v4h/9pT9HVULlahvOUWkIuWNvWMO4SeKwbkCgtoFtuMBwWNaOxRKSoyfQLqcaj3CuIDew12gzdXiejZ0tYlVxaGmae+59gKAbnDt7lbvvOo4IogaKvaEc2Ylz5URFICcW1xPXBDEhddqiwFa1ztp7z+BgRJLWyUa32xR7+7WhTVDoiYTQOle75YlAWZUTeaPEB0MUayIsriqRUhInKQ5JfPwI7pUzeAHjUcF+nDC/eJgL1y7xyKP30m012O+PuO/Rx4njhAuf+U2KvABqkqoE1IREONHI1I6CQiKUrklsaUKaZtxaWaPdyRiVlvmZFghPURQAfMuf/JP8zI/+8/pwH2F/j6/jwoRX4vFIpLMQJJGqrcIlNYLQ0YEskjRbLdJGp/4WpEb1GojpNvagIsweoqlSbq3epGsVKEmkFHoCgcexRkqNVIHgDZ2pBvlghLUF+Thnc3/AqLDs7e7T6TQJOrB2a5uZmXoWK6VEa8mf+ys/wJ/+5m8kjjRmZGtSlPA4F3DOY3zAy/qb1DJMRn68eWaHFIFYCbSSRMHRbHVRSYa1BikUlXfMPHgP55+9zKaZITjLjQt9jh5qICRoXSfQMu+TdVN2V7donVwiCpBiEUGgO1N14xAc41GB3CvZe2WN5Y8eR0WSZz7/mzz+nnejSdj77CYLb1simW9gjCcEz9OfeZZr23dwaOkO/trf+mnufew4Dz9+BILHWkMSJ0gl6LXbjIdD0maHV6/tkXan6WrFtdUhCMNcN+HVtYSqWmZ9Q9Hcd8zO7RJLxcatNVI35rd+4xN868f+BGXf0VyarRuz3Rs0lk+ishRBSlnV8+Vrl86w8OgjpM0Gl37mFY583d2oruT8669y+t77aDQPM37tgPXn9pn++oxYCQIxuat5KD0xxdzMDK6sJu8z4rOfeY2Xv7CCVg2eePwe3vH24/zOb77IaFfz4//0F/nIt76Pu++YYzWfJ1SGK6/tMLXYQdiSOIrY37tF2oHIKbZvbHPszqMoqYgwyPGA5uIxhKyNvfK8oBgOGezuMLt8BBoZxhhGu1vMT8+jlOLav32Z+/7C4zgFe9vr7F2/ytLiHNzX49iJRb78I5/l8LefZrrbwVhDnKRIwHdaXDy/yr/6od+gMmOOLU8zPXuCT/7Hz3Do+DHe9tX3cX1bsWkO4SpBdi2wvLRNJBX94QHNTLCxu8rifQ+wu7LK4olFgoPMD9DtKUTahOAxxlIUOfu7a/QOHyJqR/UYdH+PdreLkIpIR1z5yVXu/NP34eO6qfvib/4UX/+n/yIzH7uH9S+scvP8NY6/82jtVCg8saqt3ZMkwZcWYww3djzBpky32rzymdcZbd5iNHRf+WIgy2KiSBIc1PayUJlqYkgSsN7XDznUJXeWtcjznPFojGi3kAQq52ufdVcb/1hbYQ0Q5VTG09ARSSRoxhHXgyeKE4wxLDz0ICuvvUZ6+CRJAu9899vJmi32NtcZbKzTiGOuX19n6YhgqldXkUGBt+L3yGjBEyd1sokjkEEQTIUPvjbH4I3568RyVsXoSGOqnLKyECriBD7w0a/nF//ND2G8R4SAFvX9165YEmMcLoRa0+A9s1nCmnO1oZFUzD78IIOnv0R66AT9vGBxrsv7v/bDNNOEG2fP0V9ZITcBNTXD+s1NFpdnEbJEyrobShKJVW+4ENQn+1UGmEBrakJeEdJSqQ5Zq4U1Y8qiQooCpWH5+ElcAFOVSARaK9RkTFIjJnWVYJ1D6QitAqEqqKoa3lY6xTlHd3mZ4eYGwQrSI8uMt3eYjQXf+Sc/Rl6VtDtt+tt7XL16Be0d58457rjrJFJKrKnq4sv7icwxIJVGIDDe1AgHEhFLlNCUZcV4PCLLmhRFTpzUZj8f+ZY/xsf/1T+ncIHgHDGBMji8nXgPCEUoPdZ7klj9HoRvC47MTnF1a4+gasMV32rTO3aE7bUtOneeZvvWFufOnuOd736IE6dPYcqKd73jSVZubfPSyy9P5KgKIWoVhhW1u5hW9UmCUmriqE6oQtQmRPsHG6ysVrR7HZQzpFqTpDGDfp8krW1+v/YbPsZP/MsfwUhN6t+wzA4YN1mb1uOCRSOIdG3UBCBkfX9KOB65+xSbhSdNs1pJQ8AEy9K9p/ny02eY7U2xt75OZUoa3Q7C1f4hWiikNmANWewoyhJrKu796u/gpU9+nNFgm35eMs7r00B/9Id/mH/yL/4x3juefeZF3v2eh4mTulsaD/tcvHCJhSNH8Pk+u/lw4qHh30Ts8tLgdYx0Fq0FSkoaiAmxEiT1SE54y0KnSZykCCkpq5IsS2ojHuk5cuIQ5/IxblxXYlNZgqkcp48dJVRjRiPHmXMXsEHz0se/gFzdwE5rTt1/kjB9H0pHXD7zKjpO2f+Zs2w9VHBXcjdKzXH5lVe4b1oyaB1lf8ly61/fovVtRwHJs58+y29/8nmEMPyNv/69PPXF5/jZf/fLaPER2lOCfNBn7tCh+uApCb7ylMMVqnKIvdUndDt86dom/dGAh5ZqV8IoyShMiZWBVAqWZqYZ3HwF0e2ws7nB+evXyfOK/q/8PI0k4fRds9y6fJP24gkwhisXL9Dvb3P+i79Lvv9n0F/Y5+bdm4y2ehTn+1x76dPcPHORE295nLjdooxyVs/d4sb6LYSxNX9DaVCSqqwo9/cJPvDQHcf5+Z/4HYpym1bjMGvr6zz3wgHT8xHSw7mLe/z7f/ULvPNt0yg9gwsSfI452KfZjDl9chk5XGEku1w/2KMUCWc/+ZsML52nPdfl7U/ez+sru6TtNudfe4VO0ub55z7HYGOTj37nnyWOY5xzHLz2aVrH7qY1XEK8r8uFGysoGfHa0xdYXXmNW32NVoKpmXmGhwO31ncwZki5P2BqYb4eo4aKz/3qdfb7a2gd88EPf4TxeEB1El585Rz/9l+8ROeeO1BxA2Pqjvzo3CzeDbChwIzHDPZ3eP38RcaV47WnfpNobJg+0mCkG0zf9STOVFy7eAFvDU99+rd4+3u/mhP3PUwIgf71CwyDYXFhmWa/QfX4FFd3NpABXnzqVUYH2zzzuz9HaRZodnvkL25z45ikHA+phjkLy8t4XxHFEdUg59LFy9iDE4jK8anPn+fWlfPMzU2xvJR+5YuBMi8RTiOReOrN1jqLmpxUFwKYyRfstebpL3yOB598iHa7i3UVQsDpBx/nxWe/jLAVUgRccBTOI/KadW2DIAZi6bjvyCGiJKOsCmSkOfTog4wqxzvf+Q5uXLrMq6+fY+nwEq1Gi/3dAQfjivM3tvi6D70VhCKIMJGbBay39cYzrmpbXPyk66w7U4XEUUvGggBUQgVcPnuGqYVZ4rjWalprefcHPsDHf+yfEbytT8QCSmswlcFR22dmkcQTUEQkkWe6lRJH9amGRJKlRx7k2uaY977nCe44dYpr569w7rWznDh+jCRu4kzBc69dYH9nl2/8wx+s54vSonXMcFCgdEA496ZXvFAS4ev5qpGiPutAgbSOoiopRiOkTMjzkmYrJiDIvYJgiSdnNWhZm7qYCVzsjat5CUpO3PQcdx2e4+zNDeIowXuLkhFLD9zPucsrVMbz8EP38ugTDxE3UqTLGPVz1i9eYnlpHqcy9vaHPPf8WR59/K76eYWAnMxnlKj/Hi8E6AhEhJYCmaWoSDGuLGVpGA4LZmYbjEZjoijifR/+Wj7+r36EoTVEvpZ/1mc3BAoXiAhUQpDomsFen5tRn/y32E5Z3d6h0WhinQUh6B4/ymo+5tbWDkkj5n0fei+9uQ73Pfookda8+PQzDFZucHyuzboHJyMirVFaorREC1//XQSCq7jjgQdodhq88NlP0S8rdvbHjIuC3/q13+Ebv/H9RDGMBlVtVR1FKCk4OOizcOIOioNdhtujSaL3GONrVrEXlMaSCo11inQybyeiVsMQaGlJ0YgBVbPcZYozOUpKDp28gy986RmmO13e+sR93Hz2k6Qq4IxDRhGRmowifIzHEicZZ597nvEox9laIhYm3IUXn38OpQRRLHns8bsBycqNm7z+2uvcunWNpaV5/srf+Iu0Wynbt/b4mR//aZ7+/FN18TVx/fTB4kKgKj3xxCdCSRAiRnmJVBAJyLKUqqoo8hH5+IAkncbZCpSi01ScmPWs3/IcOzJNL3b85hWIkxSlJVkWESUzeASRjgnzBTfGB+xcNmTjJjqKWR8ucXh1xOWHZrkzXeO7v+c63/D+Mzz8xNt46dI6N6su3hmOvGWZ4aueRx6O+a1ff4bK9Em05ktf+hLNRoNDS7P83Md/jfd91Vvo31pndyyZnZ3Bi4jXX/oib3/oAeamZ7n41M8S7nwnrSQwOz3Dd/6p97D6j38CUwUu3/ScOCQ5d3affjyHSlLElsBVknObU1jnabWfZKsoePnZfaaPzdD1GcE3GdkTjMaKO089xuXndphZWOLPft81/snP5Lzwa09z3z0PcHBlC+ILdE+/m8ahHuf/jy8Q/4W3sXnpCqOijwkD7nrbo4xfu86oLJjZHLHjbzA7PyD3i5S7nhvXV7l6bYwPJUmksOTgOjS6U5zQntJAksww4wp+90JE0mygdITaFPSyDkY1KEaS5uIyl0YDujc3WXXLRK02a/sLLHWaRNMPEe99gVfP3KKzeBczWZ+Xrgjycy/zVWcPGH/PacL2DnO9JtfPXGSj32B33OPmpcucfniJ1wfXeOgTOf35ITf39zl8XDJ7eJqEhG9814BnX9lE+Hl+5dc+RxRLdIDlY0d45fVXeewDD7KzXXD+puOuEy2UD7xwEXSjiRTgS+i6aUIQdLK30pclX752i9npRaZWEqzLGJhjiP1d5o89wfjGBS5Pvw3nHZeeWiXKDrh5tMPJX7qM++6TpOoYLa348mdf5sSdD/AzP/Y7LN3zTu59eIqt9zSZ+twWewsF4eomRWiSNFJsVfL8U5/iyOGjhINN/uhDOf/bl76M8xnveu9jTHUEv/Spr3Ax4LynrGxNLg5+YrmqCEKitEZFEZEUWGe4tXGLc+cv88g7H2Fne0B3KqKRxHz39/8l/t9/8c9RbtxCyJqpWhiHrQoiFfA2IkSCSCuOLRymyHMGgwGiEdOIe8zNzvPZzz3L1dde4dS99/PlFy9w9M6HOPPM0zQ7PY4dOYyxAqlrV/UQXI1cTPyz3cTe1jpPcDWbXgqBReBlLUNTsUIlCXlZcunCeR6bm2J19RZLh6aJlSJuZDSm5zjY3yG4HJTHl/X4w9ucSGtKBJGuzX9kkDx61ym0UBRlgXKOVrPFI4+c4uRd9/HJX/skg1sbzB06xHNnr3L42B08/4Uv0uh2mG63ee3VS7z1rQ9P5CkTo6DK1HM162qJZJhAxCLCC0HQ9T2krZSNGzdJWylJ3CCKI4qiREnBo0+8lS8+/QWCCDhfTiSYFibnogfvSWP1pmGQEoJUezpZQpZ2MK5A+ASvJMdPnaCSiicef5iDvT6ba2u89OIZWlmD+x9+gOvXbiDEiP2iZHgw5MGH78L4mhypBSAUQsdIHSG0JEnqk/iMrZnGe4MKFWtkLrh5/RaHDt+Lc444iVBSMX3sGOXGNm5/B0QxOa+hPlzJCvmmTawNnkgotHyDI2k5Pj+LVgrrSgga50uOnzzKlade5dv+6Ddw/wN30+h0+NxTX2JnfYuZbodGb5ZGMyZtJggzQklH8AVREMQC5MRauhSezb0h00lay8iKClvVRM8f/Wc/wse+9UOkKuKLT73II4/cy5VLl3j5xZfIi33+zPd+O4fnp9lau8WP/OMf5dqVq7XKIFJkKiGMx3XxZzzWGVIlJ66OMUEKMhlQwHjcx/uKZrONtxVOCTpNjSv7fOs3f4yp6Q5Xv/QLtSRKBPAGQoyX7k0UorU4j5SG9sIh+hfP1oXAGwZddszWzhhT7HDu9XOEUDE71+ahR+/gg4ffQqQUtvQUY8PC0RmO3XUXV69eZm+nT8d5Kg9TOqbVyBBY9kYFe4Ocylq0lFTOECqBSyQnTp5gPNhn49p5lFbEGqSuEaJOd55m6tHK0W51+dx5i+weR+gUkgSvI3JXW83axQWqwjGDg1AxtAmuqAhba0x/vmLqw5LXLl+lO3WMb/3INL/26TOcNyMW3vMI1o0pnv8M9754gue3XuTxR7q8eskx3qn4lV/7bZRSdLuHaHdWyVunqJaP8OrZ19HlObp3PMmtrZSLN9YZ2xM89ORHOX/lGu94+wnuvusko3xIM2ogUoFwN2k3U1ZHS+j2MkQZQkdYJAcjxfzCYQ7SQ0QEZpzHBsv2KEDVx2/eoLn6AuPeLOsvPIP7hg+QtC3bA809Dy0yvPo6d55axiPYP/ssV/ehFZ1n99r9NGceJCr6VOM11m5c58yXv8QTH/geLpQ3eOG3fo73vO8xXt8/ysXfeB7ncqwvasWMLSnCiPuPTZOWFe3mLLoqabenuFwWJO0lyJqIOIUoYVyWVM7RPnwXY+Noe8d1uU/lethhRTEq2Lj5AsiC1d1tFvZXuCmPI5JVXnnxOo+/823sSc0rX/gSx5Y6bCRd5u8LvPBza6wVPfTxt3N5p2A4qhh/6iaXPnacxvLdvHLtVRqXz/N9H32c//AbZ7nrwSe4/PJNrl69BaIC4OLVNRLtcbmj3WiB3SVNBb/5cknUOw5xjFApg/UNtMlod6fop4s4b1lYuIfgDHuFwNkKtb1JdO2LTB0+xJkL11ha2Ec3Glw5c57/5W89yKde7bKt9vA3zzCzP+D8wPHWOx2/9vRLvPPRO8mOvYvz25bx6DrZLwyRf/WDrC/e4uLTz4O0dBce5sAsEN/apNUQrG9fp33sbnYO1vm5//jJyZHNX+FioDQeL0EohdYJUgriWJLF9fx3+aEnuf7yl9jf3WZnb8AvfPyn+K7v+zZ2NreI45TXnv8y1g35+//gbzEe5vy1P/f9BF2gk4A3deKcaTW4Y+kQ1zY3GRUDoq3L6LxD99SDxJ0ZStnm1vXXac8v8/Jrl9gejzhxd8Ts9AI6Uuxv7/LquZs88dDx2sWu9jchSImnPhzJBzc5AyCujRtiXZ/GJwRHT53m5vlXyAd9rm/s8gsf/0+882veRbVmiHSCFI4rFy/w9g+9D12MWVtZ4dO/8TugQEWSYC3OVpTe4oNEqxq+bbiKvd2baO1pdZrM9E7y5edfoDCa7Y1tmo0Om3tDLtxcRzZm8EFyeH4RqSJef+0Cb3nLQ7zhh1BV1cRhEJyICSKgRESIImQUE6t6Qx8VfW5trRMnbbR2nHn9LA8/cjdSCOIk5ru+///Fi9/1Gm44APKazeoDo7KiRKGExVpFEtejG2cFkU44cmiJoszJ8xgfgQyG43ee5qAoMcQ8//wZtq9f5s57H2RnNOYXf/tpyuGI6UwxqBxHDi9w5tXLqLiBkhKlII40sa7HHFGrxWPvfC+/+8v/kVFesbs/wDjBs1/8Ik8++Sh33nUC72v5TP9gj1deeoGH3vooH5jpsXFjjU/8518h3x/jgyXgap//YBk7iGxtsBRCjIsUmVLMTvc42Buw394ibWT4yhKnMR/44FdzMBwwGFV89tO/hZZw5fUr5IeXmFla5pkXrzDa2iRyQ2QSEYJDhhjrIBJ6wvCX9Pc3qGxN+vQT62RrHeN8i8oIdlZvsrW1xjNf3KI70+SrP/gWpnptgg0Uec5ya47H3vEOhFbsbG1Q5IZhFZhr1ja6bkKElSrUjpuTMchwNGZu6RA7K68RN3tU07MkSY0+bG4d8MEPfw1rWxtkrR4q1OTU4F1tpTwpmiprubi6y9e+7w8jVcpcr8nKhdff5GMIGdNKNX//b/51Di/P0Wq1+NBH3sPxk0dqoyzjWF/b5datPYaDAadOneI7vvvb+OZv/xBXz1/ndz/9FOeePcNi3GSxk7Ew1SZtpFzZXueVy9fZHxkqb5AiAiVRomQuCbjBCl5p+rZP0u7w0CNPsJ2n3NwcQLbEuSsjhEqJpyuiZqc+udTVBXMIk7NPpERJjSkKOq2YQW6JZpaJkw3EzByxaPF93/qr+KkFdvZ3qYxkAUvc7GF4hHh/gzM7gqm0z3QjZ7QT1d4JwRMpTatVcvPmDca7K8TlLkwtsH75RdotRXv2GIPze8ydepCgtojjBX7lt19jpjnm+maGENCeOcLlVYUTkrlGUjc1wiGaCUmWUpYlKgTQCiEFdlzQareobEbozlNNfQ2j0ZDjiz36ssk3f+NZHr43Iko8z1/fYKo7w1Afody7RTS+zh3HlllZf43+xgrrF5/n+ANPcuVLv8zpB97H5QvnyDfOkMUNzp5/Dh/W0UkXMxpMyLoBr2MiFM1OyUxY44WNw4iQcG3zgCzpETdymlNTNccMR4wgRDHGGpQIiEhhXJu4IRFG0uzOksw9SnAJS1P3MtXNGSnPyqCDUjfIOn+IoMekR++n73IOrr2EVDexYoeVC8+yt7tLp9MiHo+pqto2e3PrDK3ROqI9w3y0wg3T5t4H386VV36R4H+PBO9t4IF7ZtkfKnZGmpnFO7myAj4oOocFUVTbxfuyQEeS4E1tdKclCEneH9Bqd8hHDtmaITz2TZQmZ/50l8L1UYOSrLnFL/zMs8w+fD/ZVI/rao7+9hDpz/Hq+gpCpezaWS7+5o9z9MG3kl55lkQ+xKsXL9Bffxl1sE/v5H3cuPAlThw6RNqe5Tvfcxc/9puG/fXdejxORX9UfeWLARHVUhAJRLoCX0N6MkisdaxcPodIWzh3C+8c5XiL69euc+7MGU7fdZSHH7sTJRRXLl6n25vmh3/6R3nh6Zf45V/5DUYHFYcZ0ZJNZqdmeeSu06zurFEpCboiJE10Ns3G9gG5gf3dLYypWF5cwo0rxnnJdGMa4piLF27y5GMnUEpM2MIS60BJgVP1Jh3HChUcWgWUMCSRpyg9auYwpX2eYV6rJi6ceZk4jjh2fI5Lly6yv3uDuflpPvYtX0dRvtE5VayvrLOytod2YFyORhBHamJ2I0m0pStGiIPrlOIwi3fcxUOdZc6++ho7mzvsNSyxitBaMx4MWJhfZLC1y8reHo1mxubmHktLbaIopfSgdYKSimSiYKjnxp773vEOrrz8DFvrW+we5Azyin/1L36Iv/TX/wJ3nDqOkhHGVLzw7DPcuH6V7/sL34UW8PoLr/Offubj9elhWYT2AeV07duAw7uAcQoqS3cuZn/jEr6apd3q0Znp8uxzL1D5wGDg2dneIZ2a59L1NS7f2oIkphGl7PWHdKdnUEhef/0SWlt8gEYsCaasSajWU5YxFy9fp3Ke0hps8BgLf/9v/iC/8ZlPoDrwqd/5LJEyVGbEvfef5L3vegjvApWTXL++wvmz5yjLEZ28Hp3gLM6L2qlN1u5dXtRnCDSaEQzX2Fs5IG11iLMWj556kn0jOHnHaT7/zPOsXb5OubnDfY8/zrWNLZ77wnN0ez3UxJbYh9png8kpmV7AqKiIZo6xePo+0laXtavXqILDOIeQgmbq+D/+/t8jThTzi3O88x0fpDfVRAjB3vaQG9fX2NnZ55577uZP/YXv4duqb+fSmbP8ysc/wfaNFZaSlGYj4dbuJpsHewQBPkgq71EyopFkyMQTywppdnG7A4ooxWcdHnvsSWRziioEZo7dUfMoJux6L5jwTxx5pTFVRZw0SdoLTM21sKH2VDh172nSNK7HLlnAGEOWpaytbhGCoNVqEQi89MLLXL1yjVG/T1XllP4IZZFz9vwq/VIxc+Qws16xtrHLVn/EWx66m7tOnOTE4hLnVla5sbVFZX2t5lGCNNb1sdAyEPyQkGuGw8BTzz5P0jpOAEZDQ6vbrc1dyjEBiMM+IltEBkekMqpQNwaRDDgzJtEeOT2NNSuQdFg42uHw4W/i53/hJzn+6B9CHZyn1UzwMkIkc5RcR578emwU0bXXuXHzdxGiNiwqKk+vM8X0TBe3MEumBTZAPi7YuPk69x7zfPr5A3R1AFiurRywujbg1vY54qMPARKfB5JWGykV1Xhcj1OkILgEbwriRlSPNb3HTQifKEeUxYzMFNYNiLpt9PEZproJd737T3FUb/M7T3+S+598iC89/ymeuPtJdHeehrqXjXOCwyfaVCJiYXGeQf+AOx//AJVa4PD8DObQPEnwDM0+/vVPsBYtU7CHFA2EmqCgMkbM3c/O6GWiToYMcLB9QK/bqs9QyUe1kVjlsGkD7wOxjPChPqlSUMtttRQ0p+eocoFKm8w1uqwVG0gFjWaHP/zhJxl0miSDDZLOMkLNMj09xxd/6Z/wxNd8jM2D69z78HvqUyIPWpx4v+FqK2NmfpFInkQqwc9//hdJpu/n/e/v8uv/oY1hgEBDsDhgczuld8QRdbqIUJ9PopIMV1WIEHBUuHKLEAxSmPqETlcfFxxFCm9MrVKbOkSRH5B0Z9CtOVSV48U6H/3m7yPWJa8VGY3NdeLuEaJphfbHWH3l3/DV3/QtYHIWG4sUwfGWJ9/BlVHM0vws8wtfDc4R6ZjWzBE2L7/ItOlz5WafzpH3MPrtT2BdVVvbv2nq9RUsBkbDfUgiYi3rWR/Uenenub464PG3PsLR5cP86r/8h7SmZ5hrNfn3P/ZvOHriKMeOz7G7M8DYwC/8/H/mzjtP01KWYruPEJqXr1zkvR/7KOe+9ApiNODm3jZRFNOMY4ZHT3Dr5ha3dkt2tzeZXTrFXnmdlhxgRmMGLtBcOsH83Ay3dm6R50Oee3mVdjul06nnKlkkca7CYVDOIUzdhepGXc27IIinZxjsbCEbHWR/NHEWtPz8z/4yOzurvPXJx3niLQ8RguD1c1e4cuk6jz7xMP/LD/4ATz/1LL/yyc/T3+lzxOcc7vboTbVZ2VxjWBX4YNCtDISkc+Q4P/kffo6Hn3gX995zL2VuuXrjJt2o4o6jR7h49QqtVhdlc+LOHN1eyuvnrnH40GOgBHEjIhIegqWZGqzzKKGwwXP5wiXyIlC6N9jajl//5Z/jr/zg9+Ndn9/9/PMkacWRI0s88fgHKHLLaFQws3iU3OVcv3KV61du4b3Aj4dECrRWSFlzMJRKiJNAQxXEo3Ws65MefTcP3n2MOOvxhc98lv2dPbqz89y4sUGcJQipOLK8zGjjGljHOC/Jq4C2ORJP8LVBTZAxhamYXmwjJYi4hR/U8/IQPHvbu3zhc1/k4oUzzC/O8t6PvOv/bO/NYuxM7/y8532/9exLndo3FotFFrdu9qJWt1otqSW1ZiSPWj0Ye2yPZRu2Bw4SxA6QXCRAfOfcJkhykcAI7BGcKFLGljwaj0ay1Kt6I5ts7kUWyWLt2zl19u3bvzcXH0dJkAygAApgRPVcFVBXB1U47/97v9//95DJpAkDj53NKvsHR0xOTvNP/ut/SrdV5+bVW/zx93+EZaVpPXzA4lSZQjZHtdOl4zhEgGVbyU67nXSIR36dVD7D7t4RW/s1fF+n13IIgpjCxBRrWzs83K+hNEmlMs1g2wDffaLMTkJ6uoQwjhgMPeySQuYqTJ44Q6h+gFKSucUzZAtZNB3cYRPdLJNJW6w/3mS0Mko6Y1E7avDu229zdFSn2TxiZneCVrPJo/vbCJFmIVUkqxvMzUxzaWmBVrfFxu4WTd8lihWxTNrpDGmgmXqSlNcFQ9dnbGGGIIDbH1+lNDJGHOfQdf3JTZp4sh8dPVm1C8mmM7T218mNODzaGZColaE4OkpK0zEMA9O2uPj801x64RKePyQKwE6nKJQLXBQRaw8eMBwM2Nrc5PrtO4SBwOl7zJgR81NjjNsG4akpVje2ieKAo6pHuzegbJcozSf5kGYY4FlG8kQZKnwpCGIdkZ/DLI8wPjPJ3u0DNE3iDyIiESF1Db/fRGqSYdRGGA6mpRHpGmH4JIIbx/gyBmIib8DRiRDv4B6+AfZSiROLSxRzNlLpGN11eqEBccDRc1ni1gGxEDxeWSFSPrFygZih0+bEiYtUh4+RVoah4xFJnSgK0I02O4e7eG6TsegyAoPqxse4jsHcVIaD1hZCmugCol6QPKlqEl3ooMOg4+DWHjMMs0ToqEigiJKjtAcyBj32iJ0WQSDpGhHl3Rjd8NjLQ6cXMzuVIZsv49YfI/Q0AwSlazU642MEUieMhiA83HCIr/eI9S6BNyA0AjQkwcwEwWMnMUyS3Lwl+zMRzXoPUi1CfwdNMxFRQNA5xNRNAqcFuoamhTh9iVI6esrCj8UvGy4jQjQESiUV2l6YWA7jwCdSu6QyIfPTE/xs7T7DSxnC/TXilESXOlGoUdIU129/yonRCQLho2122bloEfTbGGYF129TsrPc3fcgX2P74BB0gzhKQuXJE2RIvR+SczrEykk8D7Ek5ehgGvgk/o7eXo1yeR2ZtZEkN4E8WYf1VdLcqYkIGfm4vaQBN/Q8bOWyrQvOnJgm2FujN6/wqw+QKRMZSZx+A7pHxIaH0+ogDZNm1adxCnQ3JFIBQkaEgU0YdJE5l9A95M8+OGLh7Cmi8C/Kwvhlkd6vdRhAKDRJIgEiEfVIDTw/acNLWzaeGxChOH3+KVKWxM7YnD+7QKGQJl/Os7W5TWVigp2DOpXDGpVSljdOneCvfvUV7NlpPvz0No3GFp85N03bDTEWX2R7Y48vvPwc3VabVr3Jleuf8upXv871n/8bphaXyRSKVLce0zEktcMasxMj9IYORtpgf22bIFRopkH3cJs4HBJLmXQlICCKUFLS7blMLC1SWbiACnw6B3VmTi6SzeW4c+MjTpxcxPeGbG0eMDo+ylGjzntvv02z08AdBDx8uM6dlbvEXsjoxDQHbhdDM7BlASudwXE84rEZPD/m4XaLS089T/Vgjevv7zF9+iKZXBe3sYvv+aQKZSbmlnCbVWrNOputA/LpNG99dJ9cLkvstgg1kEInDC0UydQa6GkKqRTp8hK12i5hGBKSNIl99zvfpdGs87nPPc/Tly6g6zo7O3Xu3nnAYDDgy6+9xB/8w7/PB29/QvD+J3RbA6KDHZ6ZKTJZqbDfqtF2HEKSVjbT1pFCEGXySDPN7buPWTx9nqWz56gfttg+aBCrmGcvnOX2yipSaDTaQxaWpnCCiGw2jaMUoVLEYVIYFPkh6zs1Tr32++TyU8TOgEa9im2nKJSzzGdz/PzHf0KpUmFmaortjSq5XI4w9Hj33Y/YWN/g3PISe4czHOwdsra2g8pX4KjGxcmTzI0WkYbJ2blTDD2Har9Bb9gnkBpoOgpBoFIEKk+mUsattsmNTOI9ekSv3iIqGxzUjshnsww9l4nxUXYsM0mcikTRjJZUKYdBMogFvgO9QxqbMbHvEUeC0ugYGdvAMA1S6RSXXnqWp567kEiWsChViuRGilQPd/n4/Su0u222P6zSavfZ3NylOOxSiAIO2x0u+j65dI5USmdyZIEZGTJ0PbbTGZbPL/Ppx5+ydHqGei+gUCjR6MNmdUgmbmNlcqSzFbbXNpFajKaSWwFNJeuLYfhk2zbW2Ft/ROZgk14v2SjxQoXneUgtSsyWMuLejZt0Gw0m5yY489R5zLTJg9VVNh9vUhkfI1cq0+q47Ff7bD5ao9844q+/+DSREDiahqFLluYnuXF/i5WtGk4YkzUlUkJGt0kX0pTPP8OF5RN8/P4HTGZs1vb6vPDZF5k4scDq2iF27x3szAStKIveaidFZEBQ0PC8HrkiOEqiKQ1lPrFLiifiMqEIQ4e9V2PGVjX2T3Z53NihuHQSRzV5zUtxb1wRBR5jnyrqz/lEw0PCyGXQrRHGfWJ6KBx0ZSM6O5jWAn7gEoYDpOFhjoySUpKVvUMsO8uRE6OHXYrZNqWpU5y/dJqffOdfoWuCXjhOlBqjGA1AaaTHc7TcIcKI0dJ9hpEDhgaGlpjrAPRkFTOOXKK0S+yHKKlj/dig+dUuxYzgG+UZqoUGr7zyGTaNIVJ5xE2PzhcdBnFI7Jm01h8wsXQRrbtFplgmiE1iv0ek9dCzWZRh4rkeiardRcU+iphQCnrtffIpA7t3l6mJaVoNE4jQ48QKGeYFXRGSTVsERooQibI0tER8gJJJf6AUAZEIiYMwKbCKGmCM0449MosncPbuET1jcuJnkuoXPaKoxxuLsxy4j3j9/DJr+w/Ruw6LzRLBfAfhFVBCIwxbzI7ENALQs4o7azVcv43AJ4qHKCKQIUPXR7QjLG1IL5rElwUKKgAEqWyKth3gKA8hG7iRgTB1YkMms4RMfBdCKMLYQ/CkYMurE9sGF0/Nsr7xmMfNJoyPsjcqmXw/pvWFAa7X440zp6hF++QOBjQDh8mx0/SvDsm+7OAPdMJwgBf3MWyJtDJkJlI8Lc+zslnjxz+4hx+2UCQle+JXPOb/Xw0DtimRerLvK0hUnHH8RD4h4dHVN/GCiCgM6DRrxNk0Kgr48M2fUz1oMDU1jZ/Nsrtf5+6Nuyxmspw+NYsxGFKJI3ZurbI8JZktzeH4IFNTbB11+PyrX+HBnRWaRy2sTIFyRXL72lVml86x+uA+2bE5bAMKuTTFQh7PjzCESzpVJjs3Qb/vILSIuB0mASypELqOCH2ShsLEyOd0O8TDDrX9XdzY5+TEBIahY6ctpsfylIopKmM5BoMunucwd/IUW9t1Vm/fZUZI/v7zzzA6U+HWrcfYqRwf3VthdjKFF8CjnR6dvQYTCxfo96q8+NmXONrbxM6XuX79U158+Qvcv1LDyhUZ1rc42N1icHTAMPRZmBmj3+9TmhghV7CT+mdFcrUW+khNY9h3GOaKFE48xcT0FPc+fp8IwZmz50jZJhuP7jE9P0sQOGys71GpVEDXub9yl0F/QLfbotN12dmrce3WbVq1Gt9+5ikqEyepH9WZHZtjKk5KkhwV4KdyBEqjPHOK9z78hK+//nt8cu0KQS/g9MXnuHn7JmUtJGvqNLt9Lo3NURy6jIxPs7Gzw2DYQUVR0nKnEruf6yermSlNJ5vJsNZuoBAsLC9TzOXRDUE6V+TFL77I7PwUkVLYGYt8eYwLly5w69ZtWr0uGx/c4OCgzr17D9jZ2+Mb58/hCsHHa3uUczaj/SJhrJCxRkrk8GLILpzEHw4p2ikOvQxmtshvf/N17qzsoKdSiWuieojnhTz7zCX2Dqq4/R5hHGBqEqHC5ClAJaFIFUZJ4DNUbN69msiuvCGe5+F6A3SSbQxByKcffsTG6gMmpsZYOLPM+voau9tbtFsDzGyB7d0WN2/cpVqtEjkOE5bkay88x8SJSXZ2angHLWJThyjCUgFd16dqp8mOLzK0yvSxwU7x9Odf4c9/co1Xf+vzDIXOBx/cZOzEeR699afYT/odFKBkiD+MiaVASg3DNhn02rg9SRSHaJpC1xWtWhWVL5DKWCCSV2brjx5x9/pN3vvTn7J06RK+1KjXm+wfNNja3iVWsLW1TTzoUSpm2e85rG00mShlmK1kKJUsRisVtMMOba/NTDFFHA1Z3z7icDMm3RgSRBBbRU49vYw+5nFr5R4/+PN3eOa5VzhyfEZ0hR04GLaJHiVVyoWZEbb2B6QnbdrKI5YKJWMQIbqmJbchIoZuk1B4uCJGbfQIzzVImaeRhs2N/iG+KFKspdCnXfJlgTaRQSqbYfQTFDGalKgoYhgM6M1fwHZ8jNaQlGFiYmH1A/p9MGKXQvEsj3sCP1hjbOZFbq7sYNq7tJ2kb8E0JcMYtDCxEequh8orNEuQnkjTUy5KRCgBpgyINR0pk2C0HvXxBi2GfpMBAXxtmvJDE+8zLv0TIX7Zpe80GRmZJt1MYdR0+l8y0WUqqcOen0OZIW44jtnzSAmHjO9hmBa6F4OW4UP/A2JconiQ1FUrhYx1Gs0eE2Wd1jBFzouxlYdh5NCHfXSZYnJumvudffRy0t431BRCRESEyfeBpoNUuO0WlhkSBH0avT2mxsYJrBBLKS4/+ojMSAVp9Tj66pCp6ymCiwbj4ybd0zmM1Trzxjw5YbH20j4FTZL2QpRbp6LrtGpt5qbmiH3Jtbd+gYo9IuUD3pNaekEQDznq2GgGZFMCLw4widGkhnBd9AmbIPKwp3L0wyHoYTJMi+R8kZpAEwrl9PDdHn7g4Dj7FEaXuTdooGeGGLKPITPoIiZ6XlF5KPGfN8h2LTpLFguDBsHUIpVHkvXf61OKJJbuYh45iSdCBehKw2kOeHi0hVN5gU77BmHcRZHs2P5FQdmvdRgQWtK4BCSVsUAUh8QoDEPgu0M04OnlEYToEwU9hGPjOybXP7nBFfcTzj13ie7A5Ztf+xKx41DtdGl0u1wQp7j4/Bk2rjus7FWpdXxOvzjPxdkzXL1ymZnps2zVh0TNHp978UXe/Mm/4dDLMjU9x9T4BLt3rtLrdNGzJYJBi/t3b7Fy5xamlSWTyWCmwQyH6DJZ/5IyOXhAEAQBQki6R1Xu1jZpHbUIfI92s04uYyOiNHeufcL9W7ep7lU5/ewlHm7VeLT2mOphg9GRAqeXFtHR0N2Y55bmeO/uHZaXK5TTirZv8rgTUMhMMjF9gtJIkffffod0YZRMykQ3De7eusn8yTPcuHkLadpUimVKk2O0BgPcgUOuUCJlKtJp60lSXiG1JDgWhmFiVQtj9GiA2zx4ElQTVMbHsDSJnUuzdHKak4szFCtlDDPF/Xv3mZmdoVrv8ODxIfdW7sOwzzSKf/QP/zYPPrnBWr1GNgy5vrqLIoBY0Pd8gnGbz37h87z/4V2WFk4SDpq47TauD1euXePsxWe5886PWDpzlpHpKQrlMv3bHfrdDOvrj1icHseUSXOelBBGiUzFMC02Vz4ls7HKwd4uQRAThBGO62Gj4TsDrn3wHgebs0zNjaPmF7jy8WUOD2pMzszyeLPKnVv3qR4eYhoWX3v1Bf7e3/h93vzXP6JVj4iJuL97iJ32yVqKo4bH/ZqHfdBmcmqCc+cmydkFvvv9H/B3//AfE4QO+ew4Jy+kuPNolYlMRNE2ubK7y/yZi4gnQcE4jpEieQLyo5iIROBjRyHDTgvPB9sI0LOCwdE+cTqNnc2gIhtCk7rn8rMf/Tnzc3Ocfemz7B/UabT7fPrpdRrNFrYmeWl5mbN5m6JtMj07ydbA4VatAxYot0clK1mcstiuhtxc2ee9dz9gZ2+fh/dLFEZGaQwVzcYQeXeF3SOP3//23+GTq/cYGRul9TBAaqAbRiLnET5K00nZGTJCIqWGrkOKiJOVPGEY40cDfH+IFxgEVpo4lcE0LT56/wpOd8jqjQfkz19ga3sXKQWNRp1GvU2+kOar3/oyf/DXvsHERJGPf/4J7/5vH5CWIdnSNDPzZU7Udjk9XyCfVYRRFl/oPL7XgHabf/un/w7TkuRzY/jC4vqtDWYXlmi3W2Rlm3x6GoVLOlskru4gJEz3LHajJn3HZGqkRLOxRyRChqGHmcuiZ0sITRDbCl1pHCxUGdmOeVHO88lRiJ0PqXdg/o5CTrg4JyNM3UDoETISmHpS9PXSV17i4599hFIBflpHswY4hkdoCyzNwlUBsmzjDByCvU8h0tHdHi8tPc3Kh2uo9RRprUMswcpM0BgMEH4LqQkiT7B8+iQfbAWEXo1K2qTbaeCikJaLSI1iGBkQIWHso6SHJnooPcKYCDj/+QEr/zLLXtjF9HsEoc3MkUQLQ3q/DRKDgpnUaufSacIwwg0NsCTDqEOYTjIhppKkYoUfrz85DEAz9OQWAsFg0KTMBYayQyY9Rs6SuFGfnNdCiA6d+030aR2/36cwMoLo1vFVhKNcrGwKKYvomkFkRSACAr+NihsEFNG1IYbos9+sY2aSamPLtml/ycfey3N3WzEmU9QODMY+axC9DLl2OjnAY4XruAz0FJFpYiqBHkju/PBmshqP/D9yM0okgcBII2UYZOwZPM9D4CPdZE3+M+PnuUUPZ7DL5EiZo6M9AmJ8eqSyI1jZMkLEBNJHaQGh30AYHlY6wou6BKLH0tIUq1s9DN3En4kxJvNkHsDOXsyIZrDdLzHuagRv6KQ6KUDDiXr4hkc6rRMLA5MIYyRNr6t4fP1t+tE9iDUQ6cTRI/4/eE3wuDZkeTyNIEBXAj1tMDVTYnZ+FKlLjOwIbrdHNmrjDgNcxyeMwPM9tNinFSiuXb6KZeoMalUqJ89Sa9WYy0Oj3sKJQJpjFE6fwI5C9GyesqWIg5gPrl7h6c++Sj43woc//S7FbI7lC5fYbPTIl8eozC3iCYVtpXnw4B4LszYnpiqUSxXu3F3l8OEWo9Pz6E+0SlIJ0CVCJp6EWJNoRAxdh+kxSWaySCA7qKhDPEwz9AVRpPOL965yWG0jTZug2+Mf/Ud/hzde/zL/w3/3Ha7dWGFs0+T0TJmFxQUe7G6y3VB0nQF3H+7wW7/7RSamp0jZOWSuwfpBFRlFfOt33uB/+aP/CTPyGRsdZWb+VJIwr+4wkCaV8TGCWLBy41NuXr+FkAJDkLSzSYHnR79UcT68+R6uE+D7LmEc4vQ6kLKQKuLqBx9w59ObOL02C2cv0HEDdvfqfPTxJ7TbPc7PTvI7l55hciyPoUImnjvPw41NDgYN8nlBqZyi1oVbdw+p7teZPvMSg1hx6ZmnqG1vUsmOsN3uMBi0OdjdY3L+FAEGW4/XaJyrMmw14MQ05VIFQ0ikLpMnijg58AHiKKS6u41U4LoDiAN69QPIF1BRFoEiDPs43T4//J//mKXl86Qnp9jfP+Dh+iY761vEMXzrK6/wlRc/g+nUqX3wAefHKvRaHRrdQy6eKZNK5QgCyJTg8vYqqpfm3r2HnD53iUcbuzx14RK/+MV7eMMerf06ixeeZW5hmZ3rH9Bvd8mUKqQLZYTQk+4IoYNMglyxijCzNumKjW5YhHGFwBtwctxEBS5RpOF4ffzQQTk2A9dAGjaPHj5m4/EmrYFLYxCwXzvEMFK8/NKzLKVTVFwXJSCTtvCHDqfzGQ4Ladbquzx/dpS8pVAqZk7L8pRnsPJ4jVgJbGuKrc0tvvyVbyBFlU9uPcAwily+fI1et0khX6ZJIh3TNEmhaHLumTkK5TSWZdDpBASiQL0ZMRLtk9KGRCSyIs+NCZXCC30GQxenA51uF98LOGgcMe72KVuC9a09NMvie9//ZxSLioUTM7S7bf7kBx/y5psfEQc9co5Ord7iD7/99zhE4O58QBgrglCjUB5BRvsImWQalpef5tbKJkZ6hFMnFzl36TPcuv4Jb7z+H/OdP7+CQDL0D1k0En1rd3dAKR+hRJNOt8XpUo7HtRp+7CF8HxkqJBoi7qBiiMIhzimD/tke+3eqjDTKOG5E65kuRtZECyUxEoViQgrOnygx/9oXqIyP0B+0ULt1kB7CElgpCykhwCdEEYdg5g3iMLn+10o+/3b1fdInDOx8mi+d+QPubza5v3sIQMnoorTknfpou0PKDlBxDaEyFLQBkTdEaCF6ZKCFXtJ/EriIKCT0oZyvIKMh2x2f1rNDvDtD3B2wdJ/hCx6ybKLCpCsmpWvEgKHpya1vx0FLJ42SlkyU4xEBvej/mlCffuok258+SP6LNEjPjfP1U1/mj9+8SqgMpOcxZ/QSxW+k85nZZe4crtPv9VgoFdg4OMBXDsLMoesKQg0ZDpJQceCSSeUxNR0R99FkwO52k4XFEug2gfSxDAN/0eFhbwf7TJGHcpvxUycwDZ2UpRHGEZqpk03bQEwsfDwhcJ3ERZ68logBxbOvvcC1n19GKo3XfutvYsgUf/LxKkrBlGiSMT1Q0Lh1CzPuoYkOvV6X6YzOfquO1Hz0SEeGyU1b7A8RsUvguZRGKgh/iIgC9tb3GS2WEHFEFEkMoeOnA8LnBOvUyC9Ps1c4onRhHFsXmDoITSVB84xC0yJcAUEMhAJzuUD1409QhAgZEAmfxYunWbv58Nc/DNzeqBL6Y/zuV+eYnS0yPp0nnzXQDPVLnauhj6DJCiKUDHse/Y5H66jPb78asN90Oaj32Nhps12tokyDUk4n9jXajQZDY5SMBaeWnqHaaOM7ip+9fRs9lSOV0+l1B1iaxszCIgfVI6Rh0jiqMnRcup02cehQHp9mrJSjUrSIvT6GyvDyCxd562PFh9sOT8URRigQhkLTBLZtsrw4TXmijNBNhuEMpbgGXh8vVMR+RKQSh3h3EOIHIffurGCYOsVcnqv/7i22NnZ5852PSUd9Jhenud9qMTn1NJe+tMwPv/8D7j7eIo4kpZEcyhvy7i+uUJhYYGRumUo2w43LH1IpZJiZmeGg5VAYm6HeapEuj2GlMnjOkN39HSbySZlNbIjEwQ6EkZNoiAGTmGGjRSwUE6Mm4xWLcHDAYKhDOoe0LQJnyE9+/C7T1x5Qmp1lc2cXpQT/yT/+2zx69wpbvsutG/uMFfKM5iymxktkxvNsbK8jfcVOy+HR7iEXnn+F7eoRf+X136He6/HR5dtUxkYpFgu4bsDB7mMW5md49923GJuYwh0MmBsfpZyy8Hp9mq6gQtK7H6oouemwEsWrFAqpSU4v5LE1CxULgqBLFA6IBxaeNHEwWH2wxu7OAc+/8goP1tZpdnu89qXP8s3Xv8q8XeCn3/shaQIqlVHsTIoXzy5Q7evEYY+eGzHwU9x6uEm71eLMhadp912uXnuArhv84T/4B/zsnXe4+ckjJqfnuXb9MnMnljhqNxjGklqtRrN+hOcOSIkITRNkizrj4wUWT02SyltJBbVuMfA0jnaOKMg2jmsRR4owNIkCSaig7w7wfIcwTOqyH9y4ycz0NM8tzDAM4T/8D77N43c+YPXGKiXL5rA9QAwCpoKIZ2amKBc0Wp06ngWxZtP3DfrdGq2jI0bHJ9GlQbvVp1fv4XqSSmmUL772Ld77xc/xui26nQFffeEklZE0xbJBJpdG05LPJIDZ6RSamdg91XCGTmNAp9Gh3xkmIbcYUhFYRuJX99zEgnnUavHWz35OKZ9ncXqaE2dOUDAVI8UK3/tff8qf/dn7DLodouGAwO/TLBmkozw3b99jrd4nF2XpD1w6Q1hdP6DreLR39/jP/ot/wttXHtFp1qHW5vf+xt+FcEC5aHNmbhoVJ6G7rO4iwoBIJrWtIw50jKRwbMft8sxTF7nx4B6aYaEREvn+E3tjRD6fx8rorOxEeFM9NrwuZjlNnI3BVuhmUjKlZEz+cMCJxUlGTo+hCcXnfvdzvNDo8qdGgC8EURQRPSlpMjUDPwwo2QUyeYWl+zhDjVbcwJ7Oo0optu9XSVkpVBwgVUQ2A42ug2VlqW3vsTQ1Slcohs6AufExjF6X5qCVyNpDFxXHGJpAmDqilMNIm0RaxHZNR9gS63Saw70m2ayBmJBIK/kcghhZFMgn7alEyfefEonESqgkJ2JoGlokEgV0GCEQzCxOsHN7DYIY0xBEMykmR0ooldwWyDhE18HxYzRDEG7W0AqCmJidXovnP/Mc1+7eQtMtNCKiwMc2BVEYkc2nEUYGTIHUAoI4BttiEDqkUsnrQ80AzRSkKzZN/4jyfAmzpKMLgan0pDBPU4RRSBQFBG5AyraIlc9COc1mZ4iKQLd1SieLjC2OUV+rs7O9z2uvfJ7w/TvoWkw5n2LQ7iK1DMoPOD869kQRDZ5tsHBihq39PTQpIXRBKXQDEDqZUhYza6JEhG5KfE2wdVClPF5GagLdlhiGQEnILRTpGV1EXqEVkr+N8CPCOHzS/xEy8IZoQgASQxpk8pK0KWlHSe4nVTI5/+WzNBtHdO+1fr3DQKxiNpo9xudGyRZ1UOAFAZbU0bSkWx4hQOoYaYNyNk1sxzw6NJmdH1Iqu5w7NcrByQ5REDBaHiFUsFPtcdjpEoTbzJ48RXX/iHff+5jzT7/CwMzTrTU4e+YsOxureEcG6VyJlK1hawpdRERRkLSTZdJ4vR7d5j53qw3CMOS55y8xOupy8dwpLt97k15gcnJCMjaeYmZ+jInJAqmMQIoYK2Vh6gZwAsIQrx/RPGrT73i4Q484HHD65DjN7pB2z2OvXufgnfeZ2NpkxDawTcna9h5GKkeqM8BOZ7j00ito5TFeefkLFAqj7GzVKE1MsnL/Ec+/+hqTk9Pcv/kheirDzPwi3XiPdrtJJl+m3euwtbVOOZvjxMIkObPP9HiBO4+Sd0BSSiJi7IzF6GSFUOXQrAmGnSNOjVvEUYxSGkEAKI+u6xD4Ctf12d3awnOGzJTLZMoFPvfcWVYu3+JOs0Xcq6MMRbuflKc8/ZmXuF3rc+POQw6bfdwgYnJ8gkDFrG8cMFIqkRub5cHeJkQxr7/+e/zRv/gfaZiCmZlZYj3DzvY2/tE++cooeipHcaQIvcRFUCjlmJouMDpVwvF8lFmk1/QYS9VxB0lSPw4iwgj8IMYPhzihJIwi2u0OH731cyrFMufLZT7/7AUWF6d567s/pdbrkzYMhvVkr3e6aGBFGS5v1zDSGR6sb7NXa+IHAaZp8s1vfZO3rtwkX8zzs5/8GD0SLC8usd3ooAnJ/s4GM4unCTSdQb+HimKWL0wyM2lQLOvk0xamJdGNJMxlmBJdV0xqsDQ3hq4m6PUc2rUOtWoLz/HQAtCESWQLpIAgjKh3+7T6DzDWHpFJZ/hv/8v/itmzl7i+36QoI8qGyUihxLDvsjCRZyqbZ3VjH08ziITP1k6Vw2abMIiwVESpUuHbL7zMux/fIooilk4tYeNQTBmsPqwxu3CKmZN1UlbS469ij0jEaJqOZgh0XWCYyWfSSwbF0WkE0wy6Q+oHbZqHbQY9B01LXhuOllNUmx5+FCOIOGx1OWy1ub26yvWPPqV89hKNbofA6yMGHebHMsyNjxIIja7S6AwdLn3meR4+qvDo7R+zedCi3e3jOT4vfO5lDhou8ycX2ZaKkVIJd9hm0Kyiuy7/6nt/RKqzi4wDsnkbJSBdyEDsEh7WKVwaoeMNCQnZODrg1OwUW70OGPGTZlKBigV6pIOuiISgPFbg4LDPSMUmFgNiXRBqAqEpDCRvX7nK5OefYegPEWGIFBIn8MhlbAzdoOc5hCo5MKQGptBwoyFWRmGZFp4KUNLASKcojmZxr+2y8midjOchVQipMUSU5AZEFPP8yBxv+QdIqbNdq3FuaQFne0hkJlfcSosStXwUYYQ62BDEgpgQJQVGxsAuWphpncDwibUY4hihwHUS3weRIn4iLkvrBq7n4bte4kWRMVLGvPD1C2xefkSn72JkBRe/fp7OJ1tMT5SYmq5w9f03MVsb2GGMJTyoFLFNC10Ienv7XHrqWa7vPCbWFLcfPeTppVOsHOyAqUAmq7oaAhUk9lZhJq8Sg8gnWzEhFREYPhgquZgTkvHpEVrVDlNz0wzdpPoaLSaTtslbqURH7gkMFIYmMNPwn/+tV3m3ExOaBjvdBlrB4AtvfIm1d1YwvAY//P53yLV6yVZAZgyCiGw+BYHDFBYtFMqA1rBPKZ+lMlKgK0BpAiUSN4oeK0zbQFmJ0lypGC1n4OsBvvQwDJ1QA2RiCS0Ws+zXDsjYNkPHRWga2VQaDdCFxsB1MJ6IAhESTTnM5dOc/9ZL/LMP7xCEivNfPEdhrMTrf/gG//1/+t/8eoaB//NqgmUY/MlPt5kZk8zNFBkfS1MqWuTzNpYNtiUxdFCx5PKNI/YPGgxaDcpZg5SuSBswljfRNJMgjuj3IcDi09t3OPOUycaDB2ytrnJ6aZnLNz7ixNIzzC9f5MGtT1hcnOPB2iMWx2foPO4xGHbAc+k1q/Qbh/jZFH4kODpax3cdMukUd1dWWTq1wMTcHLK5zafVJm+8cYmMZWFYMQN3SKAEmg5+HGPqSXGEoetYIybTpSy6tHj0uEs/2OYLn0szGDq0OwH3N49Qrs/TZ0qMltIMnIDtus9+3SWVL3Ll9hanl6Z46dVvsLh8ge//i+9RGR2j6wRMzoxzuLtGdeM+fqzoNqrUavs8uHedzE4B28rgNHcpFQukDZPt9cfMjkJ1e4PATdr4JifzLJ6cozJZwDRA0zU03Sb0dJQbMWgNaDfav7Q3pm1F4AZEQqfn+vR399jYPUATcPv6HQrziwz7Rzw1nWZuRkEUcnf7iJkLETPLl/jXP3qLvutgmzaz02NMnn2eGzc/5c7lq4ycXKY8vUTetllZuUUYDJicGGOv0UembXKZLKgpQgR2JkPtYJ8vXzzJ+GSOYllD0xRKxIyZqURlumCiM4czHOB1JLWDGsFg+GT1DWTsgtTwI59w4NAd7LO5d8jN+6uk8yVGJyfxB30uLRXZPzQwZAanozE2nmG+Mso//+nHNDp9YgmmEhRLI2zsHjE+McUrX3iRyx9fYfvWCgtL50jpGuOVIkYqS795xM0bVzl16mTSjZCSKD0kCGMGjsL1wbKT1x8yijFkjGXEaHriXTALFhP5SUYXRhm2QlpHHap7DTo9j5dfWGBrb8BBs0ev5+BFIX2/R/36PVb324QiJrAUM8szVJt12l0DM6tRmDjJ81+e4/s//BF3VzdxvQDP90kZJgPfod93EUYBuzBCv9/h+ReeZ/3BLew4ZnZ2modb6yzm6xQLNpmMiWlo2HqMZcdITaKbMYYrkFpiwtMCH6lFCFswfnKS8bkZXMejttdlfWOLL768xGG9T63lsr7dptcZIIBBFLJTa+NVDuk2m5QygvNLJbK2oDcM8aWDNZLl5pXrzJ+aYmevStszuPdwhyDwmZtdYHRqko2tdUyrxF/967/D6oOHrK7c5GDtMaX8BCmnR2bQQyLQLEmgK7Kawht6eGHE12aW+f7dD1EmuG2XMMpT0DUOnR7xk4KwMA6Iwhj5ZDVx0PQp2BlyhoUIY4TrIyK4tHgayxf4Fw4wC3mC3jAJU0cxoVGiUa2i2yaWrqGp5Dux0+9jaDpKRMTRE1W3qRGHMQaKbMam+WCFgqsYej66AcOegwojUCGB53P78m1mXjnJRqsOhNxYW+HSzAI3G7tAnDhZ4icyqzAifPKzjGOkgtjzmCqPIHWJcEJkFCO1pC8icHz8MNFi/4ViuiPA1HWkUpjoNHt9BIrcYpl/evpr/Mtbq9hFm3xsc/GZWdKxwcjoKK3aKpl+D5QiZer4roedMwi9AEGIvd/B9YeAIBYhKzse5yrTXGvuPHktEhGpiDiIklxaYBBFMSJWjGQspKkjXQ8tFhAq0E0q2SKRo5Ex0wy7Q6I4IgpDQqUYan1M3cSWGrFm0ex1OWVb2LZByTLYivpMTk3jeD0iU/LG3/wK1//5exR8SXfYR5MSp9NLNN9xSOQ7HB21+OqpL/OTezdAxDw82GJpdJLGsEngRyhdJS24UdKGGgTBkzMVKpk0tiXRvBhd+Ig4GWrQIWuk8FIFMpZOvzckjMJkawcwNBNLl1jCpOsNiAIPTUr+ysQkP2yu8NzvvkAswLJ0LMNirJD5v53j/08I9SssIe7u7jI7O/urzA3HHHPMMcccc8y/Z+zs7DAzM/OX/v5XGgbiOGZ/f59cLvfLqtNjjjnmmGOOOebfb5RS9Ho9pqamki6Uv4RfaRg45phjjjnmmGP+/8tfPiYcc8wxxxxzzDG/ERwPA8ccc8wxxxzzG87xMHDMMcccc8wxv+EcDwPHHHPMMccc8xvO8TBwzDHHHHPMMb/hHA8DxxxzzDHHHPMbzvEwcMwxxxxzzDG/4fzvAXjWX5qi1OQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_augment_2/1719298626_tango_video2audio_clip4clip_augment_2_best_steps_300_guidance_3.0_sampleRate_16000_augment/SNanDCQuatA_000189_iAEDIntNw4w_000010_6.wav\"\n", + "show_mel(file, save_name=\"2_wav.pdf\")\n", + "show_video_frames(\"../data/video_processed/video_gt_augment/SNanDCQuatA_000189_iAEDIntNw4w_000010_6.mp4\", save_name=\"2_video.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_3407931/2218442382.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(720, 12800, 3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAvCAYAAAB+KskzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZbklEQVR4nO39d5yU1fn/jz/vOn1me6N3FAFpgjSlqthFFHuLJjEaS4rGaBJjSd6WqDGRqLH3jg0QOyiCnd7rwvY2vdzt98c9Mzu7LEreb8TP95d5PR77mN3Zmfs+1znnPtfrXO0IlmVZ5JFHHnnkkUce/7UQf+wG5JFHHnnkkUcePy7yZCCPPPLII488/suRJwN55JFHHnnk8V+OPBnII4888sgjj/9y5MlAHnnkkUceefyXI08G8sgjjzzyyOO/HHkykEceeeSRRx7/5ZD350OmaVJTU4PP50MQhB+6TXnkkUceeeSRxwGAZVmEw2GqqqoQxX3v//eLDNTU1NCjR48D1rg88sgjjzzyyOPgobq6mu7du+/z//tFBnw+33f+X0hfSE7/LgKyYjMQUbAQBAHT/gssC8uy0HQTywJdgEwNRB34scshZjpEFkCyQJHT7wg6AKriACCVMuz3LR3NAEMAPUcOOf36YyFXjgyckpyVA6vj0Gu6/X5nOX5MdJ6csgCSDEpO21VV2mssAJI53/ux5cig89yCnPnVCZquY6TH7mCMx/ZgELCfvwRg0vFZvOV3d7P927UIgkDfQb340y1/wOcFzYRQHEo9UNNkUVIicNVVf+av9/0BB/DS/C9piUVo2rqc6SdeQqC8lHhMxxJlyotAdUJLFDavr2XksEq27gohWiYxHfp3K+DXc07BFEC0wBRg6pmXcPLPTtynHP2xxz6z/zHT8mg5n1EAJ+BIv29ij40TMIANu1Ps3LmToyYM4MVXP+bIoyZRVSyyrU7Hoco8ftfv6HFIFUdMu5KmUJSiYg+JpiAVPQLILnjnzfVMnHQIwSB8+t679B48jBFDy/nlaadk22BaElNPv4DTrjhpLxkGpttBp3ab6b+Nvb5hQ0rLpqVlS+Z8NvO/tpzPW8Ab/5pLW3I8Z1z1y/Z/aPD1mgi7du2iuLiYYyeW09QComp/57pTzrY/J6QAmDT7Mk762Uz0TpNmqGTf38Seu0L61egkQ0YmZydZAFQgnvO+C0gBbTokkxCJwOuPPowUeZkbb3uH9WFojQFtKZpDEVyFRTQ3t9CvdxEOFSoCkBIh2gJXn35Cdh20JC/jTjqXM35xLIYAgtUuA+n2xTu126Dj+ABcePzFFPn8OHwebv2f21i0aAEnnDCLgB9aWqG80J6PEtAchz01IYb281PXBg11jWDUUdR9KE4HfPZ1NRs2bCDUEGbUURM44chyGpLgkqC7DNXAC49+yHtP3pddK0y1mMmzZnLGVWdm18JoKMRJvXt8rx7fLzLwfa4BAXsOGAIIAogI6IaFLAnpuSHSTgckDCwUScQwDAzBQkgTAgV74bPSfwuCwIGulvy9sqTvZ1gCgmiRNHUkWUCxFBA0ND0JltJ+HUFBkHTklIUggm4KKADYcsmWgH7QPStWdjIbloAsWkgm6LqOoijpdnf8hqooaJqGIIAigG6SluPHaL8NAwvZstsAIAgWgga6amQJgaaZe40FgJLWoPZ4WGkZBOQ0AT34aB8TQbAV215jkoPMeAAknOBN2It7e9sPrBBevx8Te4HzpF8zC7ICtG5dD6k2LKBb5ZE8/sgT/P76K2kJpaioVNGjUFwCwQT0HzAYwe3nw893cPjo0VR18/OH369i2uR+1OsQb4PKEnjt9a/5+ckjSZVCaE8C1fCz9oPXCQQ8zJw5i5effgZJErPtmHr8mTjdTlx+f7bdnRWjC1uBCNhKAzoqGQWYNe0MxHATWDKjp89EkV385KIzcJWXggCKUMfEsaOo9MP6Nev4yYUn8sWmVtBMisv81MVKuPCk3yO7AFSqKpwU9PEji3bfDT1/LHXpe40ZNpuYDps/r0aS2pfbgLcUVyDQQZYM/Gm5YnQc5UT6mpnZIgJzx5+KotoT662P5hMJg8dl/9+MQEtDIyVVpVR4YdMek5JKkXAYdu9uwggFufDaBegp+MeD86lva+H0008nGAwS8PpZ+fknnHjCbOa/vYZir5/K3j3ZuW4tFil7U5F+BlVZJNBJDs0Av2Qry4zyI/2q5cgA8NETb/Lsg/8CYNTkSdS0RnnxwVvYFQSXF8wQuFxQ05zk7nv/Tr9hw7novJk899ISrp4zmaeTcNE1H7M7oRJwQVtLnOJSPy1xje5VfvxON8MHyKzdlGLJp1soqepJkWpgmhZOUcAQJVIWFLhl/D4/mWGKm+BJs8oY4GNvIpOBBDzz9CLUZAuRZAsD+47nkQcf4rabf42iQkNLim2b1mAO6Ichqfz7n/P461+v5dByPzc/8Aq/vnw2LzzxHIeOOQJ/lYdQm0a5P8CgmcewceNGpo4dwE233M8FF1zAt5vW4hQk+vfvT5VfweVSiOsaWDK9Bw/C4/Uhe/24RJusm5nl8Xt0336Rgf2BSTsb17BQEMASsdJ7DEGw/2sKmb8BA2SLrIUA7F2TbrUTjP+vwNiHK0YXLA70wv39ENL3BTlDbkRb+WiahqIC1t4KSFEU0DQMEeQ0sQHrRyI0NnQhI0NOA1IWmqojCjKS2fHziiWjCe17aFm00E0B2bLQhXZScPAh5MhiIztnNK1LQgDQo7KYR84YxT8/28knq7axK5nZixzYeZXpxlwCkPldBIyUgSRJSBZ8tHgRkqjw2Ycfkkxo2dUxRRLVAE00+XD+i/Z1TR0ZFdPSOX7kR9kdDIBkmbz4VwepVAorbTHEMHErDpa88AjFgQJOmXwUogivfvQxLo8fwzRJ5LS782Nn0JEIZJDpXSegWClERSGV1Kmr3k2vPj0Y0reUx1/5iKOPOprSQBl63ODzNc14ZAePP/oOJSUlBJtauPvNN4kGm7n6jNNwOX2YVoqUFkO1xCx5y+yY5dwFTNCzi62OzKTTTkNLRffaWWZkyLTZyHmv8wxxAZYeJKXb17zhd3dx2UUX07N/EbEYFPpg8/pWDhlYymuvfcZJpx7JqmqLqjKBIUNKiIdLWP7ZTiZM6kU4HOaC8y+mrBwqvX7adJh+/6+pCYGV7EO4NUFppZOtX6VtblbXqiORnkhSus2JLj/VcUwev/9eBNHuLMECr1Ph09XbGTq0D6YJzS0tlBYVUVzsIK6luPy8mbz3eS29e/fml//zOCk9ScCpYgDhujCKqfLgvfcy+NBBdPPKvP7iS5z32ksYrW10794d2ePGYcRxyQpxzUQRJWbMOg7TEEmJZB8GAZsE5I5JZ0i0k80XHn0EZ/o51jQNDyk+XvwJDzzyENW76tE0jUAgkJ0nU8Z9AJaMbOosfuwxND3K+68+jyJ77Gvo0ex9HrvZfr3h3VfTjWtf4xRFwa2qxLQUpd2r0HUdLLvtisV+K9IDQgasHLNK7o7eMAwQLCSp4yOb+b+oCFg6ZMhBZp1UAEMCDOugm3h1IaMA298zdAskCcXUQdi7yxRLBjP9WIsW3Uw4Y8IAgrrFMyu2EPxRCEE7dNNW7lnlk4J96B7AJg2GCD4szj2iJ5trq/loj0UiZ5d+cGDfSxcsW5nnMk7dAllH2scUlkxwKXDTxB6sDTp4b91WtiX/36CXmfHIwBBzFnpByxI1lwNevWQKlQN6EHpnNUUBlYZGDd3MzNMDB42OijVj3gXbPBpLJjBTGqCjAKKYQgtFUSQBwQJRlHFJIk6HTSFCrc3EUzoDe/QgrulEY3GSbTE8xQVoIhCP8/4Xn3De3AuyRMAliSiyI6sYfN4AhqHh9PgwTTCdCoJgX9/KaWduT3SlXDPEJqOcxISGpmuAwO5Nq6hbv4qJC94G4N+3/xldshdYp+hAwOSr999AkR24FBlLEihyePH4vICFYYh4POVgmKiqSkJL4ZJFLAFU2YXL5UJVVWRZRrZ0dAEWLf0UQ1BRZLVLJdPZrZH7GSftJK0QsiSyqrIHcjLGR4sXMM2YRiQS4ReXX0Nd/S769+9PMpnkvr/YpNNKdeylOzUNRRVY+9Zj9mZBUbASGroELrHdQqUoCmZSwymKRKNRHMV+QrEUCCnCmYuJ7eMQzrlHrrsCbCKTQaDARzweJ5XU+fSD9zAFkes+X24rtRxYln2VY454P/23lf3Mz5YuRO7UmbuWKnz4qILH42HW4B54PIPxqE7cbjemmUJRFGRZZtHST3H7C0lJKQSw52caUdqfzc4WjYxciYx8egwroRE3NVZ9tgxFUfhy8XvtY+UWQIvhlOwZK8sySTOBGwldAD0uoigKuqAjqDJ+VxmBQADJtIiYGi5ZzY5D5vsejwdVEFFVleff/5CiwgoMEbR0R2tS++/fhwNDBtK6zrRAFAAsW/GYFkL6UTXTZlJBELBMmz2ICBjYMQX2zk3g1MHdsGQItEX4KJJkazCOYRxcS0GGCHRYtLUEmirYTOs70M8H79w2g7Ubm3jnk10c1reMr3a0krAONq0ROuxCc2GIfOduVFEUBveq5PnzurOmtoXQh6VMPqKcD5av+dEsBF3B0C2U75jor100gU11TRgtKQb1603N+u1pRXrw2tgZtnVgb0KQMOzxkMz2MTnliIG8+d4KwgteoaDbEVieeqpjEAxndgwdtp7/p3Z13knnwgCMVBIpTc0zEcmSJCGgk9INTFNDFEU+WLqEo6ZM4ZOvVvCvv/+Ln/30Z5wxezbBRAJPiZ9F774LXrDCFsiwZdt2RFHE4VDwuLwUFgboWV6JLMsIgkA8mSTaEAdMNEFC+R6pMzvRjI8c2k3Vmfc1TUM2sa+UCTexNFRVRRAEFEtCS2i8+cbLnHDqKXy26B3wpK/mhOMnzeLoo0/mxZefJxKJ8PmGLzh95pmE4lFkGfx+P/179clmX4miiNvtJtTcgqq2E5rO1sQMYcmo6s5EQaIjSRg/7RRMTUPTNHZu3cjOrRtZ/onCs08+imzYxKFPj0pEM4VPFJA9bvuLqkAkkgB0RFHE77PjoNxuN4VeP4FAgGA6hkRV1Q7rhL1W2zLOX7aUwYOG7bOtXRGdzHu58y0ej6NpGkY8gkP1IYg6OjoIIBvtys8pKRgiLF68iJNnncTrb7zBpZddipFMcdfdf+UnP/0FraEgc+ecwWUXX8Lxxx9PQXkpZcUlKJKMqqqIooggCAiCTUdkWUbXTUzTxJRUNLFjuxO0zx0nXZPNzHuapiFqWlqpZqIk7OgxJe3207QU7y9YxIlnzUGPJ1j8+XsQg9GHj+KaK65kzpw5zJh1Iv0qK3n0ycdYuOh9brvtZtxue+xcspuePXtmrwlgSrZMimo/DZLV3rv7cmt0hQPmJgBsVmi17/AtCwzRst1LooUkZkIMDQRLwsI2PQIYhkGhW+D8Q72MPmoQ19+/hHLJR21rgmjGJCpwwGMI9kbGlJw2j5u2qdkQQUqbp6FjEBu0T9jLh1Xy+OPrmHnGsXzduAVRFulWVszW+vrs9Q+W2T3XytHVbtTIKqCO3xMR+f3IchYsbWHW2efwyEcPkGhuogCLpiwtO7gaVc/EX5hWBzlyXQKZMVEsmfGHVvH2sm8566yzuH/5SxQ5VJySQsT8McMJM/2WiWfoOCaapmGa7XPptEN684snFnPm+ENY8unXyOgYhoxXUYhoWjuxOABDEaM9TiBjFchYTHMpoySAKNlhwrGYbUQ1zXQ8kKAyZdoMEokUR0+aiizIPP3c85imiWiZhAQYP2kiYMttCrZFAUySySS6rhOMtLCzejfdu1dRXlRCoc/PB0s+tvtNToHl7LBoZbovE4DWlVlapOtdnQ0dy7IQBIVYzF5EDd1CkgWmzjiWZes+hSis/nwDV1x1OUXlxby9dAFttTGefukZVI+L8SMmIopq9oqhUIz6+npcLhceT4CBfWwzPEBrY0N2h5vt006/t+W0NfO/rhZ0TdMwNS29e4/b88aww5cVxVZEoViMJ/75EH/84+955d1XWbd8LYcOGMj//O1uvvh2FU8/9CDHnHAybaEanJ5SWqU2DFHPKp9oNEq/foMoLyogEAgQj8eRZRmXbLdwzMQjaRHUvdpmYFsGOq/WmeDqznJYpoDD4cCmCUKWBMQSqaxl4sOlSxk2dAi44G//cwd33f4XHn7uYcYNn8zpc85m3rx5LFiwgEsv+QkTxk4EBYKJGFu3biUQKEaWZfr17I7f788+N8FYBAQdQxaxEDv0cy75+j6XB9jEJWNNyV0f7XnVrqDFMg+PPvoka9euJNasc9T4cUhON7+/7Xb+9q9/IssyazdtYOKkyen+sbLPWowUoY1BXC4XfpeHQYMGZTevWsrCkFK2ZbeTHPuDA0oGTDO9iIh29K8h2l1iWwUEDCOj/EUsrL3UySMzh7B0Z4ivX1xDW0kfwqu/ZtjQQ1ixaj0mlu2C4GBYCDItsxfvXDO7RNptIOt7EYIJxQW8tyPIjVefxQNPvU00aaGZThpamzss2gdvZ2pl79cVIcggE08A9gN4aVWSm5Z8wa2zp/H0O0u46LSTeOKTDeg7miBruvsxXB+545GOhUgv3J3luOWs4zjrr08wNCgy5dDeNDfWs6NJI2GAbv04hKbd7bEP6xPtLgNVVVm1ZTeaR2DdthqqDI2pk4cQKK7gL68tsWM6rHbC93+VJ7N4dI7Et7CJgmmaKKKIpoGWiCGkA30h11Jg8OHydzmkciAfr1vDjh07GDxgIEceMRqvp5BFX7zLy0/N508330ahLOIOuDEQMdM7ZdECJBEsgeb6OoJNLRQVFRHTkiA5ES2ReDy5V5xAxgqQUfqdTdKZBT3J3oRA06y0sum455NQWLb6U84+Zg7VDXU4FBUTjab6Ov5x+/0sX/oJVaXltLW1sXj5u5w+czbNobYO14jH4yQSCb4INuN2u3G73WzfXg2yjKZHsQzXXgu1QsfdaFfIkDYrmYmz11EUV1oeDU2Ldfj8gEMH8+p7rwFw6IghLH1vCa+++ToAx5xwPAlDw+kpTJuv7ec7o3wEQaC6ejvV1TKBgIcePfrgd0FzLIZsyiQTBpIzlW17rgLNtcbkKqfOVihdAMtIoYg2gdHS1o7On5x81BS8fj9jhx2JU7JH8tU338DjcSNYcNlll6FpGi5ZQXErtrVNEGxSEQsB8M2aFgoLC1FVJ4P7DWL16vU57ZDtuZXZzAo5WR2WHVjdeRwyUAEZHVlUctrflbRARKd8QAkOx0gWvP4aH3/8Me4KD2MGjeaLdV90+OiL855h3hOP7nWJeDyOrut89uXnBAIBGhsbQdCzQcn7SwByccDIgK2o7YXJNG13QWYTb6R7WO5ACNIQ7NVbFiUQ3Hy0YxvXnTuDhY8vICq72bp6A2LaBZGJK/ghsgxyGpT9LRvUaLVTEENvv68mdCQEfzh/DJKRYNjIMg7/ZgAXnDuUf7+ykM019T9S4Fouqckgk3xkQ+vkLigOuLjp+nOZ8ckWJpw0g1UPLqaqwsGXXy2zJ3jWV/1jxQ7s/d9cQpDBC68s5IbJVRw/cQhiopaGOj/HHjGNy59+kYSuc/DHIoOOBO27cPJRh7J5VyOTxw6juLyMF958l6YaE7dHJtKm2ZvlA5wd0VUcbGaGW7pIMmXvcGPBMIGiQhwOhbFjj2Ts2LEceuihtNVGWLN5E/F4DNM0eeTxJzjmxFNYv349E0YeBbqI26/icfuQHSq6rmOaJrIgIooikiTZ5lZRxhQgGIkCop1eKar4lY5LlkRH8pIbAJlJxcuFhe171kQNkmnTrmgiSQ772RZSSJJtNj9u2snMnDKNmgVvgCXRu2cPamv38NL8N3A7ZGKRaDZdq62trcMCnHmmLFlEQcSjOolEo+i6jijLtjLzeDu07TvCeIC9d3uyBZZhd0BGeXcFh0fAiuksevQ1jp1zKp98vJil7y5AdRdy7NRpfPzFEnuQU2BFIkyddXIXV9GJxWJs3LiWQKCYPt2r7HcFW/lk0jK7kqNzOl5nZGIYbGLWtRyKotCjWzeeeeFp8AIxqNu1hwsvmMuid98nHA4h6AZTZ0xn1apV2e/kfj+DZDKJYRhs2r6R1tZWDJf9v0z8gdrF8/RdRADScR4pC8vUs0QgszERHQKxYBhZlrEsiWNOOZHa2lrKCm1rxT8enIeCiOxycHjf4SSTSYqKiigrK2PkyJHMnT2HqVOnUl5ejtvtRi5QIArr1q5ly5YtbN26lZfmv4qcjjWSJduqk5H4++ZVBgfUMmAJ7RGhHd5PK/LMzs0QbZMKQnsMQb9iJwuWrGDZo7/nrGuf5LdXzmH1+j089tZH1CVAECGVQwRyCcEPQw5yo/EFOyJd7HgPUZCzevZvJx/Oi0vWcs1p01i5+BtGDu7LvQ88zgWnzuSlzzbhFPgRAvAyyDVNa3tZBzRNQ0oz7cvHj+C6e97nkvETWfzmpxze08+61TXccdEZ/OIfz/yIqXlAjotCNwVQZGTDNgAbuoaBLYdbhXE9vbSKLh57+Cmagq1srkswpL+CKOg4hUwwZOaaB1sGyLijuiQ3IlQFvNz02Ad83RRHXbuTrc++j9/nYVNxlKKiIlpCe9KWAavTdf9vaI94b7+qim31SyaTBOtrKazsxqaaDWDBmEHDqCwv5u577mLFt8sAmDJuGildQ5CltBsAkgkDPRrBXVjKxaeczhsL3+Sphx7i4kt/QkzUkSQXb77+CnhETpxuKyNbuZp2apQlopg6Ianj0tbZJ5rZnWbcHJl8+wxUQDdSyAYkSYICbtGJpsfxOHxomoABuBWFVDTKK2/MR5fsdmyu3QWAldCQJBeiQ6GxvpHjJhzLzddfz+13342lykiSwpvvvcauVdv55W9+hWVZRFMJVFXFVES0ZBJDBKee7DBqmTor+7OrayMd+wCYSQ3J7GiAN0SygWoTx03O/u+vD84jGAzy1nufEgu2kjThF5ddybhx45g5ZRrlPStYuHAhS5YsYfPm7Wxcs4rVGzaBlsRKm4K0WIRV69eii7od25EmaB3I0D7ava9Ygo/eeY/W1kaMhEl9Sx2ffvopn3zyCfX19RiGQTQaZNPOzYyfdDROp5NEIoHD4cDCxZSZx2CaJpIkUVhRxoZd21EUBZeqZNPqMsF3Gu0+0Wg0ipmu8yGJDvyGzN4Oj/2Twwkg2ETA61CIJDVmzZrJovc/RNFSrN6yhrGjJrFi1VLefO5l7rrj70SwQLeJg26YRHWDVRtWMnL4OFLRGNGUzoLX32DEiBG88sZ8ZFlmwRuv8OqTr/Dkc890aE8slsJy273eISD5P8ABO5vAVsh7v29ZuT9W2ldt2LUEEMESkUR47adjGTtpCJs/XsaVs8dRu3YzcqqNK48eR9yCsgJfmmRYe+VL/jBWgnaTbgZ6jm89YyHIBAE99MFKfn7KdE6593VKBh7Oko+XM6hyEC8uW40GFLg8mdb+AG39fuyvAn9+6VL69ezPpe8sQvUo/O2+T3jjxdf5nydfJQq4HAc2zOQ/g9XxVcuorPZoZ4BCVeG55Vv4+6ebABgwsBfTxw7ig13VuN25Wec/BqtpH//vsgzUNDcwvFymPOCkKRrj9HOnMnHWRNZs30WoueU7r/u/nWO5i0GmiJgIaGEAE0ES6T1wEIqiMPHwiRw5ajIFZZW8+fZCZFnm+KOOZ9aUE7AEkFQFWbYDtkRRxB9wU1hWhiRJzF+4EN2Esy64EFNQcEoOZFlk7ty5nHHiXFxuBx6PB5/HRaE/gGEYyOjp2gziXm39PlkcneQBe6489eADyAZccPEFvPn2uwwZMojpM6egKAKvvfYKz7z4LIpim5kzP6oqIrkdJBIpFMXFio2f25HfRcW8/f6iDnfv2bsPYLt8nDkkxpLstaDNcnRo8/eNWq6yzcxiTdMwRBlDlJEkCdGh8MXG5Xz60QckFZk333yTTz5ZgqbF0SVIWDoOvwfRpSL6fTz/1BN89tln+BS48OKzwQHOQpX777ydt99+nT//+c8sXryAoqIiPAV+PAV+UKTsGiw6lH0GInfV/tzwJAFwpZnahKlHsW7lambPPYORw0cyddI0tEiMP/3+JnRJZs3WVbz24suYikjMSGEqIroEhmzQGgvz8WfvYlkWD9xzP7Isc+nF5+BQbNUuyzKvv/0Gry98Y6/4KNNqr5fg9hbslxy58mTGxAnZ6yQStoOkubmZu+66i7ZohCXvfIyiKPzrjnlUVfTO9puiKLhEJR3jAeNHHmlnc8gSkmkH6SaT7XT2/LkXMm/evI7tMEnHW7DfY9EVDhgZaFfIApYgoFvtxQ4y79u3s29piNguAsvgkOIKrv33Cm57fxtn3Pshmxtb2PJNHR99vIlP62qpKirEjlESECyhQ/EW+/XgLOpd7agzuHrmMG5+9AW6V5Tyr0ceYcLU0ZQN9PLeZxso8nhoimYiwP8fCsdPI3cC3XH+iby3czPzX36BVd9u4a9/vQAKPWyOxPHmFML5cUiNHXiZdd+IXbehW6GHo4b2we928MXarXzx1TaWfbWRr9duxiErFPkCB7HNnZFjpUnLonfaCnpMjbf/8VtUbyl9HHDB6eN44q0VPPX2UoqdCrqu40gvak4B7M2N0Oke/xly6wrkQgTOmXQUhmEhSxbnnjEHTIuLL7mQV156kSnjJ4Jg78re/vhtFix+C1GUEQUnkuhCkT3IDg+hYIyULuL1+ln91ee4XC68AT+vz3+Z199+MxtQiGDikBx2TQNRsdMMLRldsGMKGpPx7KIldvpRcl47y5JZuOeefClYMoKp8dtf/wGP6uWjd99HFSweeGQeH3z8EWDHSFT0KUNPV6BRZJediiZ5ETWTJR9+hNvt5vZf3YzP7eGp55/jjJNmE20L4VYk5pxwJnPOPhO3220v+C4XgYA977I1PxLJbN9nRu37Ri6T155LyV991a7psLu+mqamJsJ7QrjK3bhEgeLSEkaPPgJRVG0Z0j9YMlgyJ5x6Mori4p6/PwimyvGTZjFh5CSQ3Oi6zq+u/y0/vfhn2U2PZNpR/S0toew1tNTerc51z+QqzUxoXeYbvR1klegtf70dRVGYOmMmV157BeFolNtuuw2XKHD6zNlc8rPLupDBidPpZOyIIwG45Kc/ASASN3E4HDhEGaeicsqppzHn9DNx+jz4Xe0/omBXZU2RJBKJdNnf+7LUZApAOYFos12Iqbm5mW82foPT6eQfT/6Tn158IWs2rOWqq64CdIYdciijpoy255Ulo8guBKeC4HSRiOusX7+eil7d+XLTV+zZs5PufXrTFo3gEWRcskpcMCkoLcbndONz2tkffr8/uy53dvv+Jzjgpxbm7tLNTPGGtLLO5BNbll0RT7QkRFHk3H4Orp87mR5+J06/k03b65kwezRzzpjEwm93Uh7wEIzHEcVMoFQ78fhhicDe1oFcZPzUDlVixaZmCjylzB7TgwGDhvDX+1/jwfnLCQIuU8Or/m9COg4k2jMYOisfABmNiQNG8/aSb3n8lnPY8cFjfLJ6I9fd+yjf1EUJqCLl3vSCKHc12Q4+OUhYHQdGMqFA1Xjr5d9RH6vn6hPHcsZpU1hT18yKHQ0U+l1omkYsFkO2BGS5k6XhoKFju3Pzo3ub8MEjvyPUUs+0OdP52aUnU1xVwQO3/YR//OECHvrVOVx81BAevflCltx9KXMGuA9IizIKtatZ6nd5ABNZgEceeQRZlXjqqaeo6lfBOWedafv600XFUGyrQCaH25JEJElBEWyLoFNR2RNusHOs21qwEinOOO10Lr3wJ1xy7vl4nC5kWcbn9uByO3A6bPlkS8Q0dW771cnZBbrzT+f2d/nE1dWCoOMNFFHf0kTC0NhZs5s77rkbHGR3a0W9i/nXPQ+hyC5cTp9dJ0ByIst2gNvYo6cA8MHSJSR1jU3bt2JYFiUlJWiGjpHSEK10xH9SIx6PE2kNAuBIxySUlpZmI3iUnJ/O5vbOPwC5dDYaagKgT88KamurmT17NqmmJIqiMO+fD7Dk/Q9xBQo7WDhcLjvgcFfjDtt1oVm43W58Ph+lBUUAvPjMc4RCIcKJkF13QVKy5EbT7OBFTdz3bnRfijRXlmNOmYNhaLbbJmLHmVzx00sZPXwEDz/8MJIkoSguXn75Zd5ZstD+vtJxVx1sDCGls3C8Xj+yLPPKG/OZN28et912G1rSDuLLDezLfB/SsRcpnbBv31bPXAtA7jhk8Juz56JpGhUVJYwcOgZRNJkwdDx9+/Zl2lFTKSgtRnC6+POf/8yp007JkkvALjwkOelWUs64SUcRj8c5btJUevXqRTLWSnlRMZYHioqKUHUra2WSO5Uyj0XTqb+qq0M/768t94DbfIV0Wl7XsBW5nedp5xm8Me8XTBjdk0/+/T7DK4upqnKycMlavlhfzZZgAl2A3TV70NNm+XTgMVaOuadzDMEBlijrJ++qs3yKxoaP/oSqydRva6ausZr6JpmEacfVumTFDopKpLLXgh/P766nA4Y7xdvRsPM5Gr9cjuoppbW6kXHjR3Ktw8tPb34KgG6lxdS1tFHoAi2kZYe4vcLiwRWoq/7b9vp11LeG+GjBCuZcciGpZBQkF3f/8WKMpMTa9Rt5bNEyJkwZwrSRfTjutqfS3+yYPfLDo1OKoaSkYx/gw4cuZV1tLbFYjOLiAKOmjKBmQ10271vXdUYNP4wCv4uEpjFm/Die2/ZB9poOyyLgEGj4rsIB+0DnKoSZqHVdT2GaJp+s+pRRh47BCZjpfUSvEQPBEjEsMyfMXU4vdCJKOtPA7XbTFE5www038OpT83llwUvcf+vfEEpciILMzDOO46xZp+H0+hBEC91IoYoSkixjCKAZFqYgEqQ95TF3J7OvLKPOqXkOK4YGLHz7dcaPPRJREVBVlbmz52A2JjsotkN69UWS2ueDqtpm52XLljJi7ERSqRTHH3881/zxWjvlwg0Xzb6Qx55/nF+c/xNiKX2v71JbY58ZIMIV545hN137d52d/u7sZ++DrdxcisJ5F16GoiiICIwdOxbTNJk1axaI8M+H/sWbixZ3cQe7VsCMicdTWFhIkeogFI+SSqXQ4wncAT+XXHIJTsXEwGGTO4eMaZo4ne2t0zQNUd3b076/e9Nks45p6YhAtx7daW5r5e9//zvLVn4Gkm0mD8VCtmKJdSy4Y/8Ca9d+ya+uvY7q6u0cN30moVAEt9vJjdddT1MszNPPPsPmNeu474F/Zu+bITWmpSNZLgRV5qSTpncIr+4sQ+cxyUU0bfk966zzePLJJ1EUu3/fWPg2x06bgaRIGAmdRcve5/w55xENx/e6xs1/vY3fXHUlPXv25Prf38i99/6DbmXF+Hw+2lJx5s17mFuvv56dzfUdvqeqKroEvsJCDBGuvXQ6u/az/3NxwC0DdjEA+1UU2w9ZMbPR9KIdOyDp7Fh3O91dPha/8RWuvj25+IJpzDp2Ar+5ei6RhIFuWvTx+xBkB5AuFmGBYEnpqmd28+0sg71jCf7vsMlLdkfd0e9BoWmxef6NrP1sDx+9v4r12/dgSoX0qirijj+dx7O3/pwrZg5G13WOG1HJohvnIIvWPs3bPyz2fc+Wl3/DileW8s2qJrZubiQhulm5uZqyAh/P3n4RD/16Dv1cAoWqwkPXn8dz152LB9K1Lve1DP9Q2DfxiLZG2L07QlKzkFWZfr36oZigmGCm4qiqyk/nHMfMyYch+53Mu+R4nB2iXQ8moWm3bsmGlrXW1EUF29Rn6sTbQqjRuB0I5lDAKeByS7jcEg27m9m1axfxuL2oyLJCiWwxrXcVAzwyo4v2rnn/XRBo3113Nrvruo5kQbeCSmTRzvwRJBHCBl9+/DlnnXEmpYUFTJ8wHaMlxsP33clfbroOl6rgcNg/446cgCKIjBw3iNdft9PcPl2yFIRMGWwoL+tG94IiXE4PLpcLp8eX9YX6AkXoSdsXm0klzOyiu7IKdEbmc5qmYegW48cemTV9C6bFNVddxey5ZyJatjvi1GmncM8D/8AnS6ii1a7Mgdlzz6Jv714UFxezcvUqZs86k0vPvZDLz7kUgAtOP59IPIagx1BVNVu4J7MbJ13hMEjHeAY5/ff+KNJXX7MVvKbFQTNQFIGPv1nCRRddSllZGbIsoygu1mxdxfNPPWNbNnJ+AEKhEPV1zfZz8dOf4vF4mDh2HAs/eA+3V8bt9vP4o8/icrmy32k/AlcGy+6TTMBaZ+vF/kCM26b50aNHU12zx3aBORy8/eJbnH/a+eiCRSBQzMsvvcS69Vs6tD+DYUNHsmTJEiKRBPfd/3euuelqvvzyS75atRKAV156mZtuumkv+aHdVSeZUFJpPwe5MrjTPx1qbXT6gfaMiKt/dzmZ8NtwIoYowsyZM7n95lvwOVWMiM4pp5zCOy88y+L3X8Yti9m5df9d96BpGjNmzOCeO+7k8Yf/xdr13/D7v/3J7nGXwPptm3nsyYez88rj8WTnVWNDK5LZfrBT5zZ+71js5+f2G5ZlpZe5dIqhSIeof/tV4oWfTqb+s918u34jjQ2tJE0TXfUTTEiUlpZy1x/P4vHrz2ZYj2IwdO77yXR79y9AhiebZjtf/mGW8e++6qpHrmD5V7toamrC73AxoG93u/a0aCugpqYmevWu5JafncAFp8/EURzgpnOO3+s6N/zqmh+k9XvDlif3WUopUFddSzAYTBcUgQGH9aRbmTcbbKPrOqefeDQ3//wMDMOwzatKx+talkW/8vKDJMfe5GP20Cq21wcxIhECgQCxWAynoiHLMqKsYlkWHq9CwAUtLS3s2tHEjt21HVwmA1WBiyaMwtlFyekDi9z0zPbMhlmDDqM+GkWPxrnlnlepaw2ybmMt9S1tAKhuH+U9u1NaVUEoFGLJp9+gpSx+MuYojhp+CAMLHRx33HGoipf1zcH/qEW5JkUh50cGDMMm2r369MPp9tpEADjm+BO44aYbefX1+WiGhaQqnHj66Vz6iyu49Y47MQwDTbN/vv76a7w+N+fMvgRVVTl/zsU43V5G9hsKgsnk8UcjSRLrt2zBtHQEQSClJUilbBPHMcediKIopGgnK+beYny/UrLstm/cuDHrXzUFOPf883nttdf4+7334XG5ufrqq5n/5nyeeepJ3nr3lfRw6cgG7N6+k8baGgRBIBGL88qCFzAlkVBLiHg8Tr8B/Rg+ZDiPPvs8qVSKVCpFNBolHk9i6BYDBw4E2jM29mfR7vyZu/7yVwDMpMX06dMBmDhqMudfNJfW1lYKityATqI1xX333c3id19m0SsvI5t6B2IzdtwoSktLmXLcVACuu+NG+/EyVc4//2xEUeRvd97apfIBmwhoOc9LrgwZgvNdSBj2+N57998IhULIsoykGBw/5wR2bN+MHk/y8AP/4I477uCDdxZy3RU/48Zrrmxvj9fB5ZdfjmhoKIgMHjgIEqDHE3z+yWc4JYUTTzyZAQP78fe/3pqVIdtGc+8W5s7/DL5rTmVIJsCwAYd3cEWMHXkEh40Yzq9/dx2K28mEo6dy2umzefG1Nzpcw+Vy8dHH76EoClOmTCFuRnnosUfp3dOeK5qmsfjt91EUFw/87YEO8ypjNTz66KPtz9LuzvhPcMDJQGZznuvOzWyos6RAlhg18jC272zBjGl4PSpOnxtVgYKAC9M0sTSTxpZmJowcwG/PmsngQX144fo5CIJdplSQLLIk1c5RTN//QNOCrne+iqKwpbHVXuwiMeLJZlpDEXoUO+zTotJtK/aX4PEqhNuCNOyx/ZUZyLLF4d0K+Gb+i8wdM7jL+xx4OQRyS34vuGQym5pS6NE4wfo26nZWs+nLDSSTSSLoxAxboaoOMFJt1OyoJxpJUl5oPxqybDGsZwXTK4upSIbp6/kuY9qBwN6mfNGCq0+YhJkUiEUTPPLU28RiKb7ZUEtjJEEkGUVwqrhEGV3XaWtJsWXztmyvdFMszhk3hO5lxezZtJ7xVSUHQYZ2yLIdN3DdMVUohkxdm8zII0dR1G8cRp/DKRh+NKUDJ6AFenH21fcQ9w+m26QT2RNR8WqFjBvsY/mXq/i6KclvHnySDxvaiP6Hz0Fml50JiMosfCL2YUOqQ2TZN58QCoVIxhPoKY13Fi5k8ZLFJLQ4byyaj2maJGNxRNVDNGmSMmx1HQqFeOu9l2htCfLMa4/Q0tLC448/iiALDBo0gEQiwZIvPuLuB+/FJcsEg0Hq6+sJBoMEg2G7FoEi0dLciDfdPpW9Fb+Sft+Z8xlP+jXzo2kGkizw6gt20F2Bx4dDEgnVNIBf4IprrmLy5MncdccdrFu5njkXXcgJx6WP7LVkoppGz8pyIgmNBx98EIB5/2MvzpLTQvW4iIfC7Nq1iysuuwSPx0MgECAQCOByuTAtnWGHj0BKp7F9n0+9KwWUq3wcXpX3Pv7Q/p6iMHL4aABagnGi0SinnXYGh40YztFHzkQsaHdXqA4RTY+zfPlyIs1t3HnLHfj9ftDg7NPnADBj9kykEieFfbtn761pGrquo0sQNzUkS2fIkCHZPs/Mn0z/q7TvrjM77A5ypevMTJk+jeLiYhRFwUBl6rgptjXF7+Xnv7yCkspuLHj3fe66/x/87f5/ZkliNBpl4TuLKK3qjtvrwJJF5pxxJnFdY+7552AYBtdeezXheJJfXn9jVoGmUunKhoLO8DFj99nvnUmYtI/PZXDumWcBUOi1LXPvL3qHsUMPRxAE5r/zKsMOGcRhw0fyyAtPM3P6KeiiTEqLEYvFGDduHJqmMWBYLzBVfv6by7nk0vOy/T516mQiyQiXX3tVtuhQLip79sjql0yb/xNLzQHfAuW67TOEoLOC3n39aXy1q41EOM6aVbuoKPdSVVFJzGHictg+dkGRQRQoL/FiItLW1kZ9SwuyZdqHk6Tvo1oyTlEjCAjWD2Mf6FA5Lv3OpBKVcAzQNB56eRlzZx6G4i5hY3UrsizTR3Kzyp8ipTWTCGlEkgn21Deli5SI/OrYKRwxbhiPPfEMiUgruxqbcVsQ+8Et1WlCIFnIBojetOKzZO5/8RN+efHxBKubieFk4NAhuCs8uPvpRE2o21XH4qWvMW5AAQBVXp2xBcWERI3iPgNZ/uW3bIt+X9HO/yv27iCHDGFLIxVNsKm6nsLCYixvT8oGDrL9qlacmOngw00LmX78iYi7qonEE6zfsIXpIw/hspGDWY2Xpd88T3NCIyrsu4DLDyaHADHJi6Zp3P6mrXT95V/x5hsLQdBxJmJUeXtwzWlT+OO1vyfulCj1enFWuIgbDq499mT+8v4CdF3/jloQ3x0TkVk00nVschZAnWRS58ZrbkA3DfRUDNVbwJRJE2lpaaKkqgdIMHH8OD5f9im6mcJARZLseAO328kJ0+fQvVsRJx0zG0mA2aefiiJKINiH+px98lwUpwNHWTGapuGWHXaGgZjJnTYJ11VnLQIZ10AuVRewzewaHa0GHY1YOrKhcMOtdr33aCqBZpgsXPohj/R6gpKqbvz8l1ewYNFCfv273wGgS7biUVWVxsZGYqrtAv3DH/4AwKbt2znrrLN48803CUcj3HbHXSz5YCF6OMYzb7yZ/S6I6JpJUk8i69FsZD10rFPXVQnifS3oK77+jPGHH8kny5cwZdI0vl79JRhw4rSpyIFihgzsz9ETJjHv0ceYOf2U9IXtu61auZyRh43D5VL4zS2/5eixU/njNTfw7PznmX3SHEYPGU+Vy8O0E6Zkd5+ZwFBN08BhWw1nTupJJg4/t6T1/siRMa+v+GwpQ4cPx+VyYVkWD82bx6DDBzNl0jQWL13EGSfOpcDjY0dTIzEjBQKkNJ14TCMSakbT4izY+CU/O/dn/Ovpf9G8vYniXiWcd+q5/PlPf6Z6x3YquxXz59vuAuyYgwwh6NarH5qRyCrO3BLEnYspaTly5X42Q86ee+EJFMVNfX09qsfFcSediJJOZx43fDylBUVUVdknC8qyTQTsAGIDw4CKihJmTTkBVVWZNe0Eampq6NezN4hw1PSp/Hveg8ycNoNu3bpl+1ByqtngyETNni4zafYHP5g9VBTbswlyIQgCtZKOrgnous6CLzcy9chDGaSl8DpUkpqBKIIkCDidMroOWlJj5eatFBWXIssyhq4hCALFTgcDPQrbWjV6yxKrEmaH+xyYgMKuF9Abzpphny+v2ROhIaTRL1CFs/dAvN4gBbjxLI7SEOhLnyMG0lRbh7JuDR+v28m4Q/qwLVzL8PoyjhvZj9Y+E3n+lZeIhXYegPZ+FzJLp90vThkExX6wt9W1MWTIEEr7H0pFv/7Z3OhUJMiLjz7HoIkzqOrVl0BJEXUxix4FlYgJjT5lAf75+QYO9VYeBCLQNX56yvGIqgs9oXHnayu4/NyT+eyrVbz029u45NyxXDD7BGq+3MKi197hmWfeoLJnNzzuAHtqwgxyqOzaU8/tb71lHyZ1UNJUO6cBWtx78nhChkmsPkRjYxug8dz8N3ApApfOPZaJg0voXdaXNV9+g5JKsr01xqhhPfnwg6V4Snvw7Odfp+NzOp97kTt/9y1bFfbC5ujif/bZArB9ZzWSJNGtZw+aGluwBLjs8l/wwiuvcvtNf+WPd9zMqTNPJh5NIKkg6mrWKihKFlY6LVizUoiiiGUKdkaOla49Ek+QiMZwOBwkkjE7ZdHhBkHHUmV69z8kq+Tt41/2liqzIzJyfhdyPoslEzc1+hUXsXN3C598tYQZY6dz/oVzeeTfj2FaFqoo886n77QrT0CRHVgm9O5WBkAqlWLz5vUoisKePdU89vSTgJ12d8EF52a/l1ESpmliZgqZeTzEgns69HFXxW5yC9vkLuhGznXHjjwSRBh/xEREUWTMkNEUlpWg6QKKkGDlujWcf/7F6OkdY66/fNb0UygpKSEUijH7mBMoKChgzcYNTDhiEj169GDw4P5YKZ33PlxGSYm9ach1McR1jU8/fI9f/vrCLq0XXf2eaT9kAvLSxZI8NtFIhKPILgf333+/XQMAeOL+x3n8kUc56aTTMJ1pv79hExG3LCKVFqKqpcyacgIApxxzWod6Ar+96XfZbIPO8QYAXlWhpqm2Sxl8Ob9nSxNjWzlkdFLIHUpH1+5ppqqXmz/e+mf+8pe/8PLLL3Pm+adjSA7uvPNOjhgxihNPO92WPE0I2l/3Xj+rqqqI6zZ5Ky0t5eabb6aoqIh4PJ4NpkzG7H7yFgYQY8p+H0zUGT9ANkE6jdCw6HRyMYIgsOzq42jUvOhagi9X1iBLFkfNmELB4EHI6RQeKamh6nG8QyQiCZO2+kb+8eLNXHBcMWgaMwd0Z10oSDfDxFdYRBkQDOpkqmELOS6DA51hkPExa5aJpmnU7GlidUuYK8dN5fe/+wsLn7iRDUsbqG6JsuSz1UT0JH9YfS99+vXD7/ezu6GJmtrdeJsFnli/jY+bE+jC8gPaxn0jVzFYPHbuTJLpEm7XPb6Ynn16MWbLTn5/yz9pamyjtNBPUzSOU5LhnS/pf8hgZAU2NzVTU1vD2SP60b3vQOQVG/hi1ZqD3P4MFEaXQSShsXJjMwlRoDUmc+7knkzvfwkaJt8uW0vtniBnjDmcz9euw6qspLusUxBV6V5eyburt2I/4sL33OuHkMdGsU9GsmDp2mokK85ZU0dxy9lTWL1xF5GYQGtdij3bviYWTTGqTyG7t0FTW5gaTWbj6o3YLhv2Mh3urwyZan0Aq9Z8w0MPPcQ//j6P6h27MQwDA1i9YQOGabF5e3us8gOPPIYkSTz/yku8/PprJJO2H94w7CVJUGQEw8we5SuKIj63C8M0MQWD9DpHzDCQRclOOTTiqOn01ZbWWiQLSGpEU0m++XoL40f230uqzNrf0cFjsbtmF6XFxTgcdulfXU/hczioqW/F7VaZOMquzvfAg+nMEkNjyoxj0CU7bkGWnTiwMHUNQ1aQBfuIZVUV20sO56wxCaO9FK0hglOxT9rLrXxnhaNIgq/D0crQTlgqOslmpMfm2y+WMeiww1Fc7emkK779jKEDh9sm/nRbFi9dxPQj7B31mMMm8MVni5g569hszQSSevp+9msqlbGE2YMRKCkiFI+ipg8y83g82UDVjOKyx9bJ+CMn7+Vbz6RKds95D+zAtky0weoNq3AVlQO2Yp8wcoptEQrYsn27dnW2D2ubGjAF8Lod9jkVho6epoOWlTkupb1/My6EDHERsYsjGbQrPMMwsnJYiPiLKrPfrwSa0r97O9CxdnvHR59+yJjDj8DjkXHRTs5Kq7oDMjfddBMAM049AZBxiQZXX/fr9JzJZNvodu9IMuiJDkRF7ZShkZlriZx4BCM91/Rk+zMvONUsUU5f/eCnFubWEsgE+lmCHfmfGSjLEmm2TKKxNvZUB7lv2TpGFYjUh5NsfX4+UVGmx4CelHid3HDVP2h2C9xw0+VUVnajotjH3W98TZ+yYjY1t3LH3GORAiJ/enYZ61rCGEbH5eHAZRe0XyOTl368F5oTBgo6f3n1AyJJEHau5u5rzuHfzywnpUVItCWpr9vJh41xevbsTTgc5pihAwgVKXyc0GhsbWJ1a+yAn0u/P7LYcigg6BiJFLvra7FEhZqaGu751zPoyAiqQiSRnmwCuGSF1atXM3HcaI4YWsVbLc2sqQ8RLEgRPWhR+Dn3SZ+UY4l2GxPhKFqsgU33XMy3O5MsWbaempo6wnIB3T0WoYYwu4JxtgcTpDZtYtiYgSxvaOGruhhbmpr3qlnwwxKBzumY9m6nyKVz2dE9mTWshJhp8fjLS2kKxamubaBHVQGpVIoBpVWsWrcFsbCSRk0laUaJ66k0Se1MaHLv9X0w+KJsAiHRiSmaTPAo3N59JBuSFoepTgSfg6ACpmSyOxUC7ChoydG+aAmCgMfpwut1061bDyQLfD4fsZidPx4K2QF2VT26YVkWjY2NNDY20traCrQrGjFbsExMuxIgEolQX1/PqJH9efGlhZw257gOre+4q7Nlfu6551mxYgXxeJzRo0ezaMEHVFSWEY0GiUYNUrFw+ojhzvvy6H70l43MSXXttSK6OhXTXp4NERAFknqCptYWVm7awweLP+CKK87LfgraFWYuaptqGDNmPNFoGy7c2XuPHDIORXFlSaDkVBk7zC7AM3HUZLxeJ1NmTLPnh6mhaZlT9dqtBPtSPBkkDC2b265pGuGETR5GHDYMBJ15D8/n4ktP4apf3c59d9+wz5r4LuyS1k8//TKXXHIWWKJ9YqEBcTMOErSFgiQ7lFY2efSpJ3jyhWcRLEjpGrLszPazYIFmtBOUTD9kPqPKDqLROOUlhQR8fuLJBEUeP6JDIRq0511zKIguWGzb0kTf/iU0d2i13v6akvnXkCmsjEYoLCzkZp+A4LSl7NGjBwUFBchypj9lVq78im4V3SkoKMDhsNMzo9Eo1dV2cajcMxw7kvjcuLLvVtGyIWc3qKFwC9X1Tbzz7heMOGwYfSsdtH3ntztCsPZj6xwKhbLVs77zYjnnBmRONRNFCzG9GL3xk+mkXCptrTF+9cyHJCQVpwXFTgUFEcmEpJaya09rOpIkELN0PF4HlVXlRFqjRBM6M8r9HDK4B39a/A21wVD2CNUMLMvKCZfrGK71nxOEjoupLFs8c8EMJIdK3dYmblu0gk8evIYvV2+jrraJx77egRUNUt+SICwaKCYMdjswCvzMnTiCSDLOKx9+y7pwCP1HK/JvIcsKT108CV2DG577lMZ0ycseLpkR/YuYOWYEx58+E6euM//Ft0mqFTz84nzcBcWcN3koj33wDTvbYjRoqS52owcP40v8XHfKCFSXmy1BnZQmEEnGaQnF+Pe7X2ZPHVEsGa8k4S8rJhkL84ujR/HSZ9+yJ2zSEAmiS/xo4+EUZC6dNIBU0iRu6rSEohQXF7N+Zz1rdzcC9pJRUeinOOChR48e9D9kMHHD4vnnXqVByygvpYux2D8yYJpJvqyYyOjfXsPqX93K0PpvWHL4FCZ/u4hnR05g2pMPUz7xCAjD+rKhHN9NpwyVEnQKxo3k2ZeeRwunkLwCI4eMQZFkYvEIqzev5r5TT+G+r9YjWjBswGDu/HALi6hnllDE171LqK2rpq/kx2WJOOIJ/IAgOTA1DRMRE4k7LphKJBjCFyjEMAwaGhp45Z3n+ckl1/HsI/+Dib1v85EEZLYGRtFv2VtsPeosvhjTh3HvrqdWMCjULeJTxlDf0kzz9u0MNh2cUdIGgGqJdO/enVgsRltbWzqNzj5iObOhkUgRTafUHX3kRKz6NrbvWEFcKaUkUIzgjJI0bKsCioSvpAjd48EV0xEkkbhg4lDLcLvd7NndiCwZKA6Vec/8KzsW5dnTFGR+ffRxBGNRooqHxrSpVS4NEIjLiA4huy7rEhiGgCTZ1pV4PE44HKauro5kMkk4HEZVM6dLSnYQoE62eFBBQQGtra14PAHC4VY0TaOoqGgfz7atoGbMvRiA3978C3zA4qXrGTHpkOyn+uecCrHWPZE9HicFoSZ2ecpwpmpw6iJh06DJUUlLJITPobJb1XipNO1OkeW9iAnY6Y2WZWEYyfThVrai7dOnh30InmCmqxqaWJZFMplEEAQiyRSqAIokozodxONxNEOgrOdA4ppFmxHBaaSYeOzJnHXOsSQ6yZAkyXrfJF5NtHKyu5ChK95m8+RLGLL2Jbad9ztil8/msElTQUrwXtUELikMATIBt86ll1zN3XffzY56O3B52vgZHDttBqrHxVW/upLbyw/hEacdmDnnuJOY+/BH1BHEqXhwunzUSxY1Dj1dpVMnoWs0RYKkUgp1XtuC4pp9Mk1NTVimgtsj09TUxLPvvEw0FGJwIEAwGMxakLrCAScDHQfNvrSIgGG5WHDpkVSWFRAKtfHh9kYsxYWzwIFP0BnarRdVhUX4fSJrt27ik+WN7KwLsz6Soklr5dLpR0AiyTMfraItJdIcChHJcUNYhpkNWMy1CnQW7/9KBkTRzfwLxtKzdwn1jSFq4ylqYzqpJNz/+meoDginNMz0fcqcKiWiQNzh4OrTjuEfr7xDXNfYGraPTf2xFNBlYydyxugAheVuFMkDTvs89921jUQSBlgyJaUFVBb6iIRT3PHcG2xpTSKIBhNGHs6KlRvYGQwRNzMyHCyzesd73HrscGKmyJ5Iing8jkd1csqcOfz2D3+x2bgB1YYGlkiB28HQQX1JigKxPfXUtoVoTmiE4lF0qStF2vU9fwhU+f3ZXPTq6mquOGkK736zhkAgwO7du3E4HJSUFjBr1iziMY1Ro4cTDAa55JobO6RH/m/n03GzTgZLZtLkI3nz5VdJJWwlkTlRMJ5KZv82TRPDsDBNHSPn8RJFEdMAMddJbInZiHHTNOnVoyf3Lq/GqbppTLWhCwU0BEQGRmV2OuJMu+ZKvDf+jJWOkQy/59d8ecPNIHm496zp6LqJrqdY++U3FBQVg6VxyIhRGIbB3+fdBkAgrbTn3/RnXn32ZSp2tpLs3o1Rgo+CmEWLnqQkqVBgKYRdBs3N27mtlxuTBCJOe5cvy3hkB3+67Rau/831rNn8DQCxhhi/vfgnvLnyi/SufCg3v/cNA0NLaVi+mqoZM0hu3Y6je1++vvOfjLzmEqgP8s2gGTS6ZCqiCWTT4C8/mcPOXZupKCzBEFRiiTjJcCu9BtiK9LF5N2a7b5t6BH2XzmfbxNNpeOx3jDt8BPGmIK6Jvdm9YhdvzHucy5++l9r5rzLuyusAmBWDW1d+zuWX/5ILLzyXefPmMX/+fN5++22++eYbbrrpRp4eciy3q7XEYil6FZcwC52ZK+vYg0EPSklJMgkZap0JUnIKOZwkIdsm+FTat/P5pecRjUapr6+nR/d+xGIxpp1+MledcQwRck3sOvMrx9FoiBweV9mUDDOgvJwj/v03Fpx+KbMW/BsGD4YtO1k5fi6nVYbQlRRXegZw2bK3uPmGm5k9+2TGTxvH1CPtFPNIJIKVjHGyHOChUC0Aw3sO5oblaxi3bQXPjj+es798H3BAKAi+Up49ey5VK3Yw6Tfn8dq9D9I3HKHaU8ATJ4+14w/cblJJaAnFePetf3Pxpb+jdc/G7FjU1dUxZswY5s27j1GjjkRM2CQ84yLIjQEAsr5+zK6PP8pYZHQJzHgq+xyPHDiEOz/YSP/aDyGkQywIhw8BDZqffYniyYeDt5SlVWOY9NVilo2YiWLC3RecbBeNMmLUbN+FoAZwyRqVvfry4pP3/HhkIEMEMlH/Zxw5iqN7+UCR8HhcafOciG5adj5yQqeq0EdJSQEul8i7by3juS+2oCgCCX8RZx3Rn0++/JKtQYUtbSF0y8QSJEzTQBSlvawDuehc5+A/R7tCkC2B204ZTcgQwZJpjtjnZH++eQ9twRheSQBJpjWloaoyLkVGl0zcLj+TBw9k2cpV1DW1UZPx9/xIZOD6aTNwU4fitU2O0VQC0zSJRXWiSZ2t1TVMOGww/Ur91DfGaDLiHDbjVO574J9EI0k7XiIW/1F31AAVqkBVaTmpVIpEIkEkFKVHZSmGDHo0iWKA5nIwoG8lf7jlz4iiyFtvvcUrC99n49ZddqqUZHs6D54cufHv9t+5JZ4tS+Okwf351a1/ZMf23fTq3Y2vvv6Mww47jJKSEqIRjXA4TFlZGVNPmE3Egoy3tl2G/4zEDOk3BLe/EL/HTU1zM8UF7X7pAo+PSCyKnlP2U9M0FFFCT2kkDI1kMskvf3EFzz73BMFgK4rosesTSCKGYSAIAqZpkkolcKoOjJSWLShkCnZ6qGma7ZHqgoZkKvaO3yERbzMxPE6qqqqo3bUbtz+AJMKQI8YiWnD3vNsQgbnTT0inv0Eg4KGudg/OdLnNPn36sHv3boLBYLYcbSwWy+4+Y7HYXgt3LkHM+KIz8jslBcunIVigGimKNBdtskFhxERwQVjQcepQGAe3BqaoE1Jl/Medgiy5CYVCrF/5FcVFlSCkOGS0neLWVv0td955O4MHD03fzWDisBHEYjESSgpPimwtk7gCTkOn1FDYGlOz5x5YHhXZgJiRwi3lypT298djJCXQJZkiQeLnbTEGK16kmcczxF9BwVXnoCdCyEP7Ej/8HE5tXsGi1z/i+ZOOY2BDAtC544LZIKQw4ylaIolsxkGf7sVIvlIi1RuRLQFNtIjFYrjdbnZX70SVQYrbZZpBQ3Pbcy0zByKhMAbtijLXFdO5lLpDwz79Dx2foDLGFPCmJCpKCwloIlUtFgWSgyYrSh+xAKstjE/Qqe9XibVzN23+JM9Pn4KqqqS0CBtWrkFUAjgUi0OHD6dt7Tc0RIKYSY1IMk5ZWRmS20EwGMTtbTfhu0Qle4x0bhuthNahDHIG4XA4e/x1whCzbqbMHHOlh0yWZdB0NFFDsiAhY69pEviS9mvITOFSwFV4KL0H9ScajbJt/SbcrgIU1aLfIYcdXDKwL0UrpdmARxSYOMg+A9shSjhUGZ/LhyAaBFs1Nre1UO5wMOuIwZT7Any9ai3V4RCf7gnicbk5/rBuvLtmF83ROLXRJCb2GQcZsmF08vlm3BRwYKsTui2LcycOoU2XaGpqQpIkLjv3dO588Gki4QQyBopgopaUcOZZJzNs6Eh0XWfx4vd44YX5eN0eakNRItj1uPf2Vf+QyCE1sszgIjdYMn6XG7dHxSMkaYwarNvTlC3IMrZfTxB0+gwYTL/Bgxh8SH/O/tmv0DTQpfbCne2L5sEq6UtWjtxF4pwxQ+k2qB/RpMHESeNYsGABt/7ljzQ2NrLy63UMPvQQJEFk2bfruPamW8mEO8mGdpDHYm85MpjWv4qfXfkLDEnDofrwB5z069ePlpYW1n67ErfbzZatGzj2hFM4+/wrWLunMf3N/72V5rAegygtLaW+ug4z4KKsWymyrKJbJsloEgSTQEmRXQPESPtlBREzpdHY2Ehp9+7srtvEkiUfICgCp005DdOQSFgGkmQHO0mSPUguUSYUjeDwZAiHnTAoGCblpQXUNbSipYmHJEkYgoqpG3g9BTQ0NNDW3EJBcQmCINBnwGCiIVu5i3KK5k3bcfkLSNU3EkrGEIt9lFUUtB8XbaogpkCxF9nsK/bCXdfahOoqoKKbi9bWZhRFQYjYBEVwth/UpSgKVqL9UJjOSspKaPj9frbu3klhYWH7P0wVRXGhur3oRopdu3bhcvpwu90MPHwckqWxe/XniAmNpGmA4gB0SrtX0tRSk71MRvno6WqGbrebYDCIlWg/sCY3lqGoqIiWlpZ9kpvOcQPAXif8dUZbSqCgtISBhw1jw6pvs2WoBw0ahOQvZM0HCyjyBSgsK7GrZZp2fwUK26Miijx+6tvavfRut9s+mtmwZQglY3bJYwSckkI8Gcap2sGggtPuA5eo2L+3hrLPUVfuBSV90FpmDCUTRMWD4FRw+grw+Xxs3boVt7METdMYNX4s699bgNvtRgi1EbV0ZJeflnAIKeCntLutE2XDDoxNJpMobpc9v9KQLZtQNjU1UVHWE90T5vknnsZV4OK4MSdk51VmzDJtdIkKTeE2CgoK9pIjd+wz0C0VTbMoKa5g+47NmIZIIBDA7XbTbcAg3nj2HwfXMgDtpEAU7QqE2dLeooBo2oWCFEPAVGQMTefE4X1pNlS+Xb+ZlOhgdEWA7kVeJNnCXdGHcdOP5s477sGMRlE9Tna2hIjqZvuhR0JG8edaB9oXw/+7VWBvZArr7ErGkSQnE7sVIDg8xLQUupEgFk3x3AuP2Lnifj91tS0EAgHe/Xgpt9/zTwzdyg7kd+9GD7Ri7RT/YIEs2gEo588YiVAfZEM4xi9/cy1PPPQIzeEoWjScPRVrxIgR9O3Xk9/eeX/ONfdlXj+4yCwCR1aW8NMrf4bksCgqKcLr9VJSUkJbWxt+Xwnr1q3D53egayKnXvYrDKM9nefgWgb2vldGhk+fe4DdzUFqancwbtRotm7daitFUWDH+rXsaahj7rkX0tDQQFMwxc+v/wNdWwbo8j5d4bCK/qQcCq2xCJVFJRR3K6PS5ee9L1YwuP8AdMEgUJ6O1TdMTAEclkgyGSfc1ogh2LudtqZm+h/SD7dcQFNTE86Az3YfmCaWbiBJEl6ni+3bd1La3d4cZErcKqJEIhLF6fWgmRogIkkS4bB9Tjx6kqQh4pVh45ZdDOjTG29BgO3bd+KVZHwFTszGEIgpEqKKnNBx9CrD4VfAVJFMi3g8jtvtRgp4kE0TTU+Xc7bstaK5uRldgJKSQoLBVgIFPsSoYBd5kWwFmjEpu0QFHDLB1rh9D9p3crIs43a7qatpsXeQpooupdCS9mJfs2M3lT17EWppQHHZO8TCwkIkSaJ69bf4/X58RSVEWpsJBAI0xKJUdmtfg7WkgOKwsnMmN9VMNiAYDCI4FRYvfhuHw4Egasw+7Sxa69rQpY6n22WUD7TvwJ0BL5FIBE3T8Dvce+1uBdWTtqq4iOv2QUx+XxGapjF40DB0p0zjF8vsqqZWirLe/Uk2B2mUUhSUliALKTDtKoLReCuegnbZUqkUbkUllUpRV1dnl6f2qlz0k4s48aTjOfX40zFiyewamrE6gK0ow6m4rZRJk7Z0LYOysjIa6xuwBFtmSVFIiW6shIbPW0hLSxNNzQ2UFFcQi8XoPWQYjZ8sQfG67EDYpjp2GRaqZdJn8AAE1V77GmtqKSsrwzRNvBUlWSKTIQVmMkUoZFuQk8kkDoeI6nHjxUVraytKoS/bxgxpdblc1DeFcXs7xk3I6TL8uZZwXbDnQyyWwu3yE4vFiIVaUFw+ZHSSBmzasOLHsQxkHm7TNJHSRUXASAcSSumDikyuHT2AZQ0hLFnE6fKyc1s1uqLiViSKAh5ECW7640243W7mnvNTTNOkPplIEwEREx3BAtMU9uogkx/irIJ2ZB7CU/r3o+eIXlx++eWs3bgVp0umoqKC2tpafD4f8XicWFSnoqKCNRs28/Mbbk0roINtmobckMqMWTqzqz7tsP5UN9RR3r2K2++6lXXr1tG9e3ewVMorCvnow2UsX76cX1xxKS+8/in/889/kim5kdmNyvKPQwwyYyEbGgufup+a5kbGjx9PMBjE6XSyZ0c1W7auo2ZPA30GDgArxaKFy3n1/U8xlfZkqP9t8N2BhMey+Pc9N6K6C/AHnMRiMfr3t01/O3dtZdTIsYRCIRKJBE6nk+bmZrbuauTy390KdJVauH/oUzWQHrKKZpj0Hz2SXd+uxBLAUVXGnt21aKkYpiIzdPChbNyxg4riUhrbWoiFgki6Sc+BA6nZU82mbZuoLOuO3+ehyOliS3U1Rxwxmsb6BlqTcQoLAzTsqqVX/75E6xsp69sbLRTFWegliV1Rrq22gcqe3bGcdgGyXWu34WsNE7U0lPIy/LpFXWsjHm8BbsVArQ+x1efHkkQqvW7aGpvwu2QaGoKU9e6BR3XgdbhY17Sb8vJuOBuDGMVeSrtXIggCX3/9NeFwmEP6DiDcWENxjyq2bdyF7LAV1ciRI9m1o45AoX3cLFLarI2Ozx1g27ZtOAMqHpdtAcicRRBsaiYajVLavTjrfqiurqU8Ba2trRilBWiROJ6UTkH37rglgZaanQiyh5rmBnpVdGNLcyMOQ6d8cF9cfh8tu2oorCilvLycVatW0X1wfxBTJNs0VKet/DasXkNxcXF2PlhWyiYvLhe63l6HQtCN7JoZCARsV1u6dKpmRLNlhwNuj71Lj8fayUfUIJRMUSA7SSYMgqFmvF4vWkMTht9LIBAgsmc7ssOPEY6hKSKlpaW0RcNU9erB5tXrSAqgOhV8Ph+qx01lZWWWcAiCgGRp7KregaKALLsQUgY4LEpKKqmvr8flz1QBsCFbtmVh88adlHdvL8qTabNDlIgnk5hC+3vhlEZDdQ1yQkf0+ZHR0aMJqkqLSRgaRjgGikxRwElrKIk3XbApnIjjcrno3a07X63fjOVScRi2Yu5/+BA2rV6Hv7SImu27KCoqwmxtprB3X2rqdpAM6ShuJ64CH4qWIBqNMmD4SFob9mBKTuLxOJUlARoaGhBx4i4rAjGFz+fD0CSibUG71H3/flkZd++uI7JtJyW+Agy/k2TSAC3JzJmz+PD1F1nVsvvAkIFgMNilueK70H6gRbpoiQggImLa8QKqxNxDBtPnyGEMHzGCr7/+mkkTj+KDDz7gqy+/4uyzz6CqRy8++2wFEyceyeyzf0rEsJCkdqJhWSJWOjhJSJ+c1jl74EAjt0gE6Fx24ixOPuEooiYkEnFUh4Omxka6deuGU4bq6jr7MAw9SUtTjFvmPYVh2MFYsiHbhW5+BHROWZn/t99TEwwRj8VojYQZPHgwpYVFbNiwmsbGJoYOHcHOPbspryjGX9ydOef8PMdMJf+o1oGMLG89fC/xaDPekhJkWcG0TJwOB1o8waqvv+CoaTNpaGlmzbcrCRQX4XYVcO7VmWAtnR/bwGG7PHT+dvNvKSsvo3ev3hjJMIqSJiqKTGtrK6FQCK/XiyzLtLS0UFfbwq/+cg+ZccgtyLO/mDBoLKGGOqJYlPXpRduuPejJBCkVFFWlu+JFk2ViKnicHoK79hATBSp792DdhtV0K+1GPBEjEU9y6CEDCRSV8t6S9ygKlFKgOgm3NFI+sA96UwSnLLG+aTu9KwZg1OymVRToWVTGptYGdMFCT+rMmjKd7Tu20hBuo5e3jA17tlBUVklfp5+W6h0kuvUCPY7e0IxZ6Cehp+jduy+Junq0pE48EQVJJKrrlDgV4ppA0tSJaTolHgXJ6SISimC5XKSCETyFAWRJIqUncfsK0LQkkeZWTCeUBspoa4vg9DjxOB2EanYTMUxMQSeeshAQ6N+9G9GERgnQRgo0ixbRomdJCS3BZuTCEqoKiok0thDasgW5pAjLEtBiYYr79STS0IwQS2IoIhFLIt7URlmfPuxurmGQ20egvBt76nbgFRRqWsIYfgdeU8ddXE4ikaCxtYXyinJ2V+9G0zVcCji9hbicLhobGzFMgwFDDqF+80bc3mIEScPpcmEYBqLHT4/iAlav30LPkgo0WaC2rpae/fsCkEgkKPEVsGnLGsp79wegqa6Olm27KfO5aTOh0uUnFQ/hKijBVeAntHsnSacbYmF2RhIMKSoiYiUxBJWkaSDEI8g+DykNPKLJnnCU3kUFeIsraI2GQFCoq9vB8BFDaWoIoUUT6MEISlUZRiJO9Zb1uAoq6dOnB3pbM4JLJZmAhuZG+vbvj6KbNAXbkLU4ckEBsqkTQqTQ6SAYDVLSow8Aa5d9Qc/iANFYHMPhJyCkMFQP0WALbreDcNygsLCQaDSCWxUIRlO4PBIJTUQURZqamigrKyMWDOFWBLyeIhqiIQzBQo3rDDliJNu3b6elvgHFK6PKHtR4lOZkFJe3iLBp4hIF+lSVsHnHdiqKS7GSGl9Vb6bIXcKgvv3xGBpaa4hGLY6mOHF6PUSDYQKSSs9hhxCLtJCICTRXb6GkWznRhlYc8ThtrgL6dytmV10N3+7ZRltb23du6veLDOzevZsePXr8h8tLHnnkkUceeeTx/wKqq6tta+8+sF9kwDRNampq8Pl8P6jpPY888sgjjzzyOHCwLItwOExVVVUHi31n7BcZyCOPPPLII488/v8XB/wI4zzyyCOPPPLI4/9byJOBPPLII4888vgvR54M5JFHHnnkkcd/OfJkII888sgjjzz+y5EnA3nkkUceeeTxX448GcgjjzzyyCOP/3LkyUAeeeSRRx55/Jfj/wc6tFHah4W5OwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_augment_2/1719298626_tango_video2audio_clip4clip_augment_2_best_steps_300_guidance_3.0_sampleRate_16000_augment/YszbOz38VFE_000020_h_jJj2PbFRI_000009_5.wav\"\n", + "show_mel(file, save_name=\"3_wav.pdf\")\n", + "show_video_frames(\"../data/video_processed/video_gt_augment/YszbOz38VFE_000020_h_jJj2PbFRI_000009_5.mp4\", save_name=\"3_video.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_3407931/2218442382.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(360, 4800, 3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAA5CAYAAACrpSi1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8hUlEQVR4nOz9d5iddbXGD3+evnuZ3nt6rwQSSEgooYMUQRALgiAWRMXeEUGxgIrAAaQpIh2U3glJSO91MiXT6+71ae8fz54dIp5z9Pr93vf942Rd11zT9sx+vv1e97rX+gq2bdscs2N2zI7ZMTtmx+z/rIn//36AY3bMjtkxO2bH7Jj9/9eOgYFjdsyO2TE7Zsfs/7gdAwPH7Jgds2N2zI7Z/3E7BgaO2TE7ZsfsmB2z/+N2DAwcs2N2zI7ZMTtm/8ftGBg4ZsfsmB2zY3bM/o/bMTBwzI7ZMTtmx+yY/R+3Y2DgmB2zY3bMjtkx+z9u8r/zIsuy6O/vx+/3IwjC/7ef6Zgds2N2zI7ZMTtm/y+YbdskEglqamoQxf/e//+3wEB/fz/19fX/rz3cMTtmx+yYHbNjdsz+f2c9PT3U1dX9t7//t8CA3+8vfu0G7vze1+npOUxTUzMVFeXIioKi2EiSBJZBLpdjfDTF0NAgM2ZMp6yykg3rt3Lex85n/9Y1DO/vQJg0ifrScsbHx5FECY/XA6YJMtTV1dF1qAOv14MkSlhhH/s2rWfs/fW88MoaUgI0VHtonD2fJ3eOY1kmsiCj6ynS6TQj48MfaUNrhUJA0Nk6BB7godtvJZKMUt9QT09PDyWlYWRZoqyklGw2iSAIdHT0EItFCYfDzJo5iwMHDiBKbmZMbWb7Sy/RMHMWo7ZOZWkFo6OjlJWVkc/l0XUdQTQpKyujf6Af07TIZjI01zfw6oMP0Ln7EO3j41SF88ybdwp/2t6DICrogoptWQh2iv7+AbK55EfaMa9GYWu/DsC7j/6RwYEB/OEKhkcjKLKC26sgiwKGYSBZEI/HGY2mSCQitLa2UllRw6ZNm1i1ahU71r+GPRjBP3shbo+HQCBAIhkhEAigCgK5XJ6mphZ6Oztwe9wESkp59dVXcQV9fPY7NzPSfoDlZ18KgAUoZAHIim5Mw8TMxuk+3PGRNjSVa9SrOd7rc76fURbksQcfpq//EIZhEQgEUBQF2bZRVY1g0EcymyEai5PP5YknEhiZLK2tbUguN309vUybPIWdbz6Lr20Jlp6iuq6aw73dlJWWYeuG0x+aRDKdRFXceD1e+vqHyAsCH7/uqzS3tiApAQBUO0NSKgFA1CP09fSQyaY+OhbVsHUAVp20gMrqCgAM20QU3EiShCzLCAK4vV5EUUTTVARJQhAEKisrkGXVeQ8ERFHEFmyGhoZRVQWX4vxOVT0IorO2IskEX7nuxqOe4d4H70KwbHxeL6IgQbG6uIVu6ICIKIpIosDMWTMwDOPIzyQZWZZZtWoVc2ZPw+PxECoJY5smtm0j2gqKrGCpNj6XC0mSQZZQFAVJkgj4w1RXVZNMpZzXiyKqqjA+Po6Z01E1EVVVsQUFWVEQRYnGlhZWnXjqUW14/Jk/Y1sW6WQKt8uFE720Cn0jFucXQG1dLf6AC1mWES0bEwVFUVBVjflzFrPqxMWUVpciSRKmaRTbaJomqqoiiiJerxdJkZEkCUkSKa2oRRUlnMrsThtEyeDQoQ5CoRACMoqiOvuboiDLMh37D/DTn9wGHGFKr//qNZx04klY+TyiKGFZ5kfmzITNnDkLXXf6CADb2YqzmRxf/dL1NDQ04At5nHlh2+h6Hq/Xh6GDLxhAlKTCGEqIokAgECQYDIJhOu3SNERRJJ3OEB8fw+XSEBQVRVGL3qEsS1x++eUoou+oZ3vsqfuwnC0GSVSKPzdMozi3AAKBAFOnTiWdzhQZY1EU8bi9LFx0PCtOWEBpaQmCKCJLTvskSUJVVSRJRNKcdYJgoakuJEnC6/dTXl6OrhtMkNCKJLFv335CoRCKIqOqWuH55cJ8i/OVL990VBt+/tsfUVZWRlmglFzW2ZcEKM4Js9AWSZIpLy+nvLy8+LeS5TynoGosWriMM888EU3TkCQRUZKQJWfuiJKKpmmomuS0o/BMkiQSKivDo2rFfpFlGUlUOdzTiaIoaKpztqmFcZJlCb8/wHnnXnLUnPrDf92OS3Hjcbn/27k0YfPmz8ayLEzTLM4pn8/HypWrGB9LHXWO/yv7t8DAh0MDf7r9F0RGe6mvr6OhoaGwuDSC/gCSJJFIxkin0/i8YUrLSjlw8CCHuw6zYO4c7rjjDxw3dzYLTj+P/Yf2U1VRRSKWoKysBNM0MfJpSkpCuCQBf2mQCl+Q4eFBOtZsZobfx6uJJKctnYfL7cbvVvH7/WxOrGN2m8L0mlrGshpPbokz8k/PLwKKqaM6+ysHt2/g6cceI1wSJJfN4PN6cKkKHo+H0nAYUSxlqO8wbS3NiKJIb28vm9avp7y8ErcvwPBolMXnnofL62Ns82YqysoYHx1FFkWypoGmKlRXNzAeGaa+tpZEIoEUDhLyqSyZOpNJNY3MGB/DZaWxrAzntboZ0g1WlzkH5xv7Td70CHTmjm5HdWUpsjiGD3jz2b+QSsSpqK5loH+M8tJSTNPEH3Cj4UzOfD6L1+2mskZiaGiIvt4e8uMpTpgzn3XrNrN8+Wm8+OKL1Pr91NTUMDjUS2moHFEUyebi+EN+XIKN36dSWhoiHYvSWBaiT7fxAdHhboRcFFVVSeTi5MQEV9ZXMbvSAWO/2SQS9SrEUvpR7ahUclgSSIAN/OaXt+HSLBRJIp3J4vE6m1MunSLk94AgUl1WBjakUil8Xg8IBv3DvWQzeWpqGugdjNA0bynjyRzhijJisTh1NTWkUhkEBEKBAJ6Ah1RXnLKSElwuD5l0jq6RUQygwqUwZuRp0HuZHNY5c2YagEe2pxnxBD4CBupLNdzk0IDMUC9dw4cRBAHbEhAKm2VecjZdCQlEFyUlJUxbuIBwbRW2DUZOxOPxIJPm0KF2VL8XvyfkbDyyc3hZlsV1194AHNmUr7r+Ek4+4XRM06SqtBzDyANgWBYgYBkGqiozeUobmss5vG1LQtPchMNhXnnlNecgERwK0TJ0MsOHyQDjPRpS4eTNmYXN2zbJ4hwysuShtLSURStORvF4iafTiDoEA0HGY2PEBsbRNA2PL4TmkooHz5o1a3jsr899qAezPPLYg5i2hCarmKZJMBjAspw3t/QclmXhKwnT1NSEbZvIsozL5cE0TQKBAO+/vb5w6B85dGNDHWRGOp1v7H9FicqIooirLMTkaVMpndyIaGbI2T5EUULTcnT1HMIiSFl5mQPoXB4URcFlwPmXXkBlqAnnQDQ55awVXHnplQCcumKV8+yahGUZKIqMbmQQRZHm5mY8HgfEWBZUVlaSzWbZt7edWCyGYDvh2Hgig5UcYbAjgUv46PZsGAaC6vzcdCv4fD4WrliB1yVh6Wl0zenDgKDQ1XUQTbNxBQNoigvJElHcKqlUipu+9kPn/9kJZMHPAw/9AUVxDllV8oBEYSyc8bB1A7dbo6WlBVVzwKSiKLg0D/X19TzxxFN4vV6n/aaIpUOs/zCZ4QFnDUzMKcsofi3LTjvcAR+VTY3MmjULWVXIxKLOc4Td9Pb2ous6nrCGGpDRbBVZdva3gYEBfvbTO4E0oHDr7T9BEASqyuuY2jTVeRMLNNWNaeZAsLABt0elrW26M7cVF5qmkUqlGBoaYmRkhIlj0TRNShUYbt+PMjEU9pExmWgHgOp1gM3s408gXFaGbINt6tiAq8TD4cOHsS0Fya+CLOMSHfATCoW49LKLUOXS4v/6whc/yZLjlgFQW1F71PwGZ1zcHoWGhoYC+HAAlqY44GT9uk0YhoEtOK/N5TIA/2uI/98CA8UXyzLTpk1j57YYoiiSyWQIBAKMjo5iGY43oagSlmUhCiI+n4/p06eTSabYv38/CxYs4N0P3qNx2iTq6uo4ePAgkiTx7rvvcvzxx1NeXk5paZhIJEIoFCI2FsWyLE6cOZ8Hf34LgepKZFlm2/btNLc1Es2kWFQqsLQ1hJmN0OTL0+lN0uGC8eyHOq/weaJPO9oPUVpaiqyIbN26lSlTpqDrOhUVFUSjUXRdd1B1NockSbS0tDCg9pGIJUnnbF74+3P86Iff5cCBA8yZM4e+vh6CwSCDw0OUl5ahqio+n489e3fQ2NiIpmnEhwbY9vdX2L5lA5/61Kcoz1SgWHkymQyjL7/MuYv9KLoXSZK4dHGC2OsRDkfgw9PA1HOgwPEzmtE0jd7DEdQCwkmlUiiKQjwex686KFJRHO80kkxSUVFBKBQiN55m//79VFTV8re//Y0vf/nL9PYMMjg4iGVbjIyMEAwGCYVDeL3eIuORTqfRRJmm2nou/MRV5IGysjL6+vqI5nMIwCufmYEkDWLaAWRZ5suLc9zwppdkKso/+0iiKBCQQbShZVIbViaBLMsoirPIS0pKGB4eJp/PomkaJSUlSJJU8GxBkUWqKirBtEhm87Qf6uKkExcSlJ1DO5/Pk8uJGIaFIsn4/X4UTUNTvRiGQTIZx7LyXPEVx6P47je+xpmfvoZPXHwSy0qH0fNZZFnm2nkGGT3Ls+NHP7/H4wEjhyA4i0wqLErTsLFMB/x4bcdbkJCwrBzpkX4q5IVkRwbJSxIuReX+B5/AYzkbT6CilKbWKbS2tiIGQqQSSSxs7vrjb5FlGVt2WIXjjzsZwzCwLAvbtouL3OPxUF1djQiIonOQezwuOjo6GBwYxeXyAKBpGoZhkEo5zJMgCAUWQ0ATRQTTWTFu0dkedFskZIpggECa9FAKJRvBMpPYioLPH+J3t/8YnyhhCSI1NTVMnTMLX1mNwzYlEixatIg77/p5cU7KsgN0bEFxwFJxXjgAqaay0Vm7ooAgOJ7v+vXr+bDmWcHF2NgYlmUhyzJej+QAKbuw4gtgYAJgOP/faZM9GkdN5BDGUyQVHZcd5cChQ+zetptcLkeZP0TrtBk0NDTgCUmYZpqYBE899ZQz3paJIAhccskl2LbtgCrLQhRFdF1H0xRqa2tR1CMbsMvlIpVKsXPnblwuFwCy5MIwDPLZHKqqEovFipu7UuiXDx8GqqpiFrrAnTYhHUOLZclKWaef7Cz33XcfftWFpds0N7RS29hEZUMDSiBAJBJBURT+eO+v0XUdt9vZKxznIV8cA1mWMQwDl8tFXV0dgmlhiU5bgsEgu3btIpFIIArO/uPz+Uin0w4rWgCuiqKgFhgudKcNmiIhFeb7hDedyWQYGBhwAJOoYJomHo+HJ357D9lsFo/HQ0VFBYuPX4Ja5UOSJOLxOB6Ph7vu+RWK6oCDiooK8vn8Uf0lSQ7jU11djcfrKjJ2E+1ct25dgalw1pZt2ySTieJ60nWnzwWMo+YUHK2+z+Vyxb+xbZt0Oo2iSDz99NO401my2SwN9W1U1VbR2NiIWeqsxZ6eHu666y5UVcXtdmPbNvPmzfuXbfB4PJSVlTnzQ3PmWSgUoquri+7ubrRCX4uCA65102Hpc7kPoZb/wYR/59bCeDxOMBikJFzGhr88zAdb1zM6Oko8lmTevHkcbN9LS1MjgUAABGdBmIaNJitOR4s2sizjD5eTzed49913mTVjJpYFiUQCyxYoLS2ltqaK8cgg27dvx+Vy4bZFPC6N9J7ddHR00NN9uEh1aEFn8PZ3HuLUBQ0ojHDfxgiDUegR/IxFEke1YWaFSCplMWYobHzj76x5620AdF1n9+7drDhpOeAg74DXg6JI2KJUHAxVdBY7sobH56Wyspo9u3YTDAbJ5XLkdZPZs+bTdfgAYOFSNQaHesnlcqiCxPjQICeoHp589R9s2b2T2tpaotEoJ5ywhJ6eHrbs2MMXV9UxVqry9Xs7mFYn83afQf5DozO1QsKvCDz80F+Jx+OM9I0jSRJ9w4Ns3rSdFStWkE3GKC0tRdM0wBmLRDZd3Hwky1kEgdJSaupq2bp1KyXBcvL5vLM5IxKJRFiwYCbpdJr2vXtJZ+L4/X5euf33zArVcM22TeQPbEJxufjdHX/kW7/7A+m84+n/16lhSqsCHB4Y4PY38hjlTigoYxyZ3AtrQddhKK/Q1tTMPbfejm1mGB0dJZlM03Gol9q6SjKZFHV1NYR83uIhPhYfR5ZlNFFG0zQCQQ+K5icQCpPP5zl8+DCGYaDnTbLZPIMjwyxevJCgX+NwVzfDA4OU+/202jkGBwc58du38cKzf2akf5Bzv/A1AC4MwXUfq2BUruZb926nqiXAlsNJ8saRRTWtSSCg2+wehONnVeOyICuLiGYeA5UPLytFMJFMZwMSCmMiICFObDCFOSYJgnOKAwIOoLAtCUNVHHCa13G5XEyZfxyh0kqUsJ/KsmqqqqpQFAVFcViA9vb24qFimg5YyGXSZPM5wuEwkUiMRCLBj3/0CwCqqsNMrQ7iNtPYsohQeCy94JkqOgg4B4UtTYQ2LBQcmnricJJtAcF2DklRssCWsSwLC2fOWZqLvOkAmEB1HY2NjVRU14JLY+bMmQguZ1PWcADBxo0bURQFXXf6Ip1Ok81m0VQHNO/fv5/f/f6PgPNMgiCwcl41WgH+S9YEEHBAIYAsOpswYh5JONL3R6wQnrBBEY5s95ZlYQog+b3Ytk1Wcsa4uraZhrZJhMNhyqqrKS8vR3MXwhii6IDlgoMh2M57JZNJ8vk8gVCQTFrnnnvuYc/uTij08aIpZfj9fjSz0G+WhWxOgAIDU3DWsiIdmWNHdGEFNsqykGS7+JMJBsUqeLaWJCBqGpaoIvsDtLW14SmpoLy8nPrGZjSvp+ho+Dwe3n9vDX6/v3hIWZZFJBJBdjnAMpfTue66z1MaqgYkJFXgxCnl+AvsmCU4oRrJMrBth/kzJaMw143iGEjWRw8u10SIQbYxDQFJkshZZvFgT4o2qqpSUtVIWVkZLa0NyKFKmpqaoBBK8bq8jI+P09/fj2HmIW87IMw2i45UeXk5v/nNb9i0aROS6IQMg4LA0nm15EQZ0bbA1JEKE14ynf4xZAPJngg7HJlLgm0VQdUEAJH/6bS1ZYmsKuDxeEhnHMDYNn0SobJS/H4/pdUtVFXXO2AFA03TiEaj7N+/39njbef/G2YW3XTCoariYWxsjJ/8+JfO+PklUkmLWCzmnNH/jf3HzIBlWQiCUPRCDx06RC6Xc1gBRcEsBJtkWSaTyeD3+1EVEb/fz7ZdexAkkYaGBmzbZnBwyEGzwTBVVVXYto1pmrS0tNDX10c4HObVex6mNBhg0aJllJfuc6i1QwepCrUAkDQO8V9vHqA/Avss+PkJcOchFZ9PI5l00JrjKYmEQgp+dx1mwfM3TZNsNltkBGKxGK2trcWFI4oSLpeLTCaD2+1sVMHSCkbGRnn5pdeZPKUF3TQYGR1HVV089dRTTJ/Z5iDsIFRXV7Nv3z6CwRI2frAJWXNx1llnsXjZibz86tuU1ZWwf3CUkUyMjBteHolz+1NxzlnoYnI0ywduNx5VJhp1gI0gCKTTRoHKorgYcrkcPp+PVCpFKh7/iGp04mtRFFFlmXA4jKhpvPXWWzQ3N+NSXSSTSYaHh6lvaCIcDjMyMkIkEqGmpoZM1k8+n+fca67E6BxiyvZN7Nu3j4aGBj73uc9x26P/hZK0iaVNXtqXZHh7hHeG4bZT4Z59mhM3lg2yWR0JJ1aZy5nU19dz9913QzRZ3PAFQWBsbIxQ2IemKQ7i9nmPmoeGYRDwe4sLrbe/k1RmLxUVFZimicvlYnxsEL8/iM/nK6ppt2/fTi6doXTGNJ588lk+fv7H+P0NX2BJwyRej8Qo9asYhsGOqMUTu7Lcs2E7V83TGJBKcA0bYOjks85zWlZhoy144Cl3gEkzVoCQY3xklIGBAbLJCC6XC5dgIxF32oezmWGLKNKRMRIEAUWSsAteftGftGVcgg42eCUB9Cw9779Nj6KRleG6n/wa0zQ5fPgwgnDEQz148KDz3gU2QBYFBEnkqs9+GYCTVy7hjjtvRVE0EokEWlMFYjbL1OM/holBKpWifyBGPB4nmYnhEZ12+8gU1pSFbDtahwkXSUZEkRSHqRAMbMvZGCe2d7eRJVc4ga3+g3T3H6TddHHadV9AVVV6BgfJ5XIoFkXqtr+/H7fbjaI43qbL5eLqq6/G4y1jeKiLyy69mNNOO41oMoWoOHM8I1ayaNEihrI2uVyO/gNdpDNjyLJMuemsJUlREAoMwofXysRmLtqgih8GCWAKoOSccfeKznjmuraw89BeTNPkiu/+BEmS2LNnTxEMTIAzSZJwqVrxUMjn83z9c98BXOzdu5cf/PAbVFdXMzYWccCUKJKVS2ltbUWX3YwPDJNNpYjHo1SISURR/CcwOTFjnLaosgyCc8j+KzDgMsDKZzGlJNJInP6RXlJIDkj80+Mc6u4iFos5HqumYds2Bw4cQJIk3G53kaVbvmolixc4jtTFl57NKaec4rxPITKYdFVx/PHHE01lyGQyHO4bJzq8G0EQqJCUwly3i/0yAQY+fKhKBRCFYCAVmB1Vdn5v2zYleRHyBqmu7aS6oGOtn0u++21EUWR0fBzTNEnGkgSDQbq7u4knopT6SxwtieiArG9986eAw3Z+8YtfZNGiRYiiWuSsZFlm8YmnkMXFgd37icfj5DJOhp0UiyPZR9owYYJtFXQpR/QE/wwGDAHK8kA+h1uOQwp6P8jQXtA0fO7mmxkbGyMej6OpIrlcjvLycg4fPuysC9ntvK9gkEyn+OmPfwvAwkUz8AfclIQr8Hp9pJJx/jf7j8CAKMGhzp1YgoVhG9imRTwao76hlvb2DgKBEIJt4Pf7GRkZoby8HJdbJZ8z2LnzEH0Dw6j+IKFQiJ7uESKRGFOnTiVcGaK7t4fG+lq8wRI0b4DxkVEkj4tJ559ChRrC11DHVbfdzp9++U3mtLZwz/33OrG3cg+bxyAG1ABvtAOCgqJ4CAZdpOJpWkslBDOLJApc+fELSEYiYNl43R5SiSTZdIZ8KoOZzaMAJjYutyPeGR8fJ+wLIEtObKmnp4fNm7YSLi0jlzUZH3cOzenTp9PQ0MDwSL9D84rQ0+vELrs7O1m4cCE7t2zny1+/mb792+lMp3jiiSfIpzPosk5DYwO/efcwADPaZvPy37cgai4URSEYFInFYrgFG0sAAUekZRgWsm2i522y2Sy5XA5vKIBh5FFVtRhPypo6ZjaPLxjE7XaTyWRY8+ZaFi1ZiGlA/2g/AwMDhMKltB/uwOfzUV3dQmNjPYc7DmJmkng0jddffZVMJsOnTpzFWw/8EUVRcFdPQknkkWyBoAee7HHiZAB7e8GSZAxBxOsNkLMihGwLOwclPi/jyRSMD2HjLMhkMs3YWIR0Ol3wQnQOHz5MsEDv6YaO1+slk8lgiqCoMsPjCQ62dzFzzlxi8RxGLs++/ZtobGkmmUmjaiIut4xiWTQ11JDL5djzwRr6rTSf+/E38QoKw4d2ceIZp+O18hiiyLBb5J4NzuKpnbqETS+/QzjURCqfQHfrxCJxQjrIqkzcNFh7KIbsUfjGD87BEjIgeh1v3CpsBJbDYkmSREZwo2kaejpLR/8B+vv78aZM3n33XcJECQgjzsFhKk68z06jFTwRs0C/6i4Dy8rhMeFPP/gCsuZ4bKLhgHJJhJzueEQZ3fHiYqaOv6yML+7ZSnNzM2ctX0wyOoZha+h5k/f2HEaSJKaeWcNpJ88pbGYOkMhbAqbtUMeuicPSW4UgSAwPD3No3xYikQiJsSEGd693mCcSqAVBqVVghSRFQDWcuLRR2BUlxeKDR+7jfcPAEHTHCxZcRa/dMB1BroWbrFshnU6z/b13aGhuoqSkhOkzJtPV3Y4qB5Bt+KAzjW5388Uf/QwXju5DdIXQcw71npedQ0xDJEsIn89HxkjTu3s3vb295DKDrFu3jnI1hl3w9jwFVkEgilI4TBXTCXPkZRGPYoICj//qR8442QolIQ8jIyO4VZ8T8/Z5GYlGkWWZPAKqqvLZ3dtonTSZ5uowadMgMj5MPJ5he28OTYvj9pXwue9cSEBWUTS/4xEbGrYApi3gkh3GKJJxEy7xMzo0yPDAIQ4fPoyVTtK18Q1EUcQvOADOJWcRdMdBkkUABcG0SanOmHoAT6mfX3/jOkdTk8lgF5ge1TZJm47Dl0chmU5hYrNt7Zs0NzdTXd/E7OkzGBsaxjSc/7exK4mp9nLxdceztDJQnEt5S0ZVVVxagHQ6DQUnxev1YgohEokE7ft2kuxoZ+/evcSShxwQosSLImV/0vks2ZDVnPFRrQLr48ryxO0/KzghMrZtI5sWeT1dHIv98RQ+n4/ReAbTNNm14T3mzJuPaZpUl5cx2NuDLqjkQx7ePxzHFHJc+6Pz0ewUJ648DU3TyFsO65bJi7hcLgegWTYul4uBuEFPZzupVApx6AA7d+4klRvHXcCdkjSKmM3iNS20AhiNSWFnbKQcAdnANE0eueUHmKKIYRj4XS5M08Q0skiK7PSd7CadTmMrLsqqK7nhqnOpa27i/NUryEQT9KVs4rGPip//lf1HYECIpBmJjiPjhbyApnpJJXOMjg4Tj4wz1N9HXX0Vogj1jc3kcjkGh0eJxjL09fVR21hLIpYj6PEx3NNNqKaCvsgI5Y21eJHI6SZ793Syfft2JjdVk0r2Eh9KsW7fbu57/UUMIDE+yqSWZjBldAkGoiYfmzuFP23bTz8wOCri9zniI4/HQ8yOURZ0MdSZpa3NT2t9DalUClmWiUajmKbJ0ECEtsZGLMvFnj17WL78RAwzj4FIOBxGVhWSaZPxeJQDB3uoq2/GtHRHOJdIUFZaQTqVpaG+CY/Hgygo7Nqxh927tjF33myC/mreeOMN9kQzxIG1b71MRXUVq886m78++jdkQSUymi56g7f+dQOhkB+toH52u93EYjHKwiFUxSaTyaFpbsxsgsPdnYxHcwwNj9LSqqMIFl1dXUyePBkEAwQbn89ZiLYoMh7P0N3dTUlZKalkBpfLRSQSoby8HEGUmVoz2Vn8gsKOzdvpPrgHzSfz6oN/ZWhkhL4kXHjyPOa3TaK3t5cqv81zv/wBK7/xEyRLIKhBtCB8fOSARCiYobSkEhsdwVRpDMYJuC1cLpVvfeH7GIaBx+NhdCSKKKjEoilyusmuXbuoLAmRTqfp6upiwYJFmIaNbllIkkI8lmVwYJx4LEtJWZVDXwoGo2ODtLS0IMgSs2bNIhobRUKgu7uHbDZLKpFg64ZtrFhxEoO9A5y68mQqKirY+P7b/PxnP+Ub3/0+piiiypA34CePvUMo4EPJ5wqetotYJE446EFSNAQ5iS3K5PKgW0lqK2t4f+16FixYwLpN25g1axaqpmHaluO9pRNUlnrIuDTKKxbA3AW4ZYULLv84gmjjclMAcEbBKyvHtiQ2bdrEju17OHDgAL397dSnOhEEAZ8xjk0cExMFFUEUsGUZ0Q2SJeCRcs5GYtkY44OMj/YzvMMRGMXxcdmXv4WmuZFUDcuycIVKaN+9m5aWFtZvXMtFF13EyHiEyHiScGGOmKaJkRzAFyihpTZEU/0qgsEg6XQal9sBIelMEk11F9TWjpdsGD6ef/5ZBgYGWPPu28iyTEOuA6wYiizispzD1zQtVNHJTtBFN7pgY6ey+PUctmyT7z/Aod52DhgCcVvgUzfcRE6YCA7o6LaENxjATmQdz9GnIgU8xONxBEvE71LJZU22rP07p5xyCh5VpmLpHOYzB4/m4sprvoCiSLhczoEviGZBDe7GEkR27NjB1o3b6e7uZufOnZTle9E0jQo944QBhAhiJEG9J0BSzeOVZLS0jCsoks9nESwVS0+RPrid7fu2A5CyvFz4lW8SrhCLTIXX62VkZIRFxy/l1XfeYdGiRXywcRtvvbeO66+/Hts2EUWbEk8aFZOZU6tJtZQxe/5s3C4vvq9c7zC2glkMt7j9zoGDrbJ161a2bNnC3jVryOVy1OX7HIbKiCDkh/HKAprtZI4ge3CbEtgykhmhzG2TN3TyIz0cHunh0Lp3MHMSFXOXsOTUM5AUEcXjRSaLlZF4/723WLZsGT7VjebykUgk8MsCiiqBIrH/UJcTqvCkCFa5qa5chHzyIs40TTTNUeX7A25UxYNhGIgFL3zfvgNs3rSdvr4+du/cSSKRYKY2hi8/giqKpDNOJk6QKIYUQFQ8QBqXB4x8lAaX44jk+9vZ0nPIodyRufBLPwTFRTqt4/e70HMKmdwoNdV1vPvuu6xYsYI9B3qoqqpC9clO1ptl4fK4UFWVKkmktWoupmmSspdzxtUBAi6TYMhLPB5HVTxFB8E0FPbt28fu3U44vKv9EKGxHSCCHOtBl/OEAgEkw9HqqZSS9gwg2Q0o1jgBtw1kyPV0M9TVQf82Z30nJQ9X3PAT3O4A2Wzk/10w0NLSgm3btLa1ks1mGbBGGBsbI5uPIuGgpFAoRDKZxLQl9u3b54jWcjZutxuXy0U8mqW+vp7B/sPIskxfXx89PT34fD76D3eydu16SktLCwIMhc7BPnYNHyYP7HvzeaKDHRy38nSU7/+MVN5R6k7Q5kCRJlVVtSisCgaDlMwQsW0HbaVSKbJZR3AzMhwhm83S2emkfMiyzAcffMBxSxaRzepOLD2TJR5x0hYFQcLl8iCIJvF4nJKSEgL+EMPDwwwMDKC4FRKJBOvXr0dTRQ7sbycQCLF//37+vmUHT971WwxRZ/X555COxnnq8WcwzDypVAoVisRfPp/HMGx8Pp8j6AEsO49WQIepVAosi2w2SyKRZHBwkHQ6TXQkCjhAqKW1wfGiBZOxsTFcLheW6aDYsvJKRFEkmXToMyeDQGd0dNQZn8FB1qxZQ6nfhSnKnHrqqRzq7CSXyzE8PMRLL72Ebdsc7OlyVK1p0P8p+2WCmtR1HUUVyOfzhMNhfLIjzKytCSLbjnc5NDSCprod/UUmS2P9DPweJ8Tg9bnp7el3wF06SyKRIBgooGhZJhgMEo1GHRW7x4Msy/QO9OP1egkEPQyl0rzy8mt4PRplJWHaJk/i2WefxTAMnnnmGXw+Hy63zMXzlnLc3Cm8tu3gUe0wDAPRNAEnzSuoQi6TpipUCjgiPMuy2LZtG8GlgWKYZtGiRWSzWSfM5PUU+3/9+vVMnTULv8cJ7bz43PN85jOf4bZf/JyPX3oera2t1FRWOCpzKYONyIJF05g1ewqCIJBKZRBNR3uQtw1EwWGtendu5a9//Su97dsJKgZV4hDGBN1q2WA7G99EKEKyHcGdLMtFNkfXdfLk6evro729nbGxMXz+AM88/SKXXnophmnxxhtvsHLlKViWxTPPPMOlV1xOJpPhgw8+YGx8gMsvv5xgqBpRcLwX03QOI1vIcfrpp+PxePj4xRc6IS7BQrAd9KgJjme3/u3XeeHP95BKpZhcoRHKxshqCqYhoeu6s/EiYAmgyE5qIYqXgrYUr9eLy+VidDDFtm3bWLnyFIaH+tmzZw+nn3MuDQ0NdHX2snLlyuI+oSgKjz32GF+87gtkMhlef/1VhocH+dznPsf+AwdYunQp6ZRBzjCZPXs2M6bMKu4hBs5BYBcEeJVlJbTvOcizzz7L8K7XScQSTA6NIeedVEszLxbXB4X9aoJOnhCBAZSWlhIMBhkfH2fhwoUoisKcOXNIZg3cbjeyrLJmzRrmzV3Enj17EEWReYuPo7S0lMHBflJpiYaGBsaH+6mursbtdrN5+w7mzJmDbcO8efOYPHkyF198sbNXFuLPtgAewdkntnzwGi+//DJDh3ZTpxiYym6kVHlh/lhIglDUEYii4zypqoqpF7x1VWXatGk8+tCt9PX1cfbZ59PRuYsFCxYwMDDApEmTGBwbYcqUKdx///1cf/2XnH21rAyvW2N8fJybbrqJ3/3ud6iqyj1338P06dNZdtJJCILAjBkzmD9vAWNjUXKZjAN6BJV8gWavUCXGxsb4y6MP0L3nbdLpNC1hBSUaO3qvEiQM0ypQ/U46qqgeGQtFUYjFYrSnsjQ3O45uY2Mj6XSaQNADtoyiKCSTSdrb25k9f5HTp7rOpjff5KKLLuKOO+7kvPPPoq2tjbLSEjZv3kZjYyOq6mXGjBk0NjY6ofi8TtI68t4lhdTigwd28uc//5mDHR/Qkm9F80YhJX5El1BUNtoUgdS/Y/8RGPjc5eeTjA7RO9xDMp/AsGyyeZ0lU6djCDAyPsbGDdupqqpi76H9JJIRpntDZFJ5QsEyBFWmpqma519+jupwGcN9A4R9AQRBYnw8yr49h2hubqayspL2/Ttxu90MjcXR01kk4K+PPcnSmVP5wRe+QCjsIjacxbBMeiJHS70n1MOqKCABZSE35PSi0lQSHAWrYZlkczrJTIJgcDKBgCOkcblcRCNJcrZET09fEeRYJpSVhfD7vQzHBotxwf7+/qLaO5nKsn3Hbsqqq5ja1sL777+PjczAiPOMVj5NxBAgleTm738fQdQxcoBt4YICsQmq6sSC8vk8fr+foAemtjWSTIxjGgL79rbj9wUZGo2TyeSwTQtZlKisr0eWXGALdHX2EwqFGImOkUmlqaoKYJkGLs2Dx+uib3iIRCJBRaiMRDxJPm/hL5EZT8Tp39dByBNi5vw5PPGHOxgdHSWVTzNt2jQWLjkO27bp6OhgbHyAfFcnV62cziPv7WFEAwrMgFiIZSEYuFx+4unD+P3TqA94SaVSHNjfQU1NDWBhWRapVIp4Mo1lmCSiMToOxUhl0ghmHp/PR11TK5FYilAohNudJZHKOWJJlwKCi8M9HQT8JRzuHcTl8hAKlhGJDrHh/XWoqofq0kpGRgd4/PF/cNxxM5g9ezbZ+BiaptE3OMDTT/6Nk5cez2vbDpI/Eo7FRCnOKUVRaGpyM6dpCpncGJgWog15LE5cuQLNtKmsrsYCVEHE5fWRlU1kQyGTSiO7vcxZOB9V8SBj4dUUamqryOtZwGLSpClIkoSVMwi4fbzwwgucftpZKKpKX8d+mpqaUHwubrvlF2SzWa659vOE/QLJsTGmLZrDdfWVhIIqYi7MkkVhZlaGqK6uJqBJGFYMQQDR0rEFE0kU0DQPti0i2gAG4VApi+ZPAWD6gtkASKbMpz9xpXNoueCMc85AU91k8nDZJ68o9tPQcB9nnXUGXq/XyVgw8/j8jifX3d3NAw88wM0/vZV33nmTA7sPsXDhQurqK7AtGY/Hw1tvvMLq1auZt2A+y5Y/iCAIDI0Ocfn5JzG9MkRDuAydPLaZRFYELCOP27AxyCJJoeImOOEQlFXXcEp1DZKsUt1SSm1bGxbQ1XMYQVZQJbmgIBeQBRFFlIhEIoiiyLnnnktnp0NPi4LK4MAoa9euZeXKlYT8fvb27iUYDHJw1wHmLVnMgQMHaKytI51OE0+MMmvhZPxll4B5EW63m8WL5zC/VKeyshKP5swnMSeiGDqmDQkJQl4/0XzmyP6lqjQ0NCBkRbK6jWmboLpZeuIyDMvEzOVYvHgxtiUxd+588vk8mijhlhV6Ow8TiQ4xta2Jw8lkoR6ByOL5s+npOcyM6dOIxuI8/8o/WL58OZrLRVlZAFUVePfddTQ3NjAyNkLL9GlcP2M6HkVDstysPG0WreoIgUCAkoAPM5PEFgVULOKCn/qmgl5JcAScyVyGrKnz29t+C4DuclHbPAXTNKkNlJHWndCmaQhcffXVCIJAJBKhrKKCRCKB1+vlr3/9K7///e/57FVXorkk8noat8sZK5/Ph5W18Mg2azatY//+/Vx//fXkcjqSJNHd38vMmTP52re+xcDYlbhcLn76gx8xsOU5ysvL8XkVbNFGzOdQcc6HnOTDEwJDd+YlQCoVZ3Lr8UjEEFQZE5BFN4FC/r9pmpimiaZ5aWmZjGlOpMK6KC8vL7K7C+bMJZPJkEjGmTlrKk888QTnnH0BkiyQTI0iiiKlwTJu/fEP0HWdqz5/DYYgU11dzfwTFtA6o428ngZD55RTTqHF7YRUq71BLFLO/m44KcZRxYciyZj6hzaz/8H+IzCgqRrljY0kslni8Ti6rhONRunp6SGSTDhxS9sRCyZy0NrWyOjoKC7ZQygUIq2nKKtyirNUVFSAqDqhhMFBIpEIkUiEadOmsGHDBvoOt1NXV0dvby/r2tvRgJtuuon2zR8wr6GNzevXOSk9lsW/yocwDANTlhCgoG6W8Hq9hD1+BiOjGAU1at40sARHqZzP59m5cycSjqfgr6gmEolQV1eHruvIgkKlz1cUz0wImwQk0uks4+NRxsdHnclcVsamjVscJb0u0N3XjwgIhkVFZRW3fvsHDBzsLKDqiZjwR00sxIvKyoKFoi5qkV6KRCKkUikSyQy5XI5oNEo8MkRk3EnT01xOuk0yZ1FeWoZhGGQyGWpqaorpWKWlpYT8IdxuN8PD4yxZsoR//OMfZMbHqaysZO3atUURnpAQ6ejo4MDO7fh8PmehCGYxLbOlpZmRvs6PtMGyLJLJJIoMXV1dNM1rxu12c+DAARKJBLW1teRyOVIZnUjEEa11dHSQyU2kIwm0tray58AhAuEQLpfK6FgSSXZUuIIgEA6HGR3zFECbI7QZHR1lbHyUXE4nnYyT9HrpOtTN1Mk1dB/oIDEapb61BkmS6OjoorS8hI41a6gUFZLkPtKORCKBqqrU1wccLx/tSBvtLE8/+RrVzTVMmtREQ0MDuDxks1kky00+nwbFhYRUSKFUkGQBl8vFqaeeiizL/PCHP8TtcehcwzDwer2cffbZxdzmlpYWR6wriHz9619n48aNBINB/F4PbrebBx54gAsvvJDWulp+8qt7sbRqdiV0diVGkAwBAwNBENB1R1vwyY+t/iclPezYsYP0qJeGhgZaWifR2NhILJsmEc8gijJWNoPi0grhK60gtBXRNI0rr7wSUXTSrByx2pE10tbWxi233IKAxIIFC2iobqauro50Jooiu+nv72fr1q0cOHCAz33uc2SyCe655x4uv+Lz2IaXTSMCWwaHnDVhS4COKFiI+XEuEoMIglAsUpNOp/nrX//KpIYKampqaGmdhC9Q4sRWC5uFgEI2my/Eep3+dZ5fLPZJW1sboigyY8YMFEXhjDPOABzWrqWlhWw2y/HHH8/u9gPF9eSwUy4effRRVq9ezZOP/41rr70Wl8vFvqSLfck0WM7c0kURxXR0ErOq1cJhcmRO9fb28uyzz9LUNpn5k6c7SnDVSywWQ1EUsukcmqaRy5pFVgycg2nZsmW4CgHqGTNmAA5jous6bW1tZLLO315wwQWEw16i0TTDw8OUlZVx33338cPvf4/Ozk5OWLoY0zSpLCmjt3OYbDbLjqwP4haSPV5Mp7SzeeTYbi686kpnjyoAM1VVefzxx6mbHqKiooLpNW1UVZWQSCSKgvRUNo3fFy7sawqTJk0CnGJ3siwTj8f57Gc/i6ZJXH311UUPuKSkxGGBZWceVldXc/LJJxfBoFkontXa2srvfv1bTjlzFarq1FnYYnhhII1oOfF0h+VwMjc8g318Ip9HkY+sDY/Xy/PPP0/Aa3DC8hMpKyvDpQUBiEQiGIZdqLMgH6XXkmWZZcuWkc1m+dnPfkYm44SS9AKb8rGPfay4vsvLyx02NWfx61//mrffftspAGc6APePf/wjl156KVMaGrjrv+4lm82yOytDJIMuxYsptS7TQNd1zj5p5kfW9/9k/xEYePeVF5BkiZqaGk467SwefPRvpLHRdRMFAcswWbbiBDas30F5RRUed4jx8XHqp1UTDLuRMibjY3GmT5tNOhtH09zouolpCxw61Empv4T+nn4ioxH8oSp6+scZTDg07BnLj+PNV95g65svMtK9n2xOxAIsE2IfAj4OKrVAsEjlHUbB59LImTlEUeS1F//BrPnzaGqoZ+OWPWRyObBFRkfHUVUVVRCxbZOmxhoO9Iw7cVlvgNFYksbGOvx+Z9G2tU4lNjpGJpNBFGQikTE6enqL4Q3TNOkfGsSluomlsoxaFpd/7DyeffZZbr3l5+wqLyO9dy95Q8QUwbANPkxc6bpenPS5XI6wkkexDVA1ksmk85G3iWXz5MwstiozlowjpHJg5PEFXSxcuITdu3fjDgapqKoshgA0twu3S6WxIcTQ0JCzcVsWuVyKbdt20d3dh0+wSOay9A+PUVdexfsfbEYI+LEsi7aWGUSHe4jFU2SzaQQhTmffOOGqEhRDIVtIi5tQMYOzQckGLF80ByEbxaNoVFVVMX/+fDZt2oTPW0b7gd1YlkV5ZRXpnIFtZAmFQpxxxhm8/ubbSJLs1DzIJDENgalTJ1NSGkBAYmhohIb6FqLRKKomEotl2bRpE9lsFtGWWbTweDa99SrnnLaav91/N3ZFKeN6lrE9+9GxnDQjyckAmVpfxaE93RMzqjgmIZ/fEZ8ZCqoYIS/LIIkgiQQFm4cfut95oeBQvrYoFLNW7MLuKBfEhB7FTUTPkM1msQQLM52mbf4cTjr1VE455RRWLFuGCGhuFwKgW5CxZUxcCPk0ggKLTzgewbRQLAvbMLjyssvJ5/M8+rcnCPtEBEmEiVx1GWzLCQdIigPubBeAiWXpIKggqLz01H9BYdzsgmBRkhSypuNpmYXD1DZsKFTxk21njqbiWbzVFcyZM4cVq07iwksupjkURMIJf0lAIg2iK0x1kwfdslC8AaSMSV1lLd/90fec9YOI2xNi/vy55I0oGcWDZFpMnPZOmEPFsI1i9TyPqiFaIEkufDI89tCDCAW1uipI2IKzN2TzTggtZ2SxcTIfXKpKPOXoh0xbwkwkmLZoIfOWLmbZsmWcuHwFzR6vI3QF8jYYaQNB1sjaEg1NbYUUSgNRVRAsgQvOPY9sNst4ZBjDzGLbKhRS6SzBOfAlwBAlEGHh6vORNAnNVotrJjbWySP3dmKKoBUAiylSZCRluSAiEzR8PicOb9rOWk4P9xOob2HRcYuZvnAeq1at4riFC/BKGimgBNBtSOkwEstjWgKqJ0A0meXWX91OiddPWVkF6XSU2tpa3n37bZauWIEu+FGEiYwaMBURE1BcKrhCoHnRJBFlgpnOyzz3zMPwjPOtLLmOOlM0TcOSBOxCJsNE6ls8Hiejm5BOU9rcwLx58zhr9Rmce+651PpdDAAaIOmQMS1sr5uZC+Y5QBRQXR4sy6KlpYXdu3eTiIzid6t4ZZW9e/fiFSlUaZ04AiUs00IEzHIfkqUhfOggVaUcD97/O0RB5o4//NdH2jCxx2E7YyMpMtFU0gmNj/QDMGneQs46bTXHHXccxx13HKLmSFxdOMFGVXLofgmTSCrLnEVLMK0cLkUtAiKA3/zuD6TyWUxBRC3UfhBMqbjWdUEB1U3e5UFSZOx/8zqh/wgM2Okcg+k4lmWxZs0aR02bz5PP57GFDMcdP49t27bhdnupra2lt7efhoYGAoGAE9Mc6EVU/I63GrPoGh4km83SMzhIY2MjYwOjbNu2jerqapKZNOXl5RwcdCpYxWIxstksw8PDdPb1kM8LWBbkRJtIIY1FEIRiDNRJw0vj4siB5PP56O0bJWtu5OTTTnE2Ygv27j9Emd+PzyeiAsuXn8ymzTuQZZn6+nr6+wepb6imIuQlVBKmvbMDv6gURVO9Pf2Ul5czGtnPtEmNHDx4kOhIlvLSMC6Xi2w8gwl07RsipFhc9ulP0uwWiaWzmLaFZYqkP1TBYiIlaWKCpVIpFsxuABykPTAwQC6XI5M1i2mdbrfb0R3kHep52bJlbNu9C8uyqKysdDINvF4URXFiqprChm3bqa+vRxZERkdHCQQC7N27lzlz5tC1ewfxeBy3241bFSktLSEpCIyPj9PX14di5wtFSpx8XcG0OHyoF8OYKEtKMU8ZnMMig8MSTKR61lVWk4rGmT1tBvsP9ZJMJokk47gK3nNTfT0zZsxg/YZNALQ0NeL2+ejvG2bu3LmUVfjxaC76hoYRRLno9SUSCWdDTDv1FYb7Bti5cyfRvM5DTz3FX/b34EZh5ZyZfP2zl3DDV79NqERmdHSUWCxGxh0uPrequYqefC6XIxaLUTNrGqagA0coqQ+DHqkA4lTTSVHLSRKKlSsU47J47bXX8PhcKIXCXL5AmN27d3PVFZ/iqd/cyWO33Y4aChYLwiA4AMIspO9G804KZC4SYf5pK7n6yk+yatUqwrpTuObUU08lnzf46U9/+t+uZUEQ6OnpKRZcoVBwpZhaJ4rYHwJCXkEBC6zCxpJJ9LBrx04kScKvugiWlzMUj/PIE3/lzjvv5K53XuX337vZiW37nZi6YNkYhQM9qzlFaoyUAAH45Kc/zeVnrWbq1KkEbJm8nmb16tXsO9hefB7rv2EARVFE0WRM+8hYSJKEVXh+EbG4Iaqq03deO4WUF3n11VeRvC5kU6eurg5JcViKm37yA56/92Geu+chNJ+vmCpdFXB0RcO6A4Sipkk+HodUiuYFc7j66qv55CWXQiyOy+Xi61//erFQ1r+yiToCra2txZLOEzbhDAhHqjMXX29ZVrHtHjPO68/8xSnj7S4UXhKCPPv8c3z3+99n/Utv8PDPf4s74ENUHAGoIkpOBpIiEQ6VO+ENwSDf18c5V13JeaefyamnnorLzjI2NkZra+tHKuH9s00UC3Ke8eg2FM0+0g5wnB7TBJ8e49af/pjjjz8eVVXxeDxUNbQyNNjHLT+/m6eeeorXX36Fm266iUAggDsLyWQSuTxYTGHPZrMOwzsyQsPU6Vx11VWce/aZVFVV4ff7SSaT6JqjQxAlh8mx8x9tU3l5ucM4/JNXLYoi2P+iTXyoMJQ8xt9ffJG2UCUj0XHKy8vxumo4ePAg11z7Re666y5++6tf4QsGKfMHUXQLQXD2+rTPcSLTsk0skoBolDPPOJtv3Pg1pk6dSj6dQJIkLrvsMjJGnl//+tfF9//nSpwA6XT2f7yY6J/tPwID+/bvZeHURnIDXcw/8xT2th9EU90kshnOP+sUNm7YTt6Aqip/obRwCaWlpbg1GUWCQx29nLb6TLLZLLZtUl4RZGAgTVkwiCrLnLBsLhvWbmJ0dJjyUAlxI+uUim2BVEbjxm9+k7ZqN6YhEjF1LAtsAT6cQSkIAqIgFz3rhioVMZ9GFkQs3SDdvYtJJ16FW3UzNBIhk8nQH4+RN52FdeLJJ7B9+17ypkVlVQXhcBjLEikpKcHlclL9BgcH0bQgvoALt9tNXX0N8XicsnAJkbFxZs+cxY6du0kkE2iaxjPPPw1AqqSHni1DYBgIPgnDMLEEAcMwGf5Q9seE6MOpg5ByhHelTpELSzaRZJXyiiq69+xF1BQG+7qoCFeQTcYpLavk+BMW8f7G9xFsjbq6OkrCQfoHhpg8eTKhkIbHIzI0FGHSpEkEg0HioyPU1lSRyxuMjo6yZ/sWTll+Ah988AEeVWJE8/Ja/zhqiUTjPJtOfQx9CLwJmKhqbrgVuhMWplFIGZPEIk02IW5pDoAmGAiyI9CJtffw0zvv5PaH7sUfCiK7ZEYPDbPi5JOY29ZGPp9l796djMWyNDc2UVVRxs4D7TQ3TUJSdMLhMKl4goMHD9HcOsWp6e9yUVlZSX/fMKFQiClTW9lh2bS3t1NT14AxOIgOtC7V2ZXawVd+1s30KWV0DkQxTQErqxM1os5cko4cLODQw5mcTrlbRLdceL0itqnj+ItysZLfxM5tiIU6BJaIJYhYAoiWhtfrJhaNEQiVkMzqDCS6eP21t3nzvXfQbcsBkJl8EYTYdsKpOGg7hW4EdNwuP7/85S+59+7H+N7Gl/geIJluhx4VHSZggnCeoHKPLBLn+WbMnOsUcrFySBypyjZhYjG/JYdV2LAQdOfQkj2kbYNcKoXtUogM95FLZbnh81dw3SevImvkMLHRNI1kLO54fIYJlrPOKGQv2LbA5KlzePXee3nxvvuceLng3J8AIH2o8A/2kWdw1rpzQGuaVlSXy/aR6xmkQoEnbBAmfiY4Ir+8KCPJFpZLxjDSWIrGaDpJPhPBGzJ5+L4/kvhtHkVRSOtOqq5lOymJuq5jWGaRDjZwwmenn34hv/3O97ntO98twiirUMFJEkH4FwV1in0uCs59CaLTzonKfgAKouMCA1hisf0TpgsyWUsiPZ6gJBDEyNv09+8iFBLY+P5OxGCBoUplMa2cUyfAduazLMuobuegVBSN6upq1j37HGufe45vAnahGqUtWIWxsLBM6cj8KNy/YKEgCVnH4XC7sCWQJI4CMR+ee9hH+kIywZBk5i05HkOSyeV1JI9Jd+cIknuUb3zrE3z165dQFm4hm3fGIq+n8Xq9pJPRomeeyzlCVVGWaW6bw+9+dSu/+9WtgMOoTLyjIllIFtj5Cb5q4hmdSTJ9+mz8/jCydmRNHAUAio9eCClNUNSAbMs0ldfTNzhGuKQEU5DZf2g/b6//E0/9/Q94fHWFUICT0ebou3Sy2SyyesQBVBUPt912G3f96VEufPe1o9Zl3jKR/gkYm4aNJB9dsXLmjNlomoj0zy/+b+zfhw3AhfOncvaMNj69ajEb//EUq5bO55zzVnHmihP4YN128jkDTRGY1NpIKp2guipIwC/jCwTp6evHsETcriCR6BggFpXmVeVlxCPjZBI55s6fjscnYwkih0edLIFGbyVpsxPFC+Mpg0jOLpYWPvShQ9TGdqhNwSKbS+NRZMq9Clh5ECwkWeBbl55LjdVHNhlhclsTRjrG3NoKVp+8gLNOO4kdm3aRjkWRydPc3Ex3VwfVNaX4fB5Ky4IMjWbI51UyGZ2R8THyuqOWzuUK8btcDkEQWLBoFrW11YyNjTEYS7FwRitCJIu/1o3odTOetYgbAhkT4orGaGG8VBGn1KnhTBClsHh8ukVG0AGLSC6N4HXhLgnywhtvkrd19Hya6dMmccqKZWzetoesLuD1S7S01dDd1UN1TSWSLOB2e4nHk3T1DdLd3cfg4GhR/GKYjlixvLycSCLNkmXLCZWHsVWNHNBUUokr1oxvvJpyuZqMpJLMQzIPm0eyxHW7UEMNJNkCPV/sGz2doiV8dGnYFlGgdWY937rxGh66+zb8pR6279pLbWUZ4+PDvP/BJsZiWWory6ivqWVocIzKyko0l4SqymQyKQ6295HNW4yNjRGLxTDMLIaZRZJtKqtK2bJxE22TGpBVg0zOZM++diSgJNZASaaauGKzdzSDYdmYpo1tw3jSmVxuFSR0JJyxMAsXnti2iY0OglGg4sGlCFSUBqkrL/noIrPBsgRAwhJ0svEooqwST5hYgsXhvffy9Wtz3PqTT+P1OuJKW5QwbMiaOtGEhCCXEXS58GYypNImtqQx0jOCIeaQLAXJUopiTcmyUHUD2zKO1Pq3LAxJx2tb+CUBW9CZ1NSCImtgiwVWQMCtKpQFA3ikI0VdRBvnAPrQIdRQV4aRs5AFlXg8icfjIxD4DdGDf+LeB3+OJNsYOQMzb+INBUjmMqQNEdFTgjcokezb7dQP0FMg5EDIIZopVCGHbOnIVg7ZyiGYGSQ758TZC8/gM0G2LUQzR0W5H1lQ0GQRUXAqusk2BNweqstCVJYEjhxAHzLBVlCxEI08gmYTSaRI5XQ69z1FuPQxXv7HLbgCHpL5dDGMJksqiawASgC/300g00mirx+3ItFUV4Mg5BGEPKplINt5ZDuPajoM0Yfr2CuWzvTWJlzGkf6MjI3i1lRkZeISIRkEHY9XIRRwI9oURJ44oGgCGAGKnccUclhinkgqiympBEv/zOQFg+zY9xyipZNNZLDQUP1BUoZFPCMiqGEsWWOoaydWRkc3UmguAcnOIRoZRMPpe8nOIZsgmDkkW0fE+VAEk9a6OtxF8GUjCyBaNqLl/MTrVqmqKCXo96DKAiJm8fOHTbLAq7rQ5DyqlCOWyFDvMqmreglfaC8u2SSVjTlryBJQFT+5LGiuMnxeH75Ijlw8hqYbCLaNZBtHfaimgavwIf0LTKbYKUpCIUTAJgdC3pnDBVZHEyVUwRHailiFULSBaeUK6875mWDJDPWPook54uk8ui3Rtec33PBFjT89dCsaAfIJgZypogsqMT1LLGMjukL4fRp+T4R0dBwEg4Pte5FsCwUZdNvRBBg6qik6Ggfbcb4mHDDF0gm6FLyqiGQnqW8sLzBa6Y82+F/YfwQGcnknZzmVy7KgcTL/+MuDlMsW3d3dRbHGhOccCASK1QrT6TTt7e3MmTOHHTt2MD4+zsjISDGHPpPJEAqFiMfjxXQ3y7J48fW3nI072IRHq0JwhxjL2KTTRhH9H0XA2SCkHCHdREU+x7Oyi7FbgNKcyJYXX+e1Z58im4whSw5yXvv++kKhDZtZs2YxODhIRUWFgzZFR5TW3t6OaZp0dTmfR0dHgUKuaj5PRVUl6ayjCN7XeQhfOARAdXU9Id80+rodei9r2E4xF9MmFj8iVnO5ZFK5POl0uuh5wNEVuR555BF+9atf8Y9//AOpEPtKpVKUl5ezbdu2It1bV1fH4OBg8QKRCWFNb28vIyMjxONxenp6SCQSxfSTCYpubGyMsbExwLmdzAaampqorq6moqKCeDyOaZp0mJAs1WisP3LrF0Ao5Gc8nnAQb4EJ8PmOvh0tkoyysG2Kkz5pW3zwwTriQCaTcFLaXAq1lSXU1tYyODaCLYvFfOmgz0t0bJze3l5CoRCZTKaQjmkU64SbpsnUqVMRRJvGxka8Xi/bu7s4+5TlhMNhBgYGSCaTjCZTjOkmcdvJWx/JOvOkoaGBZNqhHsHZoAUAwfoI9avrOpFIpDgfJmxiDXzYbrrpJp5+9D4kJU08prO/fRkHI1+gbfpneerxtxnoyRfV34qi4Pf7icfjfPPaa8jsfh9zoJPx8XE2b958VNnjf8c0TeOEE04AKM6LD5tt20Vve+J/27ZTyW/iBj2Ac845hyce/D23fPcr6LrO+Pg48CD98jn8/YUuDh/SueWWW4oejcfjQZIkxoZHePnO+3Ad7qTE99+XRv2fzDCM4pXqZWVlH+nfCSo9kUg4KbgfsuOOO+4oL+u73/0uP/vKTaiqSjQa5biTv8X775/HstN/yH/98WnGhpz49cRdEG63m0QiwZc+/iniB7q45abPE4vFimvl37XNmzcXv7Ysi6GhoeLdAP/cjnw+f5SwcEIz8GF7+Pbf8akzzsc0TcbHx9m7+zNEuo7nK5+/lw1rO3njtfWkUiknF97lpKLG43H+dOu3qTnchWyNYhjGR9bo/2SW5ez9EyHNiSqiE2GCCScjGo0WQxsA11xzDcCHmDTH9u7dyx133EFPTw+5XI7D+RDj8RuI9S3kGzf8lsOHdNatW3fkfpJCut/XrlhNrnsLwkic4RLlKIfjP7Gvf/3rADQ2OvdifJh6N02n+FJFSeAjQOaf7fbbb+dnP/sZhmEQjUY5NH4Sh3q/RGVgNQ899BDDw8PF/VzTNIc9Syb5yVXXknh/K1VVVaTTaTo6jtz4+u8IASfOoBkzZnykb/8d+4/AwFgsjiVJaO4wYb/GJctPYt377zFj9mSaWuupbaiiraUJEQtNBNPMUV1dzuYt+xkaTrFzyw4GBrsZGR5zquTJjlLcEiCZSTMyPkbP4T5kSUWXFZLAH379K1atOJWzzziX0884g7MvuZDSpjriNkxZuIAimSY497rd85ubsW2baDRKxjBRRRvdFIqdmTLzZM0cFY3lBIMCldVedh8ewq25qKwMUVHpUMuycuS6TdvKUlPdwIED3QwODlJSUkIw5CeTTJFJ605daMPJcY3HkgwPjbJjxw4SmTx3P/AArTUVrF69mlNOP4mvfv16LrvyWlZeeBm9WYtAYxOrTltR7ON42sAGQj4nFSWaFHEBHpcby3CU2x3ROBFBImGY6LJzwYiqOpkZZWVltDRWMn1KI2FfEAWJYMhPOhXD41Y4dKiXrq4BNNVLMhmlqqrMKa2ZyzkCpMKEGhkZceo32Co/vO2XrDphMVd99jrOOvMCTj/tHC646FNceMlnuOLii1i17ExmzJ3P1LaGYjsGBxJYtk0ymSQajZJNJhykbWaRsBFti3f3b2XnUBfBYJDtgzn8ehoN+Pvf/05TUxOtrc1UVVU4ILPggZtWjpraCjR3mDXvb8HQIZtKk0xFOdzTUahkeOTq5+GxUdKxBJooo5aWEgeWLV3BqlMv5FOf/RKXffwznHvZZzmUgTFVo27RkuLf7tvvVITM5HQS8Qj5rIJbAyOTQ7CdQ8m2ZSTZjSm4UUT4wuUXs2z2DD7zqUsRbRAsGxuzeJmNKFmce+py5jeV0btxPa++tplH71/LyMAITz55J7XBP7Nn0yXsXnsF+zd8lqfv/QoeI0dZ2M/q5Wdh2jU0zV6MYJiMJWMoyPg0CQnLYSoLF6kc8SRNQpqFgoXPtrn0yo/z/obNKJbC0OH9OFSngmhp2IKCkTeQ7SzXXv1JsBOIQgoLhbra5qO80bXr3uWkmdNY1FBLuLyKz3z6pxy/5AJu/eG9ZOMvMtb3NU5Z+hbvv/wxhg/eyikzSgiFJBpCLqa1zGV4TCKW6CWXtXEJknMNs8+5jRJbKfbXxIfHcqrhSZbNjd/6KkMDg4gIfPrij6ErOrYoY4tgWCZ5Uyari8iWxeqVKwlIJj/+4ZeRLZn9+/cDzkGWsATOOW4eX/jE+bz27P1Isp+TT7iRdWs38/Aff4eU/C92rb+C3v3Xsfndj/HGc1/lgV/egT9kcP4F5zI6IKP6mtHzJmOjkeL/9bplVEEslp61LAuZHJqQQ7EziJLFDV/9IoakIJoWsg2nTJuGT/AdfRGOpWHlJVaduJjm2goUOw+CjtctI6IXDz3JgguWz+OGK8/HTYrlJ1/Jj37wOPlYNbHMOiq1PyMmb2bv1ssYPPRdbr3xAsJ+DW+ZzikLT+XV9Z34/dXoeQHbcliHoFcj6NUcT9+2QNARbZAFkeqwH8XMYYoGv//978kZOlgGSiKLmTUwBad0M4qEmLUhbXLNxedz6ekrkewsd997r3PluaIUQJZOVvDz6tN/5sz5s9jz5iuEXCVccuHXuOM3f+Ha627E9L/O4OCnEM2bef+tM9ix9ibOP6mEilIfi5acz2N/e5fSQAhrPI6sfOiqXiFDSVDFEo/ODhItlVKyePQB8pJz18l1112HZVnccP2XHPbAlp3xsEWEQqgpHonymcsvc9ZW4Xfyh77G1jhtViMXL10IVpTnHlvP3x7czFD/KDffcjV1tS+wdsMq9my8lMH2a7nvlovJD8aodiusWnkGOzYMI1oqpqEyMlzYxwQDxc4Q1hQ8ggFYxfcThQxN7nFcxhiaS+Lr37iBbdu2IZsi+WgSwVYQPrRu/yf7j8DA/kiU3t7eogfWXBogYOlk8jkCgQC6rjsFh0wTn8/HokWLWLduHZFIhMZGJ81wooiOz+cjEolg205KRjAYpK6urogiJzyQNWvWsGXLFt577z32bTvIod1djGRNLJ+PtzZvP9IQG3Tgiq9+DRVYccI8Z6EUbuP6cH3oibzPbDbL0OAYs9vK6ezspLm5mbKysmJlwQn03dLSwvvvr6O9vQMBiVxWJxgIE4tEsU0LXXfK5LrcKooq4fZobN25F39pFcN5OP3001m7di3btm1j/fr1bNiwga1bt5IBuru7eeutt4+obwsWjaVwSSItLS14odjnTsrM0a+dCLdEo1EmTZpUTOdKpVJFpiUcDmOaJvv27QMcMWVra2sxrJFOp4viS0VRmDrVuQLUKUIDM2fO5JlnnmHjxo288847bNiwgUOHDvHBBx/wxBPP8OwLrxx1CIOD/H2aytwZ05EkJw1wAmEDrOtIsrkvz8vbB4lEouRNg/NWzAPLYMOGLSgeD71DQ2SzWdw+lWDIy7Rp00in07zwwgvOhT+CwIED7WiqH6NQ6GSCiQCnln0sFkOWZW79xW0EgQMHDrB371527NhBX1+fU74VZ3Pas2eP0z/eI0tDxSnf2tbWhtvNPxX5cON2hZnU2saXL7wCzYSdG99n1ZIF2LZNXV3dUX2i5Eym1DbitSVqaxt57qkP+NHNX2AsvougsobxsQG2btnMics/yWt/f5ZU4iU6D36bm2+9mXg8Tnd3N2MjsUKKoI5sZXjw65ezYlrjvxQLefUoP/3cmXjSw9i2zcMPP+xcDezzEZBdxfkDUFNTw+rVq5nbPJlod79z61xBcHfxxRcf5XF96VOfw0ilcKkyuYyIna/m5lu/zJWXj3Prt1czrb6eP9+/l+ce28Ddv7yTSTMttr73fX7zm9+wd+9e3vhgJxm8RSGcJEn89hvXcfM1l32kDQCfXr2MqSEPoqBz152/wa1quFwuzjjjjI+wIzNnzuT000/nwpWrqXYFyGazvPvuu4RCIS677LJiOyZiwUNDQxy38HSuueomunp2cO4FJ9LU/BK716/hjpvfZnLTDOoqmrn3joc49eQH+dxZ83jggQfYsGEDv7z7bkzT5K233ip63e8//iBf+5pz6dWHwzTf/MTHaFUtzj33XB5++OGjnnmi3v+HraGhga9+9avMq2tlaGjI6SsLhoeHj/q/qqoSGxvFJUvk037mzlrJlZ85m+99YwqnLoXbf3knU6bUManmZO675Y/85Ed1nLtIYfvfNhBN6uzcuZPR0dFicSjLsrj2onN57vd34MLCQisKf4N+P59eOZ3SVIwSU+bg9t243W4nU0M/+oZFgPr6elauXIlhGDz33HNHCR+3bt1afJ1lWXzxi18klUqxb9++4q2IJ554In+8o4pzTijF7BnFp/qYM+l0/C43aSnL20/+opgurba0HMVAAFx82nx+d8nHqNDl4u+sQrG2E044gXt++HOCKee9/X4/oihSVVNzFEsjyzKYOh9bfTpfueoKvEaSCYVkMBj8yFytqKgoFIWSefPNN/nhD3+IpmnMn5SHnjESew6zfNln+Mc/Hkfxr+FQ5CfcfdefGRqMkEzk6elzMrwikaOrBv782zewamrlR95v9uzZLG2YSj6f5xe/+EXh5k4Dr1v7yGv/J/uPeIQD8QQj+SxzvV527NhBY1sTNS6Njp0HWbD8RGLxCNlMHrfbTfOkRp55+h9OFbhAgFQqhTfkQxRlotE4QZfqoHlBRPW4aKmpIhVNsnvvQeJ6lpdfeBkZWPva605cE/CGHSDhVmRGc2maqmqoKC1zcvEzOcJB55pboXCpyncuWcnQUDs2YNgOwIiMRvB7vMwvceE99RTue+tdpk9uIdrZR6fXT9OkyWzbvIXScJi6Gi/19fXsP9TJ2FikKFjs6jpMLh+mv6uLWbNmkUsb2LZAMBxEU928v+EDhscj9MR3AvDi805ejadw14CoyFiATwJJddNSoKVSqRglJSV4XQVkK6Y5ftZk3pQHMMwsmktjAr85B1JBrCe6mdTUxEh/P++tf5/jlyxn69atuBWBqqoqGmrKMWyNLZt2EQ6Xk8vlOHToEBWVJUSjUcoCjvDM6/Xi1lzU19ahmwYPP/JnDNXp+9ef/TuJrEOXBwJOPnN8XMalqWSAxZPb8Pl8tFTUEImMOPeeq04MdGhoiPM+ez5jh3cBYAkiiXSG5ccHCVTUk0i0cudT63EHPEyZMon2dueCqNHRccrLK1FUEZ/Pw8yZM2k/2EtnRzdeT7BIXYeCJWiqGzw+opFkkXarqKigv7+fwYiTtBkDTpg9m9dfehmvz2nXBE0HYCUzTJ48mbaaWmLxMWrm1BBwO1S6y+Vi9qQKnn56dxEIGDogeCidOg/ZJXHb44/TpqY5Z/VMNr/xLG1Bgb7eHdTXNtDVlySfT/Hlr53HSZcu4N6bnuLk81p45c/f4O33DpBLP8r3v3c5JSEfJ5xYDa4yTjxvCb36T/gg0UTU8zKvrtuCJyWw5ZlneOyB+7EFFa9fZDCa5VDHYbBsBNu5vyJfmBtedwkf7B6mNwYXLF9ArVvFzAm8sGkrAX8Jlq0hiB6WX3gV3d3d9I4LnLBkOW8/9SfOnlVDZdsM/vb4s9zz+9tQJQnddsIeF35uNYx388gdm7jtq6dgRaeQ6v0HUmY7s1fOwxUc49a7L4H0PNb3PsGGgS/SqR7P1tjDjHfs57HXXud3L73E+2vfwURhelUJZmyMTNLxfi3jyMEYFCxG0gJ79vbQNruZBY3NtEybxh33P0xTQxNb+iLotoZtySw48zIi0TgDURvFb/Lc/b9n9YrFrH/vbYx8ni9f+wL3//E36BZ89hNLueJbF/LIj77Hhact5Pfidfz29pfo67wLK57m5t99m2R6lJwuYrsHWPrxFfxt/3c58Qadv/38F2zoGOMXy06ltNrJmzdFndXHn8xdv/01gqeanJzDzDkiM7/mYmg4RVx2s2z6FOaH4OZ7nyWhOHMvm8xiVkkYKJROm8PcmafQO7CHex96louW1rNkWgWxmMbB9l5GJJFSv8pQPI0oihzoWQ+Y/O3n3+C3Pz8fa3QFG998gE9+ei5Lly1A8Yps2riHC86ZxmVfOZvH1i7lnG9/ma3JMbY+9ScaG5v5/Pd/RmV5GWPJDBomQX+Ida+9g8uySdoq2Bamlaenu4vdw5MZMGBqfQVzGlRuuuJivnP3g9QEIZqKEaxuQRRUph9/FqPDSbzRJNaW3Xz83JMRxBw720fYu3cvF1+0GtOIIkkattHD1CUhGvxTWDgrxCev+yJ1njMZ7f8T+sgI55zxKQbGPuDVV9qpbYiTcrXwqR8PsK5zG889/mPOnb+Ua9umM++slTx11z3FubNs4Qoa69tI2feDUMjOsWVS6TH6Bw7z0MtvYpljzK1Q+Pqll3HHk49APoYcqMZCwtBlpi9ejpHK0DWUx+22GNi2gSsvPoU///lpBEnH41bJRxPkdZOR6A5gkNuvvZHjl03jrw/9nicfeYGU+Qe+/JVPsPAkian9YXDXc8bqq/n7xtnsGzuVLel3KYnvI7a/m9+uf4s777wTj9tHztSxEVm5ZC4hj8KcuUt4Ye8/AIeZDIsGGYI8s+U1bvz8p+jcvYd3OrowRQ2XomILTnpyJpf9X8/3/wgMTGutpaS6BDvsJRDyYmUFZje3clBP0btuLeGGcupmTiavirz58gZMSyMeNfCGbAL+AIFAPYlEjJKSEHk9i6D5iMTi1AVLiMbjPPfyy/T1j1Le6HhTBtCRSACF64gjR8djd3T2Qmfvf/u8n1sxu/i1bQk89MpBTr68Et0ySQ4nmNXSzLcbqtg6lmVkoJvh+BD+wSDLTzyR8USc0vIW3tuwmdHRURTNuSu+Z3AASbaJx9NU1jaQ1x0EFwwGMeNJhiMxNu3chS8cZu06JyWua2zCY05+5BmTiTT9u/Ye+UFn/1G/P/TBTiZPLwHbUZ5m0kfTXaZpomeSzF8yj3Xr1gEwONzBicsXkEqlqKqqYvP2Q0SjUQC8/pBzeUnASUMrKSmhvCTo3BGeSFFZWUs6q/Psqy8xns3x5voNqALsHh4+8qbxj7Zjw4H2o77f2TN01Pf1Pg2/p1AMyg0bt+1n6wBMrTtISSjAyZP9HDdvOhl9hOUrlhIKhejs6Ea0JMycQFPTbF5/cy2xSK6QA5+nrKyEVM4gVBYgFh8jXKh219PTgzdYRu9AhJ6+Qd7fta8YO167Y4fzQNGPNIHBrMHgjj3F77d3Hd2GVa1NNLYcSTsUUJxbBUtLGOk7jKesjun1KeIdo4wNDlOrpShrbOMLX/sy3/vuT9h0cAPkuoE0l33mbMxsDnf5G6DfzK4tg7isz/DAunfYvjFBa9s6ppxwAZSbPHrndzj5wkupWRokqee4fnIDt93yS+ZMa6W5uZENXYNE0zFUM0BGKtR0sJ3bLM//xGdIJpNcd+ONbF27ltrWempLyzHzW/H4/EU2IZazET0h9vXtZWjXGyytljGio3TuXMfUkAupvIZzLvsM3/rWTQwm1gA9UOLlExecxid/PB0yB1m/4QZuvCFPb7/AN775Cj/8yal8+brFDPV9hXmt9QgonHr+1fSteYmVvkq6Du9i967thMQsy09Zwd6eGHc/+iCC8iEtgWlxzqWXURoKc903JrPhg+1Yghs1KyNiAznGEzGC/jqwZdIpCSuns298iL7xA5y7rI6hvm7m1js6lwtPWcYrjz1PoHyY+mkeIMInv/V5Ot7dxnEzKlm0ZAOtLS52ji4kkgnyyANb+Mr1i9m8bxql9asoLfHQmxT4wm13MH6gmznBc3nt/Q9oiw/RsWMTJRUlTGuZxzdu+TWKpTh1GWyRZctXM6aUMXPBBWzcM4g7lwcMFMsBAxkx79R6MEVUStjYuR1PPoenRGWsawveTJSm8nKscR/N4Xruu+8+5h63kP7INshsBneAS779VS7BhFwHTz/3S37xk/3ceec2vnfrV9iyy0AU7qF83n309q/h7nu/xdXf/Rp1S1cwtWEaJ1TAW+9u5Ky5c/A3lPHupm3IssyICZKUIq/b+PwhLvjYpfgCZZx2aT2x0W6efHknCyfV47JFWltqkCyZvGlh2aALKoaVpCsrsaK1hGRikJwtEJR7qfEqPHrXLzl91ScZGz3MYPZZMHrxzAjz3J9uZs3+R7loxUVMmVHCVRd0cttvs5x6/mO4pdvZ1JGlP9nMyMiL1M9azOe+dSsHDx5EbWjH43dxwsoluKUc119/PY8+/SLdJ55IRjySnWGYWb5z0zdIJBIoPoXlZeVs3NpB2+KTUR9/ktSgiayYmLoCUoCx8RxZK8G4kSW/ewv333oDf3rwUc4/rpma6jrsljnc/cfbGR7ZCXQDNldfdwG+qR6Ujr9QO/1Odu1ox6pq4g+/2EnYtZzf3nkRx595O/FMhjefeYSTTjqJ7j1Ras9ewCQ1zbe+/VUsO4NaCE20Nc3g1U2HePTRF5EFkazlsN2Xf+YGxsfH+fyXJqHERqlrVvH2y4x3j6BpGlldJJn59zQU/1GY4MXNffzx8bV87cd3sadnmH379rFz506alQDBaJ5QVMcjKrz23N8ZHutgZKyHZHqUw4cPc+DAARoaGtB1nVTKSZebqAmuqiovvfQS7e3teMtLeG3NO//JY/23lkg4eZkTaXqXr2ohGAqh6zqdnZ2ko0k8gkxzRSkpw8Dtdip0dXV1MX36dNatW1ek5JLJJB0dHWSzWXw+n3NbVSZVpIJN00RSVF58+SUAFM39vzzdv2eNjY3/4x3UAF/5ylcoKSmhvr6+GPPfs2cPzc3NvPfee/T09JBOp0mn03R3dzMwMEBJSYlTl6AgnJq4lwFg165dbN++vfi+bW1t/4/bkcs5h7imOZTjggVTQZXY2Zfmnd2DvLJpiPopUznhhBN47OEHefOlf7D8+IWkExFcisSWLVuIjI5h6jkkwS4e+qOjo1RUVBQrNcqFK5orCuVMt+7YQ07X2bR37//+kP+LlZaWFlmEiVLR6DKyGKB60glMW7yaJ3bnWNMjs7Mjxogps7t/nGheJzk+wPN//CnGYBcQwD9tLt+66UekB2Kc8cmHSEZOIqgdx0Xn+bjjj16+8N0f4S6/hHf+9gRaOMA1X7qQtz9Yy5wli9jSeQC7rhSX36lpril+Zs1YcFRIwrZtZs+eXaRQM0Y5Ky/9KTFtAblQC4898TT57JFqeyY2kktzrmP2VfPGqIfNYzYdQxbB6kbuvO9ZXvv7X5gz2Uv64AeQSQIWUtgPORPc1YwcvpEzll/F8fM/wzvvzOaz1yiMitdw4SeuZHDHgAOqw346hvv5+FWfwlNRwl/ffImTzjyN3bt3c8kll7B8+XIuueSSo/rdH3BhC0m27B9k0YrPczhTx5CrjO9+5zcQrCCTBkwJRfMXq1FqmkY+3MqLI5VsMcsYjCQIlFfz+9/fzfVf+TjXfuJCxnbtBCMNLjevv/46hq5z409/zSO/DtCx28PD93yL5ae+xcae5/B4vsjddz3Itm3bimuytraWESuLp7aCKUvm88lPfpKmpiYOHTrE1VdfzRVXOKWaJ1KsS0pKmD59OsHqZbTNu4grrv1RMcSo6zoulxO20TSN5uZmbNsmbcm8Eylj3ZDGwku+zkDGSZvev38/wVLY9cZjkEwCJphRyERAK6Eh/GkuOe8qrrj0cspLn+P6L4/hqzyZw/t3YqejHHfcccydO5fe3l78TTV4G6oYI4ertoyh/jwBXz0zpp2ApmnF0rpLliwhGo0W65pMW3Axg/EK9vR4+P6P7ubss8+mrKysKCScqKhomiaP7dF54oBN/fJPsL87QywX5OknXscSB6lpgMTevTA4CMB1110HwJNv3891F3Xy6cuuJjEwh/Wvz2FNx3rK637A/fffz1//+ldKSkqYPXs2tbW1fO1rX6O1tZUbb7yRuro69u/fj6IodHV1MWPGDLLZbHGPmAizJSIumusXszfTyiv/2MIjf3qZrVu38vOf/9wJN9g2+XweT7AWHR8DKTjvEz/hrW2DzFmyhPHUINs/eIve7fsAmXTXHkAmOHs2v7zhegRB4NyLHkWMXYBmLmXeomZWXHSIz3/nIfZHZNrb25k7dy7Lli2jt7eXyZMnc99993HLLbcwOjrK9ddfz+TJk5kxYwbd3d3Mnj27KKBcvXo1PT09hEIhakpO5uBQHUrJyVx2yRfJmo7w1ZlPR4DQ/2T/ERjIiiIjQLjSzfTmGTRPmo4vVM47mzdy7xsvcuu99xKNjfKjW3/OrJZy9MQhqkJ5Fs2qZVpzkFRkOx51mLDHBsvGzMepLC3h3c076B6N4fb4iCcTpGwn+7M8/FG1839iei5/lCLatm20QADJ5+bgYCfbdm/H1m1OXXYCN193HRecuoJ5s1tQvALrPlhLXaiMlooaSkvLCYV8+P1uqss8tDaUUV3mwa2IRQ1FZWUlm7ZvL8akthc8zCktzf+P2uDxqqiaM0yG4aSOXXvlapbOa6C5Kk+F3yQf66LUY3L6SfO46LzTWbViES2NZbz7zlpamiczvXUykye10tRYT2tTG61NbYS8Aq1N5ZQEZVKJJAN9/SiKm+6RQd5YtwZBMIlEnNTO9kPtVJd/NDb2n5iVTxY3FcniI+k9eeCZp9bw5ptvcsF55zF3/kJee3MfpQ0zyeHmlp/cxt5d66muz5PTI2iqzuTJk5nUXIehD+D1JEklc+RMEBQXyVSWDVs2M5YYJZaIYwIVQT8+5d8vz/nPZipxvPKR1EFRskCMMdi+m7GhCF39SY4786s0L7+Yvzz5Jq1LLkCbdjpf+vKNPPmnm1h1chu7DyR54ck3yQ2Ncs75l+MJLOPgVoFpc06ge2SAWTP+i+XH7+GXP3+D6YEcq+fWYcciVJhpnvr5Wdx+0ydAdvPGmq1IhFhS10zn9idYNtuFRoSgapNPjlNdFeb4JfPYvvklug5uwOsKsG3nYQylhJRVw70PvslQzOShh+930mNzEuPJCAYSWlk9VE9lyFXFgBhin3c5Z3/hG9z/6F3c/NOLePXt1/n+jb/gT3e9BGX1dG46wOuPxDnnk1/je7d9j/G0i4G+z7Nk+Rbef+452l9+hqWtZTzzwKNc2tzOvT+7hLc3vE3aErn80s+THMrxqdVn0LH5SVa0qvRveBGvkcGID/H8Xx6kvXM/Tz/+OCuXXUx75yjhqimMjyjs3j/Kgb1jxHuHiCcH0dwmsqwynDRI40LylJMLtIGvltHw2ezwn8xnv/sL7rv3Nm7+xfn86d7H+dtDG4gfjnPNTd9BbjqVz130C447dREpMcrXv7qVb96Q58tf3Uv/+tf5w5cu5bQFAWqza5mbf5W//OnbbHp/K/2bujhl8WkoPT1ctnouTYE4Tekt7HjvGdxinlKfzHHzp3Nwz/vERg8yOraVtzduAD1Afc000pkID9x/N/fdcTPgbOKKUM3AeBRb8eApbSLpr+OFTQfJzfoE8bZzGIgO8cCvPkZTs4s173Wy+61esDX+8sfH+eN3n6Ft6inMWbqIQHUNMxoeZmZTOzd/9XHKU0OU5NN856zZLBl6kJ9cMZ+3336JDWt3Eu9MsHDOCi4/4wRu/eGF6PG1fP/SFVQIKrKdRMwkkHMpfO4o4UCKVGIDNY0NJOUw+3fspms4yZtvv0tpuB6sPIYgYcluRJcfwi0k5HJ+/5dXMaZ/Buafx22PPIet5Xn0ocvZu3Mb13zzbta/sBFbbaRz/Q7eeSHNm+s2suCUk6mZNpcbvxPnm9esYXz/e9xxwzWMbnyHdPuLLFXfpu+dh9i6ZwMv/GMNvb0ZJgemUaWI/OW+W5hUq9Ck6px7+mm4RYGQIiArOeKJAarDMXrHXeCroqyyik1bt/GXV97iv+58CMnlAtOAVBK37MFAw6w5AXHaqXSJU7jtmQGe3FnBktMv5c9P/57LzpjGhjWbWDDzXDJDKRYsOp3unhSRHlh+5nkcTnex6vRfcdLSN7j1G3exqsbFSTUBOte8ize1kz9+YxkHNz7P1CmzeXvNZh77y9OUKR58ts2mte+xasFkXNlBnnviL7gMk+xolOGRQSzboGO0i4ZpJzGadCEbQdraFqAFq9i4ceO/fVGRYP8buUnxeLwolPADlSKUuMGUHJW+IcD0SZNpmjqPgCfA6tWrsYQ4XtXF888/z5/uf4TaWhdNJSV4AzqaXEm4rp7y1ins2LaPdTt3UlFRwTvvbSX2T08zfepk9uw78G9u10dMAi5fMgXNnStSoYZhUBKNI1g2JSUlVPjKOOWU09i9rwOXorJp3y7CZaXIXj+CR6NpzlQCgQA5WSEyGnEUyPEMM2fORJRdbN+yHcMSSSQdQdefn/wbmmqzdWcfH746yaepJHP5f/mc/5udNb2Z2kYNIW84dQzyKV58vQuv5NS5CPh9NLQ1sGh+HeFwGLdXJxhocaprKToejwe/rxyfvxXLsugb3IthGBzuGuWzn7uKdevWER93rjI+0N7JBzu3YVkWr776MnGzeOcQElBTX0NPT///9Lj/rV26sImycsURt1gOU3DfWx0UnAhabJN5M6fxtR98habWFn5z+y+RJInxMRXLJTJ1Uj0L5s6iuamB8ZFRtmzZxKOPPsqs2dNYsXIxA/0jKEolssvLu+++S2lVC1u3b2Pn/h3E0nkmEszcIkgulWT6Px+Ps2fX01RXiWhEcblcGIbBr99KM715ARExSigUIk+e5FiEgKiihdxkRQ+LKhS+/82Z6HmJmUu/SgYNLzA8aPH8Uz9lzuwGsmmZyqpSkmYeVSojTzvzK1p49eltNNaXMGVxK5RN5uOX3oQWhjltJ5Ac7qHam2DDa4/Q0NBAp6WQtRoJloTZtn2jw4Z97JNs27qHmSeeSteBnWhmiuH+AabPaCYyMMqF11/D6tWraTrhSsqbS9i5/j28mopu5jnrzFN47+3txDM5Rg7v5O5vfoqqGoHTPnYl697dzpsbR6htmMTI4Rc5fl4J/d0WNfWTCJfZdB5sp7R5JlPKotx8471ceNE5LF1xEpZdznsbt/Pu3h5OPvlkHn/wIa4+43hee/KHdIzm8Hg85ANhhjN+Wuoms2vbBnxVpSCWMqlxFYlcnMiud8E1znnnn8PoeJKW2dNBCXDOOedQu/A8qhpr8Xq9yLk827ZtQ8uO4/KVMiLkCSb7+e1N53DiwnJ8ky8H3Oi4EHPw/Cu/o8odIBgIk7N1cpILAQ2XlUEfaad9x24WNE1h1659DPmnczBeQcCbYNfm9SQO76alXkYZ76GhsQIz1MDOiIJpOmm+YV8AQ5vMG2+8wdLFS7ClIb5wySr6OhPcfd8tnPuJa2mauxRyeT5z489oW3wa3pDCtm3bqJB1cslhSktLiWYlZsxbTGz93Xz/86ex/IrPYufCjOeqKA2obN+5hf2HnyLVYTD/uMXOJVzROAF/GdnoG7gjYbKZPBVlbZx/yeVccvVXSCtVdHd3M621jmj7ZkYPPk9reS0zZsxgpw49iSCqLPHVa2/g1VdfZcvWLB6PB0OLkE4MUqJEOXnpSgYjMV5fs4Frv/QtTj/9ROZecC3pWMSpTKi5GB4epq48RO9Ynmw2S7k8zl/vuZbW0iFCkz4ONGNm4c9/foann7ybb35jNZvXjXDq2SeTyWTIZtwokSFmLRZ48oGNlJaWcvpp80lqVVz9nUeorChxmIn+QWYGRzDFPsYO9BAOh9mjB7BK2shmsyyeP4eH/vIgqVSKk5YsRio/j3z/HszhNfj9fnyTFjJ//nx01c2pK86kafIUCFeiBkPI6OQzWWKDI4RrWwmWVuBJrOWmzyzlzNXTILSaw9EA9SGVZ56812F9YkMOm1RaQiqmkM/nqQ7H6N+7k+SIhKik+f+0995BcpVnt+9vp85pUk9OGoVRDgiUkVACTJIAiWwwJhhsA8YGExzA2CRjbMAEYZIEJgchQGQkIQTKOc1ocg49M53jDuePPRrM/T4f23XPrTp1v1lVXdU10xrt1O/7hPWsdcKMYsKWAo4FPHz/J7+mwO3g7NNPY5IcpL/pQ3NM05FFKpXCd+I1vPDCGp57bjUP/vlPeL1erIkQuxut5BYmsei9FOaXs23rHn50852cd965xCOmDsv/rsr8HwUDZ502CVWNE2lP0NfcDjrY7TZO+97phNUMalommjTHqCrLizlz8QIKCgoYCPWjKAp7D9dQXZJPTU0NmYxGc1crH3/8MXq8H6vVSkVZDnabm4ShsHn/QVoC+nd1BP4DTMnNZub4QpKZgOmgppps/B27A8yaVMycMVPxu514XG56g0GS0TRbDuxjzPxZ3HDTzax54QU6OjoYOXIEJ5xo2oeGEiGS0SRJNUkqqbFv7xEaGhrIZDJYLBZyCrOJxk1+w8Mvfca/16n53+PU6hwqKysJRrtNeVpF4vkPjnDlWQsIdJobc2tjLdMnjURVVcrKq+gPm0Q/u2zKWxbk53D+eRcOauSbkwmHDh1i3LgJtLe309DSQW9vLzn5RThc5mx7d08/r7zyCjvbzb8l8d8bKf07yEFg2YLRaLJptIRmGj1FHT6cg+zjUHczd9z2C5DMoHNEWTEdHaZE8RvrNpFIZdDVJNWTTuTkOSdSWeSnP2xaUWd77NTU1PPFF1+wZctmCgr8aGqSHL+PObPn89ia59l52OQ8ZP7pUf5rrDihHJ/Ph6olzWBAi/O3r1Q83mIKJo/DsCt4tBg133yMIAhYZJOxnu0sRlf38cZrH9Bx9CiO7GJO/t45vP7CPdQd3sHTrx5i7ty5FJWU8PJLL6HrOp+99xTj88Mcqk2wYf0xcnNzOfG08VSNKOSE+eej9bVTXVLBuecu4+X1HxNNtLFo5gLe+qqRtq4gyXg/oihiczuZOWEKP756JTWfvoVVMtjeHyXb4iet2Jg4by4//elPya5aQsX0xaixbhqP7qI4x0bj7h0oFgeaEUMUNJJxHYvRyf5dvXRouRzYvY/LV07m64//wIVX/4rC/Gmcv/IK/vSnP4GgY1N0jm57Bpsk8Mc/vs/s8dN4cPVfeXf9u1z942vo7wsTOLCfMr+POfNOZufRDlpqDnLhqZO56/X9/OjmO3n4zw/i9XpxWC088PMfEOpsJs+RzcYjR+kPBRk1agr7m+uYe8r3uOrKK6mYfDYtvX2MGDECr9eLy+XiL7dcwNkrziORSDCqajKfbXiD0xedzK13v41VKmTN326nPDtDfmmKh/76GtWjZvHXR55k7pKT0HUdJSPw6eobsFgd7NshkJ+fT8EkO8XFxaz44Z2kArWkOvqoqPCx8tzruf3B33Pvb35EbzDI4+814ff7aTx0kBmTx3PhhRei9x7g8DcbsJfMYs/RA+zZs4cR4yeyaOU5OIQsbr3zUYqnzCct6bjdbir9Lq5ZfhI//cEKuqKQTvcTDhjk5ce5+1er6M+MZOfXGygvlThrcT4//ckt4CxkytiT2bp1KxnNNBT6/tnT+OHpI/lydztVI5dy4x2/5qNPn+ekM3/MrFmz+OqDd6j0wLTxE5GKR3Ho8D7OP30873zeSFQqo+HgTkRRZOLEiSxevJgKTwq/nGDdFwfYdfQYJ52ykM6eXhYuOZPLv/99Cqadjb/MvA9et8xPFlXxy9/eS0u/yf3Kc3ppaWkhP8/Kr+5db/qkpAKUl5cztrKeSy6/m6qqKu753X0sX74cXdeZPMLDh6/cC7YcHrz7Ha68+Dxu/v2trHn1VZZ9/0ZWrlzJH395DT+9YAUdHR0c6w7TrcZZMHsGDX1e9u7dS2vLMQQxTV5eHmcvPJXKykoKLSEefOpFXC4Xp8xcSr9DoHrMZC675hZKS0ux+EeZE2NSjOamYwS7mrBZHYiCTpZTweNIc+utt5IWJ/DJhx/Q1tJAgaudjN7H7kN9zJgxg0gwzt69ewHY9OFfqbSEeeL5jYweMZun/vYYP/jppcyfP58Zp1+CL2Pqpdx32zVEu0O8t3sbA8EYs2bN4qMdTdx8w6954MG7aeto4De330l340GK/Fbqdx3iYNcAp561jG27dzJp5inccccdpOPRfxkM/EcEwvc+MslXVuCum36ILFvIZDKUlZWRn+VH0zQONbWyf/9+Gju6eOqVtYwbN45JVcWmZzw6HcE09pxSelo6CKYstA/EkDJQku1m7ZY2YpjEQStgE8GrgM8LJSXFpqfzsRaOBf/1sebY7Dy16dB/+bkdSB5o55vDHfgkAb/NRrOqM3HKVH523x8JRhOseX8jm4+0oqkStX0NfLb9CIlIP7u2b8PjtuNwyrhdOUyaNIklCxfx9ddfsf7DT7FYIZkxS96XnDqKVz4+hh0oLnIwd+5curq62LlzP13/niAUAO19CT4+uvO//Py59zYOvf/g8fto7e7DMExxneLiYkKhEBu37qKmpobOlhS7734IQRBIDXTicrnwuh001x6jvLycUSV+Cn0OfnfPn7A6BTweD0ebQ/j9DlyYtMc8fzYLT5qAx+Nh69at7G0I/Jdj+mcYk53Psxtr/unv7cAVFy6jJ5Bh7IR8PvvsM/bsO4DN5iIvL4+l31vMjh07aKhv4VBNHU1t7Zw4dRJOhwWPTSEczaWla4CRo8dhc9p46/XXkCSV1g6ZLV9vpaC8iMlVTppaY4wdP4rSomLe/HAj6f8wWtt2sJnWVDPfiZ6tVYQjbkZGVdRgkoweRERFQEAwZAxNpzupU7v7AG+8+hnnXH49oSgIwL0PrzE9N3SFz778jLO+dwaSJKDrOqefdTF7vvgTo0r9+M6o4uZ7HuTCm+eDrZzgQIbybAuFziD+LCutm3fz66d/yQ13/o2/PvIiLX1N3PzzX+Fw2Ah1d7BbT/Hr2w9xUnkevc0dNJBFYbnOZVddw5Ha/UiaTH+fQV7rfmzuUmafdAK/vWYFCxbNIZUIISkOsFn401N/5Vc/u4R9tUc46dR5TB05mQVnf4/GXRsR5EIa27t56C8Pogs6siCT0FV6wjLWZANFOVbe/HgdlSVFpIMRNm3ayYrlP6K9ZQt5uV4WLDyJ5566kT/88edcef8LfLRhC++99x6RSMTsUXuzuenep5hdlgs99RxJiehyCSMmWikpKCEc7AZUKovn41aOIRthEh0BguohFp2+GklSEYC+gQjTTpxBMtBHKi0xa4nE4rkP8uGnn/ODH/wA3bCy++Burr3+ShIxsFrtoOuEM0W4g3uxKBYuv+4B9jZvZ8VFFxG3+egORDhzhMroGWP54MX1ZJFm+U/+wtKlS7nrV7dw5ZVX0hcI0R/NUNPVzzhfiufe28hff30/vdEMkiuHG37+MzZv3oxcIDB19jy2flXLqCkjiXZ2s33XJnatewabxY2kh5DsTlateZLbb1pBTnYe1128EH62EA3Iys7F4/GjBhJ8sfljZs6cydat2wF4653PWDGjmHknzeDzTV/y+mtv4nW48BVVUjJ6IkXbP+J7Y1N0xzSumz6dr3IK+eGv/8zatWvYt7+Vx4/sIpVKsvXAYcJ6mnGylb5YM1UVJ1I2ZgaNLa1MnjyZru5mIEO0XaVAGmCguZeQoHL1J2/Q03oUn88HQFLLpWSkh3h/DamYwZ03nwHAxm+aOP/Cq0hoKrsO1HDtdT9BUmyk4xl2HWukoWcArx7DKh3h/Y838OSTa8BTjmERufXXtzMvX6KzdS8DPRbCDe34Sv088LfnGAgYnHvuuezY0UZeYTWBoMj7b3/I3IWF7GjqJOmpwJ2XR9b4UcTa2rDbTLEsq9WKMCiqlxwI4xQUomjYNbPemBEK2LTpXa655hqefO5aLr9gDingicce54EHHgBB4Ysvd3DJxZfxza4D5uizw0s02c1V167kg3cO0J1KM33OVDQ5TVS3kkHjlOI0fX19bPnyCLW9QVoaGlm85AzOP386511wGhaLhcKSsdx298P85KJT6K+tQSZCwlnG5zuOcd1VV9Hc2omR+a8OrP8d/uM2AcD15y0lHo9z1VXXYLfbcTqdOGTTKOe19z/Ebreji1aam9tIpVJ4XQ6Ki4vJcjswNJ3c3FyaWzro7u/hxZeeNUUVrDqxEPT8m6mbB3A6wJ8tUFRURFluMRsPHqGmxczMTyv2801vD840WAUYMCDHCvWD1yXPJuExNKxWiQ0bNjEQChIOhwkEoxyuPWZmgBmRhqZm4nFTknT0qErTeMJiIZOI4HA4aGpq4LV336S9vR23Q0bCoKc3jWiA1SkhO6309sXx+Sz09aUZVLolg0nYGF/kYOrUqQiCxOc7jtLW3fOd8zxOQ5Qw590njitl0+HWod+/8swqWndv5ozlK7BarYRCIZMYE4lwuKEVj8dDMBilpqUfVVXxuyRGjhyJw2YareTk5NDc1kpPTw+rVj1JNjFkGRKYegOySyHL4SIQCNAeShOLQciAbAkuuGApT778yb+8V6eWj2JL8zFkwCKAbkBhQS4Hur4NKL7+4C2URITOnm7y8/PJz88HZIqKivh6xzYaGxsJRVSC0QT9gT5EVKoqK8jLzULNMOhEB8eO7efvL67GbVNBttLZH6c/aTrNaYPX02U1teJDCUgAU0bkMm7SNN577xMi/6T8IWMGqY7BlyxA+fgxbDsYpTfexvdOu4Z0Oo3HpbNv70cAWGRTVOVQfTcLZxaipT28u2EPCxaczPgRZdQ3H0MQBJIxU71OESUkJEKhEJJdZM/Hq/G5wghyCVMWXM45F/2CWKKP7Vs+pUJv4JyZuXj81fxidRN5/iKaGndgEDdbL4IDi8VCQjJwO4q54arb2brleT55dz1jZpxOmddObrHEhi8/obkxwJoPYvz2dzfidejE+wLEgvUEwx0IoobVYqe7vZXb7lnD35+9GYtUyMrLrqerL8DWT18lmjTrd6m0qWuRl5dHSWEJBw/XEWk/zOFtT+N2eUnaSrn81peZOHEiTjnD22tf5pz8Vk49eTIt/VZufWInpTMWcHjbh8iy6QGgC6JpzSt6qRgxkalTS+g92Mxbn73Ob+56kgM712Kz2Th5ySKu+9FP+OszQT755FmaWndjqDLBSBOx/gYkScVisXBgXxO/v+9B3nzpEaoql7Bh3zYO7t3OmUunm5oaGXMES9ZFZJuLcePGsWX3Dsq8EVY/cBVJKZfzr/g9l/3sCRRF4ciuLciJ/Zzs6eKEMWM5EjO4+7UGyop91NXVkdIMs0xu92BgYc5JKxg7JR8p3MVb739EoLuRNWvW8OQzj5OTk8Po6gm8+G47e79+lHFzrkPV0mQJYQYCbYRjLciGwIpLr6OyfDJL5ns5f9l1PP70OyxZvBiEDiqqRpjeCYNtSafTiSQp9PT0UOA1eOHBS8hkMlSNOY9fPvYJJaMnoesxjh07Rt/+l7hhqR9VKOTuZ3cjV44j0NxgqlKqceRB065Y3EF50QwWLx1HJtbOiy98wLJlJxNN9TJx4kTaujp57pnnaewwWH7O1eb6JWr0DOwn2tc0ZGDW3N5BfVOAmVOKsWdNYenSpbzz1jsISi9+VzbhpDkSLOmwePFiqsdM4NmnnuGzNx7AJ4Ww2Wys/ryRXR2yuV4HetmzZw+nVbRRXmwQ7nPwx3U1uCsK6a0PoJMc9PiQkSw+Dh06xMQpk1mx/DqO7tvAF18eYP369Tz55M0IgsDMmSdy++2/Yvn5l9PeZTrYGrqVWHyA9tb92CRzDd2yt5mlc6tQVZV7H32Lq664hnXrX+CKC88fknnXNA23yzukkGqkIjRtW42uamhpOxfc8BTjZy9AFEU2bnqLvV9v5i8/nIdNiiBZcnlozQaMwqnE0kliAz1D+hKG6KWsrIxJ0xZiJHp5/oXnOfWMRVitVpyWBFu376anp4do9F9XBv7jYEABnvjtrabjmGjKNWb53FRWVeHxePC6TT3kTCZDRk0wMDDArr21HDx4kIcevJePPnwXUXCQl5fHx19t5oknH8dmGbR1dYk09ab/X5WksxUY5QOPYmX24jO5e81bgLmAJzE9JWyYvfB3Hv8L0VSc9g6zrzR58mQsFosp1+nwkUqliMfjtLe3U1ffytGjtXg9Fqqrq/FnZ+HNyWXn7n3E0imeffZZItF+Mgnw+y009qTJcYn0RP/79PN4xp1vA7ssIRoadotC30CG0ODxnjy+Cl9JAes+3kKEQfEbvp2KcwFdLfXs2/Yl/f1B+vv7cWdnUVxcbJoqSU6zZ4VOKNBPc3MzB4820tzczJjqcqZNmohhGOQVlvHmm2/y3N9fJJ2Oo+s6RXleDraFKPDIdIXVoXt/PIhRMA3I/p3O+7Licj5obx7aTJXBV+/g7z3A+rWvkO2wEIoniQRDpJMpvF4vTqcTwe5EkiRsVhcOh4N4PE5fXx/btm2jpaWFRQtPxtA0bI4cduzbyZPPrEJNmvahMilq+zSyXDAwOBEpDr40vvUdLMvxYLc70bQMdZ3/tepxgtPCrlgaYfAeHBdtjdmLueuuu8jx5/H0qjUE+rpIxLtJpoM4LOA2Kli3fSdzpuThcnoQXJW4HLmEB9pAUBk/fjz7d32JqocwdBvZHj8DA33k5nmoqanh9bff5eG/vcysE0+no8v0yTi49TOibbuIp/PRs6ajuLPwKEn27XiDMaW57D50GNnmNHUeBB8jKqs5bflN7K1tw+v1Euxo4vYrx/Phl+uxKBX84YFbuPPu+00fej2LZ595nv6BHuLxLgQpil30sutAE2teW8vKc6pZuvAy7N5yND1GOBxGQh30pw8jGFBdXc3ePYexWEXOP/98Xn3+aSbNWcLYqacMTWO4vVYi9Ud468WH8FSdhmIvwO6rQLbGqd/6Gsm0KbiiCVY8bh+GmsXKi24k4y7FYXPSc6yOU6ZZOXToAwxbAWUVo7nx5st49NHnSWZUtn9dx56Du0kmk4RD9bjkNGg5bKo5yoJJY7DKcTJyBR5nGdFEG4aaRFEUEtGuIaKuLOSiGgF6e3spKiqio6WJMbPO48ILLyQYjhKPxxlXVcmMqhTnnL0ca9FSTpy6hN5IApvaS03zWrSwZnrY23wEkwa/vX01u4/1UVhYSKklwN+e+SVXrZxDNGPhlGU/5uC+LXQGevD7/VjkbJ544gkyGZFEop94uhmrbueRZ94hGArwzCN30tvbi9U5DptdNiWhxSTZ2dl0t9WApmO1WrF4/PSFatn44RYuvPBUivwTqZ65Eo/HQ1dvG3FDJty4nyObn8U3opL+yEgKKqYjSRItB9eRVxyn8VAbksPcA2IpBx77SC648ma6evoZXVaON11HUW4jxzoNIskUf37oIR57ahWxpE5/fz9r135GKpViIHAU56D/wle7Wti7fzs/uuIMrO4JuN1uNC02aMucJtRTbwaCmMI6e/bXIuhxeru7+eUtP+OVF7/gkpvupKuvk3A4jE0Ps3HjRtKtO8ipXkAi4qVw5AmmFsPeZ8kkzeopsgOL7MNut6MmO1hx7Uu0tPdSWFJAhSNFS9MG5syZQzSV4JofXM7jT60iktBZt24d3T1prIpEW/NOHBYRn8/Htr2HqCz24PP50JRq3B47wVAAQ40zdepU9uz6wpywMETGTZrKvn37qK4oprOzkztuvYcNB5rxeDwMBHspKyvjref/QoE7xeHDdRRmjSXhmcbEE2cQ7wtyrOk9gj116JopkiZb8jjjjDNwepZgSCJOu5Wy7ATL5+Xw2Muv4M4u4f777yMW7vo/2yZwDy6gf/jDg7z11qsE4wny8/OxWWW6e3vZvn07Trtp2yuKIhar6QeQl5fHggULeO2115gytRJJcBIJZ6ioqCCug0uW6YmmyKhQ5IVkEiIZmDSpiuocG4LNb2p/y066u7uJ90bxes0xoqNNdYyqKkPJ6DR3tDGyqhg1pVLb2M2na95iBCAhICgGmYw5BWoZ3JS+2bWFyy+7jHmzTiAYidPV08OBAwfIzc1FUVz4vE7TItRmo2pkOaNGVyGLhvlFlWT6ggOcdNI0UrrB008/RThhXh9bxsDvM2feC70G31s6A5kMucXT2LVrFxZBZO+eXZTn+HHa7UQiIfKLS4hHY4hZCcqsdlKqzsH2LrTmZrIks7rhESzoGZUg+pDX1owZM9jy+Xr6+szFUxVMje9QKIShKSiKgs3txGN34nK5mDhxIiNHjiQW78Pr9Q5Zs86dO5e//m0VmqaT0MHaF2JkrpU0EhZUliycTZbbHAnV1Rysso2Ojg4au7rx+/240/B5zRHmTJsEwWYEQcDnyMI9IHKorR6AkYBVkYlZzFFPkrpZLQB+dMWl9AY12lt2EQqFUEQJAyfbt2+nP9qColhxOtxDxkepVIq8nGz8fj8jR42hv7+fUCjGiBEjiEajCJpOKBbH64Qcj5ldRqJRTls6nyK3jbQumJ8TBI4cOUJeYSmqqlJfX8+CE6dgj6SHRnicTifHWhsQY2myJLALYLebY3g18RCPPf4AuuHg0kuu4tOPvsFuy9DRFQRMDX9ftjleJgoycU371idD0Ljlllu4/OKvEAwBWVH46IOvmDG3jEAgzbhx44jGYMH8s0BQqaurI7/AJBG98sidXHbbeiwlUwhFWiksLOSAKFJXV8ecOXPYtmuv+Tyo0Bvo5IW/38+ShVeSSgRxOBzs37/f5MRUjUSWZf785z+b1yicorTiJLyih3CiE4shYbfbSafNkdNXV9+BrtuHlOQSiQQ+j4ff3vVL7rv3JgxNp76+3gwsBI3Vq1djiE7GnjCHHG85sUQ3iqLQ29vL6LIy/nDXmby2sRTVMYZwUKXAX0CLomC1ezn33HN55oWXAejr6+PtdU8zYuqpLJi+CFEwuPfee5kzpxhnrrmwKxaRe+65B10QcdnKCCdC5OTkEDYTTFKpFMEgdHR0UFnmQ9d1kwCtqiiiyIknnsiGz9YO2SX39vaSlSuYzqt2O69+uo7tX6fJJG3E4z3IskxTUxMdGz/gknMmsCc8jnhGIzs7G7cgsutQlJHFIzl69CiCriPLCrW1tRSXV9DScphRY8qorq5m3bp1zD7lTL744gvKS3z87W9/QxRFrEoOZ511Flu27MTt9lPXVI9VhJNOOoGXX/n7kA9GRk1hF0x+kCTCD37wAx78wx3og+qoJX4zGFi8eDGxaBflxSfhdpvrZ3t7OzMWLKEx3M4Nl8+mL1XKttbRdIciFBYW4nA5aW2vZeXKlbyx7sOhvUDTNN5//30uuuRyEsEQ+7/ejM9xiPLxiwZHlA3uv/9+dMFKcXExqZRJDo0qCqANjkDDqlWrmD59OvuOxAdHEs3nymIVKS0tHfJ86Oj4lrg8dvx4nlj7Jtfc8CsMw+DYsWNMnjyZYEeYSy+9lHJXCWs3V6FQTmfIXJ9kWcbp89Hc2IIn14Gu69xxxx387jc/4eWXX+aa626kqbWRmGF6KTQ2NlI6ogJIc+edd2J353L22WfT9dnOb63FgWnTppFKMfSz4wqMqVQKh1XmggsuYNeOzwDQDdUkPU+cSGNjI+Xl5Qy4bVSWFyMIAh6vuWdkMhlWP3QNDz74IE3KcqSssfT0NlLiM5/ZESNG0NjQPPT/bdq0iaLSPOYvWkgyHmXNmjU4E+Pp6enBk1P6b+/v/1EwcNxYNCPDRVdeRo7DiWEYPP/88+Rm+1i8cAEul8OMuFSV7u5u0zRHduN2u0mldZZduILly5ez/NQzqB45ArsEndEU2R4biXCSeAQURcYuqUwp85nuaVqcvCI3T7+9ZYgVTvDbcvqO+pah9+1H24feF9hBTJhuhqjmsR9XrTaA9evX88UXXyDpBh+sf5fiAg9jR1bhcDiIpQzCkX7C4TCCYJKGZIsNf34ub7/9No8+9jgrVqzg4gsvIppJ0dofocjvIhKJomoGfeE4BflZ+BRQQ/0IikKs6wjjy9w8/PfPzYw08u2xHmnr5Z9hBOCTASONgVnZsA6++jsDLFt+Jg67wpgxY7jjjjuYOmE8qVSKnJw8otEofYEQacNUGLRaTKli0SaxeMkZjBs3jt/dfSeptIjDYSGZ1pB0nYSuEQ+nsDidVBX4yHJH8CtuZLup/Lfqna84rmnV1P2tScuW3fv/4ciDQ++8gEMENJWsDGj/MKkAkJXtxe2Nc96yc1BVlby8PB56+FHGjRuNZHOgZr6VAU6lTPlrTdNIqbDsvHOZOXsWv//t3fSHY/SndHLcFmxAWtUJxVQyukqhF9xCBCPeh9fhwulQefzdnSjAwdZvqwEdO/b+03tRYIhYBB0S5tErSjYiEpJk4PJWgesARsCCYIBkOFhx+em8+9J6QtEIPp8PPZFE1FUQIkhCLrf+4jcIgjBoipJi5fev4azzfoSFfNxuN3/7298YNfEE4vE4I0dV0NIdpr2ni637j1Lg0ukXkrj1fnySTtrQsNh9bN++HQQJEYOMFiQQCFJekc9Hb/8BtysHVbTSWadywowT0IUg6ZRKbr7L1IIQnGRl+4nFYmTaNGy6SDQWJJ3qIscuEOhJ4HSKZDIJBEPFKosoFifPPvcialpDsehouoameLjlpkcIh8N8/fUbHNmxg/mLCxkYGCArK4tsTy7btr3NaRNSWJ1lxNJJCj0h8oxuBDVONKEiS3bTetjQsFoEfBK07N/MczteIss5An++hC23EpvTRmtbPZmEji3PSloCqz0bn60Ah9ONph0CycrS02YzUL+H4uKRWN0GqXACRVRBS6EJXg4cakKR3aS1ThAU/KVjCYa6+PHVN5PJZPjTr5/CVz6GiRMnEgmFkCSJ4jwv/gor8e4kdi0XPRjGbY0hiJ1YVAftbZ3c9ss7+ONf/oyixWk6+iV1H/0d2Rrl2BY/08vjyNlFuHJLkcUg8QQ4LKZJlQoU+qcgWpsx1E7MZqGOpCdIhALEkxoOh4NkKopTl0imwuQ4Snn+mTcQRRldTiHKAu1dMd556zAbP/mSQ/s/p6enB7sCtbVHyc5y0Xiknliwg4rRYyh2utge8hGtO0B1tY+t7Uew2mysfvFV3G43qqpiM6JUFMikjXpeeOxqLJKd8twYRVWzTL6IDIgqoggaKbo7UriySpFlmXhmN7IiIikKaqSNPV9tpnxEFromIgo21GQCMikcWaWEeo+AIaNJKn3hIBl8XPXDm0kmkzQ3HOSLd95g1pJzaGlopMifj8Wew/YNL2Gp7MLvrqRdG6BMTpHtjbEnnSaWSmJ3OpEMFSMTZ8On65FUEY9X54WHrqeorIoNPbtYPGc2e/ftpGREMUgOnE4nmqGR5xuPJtYhCgogogqwYMlinnj0MSTRgSLbiatBFLESI1OPLmVxz91/QtdAQMJqVfj+5T/nnt8/xcbPPmfs2LGse/7vzFt0GkeOHMGXY3LrLFaZxto+Jk6sRJCqGKg/TCoZwGlzE4t1Eu2OIYsKFklGJU06ESI48A0vP/shhmHgMvr4aFsr+UWTsFhEMpl/rT4I/2EwYB18HLOckJsrM6IsF6vVyvOrn2Tfvgbuu+8+PvnoSyZNMv2gs/IrCYVCWGx24hmYv/gUxKxcHl39Mo89+iTPPf04mz/5iBmLT6M/PNirszlJxWPcecks0+lMkAbFEzR+fP40ZFnmyVe3M/C/O9BBdCWgTAS7DqohEZcNrKpZtk8BWR6BSRMnY7fbuf+B3xGJRLjyshvNnpagk5dXgV3IIamoqGqaIr+fzs52/vjHPxK3Z/HwqmdoaG1h5TnL+fr9dzjlzOVoQCShkpWTw0B3H5dcNp/ibB+xWGzQTU/jtkvnMNAf44X1e/l3blOPAEUqyJJIDJ1/NMktyHIw94TR+P1+PB4Pd/3uVuyZbG666Sb2b9+PJEm4cnxYHbkcqT2Gw+HAMAyWXXEp+eXFfLRrB+8tOI3nHn+Yz9Z+xEmLFgAQ1c2gI5qOccOV8/B4PAi6KbQTi8Ft3z8ZgPvXfPlvnUMIyOggixKRtI6O8R2Ri5PnTsdAo6jQFM7xuey8+OxfCYYCnHPG1bS2tuIq9CEpuaa186Bvw8mL5uMt8LD2wzf5+ytv8MzTT7D74w9ZcNrppAb9KmQgEU3y0wunU1RURDRqahJoMvx8xWKam5t5e/ux/3b6Q4DvEAYj6OSq5pFHFJ10Io7Xk0M4GgExSZbHTVT3I/ceJSNonHXeObhdWciCiKFq6OkEmWSAVCKE15NLOhUjrUsgiRiqir+gCF/52Wzf/CyZSACH1cWeTeuZNm0avWoJI/1+NvZGeGTNq+gZDw7Xidz7y6s4aV4l91w1gzO//0NC/mL+9pdHmDV/Pvn5JaZFsKSRlTmGkhKJoyCIAnpGHfIFsNlsZk9UVkgm0zgcLmRDRBcMJFlj3tzpnHDCCWiZKIYmoOkZ0qkuBHQ0PRvdEEGQcDhsxONxdn5Tw1XX/ZjeQCteq4+sHIXPP32DPbXdnH3mSpxuAR0P3+zZT9IR4ReXX8HM8QJ+v8Tb0x1c/7s/s+rpJzmyZyvFldVMmz4ZLZVCTECBkCQlGYPPkE57a7MpuKQreHxZBCIDJvHLmY2iKEiSgCoYfLpxA59v3oDFYiGZUNB1J+FYC2omjF22I5FGsVpIJQDdNDi75vJn2LTtCdMvRXYSbj9Ewcxq9vR2M7pqOpl4gM93tWBLCeSPgsuuvZZF88ugYSeXBPewoybMrNkz6L+thd/e+3tWP/sJVpdMXqYHw1lJfXsbkiSRTKj4/dnE43F00YrVbkdNqKhaGocni3Sk1zxbMcPU6RUsW7YMXU0gomBoOvFYCEiRURMgWFCREAUrakbn0hU/56H73iWh7kVLCDizvbz0wv3MnDmTDAUUFxezpzbG069uIiR48BSczgfP3M3YaQVcc2YRSy+9grLiah74410sP2c5OdkV9HR14PYVkCP0IzpGYUNFV1UUSUJHB93A58tmIN5FKmyQa/XhcrnQVRksaVRNZ/6p00GBvt4UqF7ScY0UcVIkiceCOH0e+vv78TpcRKNRzjjzF2zd87k5Iu5xI1hdaOFmSsqryM0vJtDbxrGjASryshgwMvz2lisYX57Ap4e5z17Hs+u3cO+Df+Lqy88D7Cw9ZRExix1HPEiWtRYhXkC+002W10vabifUEwBdxOPJJhzLIMs2igvzkUUDTTSrmr+54zZ8Ph8pI4MsWEDVSCbrSSRjOJ1eRElHEk3hJVVN09LeRl1Nms7+Hrq+7sWfX8h7b72Kw+FA9hZjV+wkQjEeeWktmUyGKadYue6Gs5k6bzzhHYdoOOCidcDBmhf+zPx5SxAEG1m+HLxZcaxyDXZhOplME80NBiNHZ2FkEhiZxL+xQv+HwYDpyA65uXZyc3NpDans2FHHsrNtzJtZytebXsYqSRzdW0dv3Eo04TaNLzBYt24d31t4Egk1TSQSIRjMw+l0kkgk2PDem2RnZ/PHR57ghdfe5JZLF2C3iaY+gMFQn8MwNFRV5dYrFjCgKjz40qffOb7i/Czau80wQcTkB2REkS5dJ42GpIJ/8LMWwJ+Xg9Ol0N/fw5df7uDii5ez7/CnyLJMMhlHVa1Ewgl0awGTJ0/kWM1R/vr4o0yfPp0vPt3AiLI89uzZw+J5piXupi/e543X32Lfgf0c27OLi66YQ9agJajNZhuyjI1n0rjdbm6/bjGhuJO/rH73OxtRaWEOrZ2DpDIgZUCfFSIpHQHIGbwPAHPnziUnxzQKuf/+F7j0mjMQUxH+uupXGKLbNOqJOrH5ChEEgcrKSt58802WL5qD22XQ1WUlLXj58MMPKXTn8cEHb2Gz2dh/4BDX3nArv77hDLItZkZ+3LzD6XRiDOpYPHD92QDc+MS679yLysoyOlpaSGnfjiWGHCKRuEZ48PiLBz+rAKl4P0VFRWzY+Dk7drTxh7uuxWq1UlZWxv6j76OqKt8c1BHEXJxOJzk5Obz8yhuct/JcDtQcIBqNUlSVP2SW9eG6tdz/4AMUVlXwxsuvcM3lyyhy60P3QpG/LfX5fZVMnlZJWsji4Sdf+7b6BFSVFlPXalZwrEBQh7RdJ5QAPWM+ScdLg8ctov1+P02DwxP/aJ9tGMaQKdRxS+xMJmN+RhAwgPwsgR1ffsCF599EV1MNm756mWAwyNGjR/FPKR+y964oryYWtlA0ZhSl4ydBCho7YuSVTWTf13s4eeElSJKE1+vAarOjayD9g021NKj6dNzuWVEUcyPSdawWO4ZuYBUsGMK3C0kqlUKWTcOXRDyMLmRMkp8YJpVSEARhyKzqpzf8nnkzLiLQ30ZH6w7aOo4S7GvH6cymoKCAYLgDq9VKJqogukQaGxs5+5ylRBr66A+kEXARCUX54Q2/5ZtvvqEgJwe74iSTakeTNSRJIhjtG7LvNgwDBGFIZOy4/e9/Z2ebSCSGlBdTqdTQ54LBIIosDt4vA9HSye4D73PxBdezZcsWQuF6ag7VcPjwYVpbWzlx2iJ6m+soKCiAkMCpp58+pPrW3hIhP3cUUt1eLrnkEn587S94ctWTOCymOVhGy5BJJBB1s9J13CnU7jUJ2cdbVMdN20pKSqj5B8Xv49bgxwVlVFUdUlrt7e0llUqhCObf8GZr5Bcp7NktkJ9ro6npKJFIhPr6esZOHUsgYKrETi/ORU0qZitxejWZsEFzfYTSwioOtnRyw/V3c93Vv8LpdJKXk0c89W27MpFIIAki8WgMp9cFaEOtJDAN43Rdp6SkhGh/w9A9On4uiF7z+2N8a8AkSRKyLA89U5qmcf01d/H444/T19dMX18fjY0S3qxxGIYxdO0lScJlc3H48GHmn3Qq3btM5diysjLq6uqYOG4hLU0HmDp1Kl6vl0wmw3Ffv3+0eR4YGADDGDqHVCpFOpkgrqZB0Dmu2XfcKO74s3fcfl5V1SHDu+NrxMknn0xHRwf+rEn4fD72Hnif/p52kg4bE71e0ykWU+00k8lgt9upnjcTYtDe3k52djY7jhxk+ZnXI4oiWb4cJElCEfQhnp2qqthsNlNu2SJgsVjIqP96ouA/CgaOZ3LBaIqk2geizFmnn4ALjVQ8RV+6D4fdiiAIWBWBnUc2Y1hyOFpbh8/nw5BF4r0hEtEouuDkuiuv4YUXXsDlcTGipJI33nyT2y6ejcthwWaxmD7qmRSaYPaYJE3CMARUxY7VSHPXlUv5dNtBthwy+0nHAwErJiltAEiqOvkKGDpI2rfERAPQVIFdO3YyevRIfnTVShSLQSrcj2GxoKXTJLQYh4/sp6J6Lu9/8j67du9lTFUuHo/MrHnTES1W6hubueOOO3jllVfIszh4/9U3ySsyuPT8editdmwyQ6llPJNGE0W0wU1BxEG2C+6+YQW/fvSNoevc2tmHDfDKpgBWAEinwGcBI21m7MfPITrQT4vV3GAuuHQRlkwcX3YOBf58JNncnGpbgyRUG+3t7Xy+5QsURaHAVUgwFMZqy6O3o52uthbyb/4FWW4zeDn3xlv5zTWX4tGDSJJEKpUiOVgD0AwfsmFKjVpdLlRV5b6rl3D/M18QMswr3NjYgguzPaDIkFQhGjcXjxLMwPK4SKbHIdDbGaGv7wCnL17MojkhtEQvbquELBmgC7itbiLdewnLEegRObC+Hp/LxijLSErcfkqn5lPb2sTdv/0Nr738Gm63k3vvvpsfXHo6t12+FJtNH/InVw2FhJpBz5iNL0mSsEtWHGKSX//oNG576qOhe9HU2o4H8AFO4AhgTZjtJifQKGpEY0EMZBIxg3AwQtWkAlKijMWsDzJ5yng2bviSUCSG3WElFtPJCBaz3SCYwVUkPoCuifQH+5g6aT7PP/cYkpKhu7WJcKKHeIvESaeW09lzDFVIkdbSBMMql00t50fX3kbFiFxylRAtDZ1YnHYkOYLbUYZst5ps8HA3HgSSkkJCjzPSnU08FkQWwdA0wuEwmUwGQXNjZOKog/Lc8WQMTZcQpTQTJlezb/9OUqpGbp6D7p4BGNR8F0URTQE9ba4SD932I1794is6evZz4MA+BsKtjKhw4fJUEEtmyM8tZdfRb+hrbyUnzyAw0MTV1z6KYG0n2dHA9NnzmTx5Mi++8CRFBfkUlVXS2pzGalXR1DRWVSMaUckkQ1hljVQqAYZKOBxEElUS0TBWUcVu95ilZhJohoZkSMgW09FTVkxZcV0wCYO6rmOzOgnHJLMd53AypaqILz79jNqGrdikFIlYlNBAPx6Xn0BfB/WNzah9jYRCIcQPPmHvgS/ZuuVsXFo9O/ccoSecIBiK0xroxO0eb1ZiRDDsMTJSP8GkTEYPkEqFcTqzETWdZHRgcJN3kUgkSIS7cReVIegyugY6GU499VQ+fn89wUgYxeokGhvcMPUMkixhsdhIZ8zNccnsCSTSe2hqttLUsZeerjby8nI42tDD6CkCqUAHksvD4bYWHA4H3W3HWHHBzykpKcGRaCEcFMBhQ7T0cdedD/P8S+tMW/J4D06rBd1q0N/dw8hMhIFgDNlWCoJMPB4F3YHdIRFPdiFbPPiysxnorxvM1nQzKEbAYhFwZrkId5nibjqgopDSRIRBW+diV5B3336J3q4GFFsv8XgvgYCIU04TCiYI9HYi5o9kw+5DnLHQy3svvUFHQyuRSITa5jDd3d2sWrWKYn8BWWUTiOBBkRQS6QEySTuqT6AvGiadiWOze8wgQDJIpWJompV0Ok0wFKCzfTsIOipmkrT05HmsW7eOgYEBbHaHyX0QVBhUyREcThKhEGIyQ/exPcyYeh5bjjTSduQorc2HEUMR1EIfLoub/sQAXQmdgahOU1Mr51zo56Izb2DcxEkIehstHSrpeBR7jh1vVhYZLcesdKkGcxet5MtNXyNKxeSX+0mnI6RS1qFg5l/hPwoGwMy2LRYLdrud7t4+jh49yqzJY0zzG7cbm9UksvTHEkyaNIm33t+E2+2mtraW2rpjZDlcWK1WJo/zkk4UsPzii9n82SdUV1dzzYWLcDlNQk/seMYkOYhEk7z55pes+MEZZsQoaFiEwXnsE0dx6tyxvLtuK3s6YxSLYNHNjSZLdDDgtFM9eiyjy3PYuP4TQslvMx1d16moqKCvpw20BJWl+ciyPKSjn84YVFRUsH79etJIBPoGaKnvHGS2pymtKKeiooJ0QmXFxRey+ZNPKSkpYfqsMlyKOLj5qGQG70Vffx/f7NzJsmXLhrIQQdewWwUe+tly0lYPd9y/GjdQBCgqxK0iC6dP55v9+xgxYgTTxk7g3VffQMYsgRcXF+PK09m2bRuSJFE9YwqCIJgkHsEkeOXl5bF1fwctLS0UFFeyfft2muoO43KYjPMTTpzOwMAAK1asYNPnnzFnzhxWXnwiyF2AaQGs6zoNx+LU1dWhSgnOO+fMIXtou92Ov6qKVb8vwe12c8YNjyIALotAQdrka2hAyGVqrpc4s9i2bZsZoQHRuCkVnZWVxXvvvUdVRREzT5yMonzrwx0cCFNRUcEH3xwhlcygKBaONTTS0NBEll3B7XZzwuwZ1NXUc9ppp7Fv93ZOX7qY889dgqJ8mwVqmkYsbnCkro7Nmxu4/OJT8Pk8phumw4rdnsWaOy8h4ynhh798gGzB1PZ2qGkUVeS80+fRsOcoHo8HjyjSeLR56Bg1TaM/2Mb+/T3myGAyQSaT4dChQ+Z0TSaDYvGgKE4cTi9qysxiurvbsbsMZFnBpsdRwz3k5Ttpbq0hrQapyPLTKpj3oby8nOuuvYXte+qpnj+aZ1avpqTST0tzD5vrt9Ib07j44ot58/WnsNl1VM2BJIp4/blMnnQ2ZUXVdHQeoqNxK/F4nHx/IYqimNkZ31rudnV1UVFRweGjPWQyGSRDZ9OmTWQyGURRJBwOD3l25Dv9Q//uiiuuYO3ateT4rXz55ZdoRgyNEBZbmqqycroxyX7fbP+IE8bNoSVrAtlZfiItXXy6eROVI0ppb23E6rJQU1ODJElMnDgRxVJEXe83lPjnMnniBIIZnUy4go0b13HeeechWZyAMLiR6CQSCSLpON3dptlUJpMhkUjgdDqJRqNYFQsIKk6nk3g8jtNuegJEIpGhzy8YP41KTy7bDh4hKyuLrtaaoepeVVUVVquV+vp6Zp54NuUWC62t5lTSsWPHqG/aQ3/ItLN1Op3s2bOH66+/nqeffho5lmb+hXfgtRYTaGqiL3SMo0ePsmTJEjKqTiplmojp6GiaRigUGrIeV1WVSCzM6tWrSafTprCUQ0I2TGv2UMgMeoPBIOl0iILCQu784Y/JG3UCgUDAJOcqCnPnzuXTTXtIJBKkk0lGjhxJd0s+Tq+Xs846i8eefIZMJkN9yxZCVoM5M+bQVreP1atX48upRNM0RpTnMX3CiYSkLJK9h9i6dR0zZswYGh2MRqNINpu5niaTDAwMUFpiIZlMDo3GHf/eSIo2lNl7vV5UlaHrMH5MNbW1tei6SU71er309DUCZiZfXVpKSUkJx2oFJk2ahF+YRyAQIBAI8Nlnn5kqjK3HsLidlJSU4HW4yLbnEgqFsFqtLFiwAG9OHm01rcyYU8kHa1/n2muvJR5Lfyert1qtJFPhwV2Qoeu/e/fu79hiC4JAdXU1LU1dJkE7ZQZqbrebYDBITU0N8Xh8cAJH5uQFC3hr5yai0SiZTIbzzz8fp7sM16gkjz/+OOMmTODgwYN0tm2nr6+Pq376Uz7/6BNEUSTQHyI312zX5+dVcekFc8nEmqhr3kw8Hic3T/r/Ro44H7O8KwAWFxiyRHaOg9NPmkBujntwptX8z+PJFGrKoDOeZs2bG0noBg67CzJmlh9VU2Qy5kW2qDpnnzqLUeVeokk7/f391DTV09TUxlUXn42eMkl88j+ckzIohawoyqAvuQWrvZAH/vA4ThEEAaI2F3WxKFZRYMG8xQS+/JqQERtSofPkmFGTYYXKoiwmjh5BWWkBNqv5t+NJiWQmjSpaeGLNWlyePDp7wyiKglWCZFollkii6Rk0Dbx2OOf0hZTmedAFkb6+PuobGyEdY+H8BRh6EjVluk1ZFIb8wxVFMT3BBfPLcc+9a5AMC4qhYiBSPmMyG7ab3t8nT55N6+6vzC8RZoDtKlLI8VkYN24cs6dPRD5e/1DMTDie0BhIwK5du9hyqJtEIoGKFbtsQdd14mrMlLtUBXySm3GTcpg+biSKorBr5wEON5lfwHMWn2L2ttJhHE5zxvZ4udVutyMrDDoKWnjhhReoqUliEwZLgbpAy+CTVlxcTH5ngoF071Clxpkt4/a6GD+2iJEV5VSU5jPom4QmgqYZJBM6HcEkr772Fh1JO7omYrPZkHRQdY1EOkUsbW5q1pTG5ZecT5Y7RCRmoe5YAzW1RygvzeeMUxfT0VKPP8+HJIg4bVZkyXy4jpcmNdmJIAg8+vBLRKMJLJqAho2yhSexccPXgM6knBK+7uqmqLQMTTY4b8Xv6e19n+bGJlauPI+nnl6FpmnkZGUTDJvZXiQEFtmHK1ck2GGW3S0OA4c7hSw5yXXn8/H7bzPvtGtpbqkhGe9g8WkX0drayty5K2iq24uS6MRqmItKQkjzwB+e4b4H7qex6wA2m420KNKpWZk28zR6W3sZaO9i5oRJyLJGf38/Fyy/gLfffQY1GqCnq5na2lqyCysGVwQHVSPGo9giJGNxrDaFvUcOUJDtwePx0B8zA8NY2IJuJMnNzSU0YFaJ7E4Nm8OsRkV6Mpw452za21upO7qDKVOmIHssiNIoHDYf2dY0crqT1vYaegY6CIVClORPJBAI0DvQjNVvTk2ongqmzV1GuKMOOkxb6tauRqqrqxlZMZoP3n0MRVHo7KijtuYY+YVVCFawiaOZPiOXto5DnHPW93ny+acAhkq5igKplI6adJHrdzHQZyYJNrsFmzOGKNgpLRjB+rf/zqnn3EhbWxtdHdu48LLbaWnfT65/Nm2dh4l3d3DFyiVs2bKFI0cOMWPGDI4caaGrrw7DMBh74lR27NiBvfxEjL4EoVCI2dNMU5pIuJtR5eOQLBG6mvfR0NBAYXkhLR29iKKIJLk4f9lPOHLsIzq7mrngggtY9cxjOJ12qqqqqK2tQ5Zlwv06GS1NRUUFPV3mhirYNFweAVGw4tAcnHvuuaz7ZCcdLQ0YYogTTjqF/v5+DN0FWoSrz1+Cjsba996npaWF2bNO5cCBA3R01+L1egnrScIuPzOnn4lNU9m/6WvGTp6GljTn76dOOZHd299EkiSO1B7h0IEDFJWOIkMaVD8jx5iidJlkP82d9WRlZaEgmkI+BsiYBFar3YrdbicYiIOcxuPxICkZVFXlxmt+wdr3thEIBOjqPsyll17KwUN15OSOQ5IkIt315BVpNB1ooLOrlWXLlvHZZ9tJpVJ0Buqw5XvM76CzjDlj5mK32+lqbkXTNMID3bjdbqqqqti3/R3TH0I2OHi4nuKSEjTBwsUrbqa5czMjynMpKSnhqWdfQBRF/P4sGlqakWWZSMhsM5WUFNDW0m96sSipwdZqitHF41i1ahXnXfhjOjo6CPQ3sXDJaQwMDDBh8tnYbDZSgSbkTIDWxjo6As3oOric2QQGGsyExuUgnjWJMWPG0FffRCAQYOa4yfj9uTQ31nPqooW8//77KEYXre31HD58GF3X/8/qDBRgBgLH57QLSyTmnVRNsb8Al881uDGo5gSBaCeeyKBpGoGkhef+/jaxtIziMMcn4vE4BTk5OBwOMuk4hYWFtLe2QiLOxMlVVBbYzUqDoaEPyuoi283eK04sUgpBEHB7zEXbjkpKMcjxjuG2X95Pvt1LcyLEmAnjsdvtuLGyf/9+UqkIx2OKBOB1wphxxVQWF1Kcn0VxcfZQJGUgk06rpJIaA7E0b3/6JU092tCmkUjEkGULWT4XyWQSmyJSXFhE49EGRlc4GTGiDH++Hb9FwUBGE2Q0iwtJtpjtDlXFbRMQDR27VUGWTb17FZlbfvcMXoeMLSMSU9NUnDABSZLYv3sf3n8QZpIBhxOuuvpMfD4fFlFDspsbsJEyGfgpDdKqOZJ39GgLr2/YTQrnUBXkeHZf4s/F6zDnwI/V1OH1epk1tZTiIgtOpxPn4KNiUQqJyY7ByD5GJpPB77ZjtZmBgSyZjYxbbvsLvUnI9TnwagoJv4vy8nIETWTbtm14k9+eiAYsmD+eRfMmI0jgsCvwD0wKTTS1KzRVIJVK8fTaDXR2Z9AEMyiJxWJIkoDf7zcDxGQYSdfp6+1lyoRCUyUzP998RoX0YIVJxGZ1ISEgWhUUPWEGlpINxW6egyZYuPbWR/BIUGL10R4PMmLmCTidTg59tZWWlJWCkhJESefMc37Jlxsexp4lcuopP+Ltj8xgoDA3j2DcDAJ7+2KonSGKqotIRswM22sVKChyIzm8FOYVs+bZxwFTF+PWOx6lvbWPzu56qkacRmtrI7/+2YVs/Px9mpubOVS/g2QowpZ39/Hm6/ewp6UOZ3EJxZVj6OjoIJxw8MPLbuTpv72OTYjT1NREV2sNoigSDTez/OIz+P1dd1FSXAqah4SuMnn0dPqiWynOn0Y01k9PpANRsOLxeAjHB5AkiY7aAE7ZQtYkH+F6M2OtLM/GYgdDc3HjTddx1qmLhwLWG2/6I93RHnYf6OHURZcQjx/jnFNm8t67r9HV10trxxHEiIO/PnIfH7z5DAM+Fy5fNkUFo+no6KCpoYdH/nIfV119HxJp8vKd7Ni6Ba9DpLevmQsvXck999yD35ePoDiwKQXIli4URWLK9AvYsf8189mVzBad1e4jJA/QfzCJK9tBRWEpTU1NaGqA0tJSPL58nFY377z+EmC26l5+bgNbNn9FZ08N5573C7Z9XUO2O4phdJgJzOEa0loPB9fvZOvHn/H+gdcJKUXk5+cTTyVJJ2ysf+8rzjj7anShn66WOno7awmHwyRTQc45bz7xWJLVL7yCxWJB02WWn3kdG7c+hC9nHIsXL+aVl5/GYbOYugd9fUiSRNPRFpxWg6JRY+ltDaCqKrleCcXpw+1201jfRMOhA0Nr3srv/wK3XaatOcrMWRdTc/hdrCQIBRoIBoP0hCKsW7uFXDXDay//iX3Bg/gr5lFZMYqmpia6e4JceflN3Hvfs8h6l/k8tDfh9Cbo6OjgwguW87vbb6d85CRSRhQtmUdunvndGjVmATUNG81EaLBtZ3O4sVutHDlyBI/koKSkhPZgjHSomQkTJpAUFDweD++/+iZg6rN8sgPWr/k9x+pq+P4Vd/PKK69wyYrTiMVi7Nz1BU01OwkEAmx+dyu1G7az9uhzROQCioqKcGfl8sWGT1j7+hc89uRHHDp0iCO7PwUxTiAQIB4LMmqci9lzFnHXz2+nrHIUCTKctugKtm1/E8WVYcXy63n99WdA0MnO9hIeLMWHO3oYGBhgdMUY4rpIKBTCa0tTWlpKIJpi/OgJvPDUY0PP1K9++yKh1qPU1tZSWDGZcdXT8VoEpkwuZ9+u7ezd/zXNzc14RC8XnT6NHTs3I46ZxuhqU0q+pztAZMCOwzuSLE+cloZ6WlrrsFqt9HUd4pKrL+Luu+/GCEf+z+oMHIcBOK0wa/aJ5PjEISER+C5x57glbrZb47ILTuWZVzYNEagEQSASidDb24tmmJnlybPHkO+UkSULiAKJZIrGvgyNLaaSYQpMcaCKIvLzLEMkDUEQiEsSRlqku6edHqA5YQ4Xdx/8riRx+T+8t4gwdeoE8vKd5LrtlBTnm8QQQxwkiJjnY7XKeAyDlWcv4a8vf2mWvyQJXTcXwUB3D6IoEkeluMjPsvNOJvv4LKom0BHRONbQSDiWItw/gEWyUFbpYfTo0SgI2BQZTTPIDLI+BUXmd7dcwi1//PsQU79158Gh4/5H/0AVKCjIwu128//E8esvyzKaYQYwo0ePpvBoJ81dZjn0OClQEAQaGxvJpDUqSvzMOXk8OTk5lOfmIOmQSWVoiqRpbW2lqf0Qop4kLy+P8eMrKCoqMolkhlk2Sxkadrudu+76OT+740/UB+NmBSAS4mB9+5B40T+eh4g5121WFjJkMqnvtAnAJLlhGFitVi5ZsYS/PLYeQZEHmboqqqrT2mqqM9otOovmzWRW1nTyXMLQtRBFkbpjPTS3mBUSQdTIL8ijtDiH8uICs6VgqGiDdqeaYOGR313Lj36zivZ4EIDOrbsQYMg3o7y8nPaO5iFCoKKNBzl/qGpis9mQ07o5ouqxcf55i/lgw0YcuTnoxDn3rIU43QIPP/Yyn7asHTrfCHDB5TdgJDr4+NN3SMS8dHar3H3vI6QzvUPRfrc+ldQYAW3mb+ho+gU5EYgcMbMIuxW625qZMHYmX37xEpqmDRHNNE0zj81mY8SIESSiCg3trUMKlnJlJW++8SJLl8xCzQhDFtRWq5V588upLsjm64ZaUvY4pf5Cpk0pAcHOhHGzOOvUxYC5VtSE4IJLf8GRxndRpQNYrDpjRs3hib8+S0QLkYr2EAqFeOCZrWTNBq3RS2T/MxhihtpwrVl+9+Xw6UdxDM3NQLiOZLrfHJ8tLSGeDODxeDDicSqmVNAXipNOHC+3O1kw70wO1b1nkuoUYeg58Gg5XHj5TLZs30B88N5deMFKUqkUfQNxXnvhhW+/S8CMhacwfdoJfPTp6xw6so1xEybRWrePxvrOoVZLIh0jUgjd1YtJhYIkGnZw7NgxFJsVryeLP9x3O/FECX957C78PofZe08miURDfPjhh3zv9DMpLCzEZrPR3NJFNBomFotRUJjLu+98jtPjhkx6aA2yWCyUlJRw6smT2LNvH+lBQtzMmRMpGTGGX/3sZv4x3+uIwJ23PkQwdJhPPtyOIYaw2nLoam8jmXYQ10zb91ETXKQB9eDNNH/yB+JNTeaIcjqNbih88803VFdXs2d307eEa0zeicPlBEmksrKSxvZaMpqCrptJQ1H+BHILM2zduhURs/SuY65N3/ve91D0ftNWWXMzZfoivF4vuaWV3PGL276zFpSXwPXX3sG69S9w+PBhli5dyksvvUQymcRqS9HX10cikcBSBUrRSYTu7cBI7qK2thZBacHn8/HEU09hCCLHjplKoMbgepifn8/+/d8we84iRMXOhAkT2Hlo77cWyJlsklEXFpsNUQLF6kDG3NPy8vI499xz+Xrz+yhaPhaLhZUrl9HS0sKWdR+y44sNQ+eQAi44/zIcRi87d+5k/9FG/DmF7PrmM77+5iMEQ6etpZZoPMaJZ17EwJiL2VPXzbhEgr1795pjhC4PF6+8io+/OEB9/VYiMbPFHY1GsTr/+cb/3+HfCgaOP0wa3+ZqvSl4Y+1WUmm47eZzkeKxwTEes0xo6GAI0Nao8sZHnxBKqgR10GNx7IOStJHBXoxNFGlqbKO5uQVxsOwvSRJWixWnxaC0IIeqUcXYRB1BFFC1PkJRH4KQRJIlPG4PoYE0SVVFFEV+cvl5PLX6LYpl6FdNwtrxE+3i21GxtA4bvzqIwwaXnXcW/eEINqsMxndtblVNpLkzzp6DLfQP9BBN6tgUsNskIpE0kiggywKocPBgPQcPmiI7TofZX7TYDNxuBwVeG1NPGolDUbAIEul4jAFNAVI4ZBXRYiOeSJARMlhEhesvWsa7b61FTZuKdy4BFAOaBo/r+FEeqx/g939+BU2F22+6FGs6jSxLaKK50auZNHEEjh4aYPuBWrq6eohl0kSTOll2k0gZDaYQFAuSItHaHaQnaAYLDpvbVGNTFCTieDweJo0tJcvpQFYU7KJAMhQiioEgQpbPR29/CFGMIEgy3z9/GX9/fS0uyZQVzRMkFB0EQaTeyJCEISbv4cM9/ObRFynKz+KS88/CqX3LgNVEU0DFEDTamnUONHeRlqGtqws7YLNDOmNWRCRJIpXU+HjDNhw2N7qRGdqYfU4FSTCoLPJRWlmJx2lWAHxuF6FwGk1LYLEoWO0uQrE4smwew1VnLWHjp58TS+oUARZRwCoYfKZppMLdeLKdDPTtJRkJ4Smwc8U1i9m339x89YzKiKISZsyYQU9vF/Ut9fjychBVC6kITJw6ndMXLeHH19421DcFM9jIyoKeoIvT5i3m+VWrscoaMVFDcXjo6WvCyKhMzq3h6/1h3DLMnLuS88+s5tk/309G1pg8vpxVD99I9bjzCQa7USwWXNluampqIBVk3MiRWID+NnND9XncxOLdJJMqEyeewAUXrsAmK2Tn5RMIBBg/diLjx4/naM1BagI9uO0OlEKJgYEO7r7zpaFjP34exznXYjZMEhcyObeU2+9+jC9VwWwrCnYioRBaJsPbj/+O0ZU3MaGsiNNO+AnReBfffPQOY6aPZtHSM3jp9b/jz07T1NxMNtnk5eVRe+wA3T3NHNizDWSdgYE+svJ8DPRq9PT0Y5G9KLkSejxKdVUVsZTJ3l94ymJS4RRd/UcZiEQpKMghy1dFfV0bLz337HfO4fh5eO0wEICTZ5+OXxng5Xd2crhuB1l2J4l4HFUNoakRvtkaBjtMHD2X+Rct5Ve//RnBxgFue+BuNm7aSFcki/wsF6FwBzanFUMyiKcyFBeMIRIaIBrox5qTi8sh0h+sQ02LWCxORowSiPUnQbQTCoUYXTmaiRMmEAn30dxwFI8vG9Ei0d/fzwO/fxCAn175w++cRzoNohOciRLO/h68/eJHBKOtKE4Vq9VHX8chdC3FlZes4Qf3LEOyy1x09g84bWkZd934U5aecgoOp50d2z8hGMknEuoiKysLi0thoC9ALB5j985vQNNpbazFleWkO5gkk9LRdYPScidPP/sJY6qrQVToaG9nwvhqystL6AsEOHqwC7vDgz9PJpGGx+/5IwDJcJgk37ZGvYq5ls+adTp6sJWvtmwmpgbx5ngJBvoJR3rxen3s2x0mMRJmn7KAyuxq3nzzTZJ9raxYcQFZWVms++Jr/Lkhjvb2kpfjYMzYchpqdlPqH0UmHcZiEWhvb8Kf7SEa6kNNRrHknMiSc05i98G3cTochCNB/J4sFi5cSCwwQEtLCw6bD6/DgUVOMeOkedz04+k8/MCfh+5FGpOE7HNDss/KqDGjmD25klWrVtEzkMJqs5BIpIikwghqGrs7j+KcOCvPOp/zFoznlz++kpKSYiaPG8vLz/4Cb+EMgoFGLFYLdrtEZ2c3bneKE6ZMwiqJJIF/1QT4t9oEbW1tlJb++0pGwxjGMIYxjGEM4/8etLa2mnoc/wT/VjCg6zodHR1DEpbDGMYwhjGMYQzj/34YhkEkEqGoqGhI2+G/w78VDAxjGMMYxjCGMYz//+KfhwnDGMYwhjGMYQzjfwSGg4FhDGMYwxjGMP6HYzgYGMYwhjGMYQzjfziGg4FhDGMYwxjGMP6HYzgYGMYwhjGMYQzjfziGg4FhDGMYwxjGMP6HYzgYGMYwhjGMYQzjfzj+F21LmpZmVR2SAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_augment_2/1719298626_tango_video2audio_clip4clip_augment_2_best_steps_300_guidance_3.0_sampleRate_16000_augment/62Sboyh19LA_000182_I7tuwRK0L1w_000220_4.wav\"\n", + "show_mel(file, save_name=\"4_wav.pdf\")\n", + "show_video_frames(\"../data/video_processed/video_gt_augment/62Sboyh19LA_000182_I7tuwRK0L1w_000220_4.mp4\", save_name=\"4_video.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_3407931/2796252854.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAvCAYAAAB+KskzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/dUlEQVR4nOz957Nl15neCf7W2v74c8+53qTPRGbCJjwIEnTFIlnF8iypJE1JasV0q3tmeqIj+kNHTMw/MN86Znp6FN2jUEgh1Ujq8qwqsugJgvAmkd7dm9eb4932e635sG8CYBEgAVXP9IfKJwK4ee85Z5+99jLvu573ed8ltNaa+7iP+7iP+7iP+/g7C/m/9Q3cx33cx33cx33cx/+2uO8M3Md93Md93Md9/B3HfWfgPu7jPu7jPu7j7zjuOwP3cR/3cR/3cR9/x3HfGbiP+7iP+7iP+/g7jvvOwH3cx33cx33cx99x3HcG7uM+7uM+7uM+/o7D/DhvUkqxs7NDuVxGCPH/63u6j/u4j/u4j/u4j/8VoLVmNBqxsLCAlB+9//9YzsDOzg7Ly8v/q93cfdzHfdzHfdzHffz/D5ubmywtLX3k6x/LGSiXywD8X/67/4aC56K1RqMRQmBIgZAgAMuy0DoFNFJKtAZDmmgyEBLTMBHkzEKWKRCQpCmGYZKm8eErgjRL+PyvfZ0/+4N/TZIpjFSwc/sWiw+fR+kiP3z3MlrCP3rkNJ7QnD7SIFaScqVMpg0mUcbdtTUqgGmY1JsVnFKBtd02l/baSMvCcRxEpjAtkxQFqcIyTRACxL32SJRWaK0xpIEQAq010pCgFVJagAYEWoNSGaDJlEbrDCkkYRhy4blPcfvWDTbublAulNm9ep3KiQUM4dINNO+urvJ7TzwOfpcHVmYo1utoaeDYNr1JxrVr12naBpbWTDUq/Ju3N5ibcvAcB9M08/u1DESmEYDSCtM0EEKidYZtW2QqBS0Q4v3/AKQEhESK3GNUSiGEIEkypDCI0wDTMMlURpZlPP/lr/HNP/qPaGnQ39hh5I9YPvMAg8Tk0tpdilry5ZNLzNddpqfrCASVWom+n7K1s4+aBLiGxLZd/sO1LSypOHt0Bi0k0gAtJYZpQxwjDUmWptiWhdIKKSWmmT9rrTWGIQ7bKBACLAkZ8nDsCbIsAQQq0wgpSZIQ7o0/lfHcF7/It//kTxGOQ3t9m8mwz8r5C9zeanO336JoSL60MsPpuSlKpQJRmjA9N4uSFju7e2TjkP/u//EvWd8/+CRz8nDM8N69fCKID3z88Fr63p81H8Lc6ff+9vNqjSqyT3wrUkrU4Tz+RLh3wx/4XQhx2JKPev9hwz/42b95HUBi/C1v5m/72U/St3+LcfA3YFkGSfLJ+xDAtiVxrA5vRWCZkiRJEQK0/vB7syxAmGSZQkhQqfq54+vjQAgNaLT+T4lea7yCS+BHYGocwyJNY7JMUK2XGPQmP/MJwxBIqZCmBgykFMRRSpYK/jZ9UizbTEbxf9JnC0UDf5KiAdMwsBxJ6CcICVp9+D25rolpSwI/zm2x1iQJ77VBa00Yhu/Z8Y/Cx3IG7i0mjm3ieB6mlGgBhpBII8OQEikEWoBWCsOQGIZEZbnhFAIMw8idCJVP6jTNO95Dk2lFlpkIFFoLNDaVaol6rcbEj/G8AsloxMLsEu1+wJNnTyOFgdKacsEmmYREaUazWSXFomAIpk4u0e2OGA0GzM82UQYcc5bZCnODbRgWoFDSwDQUpjKQUh8aUZBS5IudSgGJlLnhyQ2pPjRC7zsCeZvya+e/58bIcVzqxRKe61F0XWrNOrsITFnGdCpcvfw2tlfCQFPwCpRcm1GrRXNxHts2OFmvUsiOEgwGhEGG43g0m02adQ+t4rxvjNwASkMiFUhDICUYhnyv/7TOjYKU+QQ3DIlGYcjDftH5e5QCpVJs20Jrja2K77+OplwpUCmVSIXAmG7ijl0WF47hb+zw6ImT2DpGkTsU8cgHA6iXqJVcnLkaRlpmMAxIo4Sl2Sb1SpFy2SZLYyS5M2BaBpllYhsGhikPF4nDsSg1UuQOppQCrSRS5oZJSIFWoBRkWYZWJgiNUhqlFI5TQmtFFEUUnSJT1Sbz84uMooDaqdNkScTciZMcXVlGoYh9n3R/jzhNiScTCqUiYRzR98c0Sw5mwcW2zP+E0Jk+nNz5OPnYn9KapaVptrfaABimQZZmlKomwSQlSz5o+HNnaapRAVNRLhTZ3mpRLBeIo4TJ8KcXq/+U8N/c7DS7uwefeN0UaEzLIEkUQkq00lTKJZI0RArBxI8/cE2NbVs0mxUmkwlSSnw/plh06ffDQwf8b9cO1zUIQ/WJP1erl+gfGpl7c6w65TEcjtHpzy6txaqN57okUYQfRkgpsW2TUT/ibyvfKhQthoOM/xTPrFrzaLf8vB2GxHENpJ0hlCIK5U+91zAE9ZkylgSv6LGz3aZc8Rj0JsTh36oJaATT0xXarcEnbofjWITB4XqYCaI0ZWamxnDkE0fh++NCA0LjFS1m5mr02h0ynZEkUKx6hLtjhPjb9UUShwgp4BM7NZpGo0Lg9xDk63eWKAplgyROSeOfvp6QmupUkULRpOAV2NzYxyuZpEF2aIt++hn+ornxsZyBD17MlAIhM0zDxLEslJIonWGYJqYpyVS+UxA6N6y5YcoNVZqkICFLMzQKpfJ9TW6IcgNSKhUpFQvEvSHnzz3JxYuvUa7UsE8+RH+cUCoUePqhY0DKnXfvMI4VC/UC5arHYDBmdS+mboc06tOUS1WKlkmv18ayDMxCBdM0800GGiEsDAEYEtsysSzJB7ddUkosy8x3pUKilD7ciWeARCmFVpBlKeLQedCHTAKoQ2dCo4WgUW1wYO9TLhQ4+dBZZpePg+Fw6sQy4/GEaH8HLJs0zT+fxjGIApPRHmXXRKYe8aRPvVKm21tloeEhDQspJUmWYiCQAkxb4jg2KoMMjSlFbjS1RkiNVgowMAzjPcOaZjESgziOUUojdM7fOK7HJPABRblUolAskPRDnnjiU7z29mssHjtDEIaMxhGnVuY5fXyJ0B+we2sTYVh4rsBwbPq9Ibc3O8xPFTG9OuWCxHBj1q7s0B2PufDAMpbtIYUgSSKEkLiOwDJNhCEYjRK01hQ8C9e2yVSCRoA2McxDRuHQ+CUq39HkTpxAZQopDAquh9YaS1qIgmJucZ6d2xsUCg1aww36vkVvrHlz823KnskzD5/k2HKT7ZEPMsErekTCgnHI2vYBU47A9pofe+7c2/VKQ6AywcxMnf3dPp/EdpmmwXg8en8+yvy69akyYdD74JdRKDlMz5cwpKbfm1Cfcul0Qcl7hvZvsxvVCCno9voYpsxZvo/9Uc3pBxa4eWMHEPmiiWA8CXDd/HchjMP1AMpVl3KtCEkKhsZ1NWkmwFRIqVFKwk+xAR9+Lxr9HiuZz3ENh85jrVFld7v7gdc/stk5RP49CwvT7zkD99hS2zJBvb+saq2xHIPmbAXXM/HHE6ZnKnS6XaJUI6y/3S5Uo5FSMBpGOK5JFHzMvjh0sKu1Ap32iHvPUIuMyVjRmC8QDGMg5R4dVSy7TDUKaGAyifCKCZapSVV8+Ow+OTWQ98vhvw1xuJFI0drk4z8XzaMXTvDqT24C+RzLMsV4nBJHGYb1fr9LaVKf8yiVXGI/wnEthDQZhwlwaIB/AcGi0YebXfU37jF38uNYU20UGXaCT9CGfH73ev4HPiNIE5hbqNA6GJC+zwHieTb12SK2FAxGPs2pKqahSbPskOP75GPqEzkDa3sD5hPJkYUyCItbqwdsdEYkaYbn2nzxqWNIkVPNGWAeLjpJmkIG6Nxgnjj7KELA1UtvYAqHerVJZ2udenOGE6ePIy2FSAL+1b/8nzj94GneeW0NfxzTiyYoJfjOKwb/1//yK3QHHUpTDTrDEfFEM10r0Kgm+KOU2zs9TlU8LEtQ9BwM06QfR8Qqp8hNU2IKA0GKbRoYpsFgHDEJEkxLstisIrUi0ckhO6lzAyoEYJJmCVrlLICQmixL0UqSplnuRJgWzekazXqdomOzs96iVK3xyuUdZGbx+t0rRJliZW6Kr336Aa4c7JJqGI19Go0GQaLJkjEbG1ssNOqY0mV6qkq302KmWWejPSYIIyzTwDIslhpFaiUXLeD6apu9zohUaxanizx4fA4tNVmWMy+mqfPFK4NU3dshprmjlEmahTp7O1ucOHGKzIRMh5QLHtI02Fq9xr/8N/+RR5+6wHev3GbiRwyiAFCcWLjDP/utZ7k86FOs1pj4mp39Mcfmq9iWQZSmrK7v8eRCDWlIjq8so5KEV65tEcYptmFhSHjkWJ3p5hQjP+TVy5sMhgFIyXTN4dOPHcUwc+pfqwxpaNJEABlxnC/4Qips2yGOQyqlCvPTKzSqFQ52dmjv7dPqtCiWinQ7G/ybP/gjnvnMp0m1Qas34mDgEycR4+GEf/4PPsetnV2eOLbAJFa8u9fliSPT1Fyb+XqJjb0+4mMugKYj0FJjGZIoUHTaQ1zPIgpjPi6l/PCFFd55fY17C4JtmyRRyvZ6n+ZMifb+GA1Mz5WZnq0wHI7Z3xmRRJp4CUrVMoEfoNUhHXtoSPQnsOVuxSYcxtiuReynuCWDcPIJKGIhmGqU0ToPselMYzsmUZgSxxrbM0BLbMtiYalMTMp46BN0Q1KpMU0XYQkEmjSV5AtLdsjU/c3FOYdpCpL0A68ZGrskSIOcej3Y7VEsu/ij6OM0ANDUGx6ra+vv/TU3IorW/pBK1WUyjsgyqE8VmFtpMBqO6O6NGY19aqfreAWHZBKQJMl71/xF40CaEpW+31lO0SD0U2zHIAryDZYQAq2M/HriIzpWGyBy4/fEkw/x3W+/du8FXM8lHEUM2yFeId+JSimYXaxieRJ/nDBo+SilcQsmtmsBkL73fD9Z2EUAhYaJ300xTUH3YEKlUWLY/fg0g2UrNja23/terTVSCAI/xHbyMaI1lCsOy0emGYcB/faYYT+gXDEpllxMoVBx8gFH4KPboYHpI0X2Vkfvm20vQwCmNIh9A3+UYJqCNP24rdA89vgpXn/1xnuOq+OYJHHGznafatUljkI00GyWaEwX6Y989vYD4ihjYRYq5QJhkhBn95imT9YXn8gZuLs34cjCPJZR4icX73D3YAD3QgAixjQlcaryOJIAJRVZrEEIUgXVUpNKaQozdihPN5CxQ7M2ha0EUaDwhwHxKGWv36VaHjOajNjf2ef//I9+g53tARfv7rO5P8L1JI4pGGUZhjbwvBKr7SFlSxNPYh5YXmLsB8gkoTcao40ilUqZ3b0eP7y4ikJimZKq7fKFJ1dIlODli1tsd3ponbMBv/GZEpbIEJJ8gIiUTGXvUS0CA0S+61RKYAgTz/NQSuGaDs2ZBoZtEKeaxYVlrl7+FyjP4cyZh1m922EyiRmFEe3+kK9/6REyS+S7eW1zY28MpmTOE8zVqxRNj8wfomybmXqNy6/eRRngD0OkMHENi6Pz0ygsXn7nFhv7A4SUWJaFQZ9HTi2QqpwuR2hUplE6QSBQ2sxDPlIxVZnm+pvXGDothE7Z2drmqWeeZWNrmz/59us4tsW0FTCaTNjb3eX/9Hu/yp2tAy7e2uVg4HNkqY5pKbYPDjg9t4giYRiHhOOYumOx0Kgz5UbE0QQlNb3CkF57jFW36N4NsJwEVzk0puYYTyL++rU7RHGK0BrbNvBsCwVEoSaOM8puHprRWhDGGUmat7FaKOK6BWzToGwWSf2AH7zyCu1OD98f46cJP3rzIgtzdaRtsL+5xn/xT/8Rw37Au3dbbLV6PH5mHsc18wUwzDANh4VaiWgSMFuskSUpC83yR+xD30ceDtCoBAozBn4nQ5gGaaQoVCySBNTHCvVqOr3B4b/yxcKf+CAEOtPUqg6dgzFnzq8gZcR4FLC7OSQ7NB57Ox2ckk1uOHND4Xo2WZqSJr/wqxEi/1aVqnznFWuECYmvKRVtRuOPFyN1LIeLb69xuDtAa7AtkyiMUSpDxRrXdTj94ArDUZdJK2LYCzGUxjQEo15CremSRHHOInCP5s+NIR+pGXh/UdQZWEWTaJRiQD4vVIZti8PY+UcsoIfCDA14FZdhP+LegptmGaYhyTJJuVxgOIiYma8xM1dmPAxo7QyIo/wiQihSJTAMA5Xlz8GyTECRJB/tVWU6RSDQQh7GhRWGI4miDOlAHGWUqyajQfLRdkDzASdB8ebb737whUPnRJMkmqrjYJia848eI4zGdDpDOrvBIQGgae/2acxViCZ+7gylGte1iOMU9XEcTHEYUpWHm5M4/9tklFIsOown0UezNR9gaaq1Cq3WGHTumGid4LomYZhi2QJ/oihVihx/YJ7xcERnd4g/yQd9rValP5jguiZpkgEKwxCYpkEUfXgjhFaMRz6C98NDOtG4dZugm4EBaZxSnXIZ9oKPpYHQOmPvYB8hINUpJhaTIACRoTKTeq1MvxfzwIPLSBEyGiW0dsbvrR17e23cookIQ+Ths7EcA53xsbUkn8gZePDEIieW5njp7VXW2yOEFLi2ybGFBrO1Iq9e3qbVi3BsyecuLDD2U/Y7Me2hz6cef5ySbdDbPWDj2g20yGnt61euUPAsUm2gNdy5s0oYxLy0egXLEiRpzItvbRBOQobjgHq1xLmjVZAWv/4rn+W73/oJQVqhIcE1bXwr4cWr1zGAslukPxoy50O43mbiekSOYOlUnZ1LHZ576CjCKPPSW++y0xmhhMY2JPWyiwa6k4Qo1dTLDpZQaCEIgozOKEYpSdGSzDdLqCxFZoJGbYosDalWp8i0YO32Pt949R3+20INPw7ptNv8s9/7HR49Nma/N+bWZh8/jXAsg2PH5rjyxi1migtIGTNbLJDFEQXXIIrGeF6Bu5sbeF2Ph/6zadJOyNbbLkFb8/DSElPVCt976wabnQmGIXFti6PzTaZrLq9d3qM9ipitGTxyaoZhoDnoBux3RgRxvrifnKkTdDa5s7rGzEwVaRjUkoSDvRYHO7tsHIw598AJ1ldfo+BaWNLg1csbRGFEpjLmZup86sIDeK7JV7/6Bd5+7V1mikVmSh6e4zGZDHl3bQetM1zbYuLHnP4/lkh9h2RDML1VonN5xKePn8e2HL79xipJpnA9h9mKx/LiNMOhz1/+5C5hpDlzpMLDx5rc2R2xfTBkMIxxbMmZhUXOzM8zPz9Ha2+T9v4eV7Z3ePHlV0mUyeruJo1alfrsUYRtUfZs6jOL/Is/ehFLSRLDZGmuTKNRYuDDZ7/4Apdef5u7Gwes1KZw6jVu7W8jpUmiMqL05696TkGQpIIsyIhDhTBz5iKLNONRyOJSla314U8xrB/Uy72/Fgo2V3uUpwqMBwFZBuLQcU2TjIODCQ+cX0EYCe3WiNZe+B6NaUjNoDuhbhl4noshYmzHJQoTouAX7x4E4Hg2cZigYsDOBWPChDTIUBhUSh7DcfD+PX/wZx43BCBOEixtUK44jEYhaMFkEoIArQ3qjSmqUyV6/S7d/RHBKLr3UY6fWOTWrT1MQ5JKRakksZwiw94YdU/H+CFNyfVJYNsGhqHxA0U4zpCWyO8vFvhBwuxskYM9/z0t0PviTPF+e0TuiO2u9ymWPMIgID004PcEcAetISceWMTxBJ1On/aeTxK/f80wjIjCmELJIRAxspxTxP3ez6eVhcp3e7YnUIlCJQKKGUJLhKFAa+JE0pwu0G6NPnCtD/Sx+Onfh4OIYtVmMojQaNIow5ACpfIQ4qlzM4wnfXotn257cmicBZWKx3AYoLTGtm10UVGu2gx7wcdyBITQ2K5FGCSEfoZwDcg0IsvDyG7NJkkEcfw3B9ThP7WBFhqBotOe4LgGZlET+vlWPEnyn36QceT4PJWqS68zoLU/Ipy8z8bMzc/Sat2mWiuQah+3ICgWCnQ7H6Tr/+a95049CBwvZ52yWJBEGiQIW6NTwXgSMzNfZX9neO+Th7f/N0NWeWhse7NLseoxHKWQ5cyttB1UnNHtTzh5bo6MmE57Qmd/Qpbl1zEMxXA4QFsVHM9FiQjLzTccQfSxqYlP5gyceH6RURBiWDYPnzhCuWhR9ix2exNevLxLlsFs1eGZs4sMJylv3OgjDJvf+MIvUZMp25tr9Dpttre3UFozPTNDrBRba5ucPnkGadns7O3S7fYplKpIQ7AwP0d3FKMzgVuoYLomG62YV//kXeaqVS48+ymuXXqbqO1T8Ty2xgGlUg3X85DSxvHqHHQ7kCnMpuSJ35xh7niFWV1kYaHCa6+tMclMykWPUsnh6GyDDPjWK7cZh4pa0eXLTx5htxtwa2dMd+iTJZpTy/NMlUxkpCh6ZbI05WB/n0kUURr4NJtN7ly/wqfPn+CP/8MfEKcxCzNN/uf/+EN0ZpFmKeV6hZPLRbYORljuDCtnFG9fu4UnDapS0hn7RFmCaZuk6QBtlIjCjIWzJSbdjOmTZYbfliw/MstgbYTrFjh3rEC96FB0LHa6fV66sofSmsVGkfPHV9hstbh2dwLSxHY8mnWXpUadharDpN/hocceoddtgXQIxj531+4w9n1EqpiruKhylUq5yPRMk91+jCkFhUoDz7F4+Z27DEYxi7NNHnz8cV55403K2QTXMNjpT6iUi0jTxC6UGMmIWsUnND0mjQELNYdZbwa15LJ3ccip40tU7Xls06M97HDtzj7tUUil6PL4mVlOrlS4u91nvxsz3Zzh5DGLGa+KHfmsXbvK3vZdgtGY3mjM1s4Gg0mINmz8OKEqPZIULNugVqtRq9fJogIqTiBLWdsacWf9ElGWMdOs85WnH2Z7Z4NrNzaxbAu30sBAYSN/odgoHGf51BeCeKAQBYEUEsNWqFiwszWkXCsyGQS5XkNotNBI00DFCss20DLNdwACxsOQmfkKB3tDshTQmvnlKR58+Dj7e/vsbg/odQNU9v7iWa8Xabcn6CTJszakiRSS3ijmPeHaz/EHNPqQhhboNENioEWuo8lkSjBJKRYtXNciCtNDY5prOcgkSgsMM8W0DaJAkKFJ4pRKrcCon6BURqHksrDYoDFdJApj1u/0iSLFPY2lAmqNIuJ2zrRoJF7RYtgNUYnGPGzARwiuEQjiODtMFhJkQzAcgRIaaQmyRHOw51OqOvijiCzLDbtAIC2JisEwIBUJlmOS+DAZh9SmikxGPnGUM4iVusujFx6g220zHk9o7U9IIvUeo2gYmt2dLm7RzFlIaeDVXXY3uvxCEeGhU5T4inu6BxXf008YaJkRBxkTAryiTTCJ3/ugNCUgUGmGZUmEJYmDnFIPxiHNuRKtgwlCCeyCyfTMFCeOT9PuD1lfHZCEGvGB+ztxcoG33r6JViCQGI4g9ickyc9hVj7YFA1xmOXspA/CIg+5WZIsSum2AyoVByFjovfEnRphSHQqQGZoqXBKJuEwJYrALZp4ZUkwVmSZplwrcPKBZaRICcKI/e0BUZT+FNuwv91GKUWiczFrc6bGzkb/I7Mo3rv/w4GWOx+5biUdK6QlAYU2IIsz2gcjCiWLYJIeirhlHnI2DbIkw7Ak2tSQCrSWTIYh07N1uu0+OslVxjPzNc49dIRut8v2ZpdRL0JlvNeOxlSBg/YQpTSZKRCmgYtNq/dBh/AX4xM5A5tqFX84plRY4vhsldXtDle3d+kNY+ZrVU7PV6lXPYJYs90ZM9+s8E++/jv09vd54yevcXCwS6lUQkiT0WAAso1t2xRKVYIgIGu32djZodXtMj1Xo1afxiuWGcQOCEEQRqgwQQhBvVihYJgk45RHz57j8uo23SjGK00hDU13NCEI2iwvHmU4u4R/sE6oY9z6CDN1Wfn8ArvjAK9q8/zJeRwDBuOAG5v77HZ8bFPwwPIsDx5pIIRBpx9SLxV46NQyRdvCShXbN2/R2gqoTE1RKpUZ+ROUUvT7A4b+hLtbWxSnapiORZzETM3MYBZnGQ5DgiihN4x48Z0hUbhJ0fV45uHjPPH0BV5+6wo7kwC3UKJsSfw4QMoMt1gnDmJG/V3617sIx2LqmQU24rvs7rV48MhpXFNyY6PLxdUdwihjruZxYmmWZtllOEnojxWNcoGjR+d49pETjHsR23c32dveJAxCosgnxaRZL7C/v08YjDl++jzPW2XeefkHpCKkVqsh7QLEBmmSEQUhndTHsi2qnkcSJAhl8vSjj3H1+ip3e2OmmrOEgU/BsrmzscXC/AqT1CeORhzcaeG4BpWVKtt+n0445EjhHFGQ8MbtuwyyCUVKPHF6nkatQBIr3r11QGsYocgoFBy+8NRZuttD7tzcot3uovtt2nst5pdXcN0KJ0+cIIgyTNtm8fg5tDQYDlvUGnWE9DiztEwch2gM4izBNQ1qhQKQImLNbLVJfMzi9u4B1XIFicZ1bVL184PlWgukmVP5jmuQqpQsUZiWgTBBZZrxaEy15pFlisk4QWhNlioEYNkQpBqzANkkz9DZ3xnSnC7Q7/kcO7nAzFyV1m6bIAxp7U9+arFDw2MXTvDiS9colj3Gvo/j2OzeHSCQH0/xIEROwYs8jdgrOERxjI7zWLlKMgJfY9mSStklSTVBECK0QUZ67zawq5IoShBSEEUaaaQUiyZgcPzMHFJodjdbaG0QBHlKaXwoaBAabt3YoFS1UBKEYZAlgiTMxbP3vuMjeuFeQ/KMJ61xXBPDMQj8XLAqjbyPgnGCV7AQSCZ+hMrUe3F6KSVKp5gVQRzkz6XX8Zma9hj1I5pzFZZWZpmMhkRRws5GhzQyfkokevToInfv7lOuFoiTDNO2aO0O+PjZBIdtlTJnbEyTVKdkkUKYkizN8EOFNAwqdZc01viTEKUVZIcOiS0xbIskTpGmQRZqBr0x5ZpH4mecPL2IV3DZ2myj0ATjFMcxyTJx6OhpbAmVqovnGATjBGlKRoPsE7VDkzu+ti3wygUmo1yLwGEm2miUUCia2HY+buJIHXalAhRaK+yqJhwqkJrxMKU+VUGXYoquzfEzS8RBQLc/od8fE0cpIlezAWDbFls7+zRmymRZhm2adDuTjxfieI+pkGgJQmksR6KEJktAGholJCqDKEypVB2yVDGZJAhy9gPAMgWhyDAdiYpAa0k0jjhxrEEcCJyCy/RslV57QOAHdA/G/LQeQPPQ+TP85LWrlIoe48kE13XZ3/hkjgB8Qmeg0zlAa5/SuXneXdti4knO/3oRuTqDvFukN4nYbPcJszzu8k9++yts3rzOj3/yMsPhiOGgzaI06A/7CMOgPxjh2jbFcpkgmHDQ66IUpFmMymK8QoEkSXnq7FmUStFKobRAK41EkcYxO/s9bMPAk1U2gxCZ5DuSySTDdeqs7ccMI0kcFdHpCH1kjGkqWtvbRInPWE8zLRzevnlA1owJE8nJhSkWmyXiOKEdQOdgxFY3oOgpfuPR86xfvkqr3SJBMQ5Dxjs7xHHM6bPn6HbbeJaNY7ksLR1ldfUOpaJJyStiSoPjC0eRS4JJlGFYJlmSUXANqq6JjgNEFnPu5Bm6gwGxEhQNl71+n6lqndiPEU6dYtVHzAhiK2XUnTCeDHBPmgziHmvtFL8pOfmYS+WggTGw6E18NvYnBEmKlBrbNBiPEsJhQjwJmEx6dDo9skzR6bZBGMRhxNLSEr3uAWu3b1KcmsayLCb+gFKxhiEkn3rkQVSWi0VVlmeVOKSMJiHr22NMQ+IWmuwc9Om3BAgXO5Zoa57NVoI1SJmqzFB4qokfjIgPFO39u3jHi0zEgGjiMfdImQvL0yRvFgnvwuaBT5IZZJmkUprKY8ayzNbtHToHHXr9Ma1el1hlhHFCsrnF0ZMn0Ns7zMxUaTanKdamuHv3MlnVQQhJ6Id0s32kVmRKEyYR/SyjIwyGk5A0VRgCkjhllExgL0HrGI0mjD86Hncvg8CrmsRhSmnKRkibeJIxGiSUpy1GrVxo1O8FOK5JpeYAitEodxr8cYrh5YtKdpiOawhJtVxgcb5EpmLG3Q63b/V48rmz3Lra+hmjuN/qsLBcRwjFaJDQT6NchS8+livw3rojTQO7IKhNO8SpRWdzAKbEMAVCC4IwJQwzarUStZrHKJww6uXOgNQSv6eQUpDGuYK8UHBZmPVwXY8kTpj4KbvbI06dXgDy9NB7sG2DKI5ozk8RBAmTQUgWZggt0Ift+KjW3FOXCwRmSZCEUKgZOEUHJxT0d0LcukUwTDDcPHvFsgTVqoeSKYmv8P2MJFHYjks6FEil3gvn1Ases1MehoR0NGZjq8XMfJMPOiH3sLAwTxhNcB2XYa9DmGiSWH10bPxnuiH/v+HJPLWsbpNqi+F+lIc5awI1FugsY9BTVCsOjUaFVMUM+hFoiMMUmWZIQ5Ae7s5t02R5fopywSJLE8JBzN07LZ565iyrNw+I4+zQEQAhMlY3tpmerZJkisFoSBIrPq4j8F5mjZ2PG7tmUK3ZOCXJwfoA2zNJwwyrAKNRjCGhVitiTEkiP2I4yGl+17IIuzJnRZJcsF4ve1TKLp5XRAVjeu2IdmeA4xmH/fC+pmR5ZYbBsEO5XqLbGTIYhMThx2E2NF7VwB/kz84sC8gySjUHDEE01gSDmELDJOjEYMCgH+J5FvV6gYyE8SAXK4ZBhnTzwEGWKDzP5OGz89hGims7ZEgy4OL1bZ589iy3rrd43xHIsd/uMTtfRQpNOE6Y9NMPhLo+Pj6RM9AL9vGqRdxTEdaxEmeP26xeWWf9+xuIcRGlFCrNiMIAw5C8+8ZL3LpxhSBK6A/6DPo9lBZE4QTTshmMR9QrderT00T+iKNHj9IfTthtb5BkKTXPwTAk//3//f+WC2fIVcta5p6RRiO0JOdLszzFSRpoVK42R2AKyHTusdaPlXnhnzzC4E6P9bur1BdnqT2l2O/3Wf7KPO7ygOy2SfRmhfYgJYwl//y3vkIa+Pzwjcvc3djhzrW7XL94CRAEQUC310UJQRzH6OvXWD56hEGni+U4NJtNev1txn5ApVZBZSnXr1/N/ToFURbndI8wUGmKH4SAJk1TtNBkhznzaZwgRZ57qvRtTjxTQTigbIlbbdDrbTG/VENUUpyh5tQpj/U7Ld79UR+z7+axwCQliScokWdFPHp8hbfeeIs0Tuj19glChR8EBHFCrVLEdB229naJ/ID9dp+pZgfHKWOEQ7ANVldX+eZffh+tD1OSdJZPcq1BWGilkCiyLCUnmOVhYaZDilNolqsF6otz2I5BedGi5M3jznikIqS0ZKL6Ps05xfVXb7H+JyEyzWO+wTggCIZIIYnjiGPLRzHOHGd9e4vW3h6W42DaFtXaFIWCy6DXJ4ljpD9CSgPPEjgywy0WkZbJ/sE6N2/cIY416nDnA0YeA1YCaRlUHPNQoHY4bWRGGCUE4c8WM7mHQtkkGKVkKSgEWWqQqQBhS2pzBpnKqC46BN0UkWQkSUbUyajNu3xwOym0IDsUMwng2PEGzYqm2Sjk+cTCpPqoR2t7B9MUZKn6KZqzPxxhmiZhkBKND2OIHxAlmIZB/HNUjFIaKJ2BUihtcLA3wHQNrIrAsCDO8oJPOhUoJej3JwyHirljTca9DlpoLFsQRwrTMYnjCGkKTpyYxlZjFheqHLTaFF0bdBVpxBgyjw3k5kUjTE256hFFCYPWhCTIDsdR/lA0edz9w9LCpC2wTINopHLnQQmEbdEbjHEck/IMZCKhMGuh/FzXoVD0uj5OycK2bMB/7zsiP8tDB4lieWWa5QUP2859K8M0qZcWubPZolL26MTxB/pCs7F5F8uRRH7MaBiT6sMMmMPdnpTGR2VHIhyNqRVJLNGJQpuS0TDBMDLMisaQkGlFYbpA2IlIUAxHIeiQ2eO1PCsnM5BmznZI654LIjhzchbbyVieLTEcTciUgJNNRpNBHh7J3ndYpBRYnkmaaYaDIA83/JQ7k6eVpx+hp7ELBomfIoVBmqVI4XCw08UqWxQaEiFSZFEgs0OHAeh0J5gWNOamGA37aA2WLfHHGY5nEQUpjabHyaNT6MynWvFQGVgGaO1SKHsMum20lu+xG+PxENezSfyYUTd8T/txrw0fZUxNS+BUIcsk8VghlSTJBHGiEWGGsDXVhkVEQmXOJuwlqEwTxjF+kFCfL4GMc6ZGaKTO64VoATMzNSzTxLY1UmbUq0WCIOHUsTqt/TaGIQ5DWB+c312kZRIHKeHkpx3QPGPow8fTz7Tr470txwPPPMPO7Q16A5/Z40UyMjxZJByNOHVkgYVmhW9+/7voVOHoAt/8628T+kPiNGEwHoLSlMplHMtBmCaLcwuUazUGgz7hZIw0d3AKRWrVOpbt0piZxZUW//B3f5WtnQGv3dxA6MMJIwVmPMQwHT7/9CPUygbd3ohKuYwQkp29A7YOdhn7CVEUs3j0NK3JFgdbXaqLNVbkKWIjIpUjFs7OUSkmbK72+c6/uk4zaWJaEjLFnasPUvIcfuUzz/A//M//E6ODlL2DFkmWMpn4JEmM6xXwPA9pmbTbbRI/IAgC3HKFUqlCEA8pT01RKJR46Qc/QWlJfxIDuehHGAYqDrHdAq7lUvY0aHmY9iVQWtPqdRGGgWlJVv+HNtWlIseeO87R81NcWHmOO5dvEtsBR88ss71zB38/xY49phbKTNfLfPd7L2HK3AC88NQFNm9fJggS7qzeYn6mgWk5YBhM/JiF+Qq9Xo84jvE8j73WASN/wuLSIoZhMjc/j2e6PHz6LG9cu8t2e4JEIU0LoWPMNMF2PL76mUcQKqM3GlAtVRDC5s76Opu7u2AYXHrzJ8jv77DwyBxTus65xxc4e+QJbly6zu5ul5Pnlmi1D6g7FUpnj3B8YRGjkPK//OFf0izOkmV5XvfnX3iOm+9c5O7GBiM/4MjiEqOxz+zsIpPJgCgMieOY/U4b08pT2qrVBjpJmV9c4MLDi3z5hc/xyru3uLbZI0tCsFzIMsyoj+uW+K9+70skSczbl69z7swptBb85PU3WVu7zW4YfOh8ObLgsnp3BGhQMGyNQUjcEigJqdaYKsUqSqyiQmWCsKUQhsQsmGRxChrSMAN5b/Ir5uZrVAoOaeyDMJibrjEcDSFzWVyqsbnezceVhNn5GtVamSCIaB8MQOcLkG2ZaJ1x9MQcMzNFXvzxjY+c90ePltjdCwjDhCzIDUka5TF3tMxrbRgaWQTHkYR9SZbGJFmK7dlEQUQQZEhhkgQpCEGzUScIfIRj0m53QRo0aja2KdhqD/CKBvFEozIwTcnc3BS2Y9DuDUmDBHnoARSKLqZjMdXwKJZcLr27/TP3n8Wa+aaLb8X4yiLVEZ2dSe5c2xmWLfKaJ1aKNMGpC4RhEB6kuVrcUGhLkyWKcEJecyTJndqZ2TLyUBSq0pR6pUCllJHqBvvtMf1+jzTNs6uqNYdCySFD0Gm1USqnmQ2ZV3JdXplmplnktdfufnhHqJQTRxvcWh8gFKhE5fF0qbALFsLMSFNNIhLMgsB2DIIBpL4iRWEXLeKhIo1Erv84FCQWCg5ewUHojP54gmlIphsFHNtgc6/H1HSBzoGPyvdaLC7NUK459HoTRt0JHAZqPNcCKZibrbC4WOPHP779oc1wLcHcUonOWJENM0YH+SYoihMcB4QUpCikKbHLEtuWDA9CUi3IUBi2QRql+OMUJQRRkDu4cws12t0u9WqR/jCgXHRZmi1jW5JOf5IzRKlGCPA8m2qtiLBMWrtt0uSe4yKwbYNavcxss8ra+h7j8U+nnColGO9rTh0rcmd9mOsHlMRvJ7mOwZMIS5CkIFAYRUmxnJHEAr+X6x6MgkE2UKBM0ihDCAOpNZZlc+LUMbrdDkkUUqhU8JwAreGgM2R2sc7+dj8XD0rNzEyZSr1CEMTstfqHd6ixTAOF5siRGep1jxd/dO0j5/c9fCJnYOf2OtNHpqhMVZhEA6ykzPB6l/m6weeePsYwDbCXBbpnUrPrnDg2T/9gnSiSvPTSi8xMT+O5Lm55hoorGY0GJEnCYDhCJTEbm5sUCiWmZxeIswmmZVEpVTl/6iwXr/4xX/z0k1y8dANT2ljVKv7eFkjJmRPHqJRs/sW/+zP+6e/+KkrHfP8nr/O7X/sc61sHvPrODcJgwLg3wL8cYD1nMXNkhe3NdcadCaPmgPmVo9RWI1xT86tf/CyNZoVvvPYDtDRxbJtaucjnn36Ol378PTAc1jc28MOYeqWMaWtsu4AQkiAIiMOQ7qCP1W5x9OgxalMNarUaxVKJ//a//i946+It3l1v0x76yDRAuDXSwQ6uY3NsaYXf/MJjvPrORR44dgzLtnjlzUvMTjdY39pmpzvkpSu3mD97lKUjDbKkz2CkmDnSIBUGYTyhkFa5/dItvvrsrzPTrHG7tUF5xkIok0898hx62GZjfZPNvX3avQ7FUgmpA4Rd4OjZB9navIMlBOOxT7fXR6sM3/fJVEYURVSqUxybX2Zn+4BHzz/A/CBi9eYNio15BIpxdx/bKnDu9EkylfH//oM/4x//9iMkScyPX36F3/zyC/zw5bdhYDPq+niVMmceOYIOAy69/CaLD63g2Q79/gQxNLjyl1f56gNf4MhikfX+Hs2lCkEfnNTh67/562xcfYf99gGt3gCtUpRKOf/UC7zz+os0ywWCwGc0GWMIiQmMRkMWFhbY721jOy5/8u0f8fd/63eYqdY5d/YBvv/d73Ls/AM4Et55521s28Z1XUzL4PKtLZ587DGCOGFtfQvXsT5yvty4PUa6cO7RFS7+6A7SEJAJZuaq3L3ezguUGIrmsRLDVkxzpko3GIHWZHHyvpKdnElyHTvnx5TD0RPHabd7BEFIsVqiWq0g5T57w4SFpRmmZxpM/D6OK9GZZjL2MU1BLDTnHzrFgw8vcvvOFqWyQ7f70ewGwPaOT3HKw4xNgl6M0AKVptSmi/T3YpQUCEcjHAPXtTEqEEzywmRxcC/NTeTsgoZqpUiWKkrFOmfPLbF2dwfXTlleXqbf2qY38jl56iTDnk+qAhxHYDo2YRCRxQmGZWBIkwcfOoJdNMiyjDhR9DqDD71/nWm2tgIsT3D6yRXefekaBhYqVXgVJxdvZnmqZOWIzaQd0pyv0PcnCJEXD9MpuQNCrjmQUlIo2Ph+yvFjy9iupL0/oVQvUnGLKLFDbxSwcmSeSqVMf9ylWDDQUhCMJmidIoCTJ1Z49MEVNvc6lEsmw8H4I/tBJyar6xMMTzM902TndicfDynMz9VZvb2XvzFLKTdd0jih1nAZ6ABDyUM25ZBKIU/n8wp5oTOnWOfcuWVu3NzAdVJqjQaG1WUSRAinhm0OKZdLpOThrCBM8f0xti2IQrjw2GmWVqbZ3dvHtgx6ow93kAFGg5QoURw9f4Rb795CZDZZmiG1QCWCJFBoKTAaBmGUUmu4ZIEijlNsyyaN7/WzeC/SVam4jIcJCwtTnDh7nI31AypTBkvzS8g7N/CjjAceOIFS4Ps9vKIJMtehRWmMEJKZmTpnTi8wCkMKBZMwCEk/pKCWaVhEUcSt2yOUo3jgwlHefek6JiYiNZiZa7B2axchTbIoo77iErQnNJs1WvEYUGTxYV/oPEVdHdZGWL2zy3/+X/7v+Pf/4S8o2ZqjjkW9WSJOdhmFJVwvY3qmzszcDKNJi4Jr5RqdiY9haojh3LmTnDu3xJ27GxRLNu328Gfa8GH4RPUS964fcLCxTxhEhL2E7WstdGIzHPUIU003nlDoGegoI/BHnDy9zNf+wT8nQbFy7Axnjh3l5MoSTzz/Aju9Hr3hgN3dbZIkZhLHjAOfdvsAyxREYYTvDzFNGz9UlMtVnnvoBA+sNPnlF57g97/6HNK0kFJgGhoMRaFcQUkHbbgoBJ5XpVat0Zya44nzp2nUKhx/sEljymXt3WsEwZATj5ygXKtw+dXbyEHEZPOA+YaJZSbs7t7lr1/8DlrC5sZdrl5+g739XTY27tLu9nMh48IK9ekFEq3w/QlxHBMmMUmSMBrlu0ItJGmaYjoOlu1w8eoNfv9XX+CXn3+EpUaJLz7zKOVSFccuUKtUMCzJrbUtpFXALZS4vb7B8sIszz7+CGiJUxE0VwRh0OX1v7jG1Teu4I98giDg5qW76DjBq83THu8wiSL2O30unD6HV3aYrVd46+JVbtxdY3N7i86gTxAEFIse0pDUpqcZxTGt/oAoSvAnPr1eDyEEMzMzhOGYNAmRpk0YKxq1Ol/91MPUijb/8Fe+wNc++xym4SIEJFmKEBLHKyGsAplwkNKkWKzhFUs0jzdQXsaDn55m3N7jT/7H77D+7iY3v3+Lt7/3NhtX7iKijMVTR9gc7jFOUq6s3ebc8imklSK1wlIZmxs77LY7TIKAWrnAyvJ8ThU26/THE9Y3d4ijFD8ImExykefS0hLD4YBgNOTuzZt8/oufpVAusDJbwbIln71whkceOIogr4aXpAGJSqiUq2TCANPBsl2E+Oha+MISaEOwfmsdy5EInS/Cw/EYyzNBS6p1i96+T2OhwGTiozJBuVym6OW5zvdIPykE5WqJE6cW6XUHzCwfIabEYAyzMw0aM3MUCh6d9gSk4JEnjnPi9BEq1VpeTErD9HSdT33mYX7tNz9DECU8cPYkG+ttrr67+XPnvRKayTgkTWI0GVooTNekUisjdJ53rTNFGqUoGRNHUV5NMk2o1mze4/HJxYf1RgEhEvYP+pw4d4EgtiiVq1x8910SlTE9t8T1K3eYXqzy5HNnOXHqCI7nkSYxtmGxsNzk17/+BR44u8z27h6BH7B6a5/NO+0PvX/DEGAJYqlZu3Ir3zVluSAyUwnVqTIaKFby2Hu5XmIyiojjjEIp12UUCgYS4zBcqalPV3jksQcwDFg6fhrbm8OPDWZnZ1hcOYlpCYSy6A/6nDo3x/mHTjDVbOA6LlkUUZ+q8syzj/D13/0i9ekqy4sLjEcpVy//LLPx3niSGm1oUq3pdQcISx+2z8iroAJoA8s0GfUC3IpJFOTVRR3TpFy2D6+UazakkacIegWDS5dvsnLyAVJsnEKVjY1NCp5Hc6bBtSt3qEwVefr5M5x94CRuoQAiwzZt5uem+dJXnuGzn3+c/U6X2ekpbt/e49qljx5TwpBEQnP31npeDl3l4R5hw8LSLCCw7IxgHGFYkvFkQuAn2K7LeDSgVLVyhotcQ1GfqnD2/CksKThy7BQzi6dItEGjMY2WLtLQFKpV1tbXOXpshqeff4zFlWWKhQoqiKmUCpx/6Bj/8Pe/xukzSyRxzHjkc/3qJmHws0U4sixD2gJtm0gpuXvrLo5tow9rZ0zGQ2zbAiUoFWz6uyHV2QL+OCbLNKVCgULRwjTND8xvqFaLmGZe8v0f/f5v8/ynHmJ1dROlMqpTdRpTDXY2u5iWyWOPr3DyxAqlagXHkgg0zek6zz7/IL/+W58lTBNOnTjO9maHm9d2P7IvPohPxAxE4y7f+e8vUp0uceap0zzwxCm8uMDtwRZR5BMOJ0w9ViZ4u0cWZ5TqR1jfjxhPEs4//CQLXowpDV7/wTeQUoCU7O3tMz3dZDweo9CUS2VsyyMKNb3tbTyrjleexSkW2BmMsYtlMkPQGY0p1QqoJKUdRVhasHz8BJ3JBC0ki8dP0gkVvukyvbyMKNRZOXOCW3vf4+qlbdo3hiQio3W9x+K5BQgNqsUqaSJoTToUyjPgG+zsb7O5v8mtd29y+85tdg/2GIwHlEsejXqNqWaTQa/F3sEurhYU3SJhPGHiT5ieaiClJA5CJsMhjeYcGTaOVyQhY7lRZadc4pFTC7z5hkUUx5iGxI8U9ak5tLRItIGwbEy3AlGC5RRJtSDoRPSnEtq7OxjbHq/829cQtZTPf+0LpEnG1rVNlk43mZkJeeeNV/nUC89T7Ze4dvU263sthpMJhWqZAmWOLs9SqZYZDnzaW+vUp+psb2zSKBSYTGL8KKTX71NrNPCHEVu3b7Mwf4bMdAiUZn/oU2k0GIY+w3BCqexhmJJ2kKBUzMzCIjuDCSCZO36adgSFmVkcx2ZqvsZP/ugmM495zJ4sUis5fP9f/wDDUXzl818lmU0ZXRpSna8Q6YjRQZ/G6Tp2wcQ2XC5fusjd3Q6d4ZjpmSkWZ2roNKK1fhuRKoZRwCAK8ApFbNMkCAK2t7dptzscPfooB5u7/KPf+XvcvnEb5Rist/osnzzN6u4eaZYxvzxDlmXcbk9IU8XssSXuHHRRSnPs3Hl+/OqPP3K+OCWDUlkhDJtxK8L2oNQokYQJR48tsL21x7ifYRVzlbplQVzIFxN/fO/AFKjUXJ597gIvvXiRIByisoyDg21e+OyTmKS88v1vMztTxS4XqZQcvvjlp0nHLTK/y8FBn6XFRZ584lEm4w5+nPGDH/6YzbstvvClp1i90cqD3T9Ha1QogzY1BbdEezKmWDfwhzH76x0sR6B0XnDGkBLDklhunhI47IzJQgWYSFOBSPmdr3+Zv/7Od1lenmGqOY1Oh/z217/M1q136O3vMTXVYL/b48GHj/HguXmG7QO2NraJYsmTT11gulmi1Tpg52CL/Z0uk2HKwU4Lf5IitPmhokiNxKlDyRMonYu2DBvqs1P09gc0GwVG4xHjcYJpKxAay9G4BQFGROwLkkOhaLniMT83x2A0ZGvzLiXXYWP9Fk888SRPPHaGy2+8Snv/ANergtniy7/yHGUnYXiwx/7OhHK1ymc/+wLVokN30OXti5fZWtvnC7/0An/6Rz/Kq0F+xBbNLGiEk1GxbeyCSzzIMxuyLM9qaDTqTPyAOIixizIvnuOBVop+b0gwSt57IqYFv/MPvsp3/+qHHD8yja80paLJ1776Rca9DV750T7FcplhIFlabvLZz5xn1D2gd9Bl0Bnx4LlzHFmcZdhvczDy+d4PXmPtzi7B0Tn2dgf8vAFVnDKxHJUfAlcoMt4PqM0VGeyNGQ7HCBtUbKPMBKkVjmOQFDMsBybdEJUA2sYpCCzD4IHzJ9i4u8bMTI0kDRBM+J3f/jKr115n7da7uIUig/4un/nswxxZKLO5scbG3R6GtHnquSdYWZxlc3ODazdvcuf2OssLs/zge2+QJXaurfkbY0pKgTAFRimj6JoYjkXUiXFck0KtQBplrByZY2+3gz9OsDwQJggnw/VgPBgSjQ/PshECr2Tx3LOP8fqrlzh3Zo6fvPhjHn3kYSqlCgsLi9jFElGvTRyNaDYLfOUrTxNN9kiiAZ2DIUsryzz5+AX8SRc/zvje915kc6PDZz/3NGt32oeVOX8xPhEzcOTBJue/cIbznz2O2bW59u0Nhq0EoV3ubO6xs9Vj9/Y+tTNTWKUiP3zxNa689i26vR5H55rUa1VGkxEztTIyCdnZ3aPTH2CaFqVyOd9VRyHdTo809YhihTKKVGfmmIQjRqMRO619ur0evV4X28opFt+PGQ5G3L51hcloyMH+HgcHe4STMb2DFoPWFjr2uXH5JtsXJ9TKJl/6+uP4rRHXvnWRG396g2gtonxQJ4sNPMtlGPdpnCkRZQnff/M1JiphbXOVzf0dTp87h22bVCtFgs4OKomoVqv0R2MKpUJ+GEmW0u50kLZLlhTZvLPK1Ut3qC8ts3B0ibutDnujCdW5GW5sb3Hk6BIz8w3MssNqa0B9YY6Nbpcb2y2OnD7P7YMuq50+cyuLNI5Vef0v7tBdVXzq1x7hxJPTTJ+Z5aHzDyJ2TFpXRrhBiSAQ3F7bwzaLXLp2naWleQb9PYaTPl7R45HHHuPE0iInjh1lMuhjmibRsEtrdw9/4qN1PmGXlpZoNhpcunyDE2eeJgkyAu3yyNMXmPhDhsMBo8mYTrdDt3OAaUu00IyGIaNRwM7OOv5oyEFrj3G/Q+wP2dnaZtgeIbTgxhvrDNfh6JEVEh1x8sllnv3qYxz0Blx/e4MwFmy2+vzk4jUGnYgXX3kFe8Xh9NkTtPZ28P0ecRpiSUFzepqxP2Z2dhaLjGG3TxSETM82cRwXy7Iol8toLVmYnmOqtsTBzjZ/8G/+NXF/QNkwuPzWmzhaYsQp7d0DOnsHlG2Duutx8eWXqEqBlfqsXr2CJT960ZtbKmNaBtoAo6QozRuUagbSsGjtdzh2dgGrDHYZhnspQmrcgsGwE5MchikFMB7GXLuyhhQSz3W4cH6eg60dVBggtKJUdJkEEau3VnnhUydYbkiuXLqOVpKZZpNHHj4FUjHlweZ6mysXN9la72FbTv4lvyCpQEgDZIbjSYwSFKZM7IJJkqbMH29Qn6tQaFp4JUHQUwhbo1JBMubQoVGo1IAMfvSDV3Eth1/5ymdxjQkbd7fJz9OSHD12hJ29Hlk44HOfOU1rZ42r126TpCnnz52kWDLoj0YEQcza7T3WbuyiEs3CwhSaDCU+vMCK4WgWl6poQ6NERqEsKTYklSmTct1jd3uPlQdmsS0Dt2kTj32EAaZrMOxHJGF2WMBAMBlHDIdDRoMAz7N58sIRxr0+aZzhOTZa5+LfjbtrPHx2kYeOTfP2GxcZjiJc1+GZJx+hWLKIxx229zpceusON65vHpaaTcnPPflwGLamXLUwbYXrmkgXKtM2VjFDqYxKzWXpzBzelMQswGAvQVoK05X4/eQDAjlBlkpef+VdpGFy8tQxjs4VePXHb+DZkmASsXJsiU4voNve51e/9DiWCrn87jWUSjmytMDSUpNRMCSKRqzd3uPalS2Gw4j5mZlfWJp6et7L6+wb4HkSu55RbbhUGyV6nT7HHpjFLpmUZl1M20Rn4LiaySSfF0pJkClxmJCmGW+9/i6mCV964WEG++tIaVIueCBdyvUyt1e3ma5YPP3gEd554y02NvYwtOLTzz2J42p297Zp9X3effsGt6/v4QchtnNvn/yzjZF2hl3VzC5W8zRNKTAKitKMRblhgyHp9SYcP7+AUQKnKuhvBYd9AZNBTBweniAgNJEfc/GdW1iWyeLyLKPWFlPNGaYXFlhemmNn+4CNu+v44zFffOEsC1OCK5euILTFVL3O+fPHEDKj5Eo21g+4dmWDna0Oju3kh8/9wjqph+36WO86RG8jZbIfkg5Srq3e5d1vX+J7r/2IgT/iTqXLK6+9TTxOcCpFRMVnYG/zmace5Mtf/6esbe9y7cZVhpMxk/EIzxSQ5Qdh1GrV/EAZKfF9nygK2dvbwLOrPP7IBZ59/CGK0mGpWiQeDlicqrNQq7G3tUev3WOuUmGxVoQ4ZbFa5FijhmeYzBQtHK2Y8gpMewZBf0Lvdkhrbczq7TXOPXOMs587yWg4YetGi1feuMTS0SO8sb/OD77zDv5dn+KpOXaGLULL4KHHzvGp555la3+PmZlp4thnulHDMyQHOzuMRkM818K2LGrVKl6pwHg4JlOwOH+a44tHaVQq3L11m1nPwe+16WzvUjYN1lbv0tpr4WQwUzB4+ycvMVdwqRoZV95+mwVX0HQ1N995jc2rB6TK563vX+Ev/58vEnUs4nHAwVaPKzfv8N0//zEH/QMu3r7GNf82q+tbXL56jUqzjj/uQ+pz9vx5HvvMl3CLJQbDAd3hMD+tTIKtFUIpDNMkTlOCyYRiqcyRxWUqJYdKdZ7dm5eY8irMVessVktEwxEz5QJGqNjf2ae9vc9sxWW2UkL4KQsVj7opqLoO8yUbK0tYOb1EKCO8qsPmzU3+/F/8kKRvsnerzc0fr3FnbZuX//w1rl++wo2b19iI1lm9dRO/O6ZQLfHYg2dJ0ohMhTz01PNE2KxvbjEYj9nd2yROfGolD9eSBEFIFAZorSkWi/j+iMD32dze4trqTc48/gKz9Splx2C62qBacDCFwcQP8Ec+RcvBsyQzjQXqBYuS7bAyP4/8OScNDQ5GkCnGnYhKVWLbKe3WECUVkzTgYKdNFkM0SZmMBE6pSP8gy4uxCIHliFz0pBQb63sopTl7ZpHPPfcwOuiyd9DFcT2kZbFxdwehbOIo4o//9CUMt8L0/DxPXHgIYVisre3wg5fXeOf12wz6ARrN22/czFOufkEGktAKHWpae10KZc1oGNBYrKENg+FoRPegT6ryyn6OWSSLTYIeKJ3hlixMQyFEhlKCne0uWiuatYSposH2xgbtdo9M5wcfbay3KdVqqDThhz9aw/EqPPTQeZozFdCSS5dWufzuFturXbJE0e+Mefrph94PhX8I0lDR2RlgpILJCDChVJVs7+5RnvVQjiKJ8/K+WSDwhxqvVGY8yIiHeQqhXZQIEzKl2dvr5oW85ms88fARijLh7q07jCYjlJBsbezhh4oky3jz7XfwY8n8wgqfev5xHNeg1xvz8lurvP7yDfZ3Rmgl+OM//A6nT3/0WfMA8ViggxSdGrR2exQbBmmSYLsOSkKr32Z7dQulFNFEk0USoT36rZQ00xiWwLDvHW2uWbu1TRxFnDrR4MGTS/R377K5tYOWeXbU2toOcSpxbcn/8scv4hSrnDh5krPnj6N1wpXLq7x1cYPrl+8SBhEqyyhXHMTPcWgAujsxplLEo4zJMKTasNjfbzNztIH0TJI0IRqnqFQTDlOKpTphqEmGuYqmUBIII09cCsOELFPU62XmGyZlF+5cu86du7cZ9Qfs7fQY9Mc0pmc5OOhze3NEdXqGp5+5gO0KVGbw1lu3eef1W2yvd1CZ4vVXr/OFzz9Nbh5/dlDpTBN2MsYHA2Si6bVDijUD08nodIdIWzLORuxtHyBSiCYwHitsp8qoJQ6LKOUl1oXIT4ptt3rEScy5kws8dPYof/Tv/iXf/Mafk2pNkgikttBobCPlz77xQwyzxuLiIk8+dR5DStbWt3n5jTUuvnWH4SDXa7z77jUcR6I+5rHenyhMECQBqU5491vrLD10iiVjgp44DFSf/itrGNrnyLEH2eltMvvwHDN2FelIXv7eN9nZWGVpqkDJs8m0ZjQaEMchge/nk0ileIUCtWqV+bkFTp1+iEG/w8vf+w6DQR+3Op1H65I4Tw3zimSZQqkUUwoMaVKp1PNjQY3sPV9IGhaWm1eMMixJuW7S2Ryxc2cf03QJ9gOkUWRta5XNiURkoJfy/NF41GXvRo+nP/sEvj/ggamjtEaSte0WSRpiaJ3XXlCCimOReh5xqhiORoRBwOzMDAvz82RIdna26PQv0fkfR5w8e46CmYvZlmZnmC7XCKMIpRQF08GzPKYqDVzTwCk7zM/OYwqNa5g0Gw1On1+kXiqys9anuVjLD4eKoLXjc/aRIxR7mqsXV5lbrHPn7Rsk8YRnn/0M3bBHFE2wTZOjR4/wH/7Nv2W6YvH2lWsYKO6srjIJfMajiFZrn5WVBYQhsTyXUq1OhqLX77K5uUmxVKQVaJ48cRwAlcbYUoKZx/NUliIxyLRiaqqBZZlIrXHMPBNE2iZblzZ48DPHsSybG69s8Jm//xhJKLGtAt2NiKeeP8JjjWV+8tdv8emvPcPqnRs4dYNf+62v8dr660xqHTZ31plfWuLNV3/C8aMnWN9ep1krUSzG9EYDBkOfJEm4ceMay0uL+L6fp8AKzUF/jzhLcRvzXLqzyTPLRTKl6XVaSNI8f5k8bdJEEqsEx3YOFyJJMBm9lzP9YciUwh8KhNb4fYMwUIQjxfKZIlE0YRxMSBOB8gVOWdO666Nije2aTM0UOdjKq4pJU1JwPY4em8bUJj1fsrCwwN7aVfzeFo1akWSuyCT1mPgDtvZifvO3n8dxBIZl8OorF3n5xat5QZf3IHjrzRs8/+kH+OEPrv/ceS+EIBwr3JrFuJOCDdE4orFQZNSbkAlQfoaKBaqUEXQTpJBIR1KpeRyM8xr+pmFimJBEKa+9do0nn3uGt157h7de/C6PXTiNUCnHji6SCMnVG3c5duIIv/YbX2R9fQ0/1Hz3r16hsx/kekStD2Vwks3NA35eKphh5Yd0pRmoSKMMcgMZgGvZFKoeu3sHKCMj7IDhGAz3Q5QPlmNiVyAZR6g0P0XTNCVHV2awTJvtfZ8LFx5l7e42l996lYfOniYeD5mamWZ7Z4eL7+7yqU8/xpEjiwjb4sa1df76r147LE+cce+cgHa7x9//e1/i5vU//Eh2QJj5oVL+MMEumIw6MbYp0UimFj1ae0MUIHxFGkiKTUl/N0BmEsvRzC412FztoDVIQ2JI0Dph0Oty5tQJdvfbXHv7ZU6fWkFlIYvzuSi52+9TrDT4ypd/lW6/hcbkO3/9Mrdu3ItFv//cf/zim5RKFuPxz5kXaYZ0NImvkXVF/0CRZLmRbM6WOTjogoSon6GVxh+FxIP8OHNpZ2Ap1Dgfl9I0aDSqWJbHxaubfOFLv8Tbb19i9cq7PPfMBcaDA06fPs7u7j6vvXmD48eP8sLzz9LrdTnY6/MXf/ETJpNDkethO9JEs7SyCOI1PpQ20xK7qCGFOAIjk4SDjNjXxL5g5nQJf3PMcBygE4GaaJyySXt7gErAcg0acyUONoZonWs+LMvAcW1M22Bqep7Zgx7VeglbZCwvTuOaJr1RhB/HbB2E/PZvfhbLBGGavP7KNV595XJeLEmL97rj4ttXefaZc/zwRzf4RcePwCdkBirzVcb7EdXFMr/61NOUV1yEC1/4zGf53OPPcPzpIzQWyhxc2ef1P3udZlLHMjJOnz5OFEb0R0P6kxFjf0R/NMYPQxzX4eq1qyAlk8mEKI7wPI80S2h19tnc2+Y//OmfwuExmePxAANFGoxROkUKeZgyrdnb28wFPkrT2tlACsF41MXQGYZlkOqAu3e2KM8Ljjy6grQkyVDw0MmzPPPYg/wf/sk/IwwCvnTuWdJ+BwoGy2earG3dJuwOWTi5xMb2Ouuba9xZ3WTkh4xGI/ZauwzHo1yQFgUEcUiqM0zXRpEyGg2J4oAojXj75nXsmRkA/PEE18xPVbvHrXleLvYKgxDTyI/x7ff2MKw81zsYjBAosshGC4G94DKJM5SGWt3iqROnOP3UMoYr+b3f+XucmV9k4aEFFs/M8r2//jbN6RlM06S1u85MvUjJ8xiPAyZhTBRFTMZj+sMhtu2wvrnBYDgkCAI2Nla5ePFNNre3CeKYtb097uzsIh0DKTSDbhtUQhD6h5XF8sInOgtJ4hCtYRT4GCikFuxt75JGkq3Lu+xv7OMPA0yrhIEg1T5HLzR49MwJVCVFFTMee/A88/Vpph6bZT/e5/obN9nb2iVKUj7zwgs89dQF5mYaPHjuPAroDfuEYYJSmmKxkBdUGgwYhxH9yYjrt27wkzff5KU33ubi5Yus3ngN0ysghSbwR0ihGU3GueOgFDrLsKTBwcEmqDx1Lk2Tn1ssJgkEUlg0pi2qdZNxV5EGsHm5hY7ydLbKlAFKkI4F4TijOl3EqiiU7WNaOcV+4pElVKbYWD9gcXkZVJ9yrclXvvoZPv3coyyuLGMVpuj1JywfO8av/frnMSRUajW++Vcv8/KLl5CmzHeGpsYw84JDWaZZOTJ7WFP/oxFOFG7RYaqah1mSoaa1MaC/E5AGOYNhSw2RZtwKEInKqeoipAQgBHbBZuHoNFmWYRgOx44cYXvrLvXpGX7/H/82J04e5aHHHqFYdykVBQvzS5w+s4xl5QfGfOOPf0y3EyCtFMNMEFKRxxc0N69vYVt5ieUPX+VMVCJJQ4OpaYta2SOYZChfcvvtbcJujE6h3nABSH0Yt0K8ko1T0dgFhVMwUWiOnp/HtBR7+31OnTqDJTK05fD5L3yWr/zSC5RKRcq1KQzD4fFHzvM7v/tV6uUq09NN3njlFn/1jVcAMCyFYZHXwDl8/p4jQf68eg+SKADLsZhquJSKDsEAgn7C/vqANABT5OfFkAmCXkIaZlQaDmYJQj0EkYdKjpydI9WKNNU4dolev4VTLPOPf//rPPrIOS48/gSlikschhhWkaeefoS5+TkUkj/8j9/jzq0DzHsFp+ShSBPY2x+wvDL9XvnlD0OWKcKxoFgzmSpZZKFJNhKsX96mvzsi88GtgUShIhjsjzGEhVsV2BWJ4UKGojlfo1Ay8CchJ44dZWlhik6nxYXHH+e3f/tXcTyLpZWTNJsznDo5z/MvPMORo4tombG20eKP/uiHhGGMYWhMK0XL9+fB7k4vd9Q+pBmmYWMYBlFkoITJ1LRJuewx6WrSCWxc2iXua9K+xnMlKE02FsTDlGLNwSppMsM/LBENxx9cIFMJw75P4CckQZ9Suc7TzzzN6XOnqDZmUIag3e1RKc/wq7/6JaRQlOp1vv2t13nl5asIkfeBtHSetYQmTTXHj84jPiJ89jPj62O96xDv/OlN0Bp3VnJxdJUaTdppj9Kcy1vX36GXxNzZXSU1wZMlTjeXMGPJay9+h//8P/uH/Nf/1X9FfaqJZdlkWZZ7QqaJ7wekefUdTNNk92CfVnuPVMO11dssNxskKq+qFCYxruOgMoVWudjHMEwQkvbBDlplaAy0SkBIhqMR9VoNQ8BwMKJenKLgzmDYBu3NPtWjNg8/f5rWsMObq29w6vwxFhsNnvuV55l7cp6N21u0bnbwlIuIUlATZppzPPvsM0gTwjgiDiMyDV7B4vbtm7T7PZI0pdvrceXaFbZ2t1ld3+ad67cYjEaEu7tIYRBOfEwpSOL8uE6VKTzPRStFp7uHJkVr6LVaGAhUlpEmAdf/aosrP1xl9cVtdt8ZcvMna2gdUz9nc3V8gyQSVFeqHAx3KVYr2FMeF69cZBT6HDl3Hse1OXXqAWoVm9/48hf45S/+EseOHyE6zIQwDAPTlLTbPTr9HsPRiK3tLTb3dmkFAasHLYZhjBG0mUQ+KsvTgoqeSxokZCrNB6dloZTgYG8LVMZ4MKRULoOQjEZDmsxz67s7XPnmBq3rA975k3V++O+uEEcpkQp4Y+0y2RCssk0/7DEwQ/o9n431XWzH4+iZBxkHEbPHz7G/vctXPv8Mn//cCzz93GcwTY/s8PSaJEmREjZ3NumOu+y1dvBVSmV6nsp0k3KpxGKtxBuX3kHqhCxL8WybLI6RSmGZHpbrogT0eh20zh28QrHwc+dLkigG3RhpglYGEnl43LUmCyHuC5KxoFRxUWm+03BsKNdN4igliTSmaWImMWEYEIYx/UGPNMu4c3uNKFEkmeLgoIfj1YmVxnYrTM9VmZme4g/+7Z9x9dIqSgkcV1GqGFSnbIrlvESuEHk51Pml2s9tRxxownGGITShH2FaVp5eGEIWaNREkwYS5/DkNy0NCgVJoWYSDRRaaUpFCUlGwSvRnM4P7rJMEwzJZDxhMAjY2t5nMAyp12aYRBmzc7PcunmLv/yLFxkOx6Q6wfAMSjUH0zPywj8yz7rwXJN6/cP7QylFGChG3RStEhzXRIUiFzFnkAUCNdKkw7ykLDojSzSWAaVKfv6E308xhcDWGXGQMh777GxvY1iCra0deqMhWRLR6Q6xvRIqMag15ilXPIpFi29889u8+KM3UUpjWgq3KJlquhSL8rAojGB+YZbpmdJH9IJGJRlxDNEkQRoKfxxh2PlhPco3EJEkHUI8kRRKNirWoAWuZ1Cccoh8BUpQKEmsLMU2bObn57A9B6U1cZrRGfQZ+gE3rt5mOE6xbY8Mi6lGGT8Y8v/5d99ka7uLSgW2JylXTJyCwHFyUyIEJJHPzGLl54+noSYKU1zHyqsN2nm2TTzRqFBAIFFZHrbMoly051UNvIJF0NUYSDzPIAnzei97WxuMfJ8gDOkOBgSTMfsHHSZhgjAdppoLJEnMkSMLvPPONb77rVcO6z9o7IKkVncpFCWmmT/rerVCre5imj9rIuM0JE4UYZQw6kUYloFAHh4kBSoVkArQgmCYYTomOgVSiVsQlOomcZyRxRmmJTF1XnyuMVXDdAoEwYTtrV0m45A4COh3umjhoLXCKpSYma0xMz3DH/zbP+PalbtorTFsA69kUaxYeIdjSgiBNCRz8/WfO7/v4RM5AzpQEBiEHYhHE+ab8wz2RxytH6E3A0mQUC9OY2Ym8SBBphYSmyyKOL40hzOd8tnPfRHDcDEcF8O1OXLiDIbtsLW3Tae7T6tzwFvvvsU7V99lqBRTswtUijVeffl7CK0Z9Hug0rxkscqL9liGxLbMnJqWBlEU5cc4KkVn0MO2LFSWMO6P8dsJaz/a4+0/ugtjEBi8ceVNHjp5mnany8NPPsQPb73N25eusnezjcTBb01Yqi/QcGfZvrnOf/O//6d8/Te+Rn16kVqliZYmqUrQhyVZ++Mho8mYg9Yet+/eJpYmZr2KxuBLn3mBV176PmESMxx0KHhFLJkfICIR2LaF53n4gY8UDirVBEEACvzAx3EcxmsJg9YIzy0zuuMT7keokcloU0GaoceKuB8RJin7zoigH1O062Rxxvdfe5lHH3+M5WOnONjcpdmsU1h2+OXPfYUoBGHYOMUCjekFLNMkQ3HQaxPpjJ3WPo5j8shjj/HoQxcQUcpff+svMERGFAUoleT1/bPcsbPNvKa4aZqYwqTb7eLZDjpLyeKA/Tu7DA9CvEKBSrkCfoaZCVTPxj9IUcWYufo0YS8lVDFpCY6ePMX8wiyWY3JnsMHa1gF+d584CKg3ioh5xaeef54sNcB2sMoOv/xbv8cDDz3C4tIylm0jHZu1tXXGowNOnVjh059+gW53xI2rl0iVwvcDsiwiisK8yJ3Q+VG3aYYpDAyhGQx6uLbFR6mltNbU5k0q0w67dxMG3QTbAcMSKKXyo4UVTAYJ40H4HhuZxIok1ETj/ECT+oyLa5tUKzXKZQ8/SvEjm9/5zS9z+84uU9Uqn3vhM1humUceewTHLVL1TFaOnCCMIqQp0QL8saIx1aRYKjO/2KA5U+HIsWkCf/QL1calWZtCzWJ/L8OyHISRZx+kWYIWiiRSJHFGGOUH40gJ42GCgcAfZ3hFi4XlaaSQzM7W6XbatDsjeqOYZy48yPXrG5w+cZznn/s0yysncUpVTp44RhqPefPNKxjOvTi3wFA2rlukMVOlMVuhOlVkbr5OqWT9VPniD8K0oDgjqc65DLuwsz7ELcrDHRSoLN85jYcJ8SSvVioQSMNgEihUnJe/rs3a1EpFhBBUigVs0yYTBT793JNMVctoJXj8ySewzRLN2WmCFJbnGyRxyo0bmziFnMkIQsXMzByeV2R5ucHMXJWF5SkMIbA+MnArcAsW1TmLwpTD/laE1kYeOhXi8MAgQZZCEmUE45y1EkLj+ymQMO4lSAPmF2pYpmB6uk6n3WJn64Dt7Q6/8qUXeOP1a6wsL/O7f+93WVg8zsqJk8zMzVCyBa29NoanMcwMREYUJNRrNZrTVeYWG9QbLksrU3koKP1ohqNUN6jOFTFNl427IyyHDxz4lbNhwSQjjdXhOQF5aGY0TCEzSCJBbcZhbqaEShWLi3MYtosfwsz0Ig8/eIZ2u88Tj11gZm4e23NJhc2DDxzlysV3+PHLb+MWc61MlgkqxRKO67Gw0GBmtk5zukRjuoLrfbh5tAqSQsGgPGdTbrrsrPv0OvF7O/17RaM1miwjF6AeIk00aQKxr1AoqjM2jm1SKDgEwxFbW3v4icVvf/1XuHNnh3ptmi9+8fOUa3UefPRRHK9A0ZMsLS7jRz7SytMZkzBlqjFFpVxibmGKerPK0pEGvj/KhakfA5/IGYiGETKG8UFA3NMszC6Rhhlv76/S39il0qhSWp6ifLRM8/MNvn/3pVx8hGaSjPNyqBmUKjW82jynzj3FQ08+zyNPPkmQRkQq5e7uDgN/xF6rxa1r71Cp2nSCLv3OgCAcI4Ag9Bn7uRgsTVP8cEIaJwilybRiHId5XWelCMYTDAlKC0wpKNZLHJ8/hgoC7NglaKXoOKPeKHPt8h0WZpaZqCEFx+WhJx/CdgTV5SqZDSpLyJKMUsEiK4QsHllCC8kkynDKRX7pa7/D4tEjTE1NMQzGhEnAIAx5/Y0fU6tafPrzLxAkOqfC05hev49tCbRK0GmSnwgnFBkZWql8hy7zvNaMXItQcFxE1eTohRVKJZPBVo9kGCBCQeKbjMY+UZgvaHda26hUsHDhAUQ5Y/Z8g+Q0pG6dP/yjP0cg6SQDuq0+VqmIUyhSbB7hzJOf5vkvf42HnnyCarWKWygyiSJqjSlaOxvcuvIWbklgl8tEfvheHD6KfCZJBEqjM0UQx/iTSU4tq5R2r4vjusRKo5Rib7PF1GKdSqNCdbpA1JkQ9ceUbBfhW6R9CNIYKQ2ur99l3A/p90ckKmX6xDyvtV9DGw7f+Ku/RhuS9fY+B2sjuhMfp1RiavkUhcosZ594hlOPPsh4PAJpsLaxw/zSIvV6g9deeonrV17h6Mll6m6BKAwwTUkQ+EwmI2KVkWUpYRIxCXws0yJRmk63S6VURX8kHSpozBc5emaWxlyR84+dYGFhCte08+I1ikNHQvxUWLJ3EDA8SAn6KbYryYyQC08+hjQUDzxwkldevsa7V1rMLBzhmWef4Y+/+Qbv3lhHRQGLCwsE/ohvfftFesMRaaYoVQ7P89OwuFRjPAzotSfMzteZnamxsnSMve2PLnQDcObhRcpTDloqTj94lHq5RM5vm+gs/wkm6PxnmgmSiWa8m4dYSnWXbr/HU88+QKFcolSs8f0fXiLOHBrNeR5+4ln+8Bsv0RuNMU1BoVBg0GvzjT9/kZu3dvFsC+uwdO6ZB+ZAZoz7EaZl0GgW6ff2SRPFoP/hi14SaZyC4MGnjzO/UmPlxCLzSw2KpeLhO/Iqiu+rEPM+7XVCop5mfJAbUbusWDqxxPzCFJ/6zOP8+JV3+fZ3L9GcWcKwi/z4jTUu3VgnSyNm5qfRKuXtNy/x0GPPYAibcs1BGnkBqQuPnyIIIw72xzSbNWZnpxj0BuzvfnjhJIA0Tjlyap6p2RKWJ3j48QeZbk4dui75oVc5Pf/BMSmZ9EO6OwlpBOWKySge89ynnqVQcmg0G/z41RvsdEJm5lb40ld+hf/Xv/ozNvY7aB3TnGkwGU74j3/8Hf7q2z9GKX1Y5x8qFQfLVQwGMVEYs7g0RaXosbx4lM7e6CPboZTi3JNHmFoo4hY8Vo7NUasWP/B63hfiA30RBDHJSNHfD1Eiw60YpFLy4MMnefCh06xv7fOt71wkMxy0MulHDm9c3sLQgnKpiFtw2N7aZ7cVEgUphXIBaedO+1NPP0SaprT3RxTKDo3pEjeuXKHTHn1oSeUskgSjjOm5CscfXKQ+73D+wgnml37xDnzQjhjtJYTdDNtVKCPmyacfx/UMmot1XnntBm9d2WBmboGnn32WP/7WK7zy2mV0mrCwvEg4GfLtv/4xneEYrSVu8bB2hNYsLpXxRzGDTsDcXJWZ5hRLSysc7H90X3wQn8gZkJbB/PIsMtbs3m3zVnaV5olpWtvbeHNTJGbK8HaX3m4fM3N5c/8St7q3KZyc4p3BdbaTMddaGzSPnac+f5RHn3qW27cusbO9zmgc0J+ETKKMnf0Dlo6usHL8DGs3r+CP9vjMExfI0owwjpmMB/jjSW4kdYaBJsuSvMqZypgMR5S9IiDw/QDTMIH8sBLTFYTjIUZqUK/WGO8M6W+FSGmiMs1Ehxzc3oOCS7Mwh7Ykx549yTvJdQ56O2AaBJlPz49Y3djg/KMXmF05xfEzT1CbXWR2ZYU0TUk1tIYRtuPxyKOPsXb7LlcuvkJ/vMX62jpkKUN/TJz4+IFPmISEaYTOUlQSI4QgiiISlTsDWgj8SUyhWKJQNti72cYsOhQrNYrlIkvLy8QdHzmw6XoTqot1ttfuUlycYu3dy/idhG5rlMfBhU2tVkdWPF4Pb6CKBgdRiDu9hK8FJ0+dZ2d3i63dDXrDMaMgZjgOODho88Rzn8Lzily//Bq2lfG1L/0SSZKgdcpwNCCMQhKlUFmKiWIw6FIplRBCMxgMcTwXIfLtz4O/exRR1Aw7I0I/Qbo2bq3M/MoyUeSzf7tDtxww+/gi+zu7FGerGHZMt9Nnd22DzbVd/v4//n322x2OP3+WbglKJ+bpqoTy8ik2NrYolGv85Aff4vWXX8KPU6JUUyhXuXLlOgWvyGc+/8tM/AGba7f5lS99FoRBHMeMxgPCcEKaZcRJgKFCwmCE59hIIRmNx5TKHh+Zlyc0u7dGTDp9iqbH3vo+J08cZTKO+JtG52fmmZagBFPzmv5+xstvvonredy5uYrtSJYXF7lxa5t//+//jL/6xve4dfPW/7e9Mw2S47zv89PX3OfuzOzOntgFFidx3wAJUqAkUqJ56IqUWHEiu2glTipR7Epil5NSYiuWk7gsJ7FsRoqu0CWLIW1JpESTkgieAEECIM7Fufc5s3Pffb/5MEtLFEFQ+uay5qna2i89VW/3293vr9//8WPjbRs5deoCV68tc/HCDS6cOY9ptFvtAqiaQjFfxtRdhoZTrGRKnHp9kkyh9hOeCzdnbmIRp2US9niZvj5FtVID4QD2Tf8kycVxXIyWs9oxUSdfbHDixAXq1TLpgSSq5uH9dx1ldqnMt7/9DCdPXOTq5cske5I8/f0TzMznadRsJFfCdcDjByFc+vq7yC7VCIYCRMMhlhdLTE5X2L5r/TumciqKRC1rk5/PogmZSr5EKtlNpfiTPvNvnwuJtpGOY7tEYh4qGZ0Lly5Tb+hMXL9O32A/8a4UK4U6L7z8Bn/1xNOcefUcQ2sGmZ5a4KmnXubFl07i0fyYuoNPVUFuJz5KrkSlaLBmtJ9W02D8wiRPP/syft8753RbJsxdXcSoNgh4fMxOTOPx+N61lM+1JRyzLQqDMYdKTufFV0+imw36+nuo1ZocPXIXVyeX+OZjf82FM1d5/dWTrB9bz3M/OEGh1GRhIc/yQgZhrdpqS4JEd4jMfA5FglRPgvnZIuOXM2zcsOWWuTTNmkN2eg63abYrdmpNctnCW678TyNLIDkCWxd4NIlmUWdhLsvU9AK53DJd8RCJeIqhgVGuTmX49uPP8PTTL2HaFrYj8dg3n+HU6XE2jW1GcVUkWUKV21/VXfEQKytNenoTKBLMTOU59sI5htekbzr+SJcXVJfsVJFGrkTI4yc7u8juXVveeu+87TxWhb8jI4RCd8pDdcXglVOnUDUVVZKxLJnhvjVMzxb45mPf4QdPv8jC3BwbNm3k1OvnuDGZYXz8BufPjWObAk1rCzNVlamUqpi6ydBQmuxykbNnp8hla+9qx/wmP1c1ga2bLKwskRhJY1oGM+cX2XT/XoyMzlBkA0Y1T2hNivcNHcUjdZNI99It+fmlh4ZQhQKWw1Cfl4nJBsdfeIZ92zfhmE0cBMlUikKxBBLoFmQW5xkcWsPWHbvZsH47cimPrMgIBxyXtuWx0/4C9mCgCwkZGUV2MFpNIpEwiiK3t3olAa6LIxxUJUCmVkJWFepOi1AqTjlb4Vo+y6YPbGU6O4OajmO4TS5fv4RwHSbPzBFPR8mkqmx5/x7yXgcR8nLPRz+EMKIwPsnWXbt44dmn8Hnktr2o4iHo85LL5QmGAuw5cJCpG9exjRZDfUkUGUzLxrbbBkG22745NVkgOxaWbaOq7up/BVmSKJUKeANBhvYPER1WmT1eoqU7gEXTNYmEI2SKJcLxIKPv30r5WgFfWWPrxi3YtkYslqArPcBYai2XT5xn14bbSUpJlC6V2eVFWo5LcWGByStvYDRr+IJBBodHmJmZId4do1IsM37xHNt27EYWAlXzE44EEJaOEC7CBV3XcV23XaeNSb1eJhoNIqsShqHj9XiQZbBtG1/YYs2d6+gb0Tj75BwSKnbVZGFpid7hEUxhU8u63HbkELGWr+3zYJeJ+bq5Y8fdKARJJXt5/dTrePUI9XmbZmSRcivPzMwN6qUym44eZnl5mXA4xm07dnDt8hU8HhVdlsnn5nEdg9u27WFwcAx/oN3EynEFquLFMB1c22nHFWVwTJ1g0A+SS7VSIxaJ3fKl5/OqFDItVFWnWDDZvA24RWJVG4GlO/h8XnA97N6XIp7oYutoH61GhYceuJvr167xuc99gWjQw+FDO0nEo7xy8hzffepHPPjgUVJhGddxKRd1FFUmEFSQhIrmUVm3vo8r43O0dAtHCAr5evtr8hYLiuq0m/IYdZuegR5WlrK3LEcUwkWRZRzXJRDy4/MG2b57ALPiZWRkkFTSx6d+5WM89dTTvPzKSTw+D/v272H9+o380Z98DcM0mF+YJBQOUGk0yK808PraicISEqNrkziOwtXxRRzhtHel7NXs/JsMTPFLeDRBMdNCuC65lTp7D227Rf3Bj+fCsVwURUZRvKxb38/gSC/b1yVwnBb33XMnerPB17/0KMVSnrVjw/QP9VCuGnzzr77P/fe9jzeOLeDTZMrVFo2WQSjkp1oyaNUbbN2+lpmZJUqFBq4jWCmW8QQ80DJuOhpFlfGoHppVE8eykdQQpvSmuHxnJElCWC6BoBfX1ThwcAOS7GXTwY1oisMnP/EhXn/tJD987kU0VeHOuw4xtGaQr/3Ftxkfv8a6sSFSUS+2I8gXdVRVQvFCPBpsL0ayn0sXp7AsF4RE/R3G/yaqItOoSui6Sa1gsP/IdjILhVv+RghQJRkX2mGiRIixzYMoVheRsMbWTcMMDw3z5He/x+nX3yAYibJp4yCh7gR/+vkvMrxmgPkbN9i/+yBN3cZYKhMM+DBaJs1GjS1bhijky2QyldVdWbDFzUMdhmHhDaooqko+U0WWoFJy0Lyemx7/09iWg9/nRUJj664RupNxdqzrR3JtjhzexfTsDMdfOsnFNy5y6MBekr0pXjl+ju8/8zwf/MDddIcUJMehVGygqRL+gAeZtkgbHevn6pVp6oYDjk2+VL1l+fNb5uVnOmqVI/vfy4G9+2gpq1mrkg8l6MezQcLQbZpqhVq+QrVepKBPsXDjOq/KFvHUAIXmAumdAWpqjuxEkJ6eJD6vIBCNEHcFiqzg9UawcZm6Os7Q4CCuYzA3O0m8O8HhfUcgPw+yRjgUJJc32g0VHAeP349H8XPnnXfg8/mQAz6G1qwhFItgOTZejw9b2PiiHqSIyuDoes48cZzNGzZTser4fCHqeZuDR+/GK3nY0HSx9CZ+f4idowfwuD4sBHazTpcfrl2eQ3ihLsr0e7Zy+cIZHvzgvaT7eilXa/T29eP1V6jVq20nReFy8dxJNm7aSrJvmJg31u5MaDgEAoF2r3Ng7969oMn4/D62796F1+/DK8v4An5URaOlN+hL97Nx0wiS2cK/ZgA7IRELRQh6/fSNrEHxyIT8PqRgAH9f25Gr0ahRrZexvAal2Tznl7NU1Rolo85sYYrIgIqalJmfu85tO7aTTifJlxQsYdLymgjFg9FoYfsM+vvSzE5fpjuepHdkA93Do5SmryFJGsFAAMdxGB7sI5VIEIpFCEe68KlegsEQlm3h02QkVcEVAk+hn307BgnIKpHb1tHTP4BmKCS6Ejg+DWHZeBQNXddpGDXMeqNdO2wsYrhVdFkmnAqSOhKn4qtTD5aIj+nUsyaNRpGde7bj88ik+tPYrs1KNs/mbXuwDYMbrfOMjKzFdnSWZ29gNHTu+NSnyVx6A1SFZDJJqq/JmFBolnL4QmEiyR42rR9Fkx1008CrKu+8tgvQ/OBaAWRFR5bh+ImztyxFBNA0D9FohJGxHhYyy1y5tEwkUmPrJi+f/OUHQIauVDdrhrpotWT2HdzN8kqBRx/9PslhhVeOn2Z5yWWPx4esSPgDGkbTYng4gW46TF5falsIKwJZgnAo0N4iv8X7olZt4fV6SCeDlGoGRusW57C6wmoeD32JbqL9MrPXi1w4tUjI7+N979lPOO7BFwzg86vs2LkFnz/Kgd2b+NLXnqRYajI60s2NiWVcSSBLCuGwH9e1QCg0Gg0aDYtsJg9CQpbbfQBUyeDHPu9vxe9RicQlylkbf7CdaPjKidO3nAdox7GDwRD9a5IYco3JySXKBZ2RQZd/+Rv/CNvW6eruQpIt1qwZYs8dB/C48Nnff4RQn0s2u8TEioGk+ZEUCY+/XTni8cjMZ1aYnlqiUTURkoSigGu6VPLmTedCCEFXtwdLGPj8IbxhyJWbZDPWj6/7TU8CNI9GLB5lcKyL6xOzjJ9dJBgMsLZ/Lbv2bCEcDtCbTjK2dgjXVdm3exPPPn+a02cu0TMY4Mq1mXZ4NBxA8YDf58Mst4h1x8lVl5ifXlytEpFwXBga6LrldU31Bcmt1AmHvIysTTA9M8+7L0USquplYCiJN2Eze7VIqzlPb9Lm/oc/hORYJHra7dJ3H9xJV3eCkb4u/uC/fQNHdkkk41y8INESGrIkE40HsWwbMJlbXGQ5U6KUr7cTATXAdqmulG86kli3gu04KLJEy2ibxymqyZPfe+5dzgFUTSUWjTC8roelbIYblxdYidbwbg3x8Y++H8dx2HfgMF/5P39KNB5j34EdLGRz/MU3n6JrWOXV186SyTgcCASQZYE/4KXZFAykEzRaLjM3ZrEtkJS2U2zY7191in13fi4xsHPbfny+KHazgeHY5Ivz6E6dhijjKC5zKxPEh/uwwlnc6ACRuIdaqU5DnkSL+BEBG1fX2LlvF4WFFOMXzzM0NIxHnifoD1Bt2UiKjKU3ice76BtOEbFlJqav8zIK99/5HjRFRTgWhtkEwMVBuBJCYXWrRWBYFqrjYrdqWK70t2ECvyfEYHw72w7vYE9oF5s2bKFQLSNJMioCPW+gt1roRo16pUrGnadsLOOqASxh4IQFgVgP9VaOkQM+9OUVMldixKJh7FYBb8hPUAh8Hg3FE2V0fZgzr50kleqhfyDFlQsXSMRirN21H1lrT5BXkRCOu1qXD5Jw2vW/MvgUgS7aeRCSsGg1G4RDIfZHHwITjB0mfr+P7EqGQChEvV6jXm2yXJyhpTSp6VWIulTKBYgp+KIJzIhDIKwhaR5cxyTUHcfwL1J3AqwdHWPb1k0sLEzgDYboTaW5cn2ageFRJOFy/bJLui9J2D9Et+bnpYtnyO89hOIL4gobbBPLNInFYgDIjoxjWQSCIVRh0bJMNAVc18FF4c71H0ETKppQGNoG4WiQlcwKsqZRzmeoGmVmJxbwpF2acpNYKsz4/CWUkMbw2g00iia6VkFoDk1qJAP9VDMlFDR27N1PVyDAUmYFTyBAf7ofSXgwZQ1ZOKT6Boh3xYlGAmzsTfOt73yPYy/8iH079+K6Do5jYtsGPq8HU21/lWZXVmjWy6iuoNlqoK6W8NwMCQmfGmRkY4J0OsaJk5dZmK+/fUteQCgcbItYFFSPSqvRYnp6iqGNvfT3xPnQB++gaVocP36cvQcOc/Lkee44cgeOpLBSWKE3PYptORSWXDS5hW3aILeTlVp1C9cGvWWRXc5hO20rcNdp+x04rQaSuHU74kjYQ286TH9/jOeOTeOIm5dcJRJxEBISKg42mcwKob5uNmwZJRnr5cMPHuWJxx/n3g9+gEsXb2A5Lul0P70DPXzv2eeZnFjAMly8qoqjS5haOwZerTbbPQoUleuTc2RXGghZwnUEipCRhYvstncJ27sDb0dTVTbdlmYgHaFQqvPKyxM32dUR+HxeYvEIlt02I3Jti+nZ62zZN0Z3ZIj1A0nuOnKEL3/lK/zKr/4aX/2/j3Ho9oOUSnVcy8RUAjQbBiInoyeaGKbNwuIikgNmw8GyLRRZZn5ukUbdRggJ1xUIGbBUJKHAO5SCSapLUPPT0x9laCDB3xw7v9o7QuKnI76hkB/N60NVJCRFplquUqnB2rFB0rFhHrr3Dl48cZJMroBQvVy+fIPt27fRnUowfn2GfL6GY0pUCgZGQ+C6Al+3h3KuiezYKJLG8lKRhfksrqQiXLAFyJJLrXZrrwtVthkaTjI00EUs6uXJZy7ftEueLCn09qQw7LZLpXBdZudm2djXx+atW/ApCr/2qx/jkUce4dcf/jR/+diTrF03Rr5YJJns5rFvP00+k0fzqUT93vZcLCwhAbWyju3YSEjMTi9SKLRDs8IRyLgIIbefi5uwNGmQGvbgVTUG1ydZ05/i1TeuMDVRuUncXRAKBfD4/AjA69FoNZvMzs8xNNZPb3c/H3noKLpp89dPPMlH/uHHeez/Pc6OHTtAVsjklhke2ohjC0pZE5/UxLQcJBRcR6LZstvPt2lQKhZw7NWqDleAJGFYlbYZ0s/AzyUGzpx5BcnjUiwXKLoFWnmDjfcPIIeDGIUa8e0Rli9NsP+DH2Vm/gbZYgbZtVBEjHikG2MxyfyNlxnt9pBK9SBjs7QwRVd3AlmqUa7nsXSdVM8A4XiCeLyPdUMbOXf1q/SYNWaqdca2bkVSfDR1HUkSSJKMZeoUikXOvPYGBzYMcfXKJfZt2Yaj6yia1o5vCguvFGLzmq1Ysw5+X5iZuWlMS6fUKFAuFijZGdIb0szPzxIaDNG0bJSkhaom0M0WsiyxVLxBqmuYVi6KawhSa7rZe/B2svkCqUQXIW+QarOOqxjous669ZuIRCL09vaydc0YuWyWs689x9gnHkbyBNplT5aBLAlOnDjOnVv/AXqjwulTp/jo7TvIFkqEAyEk4VKr1/H7VDySl6pk0rJrLM1MsrQwj/AKFgqL1BsFKisVtnx4DFuRSA3EqU25zN+Y4z173keuNEFuZRmjWSUSShPx9yFbW1iaPE1/eoymYaHgJbe0RH/fEN1dXSCB6wrCsSihcILu7gSb123k6RMnePX4Dzh49EFiiRSuqiEkmWsTV/B5fXxg51rGr4xz9+2HqVerIMs4toVARlO92PUaNbNBuVZhOTtHYaWMYTQw0anWS7TkBiguGzasRSHEUm2Jno1RMovz9A6tQwSuUS/Z2EYdDylaRZtQYpSp8TNsj47hmC1SvUNMTVwlOjJCJBRmIZdrG38kuogl+kh0JVDSfbRUBcVsMD47x5F7H6BlSWSWV5grLqLYNrWqTj5fJhTvQXdV/OFY25bkHT+SBaZtYAmZq5PTBMPSqu3tWwkGA2xYP8K1q7O0mkbb2U8SjHavQTL81Ms1QOKL//NRBoaDfOuxY9z/wSM0TJ1kqof//Y1vcM/d70MCFBT0VrvBT39fPxJw+x3b0A2L1169jDfk4vV5MfS2l7qsyIRWhdutsByXhm5z5uIEraZ1UyFw+MBeFpdXWFrMYFpv5hNAVzDNudNX+dTnPsaff/FRKtUif/hf/wwVhQ9/5P0MpyO8cvY8569f4/4H7uXxx5+mKxZECGjWm2heFb/PQyoVRtM0lnPt9sWW7SLJKkKAkCUc/O84/lQijSkKNFoWV+fnsU0XW3/7xEkSHDq0lzfeOE+l2kC4AoEgEo2SDA5y8co1/s3Dn+Rf/Ov/QFdM4Td/87MMD/SzMpBg387N/I+vfAOPpy02LVMwOzuHJGByehbXFdx55w5mZheYmc4jaTKKV8LVBcJpL3yxRJC5xdxNz0GSJPzhIFbTwpVULl6bxK9KNN6cjNXmRUIIhgZ7CEeiTEzOYq5WeAgEUd9aFmYW2XfPTp479hInT57mleMnqTcE/+o3/jHCrbCcK/LEs0/yu5/5jxx/+RyprgRTpTwyCgPDQ6xkamzbPkZXd4wXXnkRIcmoisBqZ2kjSQq2deudAeFVaTV05pYzzCw4tKo3czgU3HffvZw5fZZKqYLrtENAkqzQHx/lxPNn+fIj/53f+refRVUN/v3v/hfCviB33L6DQ3s38pff+yELlRXC4QANvUkhmwMkXn/tDI7jsn79MMVSgWrFQMgSqiZwbFbNhjRkxcV9x2fbZqB3hFwxC4qHK9OTeAMgnLcbS/j8XtaNjXDt6hwtvb76vhCMdA0jDAW92cS1Hf7Xn3yZVHeAk7/1Oe66az+66dCdjPDo1x/n7jvqSEKguW0nRUWo9KRTSAiOHN5FS9d5/fVzaD4Zj1fDNEyEkNvOmpEk79pvfJWfSQyI1TdePrvASqGA6W2RGunBGS5TKBdpTRXwBOvEtASDO0dw/PMkR1vY5yMEukPMnZvCDspIngwqIVzLIuBX0LxpguUisiThOjqNahnJ4yEaidLSLap1m2tz02w9ejvru4cx6g3e+9CHCYZCxKoOa7QsLafOhbyOI7xsOPQeLpZVugY3k3ND1LIW2/beycXlCrIEfcPrePGl77MwM4eDQyQaRZagKpdZWlhk3T1DGPkmZaOMV3PILi2yafcBjIaB7IBplHBqEnOZOez6WpoNh24qBIMhhBqguNJ2HJNdaNYqoKhoqobXH0TzdaEk+6kWi4RReeX55/jYpx/Gtho0DBdLstHCLrVVv/dYd5qVsk2hbhFJpMhVLbRgNzoyn//872BLAjkAlWyDg9u2cfrceXr3Jqk2deQ+g+XlZURDprw8SaS3i413DFKxziAFZeLdCRx/mNJilSs3ThGKR4nRg2W2uHY1S09Xkkgwgder0tOT4ML4OB5/mGQqRdMwyZXqvHD6LEfeez9D/f3M3bjOr//OZ7FqRdZtrbBUuYDk83CxoNN3234yBCmWXLYdvJNLuTq4ClsP3s4XHvlDhNSunY0kJep5i8Nbd/LyqZP03BYhkRqjkJtiJbOMnVPpXy9jmxqb920mXz8LsobddAj7+5m4MIEslohEYqT8Ser1ClZDx9fbRVc8RSgYpNFoks+tEIlFCfjD5PJ5FNlHoXyFj3/yYXr9URqOxeDwCKrmYdvtGunaNHPZLC/PFzFDPeiuy8mZIv0bt/P6bJa6Yf3t8/FTDw22KePYOq2GYPZG4ybHSWzYOMbZU5cQ0ptfeAJJhnAkjDDg6N27+U+/92f0rvMxNV3koQ/dQzFX4J579/IHf/wIlVKN7z3zJLgwOtjD+NV5BILl5Tw9vV3MzWRJpcMoXolmHWTJQlEkhADLclgplHFX7WzfiZZRx9Rl9IqErTtvOzYaCTM1NctSNvvj944E7z16lBOvnuCf/NNP8NWvP8b4lSlSowHkJtz34N2UClkiIQ8vnngd1SOzYcsIzrdssitlhADXtdm8fj2WVSfZFeT6jTkaVRvblJEEqJrb9ox3HfKFKkKIm4Zhgl4/ZtMD2DgtmZmJ3E1F3O7d2zl27PhqqWV7kRUIDh+6ncvnxvn0P/9lHv5nv40SBpcwhw5uQVVc9mzfzBNPfp+Z5WVCQRXZA14hkc2UAYkf/eAYwaCPzHKBLZvXsbxSIr/SateBy22DJ8dyaTkGjtwE4bvpPASIkWkt0dJbtOoShRXrbclhkiQRCAQZv3T9LaItPZBmdmqBQwcPkiuUefLJHzK6Lc3ijTwf//h9nDl5kl964G6+9EdfwBI2333mOwhXMDo4yuRkDgTs2raLarFIvVKm2apgWl6MloUsO3g1GdtwcFyJhWzxlveT1w1RdvJolp/8cutv6/N/krWjQxx77iWazRY/PhHBgw89yHM/eo7PfOZh/t1v/2fKtQrJVIyB7iS7dm0i3R3i9LnrvHHpIuGonwN7dvHDYy9y8fwkipApFor4/Sq2a3Jo/3aeff4kuZyBsF0QMrJHxTFcJE3QNC2EePvY+tJp/J4gtiVjGC30hmBmogqCt91/mzaNceb0xfYu1Ju6TZEIRWPIjsPRuw/ze5/7c5JDflw0jt69n1I5zwPb9/P7f/xFKtUGTx/7GxAuo4MDXL46C8gszC2R6I0zM71IbzqOoqq0GqBINrLW9g0RjqBcbqwKHG45JwCSeLcjgIWFBQYHB9/tsA4dOnTo0KHD30Hm5+cZGHhn/4ufSQy4rsvS0hLhcPiWbSY7dOjQoUOHDn93EEJQq9Xo6+tDlt+5m8DPJAY6dOjQoUOHDn9/+bmaDnXo0KFDhw4d/v7REQMdOnTo0KHDLzgdMdChQ4cOHTr8gtMRAx06dOjQocMvOB0x0KFDhw4dOvyC0xEDHTp06NChwy84HTHQoUOHDh06/ILz/wFWazzj0z1heAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_augment_2/1719298626_tango_video2audio_clip4clip_augment_2_best_steps_300_guidance_3.0_sampleRate_16000_augment/VR1UJLGULOQ_000053_wiyojlC9xbI_000030_4.wav\"\n", + "show_mel(file, save_name=\"5_wav.pdf\")\n", + "show_video_frames(\"../data/video_processed/video_gt_augment/VR1UJLGULOQ_000053_wiyojlC9xbI_000030_4.mp4\", save_name=\"5_video.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_3407931/2796252854.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAvCAYAAAB+KskzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACD0ElEQVR4nOz9d7il6XnWif7e98srp533rpyrq3O31JIs29iWLeMgo8E4ADY2xqQDM2AOMMyQucwZzDCDCXPmMHMGxvYBbMxgHGRLlpMkS91S5+qqrpx23nvl9cU3nD++1SWJAwd5kJk/XM91dVfV2nut9b1feJ/7SfctrLWWR/bIHtkje2SP7JH9jjX5f/UBPLJH9sge2SN7ZI/s/1p7BAYe2SN7ZI/skT2y3+H2CAw8skf2yB7ZI3tkv8PtERh4ZI/skT2yR/bIfofbIzDwyB7ZI3tkj+yR/Q63R2DgkT2yR/bIHtkj+x1uj8DAI3tkj+yRPbJH9jvc3C/ll4wxbG1tUa/XEUL8dh/TI3tkj+yRPbJH9si+DGatZTKZsLq6ipT/4fj/SwIDW1tbbGxsfNkO7pE9skf2yB7ZI3tk//ns/v37rK+v/wd//iWBgXq9DsCz3/Yh3GaTlW95PzYMUWEAKqcYjCluPkDe20P0xxxpd3jisUu88MK7OHp0A9/zftszCru7e3zP9/4A08mY9aU6ke/iBw7W2vI/Y8mlg7rwJMHKAhPH0nziHEk8ReSGbHcfdX8XeW+HcJJzdHGZZ556gueef4a1tRUcx/ltX0OeF3zHd34PB7u7rCzU8H2o+D5IgxECtAFjGP+pPwLaYtIZaueA/O4O7tYh7iSjHVY5e+YUzz/zFI9dvEC700II8Z8lo2MtfOxjH+eHf/jvYouU1YWQShgi3TK79M4vGWPQWjP6/d+O2T1E3d/B7PSJMksnqnLm9Cmef/ZpLpw/R7fbQcr/PMcPMBqN+X3f+b2MDw9ZXWoSeYYwDACDxaKtRRqLNppCGZ787h+hvnIKhAAhcAALCCsAi+Wd47bzf4OwIM07r5V/Wsv8NxXCasAAAmMMVqXYbIpNJpDPiKdT8iLHc32UVpgiQ9oCkyUkaQIYhClwjMJxJYHUIMB1nfL7TYFVOWBRWqPyjNY3/jWEdIByKQgB1mLn63ho1s5/4eELYOwX/B2Q5fokoOdnQGLROsUFCiPAaFQ2wSqF67oUSqGLGGM1ZDE6T7E6Jk8UeaEJZY7rlsdSDRywApWNUMqCyTF5DEGd9lf+UYQUiPnZFNZihcWY+XkXAmvKayFsuR6DRUjmazVYo8v3YkEXCF3+vjYF0hhsMUPFY2wyQWVDkizDaIPvV8jzFGs0vshJ4pS8KMCq8rMMRI7A9cDRBY7noaxB6hSrFQhBniXY9/45HOc/EMFZQPBwT5v/8+HPrLWIL3jdvrNOBNaa+b1mvuBd5gvuwc9fZzt/TqWcn8fyjAEWxxqMoNyPHAdpNMbOfypA6wKjcsJu6Xj+fdGo1uaLX7B2fr+V16n8rPLavHP7CW0RAgx6/iaBmB+ztQJrdfmECQG2vH7v7DtffAzl98z/xzvLlqJ8Xo3VWGswVlNp9PA8t7yfhETMz6O17zzNYOz8OwwY8wXPyvx8YC3mnfUKHj4vxr6zDouwYn6sn7825TWc75fGPFyDESDt/HuNLY9JGIQFK0TpL7TBIrGmYDYa8P/+8x986Mf/Qya+FDri8XhMs9nkO77jO7i/ucW4UHhRjfqlMxSdOkc+8D5SXeC4LvZwRHb9LvrWffxhzMnlFd77wgu867lnWVlZQkr527KxW2v5p//0x/j7P/oPaVU8Ou0qvls+3MZYjDVEUZVcRly7fhflCOpnT+JUGxz5wFcwsIraqXWK8Zjk1n3s5h7c2iZMFRePnuB973s3Tz35OAsLvd9W5/rqq6/zx37w/4YwiqWFChXfZf40Y7RGa83Wxkk4eYTjX/k8cZIhApdsOkWOZ8S3HyA393F2RyxUqpw7eYoXXngXj108R6fT/m0HBtZa/sJf+G/52C/9Mgttj1Y9otzXyodI6xIIFHlO8n3fQ/3YEkYVpOMpajyD27uwcwD7IxajGhdOn+Y9736eixfP0+11/7MAg1/+2K/yF/78X8IazZHFCC/0cYVEU2CsxSqDUhqtDO//U/9P2utnkfP2GyEsVheQ51iVIxwJKkPoDFNkWJ3juAFGW0wywBEW1+YYYzBZSp6MKGYjtFIY4WJUTk2m2CIBrbBAURgUkiwtys3aGqoVHzDkhSXwHULfxZVQFDna2PnmZstNRRiEECilyfKcrChY+s5/gNbg+w4Wg1EgpAXjPDwvEgMqQwtwbA7CRwsJRYHA4OgMaTVGJWSJQuZTTJGQW4ljDTo5wJntE08nOKbgcBKj8hzpeOg8x1hDtxGSZaUTDTyPqi9x3XLTl1JjjUVKF1VoPK/cjvMiJy00NJZZ++a/NL8/LI4xqHyCjafoZIxWmsCVuEVMUWSg43ID9qsUWYqXjXEdF6szjAVTzMgnY5TO8aUgKQo8LIEnMSrGGgVIsqJ0KHkhMcLiuIKKB3lu0BZqkU/gUN47cyCsdFFiJyGQAqw2ZIUiVwr5DT+M47iUjkoghcA83Kbtwz+k+WK4+c7z944JIbAYhDZIJIby/GksmC92xuad6zv/jPJj7EMAIREYBIgSDFgMxhhc18WX5WsIyIqCQimKeEqweg4pQVjJv+tkLAJhPw9EsHYOoD9vooQC5bNloTAaaQ0a+9AZ/jtnBQEIa+bHDViLFiCt4CGsFQZrBK4waG2RUhBKi5ACay25yTDaUhQpYXsZ6Yd4uNhy+SXANRYj3vm++ef+/3Glxhik+TzgMdZgrUBZ9U6IgP2Ca2K/4IwZo8tThP08hrOf/25XCKRrcaxFW1Baz699gUoSpgdb/J0//fWMRiMajcZ/8Bh/S2Dg2q1rGGO4ees2b75+mddee5079x6gAx+v1SQ6dpTWcxdx13vk1qAOBqTXbiFu7lBNCy4dP8H73vsennrySdrt5pd9UzfG8Hs+/B3cvXWbXruCFOWJLFRBlhccPXaCv/P3/z63b9/gyptXeemVV7l94w6jOCYRguPPPUn9ybPoXhtaVYq8QB32UbceIG9t01CaSyfP8f6veDcXL16k1fryr8Fay1/9q3+dn/2Zj9Cq+biewhiB0RDHCUZrlCNICoeg1cRWIpaffoy4GnH0/c8ysQVeFGL2h8w2N3Ful1F3B5fHzpzlXc8/y6VLF+h2O79twCBNM77lmz5Mf3+bdrMKgDYKXSjiLCfPCvI8Q/RW6Fw4hb/Sg/VlFs6fphAWg0GMJiT3tzB3tvG2hzS8gMfOnOHdzz/LY5cu0vttBAbWWv7cn/2v+djHfpluMyIMHIQtKIxCFYI8N6RpQp6l/MG//S9YXFqDyS4mizHxEDHapkinSKvBGkIHDIY0yXAdUQJiazBaI6XFc8CRFrQpI1Sj8DxRbjLW4gjItQErEFJS7gQu2hiKIsOTDsoaXOedRJ/AFaCtwVpbAhetyQr1MNLTWqOx5IUCa2h/xz/CxSJshlY5Ik5R402yyQSZjxGeR6BjdJ5T5CmOjrFuFaM1Qk9xsThYlNGgcqxSaJXhuxZjBI4j8RyLthrJPIIBwKUoiodRjbAFugy78AOXyHXJlcJoQ64KMBJlbOkYZBnlZ1qTpBqvscjS+/4A6uAuKu4jlUKnA1yVoFWB65TZDgdJpnO8+fm0QpdgA3AcsMLMz6FGInDKFAKl1y4DC2MMQjhlpDqPoq0W5TmXElfK0qkCUooSJOnyehZFgaa8LlIKrJWoQqENpKrA++a/B8IiRRmRSmEx9p2ItNyuxTyC5t+5/Y0pkLilYzLltUXK8k+jEEWOLmJ0nlHEI5RSOI6Llg62yJG2QBflNbaqIM8KhMnxPBdPaITnE4UeBllmA0yG6/pInZVA0RTk6YxiuEvrm/4KJX6Q78QzDzMWRgiEKUGp+XezBA/vYgtoHFsCEW00DiWOEUWMUhk2j9Fal5/qBSVotgqhCoosw9hy7zdFRuA4ONLiOS5OEICUc5Be4HgOrs3AWlQxo0imZMM+zec+TNBYQggHHIkVFsdYtLEYC8IpswVGa4wt1yOsxAoJVmFVVmIEIZBGYLXCFhkqK4FyOpuitcE4Ia7voAqNxJR+K50hrELjQp6C5xJ5Lk4Q4vlBee7m+4Pv+Xg2xVhDkWUU6YRstIkZH5IkI/7Wf//3vrxg4Oc/9susrCxRq9aoVCJcIZlMhty+fYerV6/y9ltXuPtgm5mUyPVlKudPEp47inZd8kEfdf0B9vY27dzy/KXHeP/73su5s2eIovDLtqnfuXOP3/t7v4siS2jVXXzXw2I47I9ZWdvgL//Nv027UyeMIoLAJ40Ttra2uP7227z15mXuPrjPYBpjKyH+qWPUHz+HWWxhrCXrDzE372Lv7dDMJc9cvMj73/sCF86f+7KuIS8KvvHrv5X9/T2aVUkYhDgSBsMphSrwPYdcWWZZQaYFjpT4QUhtsYOoVug8dpalZy7iLnfJA5ckTkjvPUDf3ELv9FkoBOdPneT5Z57iiScu0e1++R3ra6+9wQ98/x/FGE0zcvF8gQQGkynWCvI8J8klaZpiPQ8vDKn2OnSObVAstVh77nHClUUyCflgQrK9TXZvG+/BATUjefz4KZ5/17M89eTj9HqdL3vGKctyPvj138zBwSGBJ3AcjedIRqMp2oq5g1V8//d9P8vNCugC1yk3aEeYedWgTOU6gO/bMqWNxZXgu3IewSgcR5JmBY505s5akyuLwKANaKXL9KsCIV0OJzFpbmjWApwyXkN4Lmla4LnlvRH4LkopPEcyHE0IfQ/XFaSFKqMMYSiUKcsdueLYB/8M+vAOxWQXkRdIW2YxpC1Ts9ZoHPEwP4mwBkcKfMcipMEKh1BCmqc4roeLwTgSaz7v/G2hMcaWWQkEeaGJk5QwcObH6mLlPEoUAovEkYJCF7jSIc2KuUMFIQVKG6wxZLogKzSeG9JYPIJvLWBwHJDS4CGx0mCUxnEEXom4kPOIzvMFAkNuLJ41TLIMKRwcV+BbgVIKLQUGKIoCY0UZ2WnLLC7ITXk/NGsuWmmk5+M5kjwvUAaE4+AiEAIKVZBkBYHj4LoeaZGVjsIq0sJirKX1e34EdA7TQ5x4gFIaz3XwHIHWhjxNsFbhOj7ar6KTEY61+C6oQoHWaJWTjfeQxoDnkiSKiqsRRYIpYoRVzDLItCLNykgyz3PajQgHS5xlCCGphn6ZLbEKV1gKY/AcSWYUvnTKjJMuy2bGGnAk2hZYLVn+0N/AZDE2jdG6LAe5KIQu5gBQl1khr4pJpzgmx5FlQc4YMFlCMe2jtcZKiDNFIAxBPkYlE1Q2I1MwSxKUFQgsWaapVT2qnmQ0TUFYotAjciVYi+sKrJEgLIVVhPNzauf1CaM1xnkHMBsqCycJpIPFxfFcXM/BUzlJoZFCIEMfIUPSOEZIgee7yHkpQBc5Kp2hlAIpiQtL1VW4xiB0ijaKWS4ptGaWZLhSkitNoxIgpWSS5GhradYqhJ6PKlKkLOGUIzXWSqS1ZQkZiykMxtFIUWb0lDE4rmQwHPI3fvT/9eUFAz/4p/9LNtY3WFpcotfr0mm3qVeqVGpVooqP7wTMZmM279/l7Stv8+blq9w93GccBkQXTuKf3IBahIkT9O0HcGeXY36NF556ive86znWN9Zw/xNr89Za/sbf/GF+5qd/hhPrdTzfQWtdInfH5eTF93HyxHF6vR7NVpNaVKVSD4kqAVFYAVWwf7DHzevXefPyVW7cvsXBLKPotYlOHcM/vYaIAtRkSnLnPvbuLqf8Os8//jjveddzHDt2BNd1/5Md0yc+8Zv8mT/9Q6z2AmpVHygjCmst+4cjhHQx1rJ9ELOyts6F8xc5cmzlYV3p3v1Nbjy4j+g2idbXUMdXqG2sUmiDHo6I7z5A3t2mkcOF9SO874V3cenSxS9bxsBay1/9y3+TX/j5X+D4agXPc8rjB5RSzKYpmRbsHg6ZpRbf86nXPULXIQwrFIDbbFA9skbj1GmyxQZOt4l1BUV/RH5rE71zQH2mePz4Cd793DM8+fglegvdLxswePlzr/IDf/iPsd4N8WtuWRtVmkIpJtOUvcMp3/Phb2B9ZZFAWKLAIfIlwgqEtGhdIISDVjnO3DloA4UxMK/pKZ2jdZl/VIUm8IMymhKCOM1KZ1coLAIpBbmC3eGUStQiTYY06zWQEqUN1cgnywuKwhAEPmaejRlMJjRrFbAGVSgyrYh8F9eVSOmQZimLR84RGINwwJWWmi8pfb9E6QIpJYELxgqU1kgs0nHKTJVWKKVIswwkWOsQuA5WQp7nZRZCiy/qGyl0wd5AMUtTeq3Kw+fe2LLOqpQmU5Z65JOrHIngxu0t1la6OK5EFRqlNb7rIhwHR2hcx+HEsWMIU1CvVij3f4MyADlKlfuAJ0ApMz8ui5UCIeQcXFgyZVDK4Prlcxx4LtPpDEOZ9RKOh7UGgWQ0K7BuyHQ6o10LcRzIC00l9BHCkmQF2Pn9KAxxnJAXhmroIB1JXig0Bg+QZVqCxsZjOBasUkihkEIitMZzJWBIcoWU4EmHwiqk1ThIfK/siRBWUSaVDa50gbLGXTobhbUGR5R1f4tTlkSULnsnjAEHynaynMgN0FaiihylFYUtkwxal8BKmzLzk+UFhbIYwFiFtdA59hQmj3HnEbMxmmienUkLhSdBCFmmwY3FccCRBinL6N9xJIVS+FIgPYPVBs9xKVSCNhJXOmA0SEFeGN6pMmitcBwBhcC6EAYeCEmRl8+DMgpjJFqXZY53MjtpnpVZKMrrpQpFq7NIEAS40n3Yj+AYPW9xsAin7I0RlKA5cC1CSoxWSCEegpsy82QQUpJn83KMNCAkEktuNLooz4cuMhzPK98nJIF0kI5DXihUoSiMxSiNMhbfc8mNxWpNmqsyayINen4yhLBMpjF/5Uf/1y8vGHjvf/GNSOvgCIeqH9FuNlls91heWmJ5YYne4gLtZotGPSCq1Ij8gFk84d69+7zyyhu8fv06u7Mpcq2He/II4XK33Bhub+Fu7XOq1uG9Tz3Nc8889TDa+z9jRaH4+m/4JkJyqpGHNjmFUuQCslqXiuvTabZwHY9qtcpCq8fCYo9ed4FOu0Wn3aTWqFKpRDgIRqMRN67f4KVXX+Parbscqhy5sUz15BH8I11MUVDc2kbeP+BUtc0LTz7Os888ycry8v/piNtay5/8E3+KN15+meVeDWPKDbcoFGZeO27VXM4cW6LRO4qsrtJdW6dWa5TXY3WBwaDP1r1NLl9+k+u3b3MwjZn6Ps6pdWobK7grHVCWdH8P7+4+1cGMsyvrvPf5Z7l48Ty9/0RgUBQFv/sbPgRqTC1yUUpTFKpMsxc5tcglzxW3t6c0GxV6zbB84Gz5ndJ1ywjMCKznY2sR/sYGztoS4ZE1RKeOzRXF7j7q9iadzHBucY0XnnuGxx9/7D85Y2Ct5S/+hb/Eb/zyx1jqtRAUc4euUIVhluZ837e8h5MbS2V0LiV5UUbQ0zQjUQptLGHgU/E8PLd0pGhBphQSSaENB8OEN27dY2e/j1KWQhvOnTrGhaMLSAE/9rOfxACnjh3h6EqHKPIwBcRpznQW47o+oe/SrHoEvosjHLTV6ELhupLxLCas1MiLHFOkPNjZ4+nzx9kfzqhWKkzHY06fOYGLJAxcHMfiiNLRZ8qiTdls6MuyQq3NvA9n3uDoOwFxlqEQTGcZcZHh4aCAVjUAa9jcG6C0JQwDKoHPZJYQhjUOxzPyeIZ0BFEY4rvQqgXkWmO1Ke8BVTb1ZVmG4/nkSuNIi+t6jKcTus0GcZpRq4Wc21jFSstwlrI3maIRzHJF4Po0aiF136MiYRzHdKIq2homsSIIPabThDdub/OZV6+QZQVKgCMl3/utX0UUBHz21at86q2b1Bstnr1wlpVuFZAYA1makRcFhTV4nksrCvG8siThug4ISOIU13FIigxHCNIiJ4oqmCJja2ufY0eXyQpNb+kovuchhcCXFiHMPJUu8V2BsqUzcqTEFWUqXWmDIyBVCs9xyu+0tswqWUth59fMWIwuI+T+JMUYges4+I5GG43nu2VlwRHkWdmAKoRA2rL/IM0VEgfHdSiKHKSk0ApB2awdJ1nZGyEsqyvH8WRZXQGwokBage+65LpsnpPWEnkO7/QJup4gSxNA4HkuUoqyf2aeLbDGUKDnGMAhSdKyIRXw3bL0EvkejiMxWlNoW4IWSkeLVqSFwSqN47lYS3k/z/sPrLVM4xzm5Z+TG2tEYVBm+GTZqOcLS1GU4E1bjdAFRlp0AYXKgXL/8r0STGZ5jhSiDATmQLowZS/GJDFMJzNarSq+I1B5TuD7ZQ+HFBRZjuf7SMdBWkuhihJAWnBdFykd8qJAyLJkUORlOc2I8pyqomCWJPyVf/hjX14w8L7v+Gak4xD6XtnJamyJQLTBQRB5FepRhW6zxcrSEqvLqywtLLDY61KrN1C6RLl7u9u88dZVrt65zY4pUBsLeMeWEZ6LubdHtN3nYmOBr3zve3js/Fmq1QpClOmcL9W5/uRP/jT/j7/93+FLg0BR5JpMCHpPnIG0AG1YWFxgfzjApAVOEBA4HrWoQrPaYrHXY225x9LiOguLTdrtNvVqFVdIxpMJmw82ef3yFW5s3mfH5tiVJaITq0jfJ987wLu7x8mwwVe8+908+/hjD/sL3mkEkl/CGqbTGR/4um+AIscRGqxmMknZONLlm09onj4f0FoOqPiCv/eLK6RuBc+vUKlUWNs4wtmzZ1haWqXVaCBcwWw84u7mPa5dvcGN27fZjcckgYuz1EMeWcNpROgshztbhMOYc51Fnr90iScef4xOp/0QnD2sW34Ja/j4x3+NP/dn/zwVR+F5ElUYkjSnP55w+lgPpORwVNCuemU3ryijlHimMALcwOX8hcc4fe4SG0c2yAqNKnJefOUV7g6GuO0K7vEjuEttZLuK6U8pdgc0+jNOdxd59xNP8vil8yz0el9079h5Kvo/ZkVR8FXv/wB5PMETBoMiyQriRJHpjL/1xz/E2SPLOFIyjjOubu7R1ymOG5CrHJBEXkCn2sBkBbuDfVZrLXDKjudK4PITP/frvPjW3fn9XW6+C90Wf+a7vg7f8/mhv/fjZYQQhGwsL/AdH3wXaZzi+gGj0RQvbLCzvUO91cR3Jb4E34Oi0CAso8mURr3FdDYm8AXIiFbFZW8wIE5TevUa73nydJnSl5LCWKYWdJ7TzwRFkdCrVwj9CjpT3Nt7wHq7S6EMszijGnkM45R//fHPce3OJoXW5QSBlPzQ934L1cDnr/1PP4mxknq1wVc+f4nzJ7pErst4mqAKTX80QRuHrEipRgH1akDolB1aptBYKRmPpzieR6XeJU8GOI5AWejUa9zZ3GRtucfZo6v8xiu3GYiC7kKE5zgkKqMVNRAO9MIuw4MR++MD1psteu0GeZpRaItxJH/tH/1L0ix/eP2llPzFP/z7WGy4vPzmTX7il19CCg/PDfim3/UUj59aI4lzXCmZZQqky35/iOcFYBWNwMdxy2kKU3okxrMEz3EYzCZcvHCJOzcug3VY6rXI8oRnLp3GkQ5KmfkUhkLr8tpgLZnRKFU64LLzveyjUCrDcXwKlRN6IdITGG3JsrzMhBgNptyDrDU82J8R1WuM+n3Wek20FCRZTr1SQdmy5JDnBY4rcQRcu3mftdUFqn5ApjV5nhMEPtIVeLKcVEnTtJwM0Zqvfv5S2bgnLEqVjXIOEmMVmSk77N+ZVlFakxUaO49slTIEvovrBeR5itblZ5Td+uXkgFKWrf0x1WaH0WDAcrcGCCaznFo9whhDoS1aFVhjcD3JvbsPaLRaNKohjrRMY4Xv+3guKGMIvYA4T1FKkyrDE8eXqVVDMHmZgZICrRUCiVLv9Ic4JEojjSC3hkIVRF6AFALXdRlORiXo0CWQtrZ8zrNCM5waplmKLzTdegTCIZlnlrS15EpjC4XruDiu4PXLb7O2ukijWkEKlzRLcV0Hz5doK5BYsqLsD7JG4EjLaJLyd/63n/yPgoEvabTwHdOmrG8GkxxpPVzfxw0CbCgxQlMYzTAfc7g95MrmLYQQhI5PvVKhXW9T9wOOHTvO0Y0jfMV73sc3fvB3k2cJDza3uHLjOrf62+wHluzkKm+4Dq9ffpHmJ36Fp5c3+Iqnn2Z9Y41KFP57j+1hN+d8g/89H/4QP/eRX+Tg3g0iv6zFHU5jtNFsvXwNg2LQ26N9YpXIkzQDl30MWTHlcDDlxsFdnLcsjuNSDat0mm2WO13Wl1dZWV6k11rgd3/w6wn8gMGwz9buPldv3uTW4T1mkSQ9ucQrhyOuP3iTf/W5T3N+YYX3XbzE6dMnqFWrZWfqf2QN1WqFP/Ff/kn+yY/+IzoNH2sVQRhji4w/8IKD71lycsLCsn37FkOnQs/32Sk0r7/5Op96cYFWp82xjWMsdnr0uh2azSbvf9/7+eA3fADXcRhPx9y/e48r129w8807DBHkK3XUpVNccT0+/asfofPyZ7hYa/OuJ57gwpnTNJsNhBRlDfnfdy2+YA1f9dXv54Pf+EE++6lfIfQkKs+J4wytDY4foE3BB7/2Xbz04stlRoCyxprrhPMrHpdOdTl3os8ov8XNKymiErK6tMz3fufvp9tdYDg64N6De1y7eYM7r99m6Ln4yx3UM+tcduHyzVcIP/krnO2s8MLjF7l08TydTpus0ESB9++/j77gOgjP44f/7t/mh/7Un2GlF2EpGI1StosRWWYZThP2xlMypfnFF68xmFlOX6zRcSMSk2OHOZOKRMuc5eoiK9EqB/f20Y5kqR4grMuLb92Zj1p9PpV+OBiCsfSHE5iPfWVZyo279/nUKy1OrS5Qa3pErot0wQ99kllMKqDeqNOo1RFpSoCmUBZhC3xhaFTrJFqSpAm+62KDiINJjDEaISX7o4TP3d7EVKBZrTJNJ7SiJv2DKSuNRUb7Y0ZZQZGPadcC6o0qWTrjMy9f4bOXr/FFd7W1VAMP37EUcUImBGmm+dcf/XWq3/q1tFyLlBBWalQDn7Da5Nr1GzTqLUZJjg6rFPmMeuTjui5eUCVXBVkyJktjwihilhpqkUuWwt3tQ/qm4OVr26wdX6YeRtSjiP3NHbLBPjbymDUcFpY6tBbrjMcxk2lMFEhUkiH9gOwLgACUTcnDYZ8aIUsLrflrZVPav/nFX2eh9vU4RhJVQzACVeTU6nVGwzGNRoXEgmddbFFQ9R2QgkoUkuYZtUqN8WyCMpZKxWc4S8kLhSlyPM/BFeWkgOODNZIkyyksRF6E9gKyNMMRHkI4HPSnuL7D/sEQpTWur7EqZrFRIwxrbB3ukOYK3/NZaFc56M+ot6pkWY5wXe5uHxJWI6qBi+9oPGNIhcILoFoJSGYZT549QprluG7Zb1KLXAIXpmmCE0ZIF7TUpDovey3VjEILDBrfc8uGSumijSJwJDmUGQ0J1noUusz4TBNFUij8TGNMSq3i44iy0XK7P8Li02t6HE5SavU6WZ5ipGBrf0ytGuI7At/RIA3SaAhcXFcQxzFnjm/Mx3IdMpXRqJdRv+cBuUAKRbXiMp0WCKWIApd6FIAV9JMCowyR52M0JHk57qqA7YMpjVoIfoWDUUyajJGOoCgK2q02jcjBGsODgyEIQbMaYXDptuuYgWA6m3B784BWq0HoCyLPwRpQeUFQ8al4AaPZlGcvniHOY6S0aJ0T+BIry4mCyHcYzWZUwoBcZWirUbkmjL40N/9bAgNYcJTl1ltvUyTlKEalWkUg8PyAqBIRViLCSsCoqrFC0PEa5EXOg/4WSsNr96/jCIdmWGOht8Da0jJH1o7w5GOP8zXtJsJaNnd2uXL/HnfyIf1ek19xp/zGZz7O8qckz6+e4N2PP8byYhnpveN0LDBMU+pRVE5qSsnf/R9+hG/5wDeyFc/I04xEF6ysd5ns95Eokv0ha502vjV8daz5ia43n3GVZeeoI5Cei0GxO9xj+2Cbz739Oi5l80+zXmeh1WF5cZnl7hLvevpdfHO3jVaK3cMD3la3uDEaMurUednPePmtz9H63G/y2NIK7zt/kRNzDoZ31mCAz0+eAkLw4W//dn76p/4V927eJokzZnHM46c6hE7ZtR1mgJLM0pxJWvDHFha5bHx+XecM4j67WZ+7uw+I/IDRaES71aIS1ek0WiwtLLC6usLqygpf+9Vfw7fWaxRK0T844Nbt29zbPeRurUnervF6y+f1W29Sf+MVjkdVnjl1hktnTtFpt+b10M87gVTrcsx0vob/+q/9Jb75g59ib+eQNE0Zj2cYBK7nY2YFp0+dKsHA3JQVVOoe//03JuAP8Wo5kdzmD/3UOk4YcdVYfvM3P8Xxk2c4ffIUS0urnDl1jiAIyfKcg/4+t+/d497wgJ08Z7rc4q2my9t338R740VO17o8dew0T148S6/b/qLjf6ev+Z1rYYGnXnie933tV/Ppj/4Sk1lKlinGsxitDUmekwp48fY9OktNHry2Tau2jCMMC0GDvjeC7YRsccrgMMftVjn75GniWcLunQelQ7b/v23hWlvGo4S4yN+5Gx5mZF67eotnL55me69PyxUI12FhocWDB3sURQFCMotneK5HHKd4wnI43GdhoYMdTamGAdNZSrVWQZsUk2WMFdzZesDLVzYZ5S6XHu8S+gGYgsnWPk7gcigk60vLVHWN6SShPx4TuBKLy2tvzYHAv7OU4WTGZDih12qwOZpgTDm29xM/84v8vq9+ntW1NQajKS1f4FdCWt0eD7buEwYepiFYaLdROicMQkRcdn1jCwQlkGg0KhR5QrvhI6OIWrvJ0lqf1dUKuUmZFBZqLquNBbbu3id2JmAN3cUORhrG0ylCNKjVqigrHgLZL6RT+NQrb/OB5x9jlmRftD5lYTyKWVrqoKwlgLL81WkzHAwZDsYErgPVOp4fYjyBLyH0wYkFuVZk0xFR6OFKg+95xEkCjiU3qoxsCzCuS5rmHExmbI6nREGVTjXEakHVF0hyUuvzE//y37JzMCRXxXwKQfDf/ODvJU9S/uG/+HmshVqlwVe/+wJPnFrCWI1jLbWgyiEGrWF3b8gsayClJnIske8xGIwejhGORlOCwGVvNGVtaZnReMb+4R4Xzp/FGsXeLKNRC3EQSOmC0mgkRV4yTtwZDZjFCZ2oVpacbNmQmMQFVkpu3NviFz/5MnGSAWUQ9w3ve4bnzm/g+B7/8J//PI7rc3R1ka973zO0Ig1xTlDzGQ5j9gZjBJK2qqHzhHrk0qiUE0DSWPI8w3UdsjwjzTKKIqXRbJLFKVeu3+a5Zx/DcwTDwwHteoU0KxjYGY4juLN3gC8dzl98kgf3bpIXBlEUaGNJVUZUSC5f3+Hf/Monmc2mD/kOojDgL/+xbyVTmv/5Jz+CsZbFzjJf+94LHF9uEHkGQo+ZDehPZlhjiFNL4Bgco4gijySdYFVBUuSEgV+WApRCSAejLAkKQcDbb9/hvc89TiMM2d4fEFbDeUniP26/JTBgjCk7FXVZw4oCF0GB0Zo0TsiSCeJQYqVD8/F1DJY7r7yJ4/n4YYDv+7ihT3WtxSAdkG3FPNjb5FOvfgYrHGpRjYV2h42lVY5sHOHZ8xdwHZeD4YBbh/vctTEfObzLL33sNkfrbV7YOM7F48dptptoIbDSIdca4ZSz0ZV6nT/5X/1pfuRv/wgIhRAaSQCyrLlLAVIrDmuCnyoyTEE5QjJvBtHWcnZhgc9+4tP4XkQQVggqHtL3iRuWbHzAcDzmxuY9rFa4bkC9UqHX6rGxsc7K4ioXz1+kGvoMxn1u7R9yV4x5bbzPZz75MZZfrvPM2gaPHzvJ6vIidn7cxthyLFIIrBD8D//gH/DdH/4usqJf7kNSAglvFadwC8tZ3kbio7VmWzr0rUHbsovdKs2tq2/R6fWot0NiNWIwmbI52ebN+1dxXnPwhEPkRzSqdVqtFqu9ZVqNJs+fu8Q3LfbQ2rI3GnJ/f497dsIdV3H57Veov/06x9s9nl4/wrljx2i1W2XXuOOQW4sjylqddF3+4T/+x/yh3/8HMcZQDQuMgPE0BS2o1OrkupwdFlJisUil6PpTDAoxkAjX5eCgz+9uNpnmHr8+vsnNgwd86rWXCPwAVzq0Oy163R4by2usrqzyxIXHicKI8aTP5uGA3dGI+42QO7Lgyr03+akbr3O2tcDTR45y7sQJmnOCJiXKoSZh7EPA+Zf/xl/h937uVcbxA6wwRGFAUeSowuenP/ppnnj8AoezA55/9zrTLCbyA8Y6xVYd1uvr7OztQMUhi6ccbG8Sj2ISUaCLAkeU4KPV6jKbTSiKHAtkRcbO/hBXSNQXFPMKZfD8gCxNyAMPf37eer0Od27dRBvNYDim3ajS7XaZzBKCMGSWpEytQUuIC8PkcMBSq4aqBtzePWBYKFaP9DCbI2qVCplJKZKEWr1K/OCQIgywDU3/YJtuq0Otvsx4NCLyPd77/BPc/cVPI/CwFLyDb8ajFFdIOp06m6PJQ0daKMXy2irCdRkMB4T1Ck5D0WjXGU5GzJIEbUdkeYLWZSPVLJlRj0Lu37vH0WOr9GcjNpbEnHtBI0TK5iBloRuSE+MTlA2QsSZcq7FyYo2d21sUcorfDvFrIYWecTgccWJtCZ3lCBx6vVUEgr2D+wBsbm0zmp0mimpftB8KKektLuB6LpubO6x1KlirCaRDs9Xgwf1NMilJlWF5eZHRLMZqxWQS43o+oWMYTUZEYUCaFax0a3hCcziaYq2DH3jM4oyXb+4w0TMqDY9mpcZhvofnL+C6AVZ75GnOz330V7h+b+eLjk8KQd2XZBayogQXyoz5P375N1ntfD2BK9FKU6k6YAytVovd/j5uGhKEHok1pEXJieA7YHPLLLfMihStBNt7+yRpTjWqsXM4wXcEhTbc2zmgWa3Sn81AGYzr0R+MOUwL9uIJ1bDCXn5APagShVWaTsQ4P6TVqvNjP/NxCmMflvGEELx15RpPnVxhmiQkWQ55wdu3t9ja7fOD3/41SOsS+g7CFax1l7h15x7DqQOU++d4NiCMIoxSpHGOH7ocDIb4vsvB4YxWnBNP9ml3Ohz0ZziyLGWOZwmNRo2mI9AasA4zI/jkW5dJkwTfcUFaOo0ujabPLE748Z/5BZKi7NNw3dK95rOEg9GYVlQlz3KMEGwfHPAvfv5T/PHf/61UZEyzUcWgaLU6XL9+Ez+sERcCiWC2M6BRDYlTRZYlVCo1DsdTTJ4gPI801TQaVQ5HA5aWFojTnDTN2N3f4/iRDYp49iX5998SGFBao4UhTzXScUgyxSxVhJ6DxHJ0qcXN3QGO4z3MtxqdoXVKkXgMVVnDfGLlOQrhsH3lFs8/d4k3r96je/II8f4B9w763LxxHUKPyPGo1RssdHusLS7zwuo61WqFcZFxPx7zkZtX+Lkrb3C02uDZCxdZqLdoR4JqrfVw0/nw7/kQv/rRX+buzatM0gQhNO16qxyVsoKpLcCrMHXLsS9nzgwn54xzUkhUnJCTMO4PcTyBK1yOfcUl3Kzg3st3WFxbYjAe0jm2xHSQoJOYG3evoYDIrVGvV2g326wvL/P48jrNVoPcag7ThFf2tvily2+w3Ovw7JHTPHbiGJEw1KuNMuPiOCx1u/yRP/KH+Yn//Z8wiRwqtRD8PgdJE0LB2cGUXLcxnsPPioLI9xDKAWXIs4TxZp9gb0LtmWNUPMHYdxBIpHCx+1OE4zF1c+LRiFuHD3j7xttUwohC5Xh+QLvRZXFhieXuAk8trNBs1Ci0ZpAn7OmEj96/xU++/CIbiws8c+wU59bWCR2o1xrzxhvJiaNH+P7v/35+6sd/gknoobWmFkkkHl7oEUQRKtcoFHLe5Yvr8rnpY9SzMeeCO+RaM3IclNAIzyW3mu1XLrNxdJ2LvTpv7I+4vX+fy1cvYwT4vo/v+3TrHZrVGsePn+Cr104RhgFxUXAwG7E9m/DzN67ws1cvs9aoc379CKePHaciIPQ8KpVqOccrJf/j//h3+a/++J8kTcekqWJjY4Ertzc5sb7K7ugQITVxf4htePiOT9WpQmxQgWVhbYnDG5vYXMELS3Q7HQ6vXcMgWGx3GBUOQjpcevxpXv7cpzHG8OBgxBv3Y1wnBFFGjsJx8H2X8SxBGoUQHliDECWhUKPVRjgOSZoTx1Ncz8WRLlFUIVc5o0mBIxVa5YBmlCTUopBXLt/g9NmjTHXMyVMdhvGAbqNNUvUIvQYRPtPZjGI0o9KoMBz1SRoRw8GI9e4qT126xE/84mdZWT+KtIq7m/ewGLYP+vTHM5rtJbi9hZjXUX3fo1KpsD8YELousTa4ppwIWF1d5s6NmwiluHL1LqsLXXwvYOPIBttbO1TqDSZJSuB57BxMqPiC1Eg8C3Z7hg08dGaYVgtEw6HbaXPzrZvUaiEy1xRa0w7qFEaTHkyQfkimFC9fuc/asXPs7+xw4dzph2CgHytevL7P2ZNHyvEy18WRPp4nCKoVdK7JlWY4iam2OlhjcV3JyuoSk9EMbQzXrt8kiryS+EzlzHKFjnyGkwyLxDqSrd0+tSjAILEWDkcxn7lynas3xrQXPM4tLVANfFwHxpvbUPNpdRbodlp8wwfeyzjOuXH3weezpdYy7B+iZZVa4DFOMpQqyyA/87EX+fp3X6TV7hBnisgpm/WajTZZmuBgmGlLs9mk0IaFVhWtLbVaxGw2JfGL8joGAa41aJWREzCcZniuz8EoZq8/IC8sD0YpL79xl26vzsqJGmHkMckS8tQwyyeIZo9qs84kzjl18hhXr99Gz6NZx3F4sLlL4Dn4QfBwlK7QGYNxxmB/Qq0aYoWLzQu0LpCey2w0pNXrEviQFSH9UUq7ERLVNMoK2p0OcZywtLSI1hn1ept7m3vg+NSqERafN96+xomNVWbTKa/e2uHm1oTWQpXWYkCv3mCUDwgJ2J/usVDvkRh4+tIFPvPaZdQXcidYSyNqoPOsnDQSoE1GkmV87pXXeffFU8Q2Jh4P8ZYbzLIEfzYmCv2y3EfG3mCKBprVgEylJdh2AwpTkokNBmOMTsiVwAiXWrVCs93lEy++Rqv5xSD2ywIGwKKtod2po4uSbSo3BoPAcySuDBGuP2f8mzeZaYvnS9JUoUXZlCKERAiHNMn47Euv0Gy0kIVi7+49UJpCw8pTp+nf3WRW6fPg6jVeFQIvDKk1WzQrVc6cOk0jTVk9so61gpduXCWbxizXKjxz4RKLjWZJP4rlB3/gB/gTf/QHGWcxvWKRI6fP8PQzT/PSJz6Jli7GUJKlfAGpRygcjHTmM7Nlo4srFCvNHnf3h6hcQ66ZJTPuPbiJ1Q7NtQ7pYEKqBvSTGc2VHjv37zMIqxwu1nj78qs4TtkUU6806C33OHPsOOEwY7ETcG93h+ubd6kYuHDyJCuNNlHoYwvFe9/1LP+ff/rPGA6nnDnVAzsjqHiYaQGOBmHoLSyTpClOCNZqwEUKiYMgFIIk9JhhMKp00FZYDu7cxcXH9x20sLQuHGHn2i2ObZxgb+cBi6fWGecFD+7fLLuQRUBQDahWK9QrVZaW1jjW6bCwepJBPOPte3d54+4tQqV44uRZVpstIs8nSRKeeexJflr+KwbDIctLPTrNOr7vE7oO9WqLoC3ApBidMx7OIPSZmkUy0UKoy0greEMK6gsVxHhSzkMfjqjX22yHhqLuo3AxO0PSWQ6eS2u1x8GdLawUvHnzMlW3gpFQq9Zo1JqsrKxyod4gatVJMVy9d4/X7tyibg2rzTYnl4+ysrqIABY6HZ5/7gV+9iP/hsl4xnve8ySffuklVo5UOdgb0iskuh0iHsQMGgnVTpNuo8nNz10lqkWIOEd4DmqWM6WgsIqtdEIQ+PQaLQaHB+zubuL7Po7j8pHPXKHR6rLQqzMu5s2FFgLP4a2rd1iolvPSShUENsR1JI1WjTzL6bRrjCcwnY5pVKoE9SbaSl65ehPHc3j85Cr1imA0jZmmGavdLlv9XapKMAs0xjGM1Jh2vU5NhuwnE9Qs5cHgFm6rSvPEMnqWol3BVGe8+codTpy4wNbmfY4fP4rdvI8Ukk+8dp16e4UzR5pUG3Ucz8NxHNy5w9rZ2adXCbFaIyx4wFRp+uMRG4sRYbXN/t4hnXaT+3fu4vgBd7YGrG8so1XBQTJkY6lNnBWENkQb8F0XtT/BdVsk0yl79gBRZIx3hwQK3MUG116/SqVTI08yZOBwmChevboFytBs1IiTCUEQlrPkImR/OOG01lTqtXIEEHAQBNLl3sEurUo5/qusITcaTzrkQhDPRvhBldF0QpZ6KKXw/SovXb6BX404vhAxS1OiioeWklyCF1RJ0oSPvnqZc6c28CsNNh8cUA8aKMcQaAdVd3EHOZkZ4FRqLC5U+IPf9rX89R/93+eZwxIMbO5PMDahGlWZFXNOCgHTPKPZaeG4HvF4ROSUZZdOp8WtW33SWUxUCbFFhO8H4FbJ85RuM8CoAm2dcg+RKZXAI89zKgEstGrlVEGcUeTw5q1tvE7E0Y1FbtzY5fSFRTxXsl5dYP/2Fl5uOVS7NP0q9UadP/G9H+Iv//Uf5SAx5YSBtcwKjXRD+qNRycZIScnrSIEThFRqFYbDMbXQx0OwsLDIratXYN+yL6BWa9BrNIh1TrtSIxQlo2IjchlNZ4zTGdWowpH1xZLkR6UEkcf5cycR1vKZq3cpIgfXd9m802dxbY1K5BP6bSbbhxRuwm6es9JZ4sPf/FU8+9xj/Oj//M/5QrrA/l6/zFgLW7J2zi1VChH4mMM+vuMS+R4LS0vMRiPqYUSSzpjGOa4fkKYJi4GLaw1eVCGdKqZpilcJEAKSGLJ8Rp4XDIpxOf4a1Vk4cgb4tS8vGLDGkEtF7/xxPOGhTTEnutI4UoITcm59CW1ydswMaQXHLhwnzwus8dBGE6cJsY4ZJ1MWlnoIFCeOH2WrmFJrVtBpjsg0RZ5AkVMUkll/CEKjlUVuGPZu3MAJ4cHtLSqXXyas1qlXqzSbLUSny8f7fR7bOMbiQo96veQa+Pbv/k7+2U/8BKkpaB/pIpYqRMcXGaUztNVYYZCinD0VWFJhEUaxtbfN4voKhrI04gQ1lhyfJI+JUk27W0d4kqIwSEeAIxmNByx2WkyLDCk18XSAWxHMZjNC12OapVilqN5tsLTS4bOf/HXqV98gqES02i063UU+sbnNuSNHOX5sg1qthjaaP/sXf4j/9i/8N0RRBTG2rKZvUrMpoMHA4d4QLyxnUoWUCGPxpcOTzz9Dvr/HiJI9TRpRsryhEdKSKcVGu8HW4Ri0IS9Sbty4AVJgioLd7T2MKHn7HQO1TpM4DLm+d4gMA8JKxNd+zdfwuZdfpt3p0WjUaNRafHJzn9MbG2ysr9CoN6l36/zQf/Nn+JEf/u94/tkzHOzu4Hoe2hj8KKIaOEjhIW1Rzg+nLj03J4o3oVKmg42U7PWH6JJij4XFNm7gcTcUyEwhPUMxnZBMY4xx6C51OdjcwwhNrX6CyWAPEXhsXbtBvdfm5o0rZNMYITxWj66gZjnLa8vYVhs1mHH39j2evXiexYVFojDke/7wH+Azr3yao2uw0KzwnvecZ1TM8LUgCSVBZnEKw0K9yyCZ8tZwH1mFbDSmHoSIjRr3X73K0tkTZMOYcKPKxvnnuXn1VcLQ4cL5M3yyf0Cvt1AS3OicbrtJMZ6RZllZC3bKmeeD0QjhQLtaA2FxPUGu7HykTOEISVpoDoZD8iLnxWu7HE6m+J7DS1fusNSrs96L6FRcJhWHbHeCdB0CxwXHxdRSHqiUoRiR7A6ReUYYhSws9tje3kGMCmI3J6g0uLU1Jo3H1OsRQSSph1VczyOzAjkb4YhFokql5CiwgCPpT2NCAY4QSD8sByyEAMfh4qXH0UVO20j2khG5KnCdGje2+jzox/RnDzh+pEuzWiGeKZQRjFXK0vIKb129w8ZKjaxwObm6yMHmNZqtKnE8ZaG7RCYtYntGq9nm/mCP5WaDV64PWD7zPNuf/SVazQbLKws8eLBJGETlXL4LyaRPJYpI59wJ0nEZxRP6wz7LzWo5c48tx2OlYDKZMp6ldB2Xeq3G7v4+2mpubO2wMxgTxil5nnLp2DJFkSME9Mc5w6nmp37uV6i0awRehFMb8fRzR5kVE2qyRuZpjC85fuYEB/t9Jnt9ZN3DePDk4ye5fb/PyePnuH73GkFU5a2bW1QabZpSImWIFJqKJ/H8kNt3HrBc91HGILXGl5JOt8v1t68TJS790Zgz586hDewc9jkclk2KfuBT9wzDwSGtXhOjyjKy53okWU7kO+z1Y7ZHU144e4S+P+R8sIbAMlNTcuFCN2C9uszWrbvYZkicTUjuj/i23/OV/NhPf4JOZ4U4GaOzlDiX7KcVgkoNzy2ZI4UQuJHPaDol9ByMynA9l8gV9FaW2d7epeJ5+PMeE6UMTtRm1O8jHc1Kt8VsFtNudxhNUiLfw2gFRqGtplkLeP3mJpuzmGePn2SxVfDqa/eI/IA0S/B8DxFJFoIWh9t77GeaWqvKarvG2lKbaeJSa9Q57O8Q1rtc2x5QqXcobBkQG6ERfsBwMKRV8YkHM0I/oNfrMjzYY3t7GxwXLwhpRyGNRptxoqhXqrgC6r0qi6LBdDpjc3uLRrNFsx6WDcNSIySsrq+w1Gl9Sf79twQGhDVYYennMWDnKLNMe2AtqOQhFpKURBPbJgYPnDl5BlWX3fEeGkOlFyDxuTHdIVMFXjdCKJ+adMiKhMpqHaQkbCyAsFgNxrG0V1r0+wconRJEFZROGA8T4umQg61N6vWIZGeTxcUjOBJUbuh0unzXh76Zn3rtN9kZ77P3qV9DW0lVOtRMwD45QpTre4ewAwu7yRC3KXGkh0QypkDUHUazATGSaK1eRt7ApJjg1ySNaofcdVBFTnW9jTGCwPcJmhFWazyq+MagLNy6dZ1YJVSpoXPLzvaE4d4OSiuGD+5w7+4GruvSrFZJC8v3ffd38tJrn4JYs2GugnDASKyBeDRhpbGMnTsD6ThMXc3yqSX6TYksEgpdgPQwlM5i5exxrAbhC5Z6baYmZen4Guiy3jZVCWErQrouQSOEQuMGPlIKWgtlE5awls39bbI8xRGwt7PFyNvDdwMGm3d4q97E9wMqQYDjOHzfd/0+DgYPGBwOcAOPJNE0WxVcK5DCLdn8vBQx3eWC+HWcKAddMqRt3tmisVDHKIGSloXHTpMYi1YjtLCIQlLr1QlqEdL3SUhpr7bRqiAuUiq+Q2IzoqqH65WjWdKxSDKmyZTh/gF+xWV7+z5hEOAogZ0MabY7aFMgiPj2b/s2wkCh+3u89NJn6Z3qUWl20ang+u0djp+ss3UQc+rIAqP9mOWlHsPGjE5nAeUIlF8QBRVEyyGUPjqfoFXGyZNHebC1TRRVcTyJ4wQsLPRY6rWY3r5LlmUl5akjWOy1KTKPZqdFEJTUpJ4jMcZQqUSMJzFB6NPtbqCKnHvb+6RFjut6ZGmOsIY7WznN2gaLLR9b9WjaRfYO+lQTTWO5ydrGOm8/uMamGlGt+7hTiVyM2Ny8TzpO6JxYYTIeMLM5CycusP3Zj9NoRriOgzGKdmuBaTyg0ayChHa7TX//AC3KfpZr12+zVPGoRC5pMefNlwJHlGBBF1DxHc5fOMNkGrO3c8iD/RFpViCs5frtPc6eXiNPUjxHMk0T3ry2RSUKmKmchV7GymKD8b0xZ547zq4n8IIKLd+nH2QkJmP56BL9rTG+Fuz1H1CvVVhaWORgr0+z2QYsQeiwtLhI7oVl4APYefQ9mU4JXYkxZY3YFQJpFIUpp4HW1laQwqKmKb3uEnfu32eWFVgjiJMcbQxvml1Ory+i9QzfFQhVzs4fW+qyOzogNDDc28NvRORkVMOICId4NCOIAsb3dlGuYPHxEzx58QSbOxO2d3YJPZ+ruxkv39pneW0ZX2e4ng/WEroO0vGZTGd0A1CuQ8X1KYry/jl6/AhJnKEtbG5uo/KcWrPFy2/fJ/AcNpYDpBuwezjl1u6A9cUeWRFRDTXaWmqBz8dfep2nnz7LaDZBi5x2JMlNhud4hDJAq5xKrcbGqWPcf/s27iF0HzvOSuCzun6cg4M+G0eOs7Nzj7e3Rnz0k68SNds47udHmw0wHY5Za1aJtSYrCjw3pFKtMpkliCBDWM3h4YDzj13CEYJYwcd/7WWWV3osVkOazSquG1KtuAwGY6IoYDidEnlwc3OX5SMLZIVlqic8dmkBRYYysBRUmNU9gkadBQGD0YSsP8F0Jd/0Te/lx/75Jzly/ASJjtmZWj7+mTeotztkKkZKByhH5T0hcD0H5j0Gge+xuLLB5v271EMPzzFUHIkf+fTHOZ3aEv/653+Vk0dX+V3PX8R3LKrokWvLnfubLC4u4uiS1jiQGTs7d778YOBExSL9UujkHdG1VmBBSCyG/syijCwZxObzoGXtveQIcISHsRaFKdM9eUY5kWxKIZM8QwjIbfmgTW0BCBxbCjtIxJyq1GE6GaOtZDYao205s2pyg9V6LvggcKWl3mhw/OgxLpw+xnSww/FKSchgjMaXAlEU9CcpRxtOyerlCKzwmOYGBzkf3VE4JqcZuRTG5WCaUpMChcXqrGSHAzwUWs+70HOBNIZCuiWveh7jzBu9Cq0ohMQVkgdvXyPPykatWBtUUTCas6Nt3d3irdffpFmv02o2efqJx2g1XTa3M+wzBSLToAMIygaX59/9GHfvbqMKQ1CNEMIgRMad3Zs4wlLXHl5gkTLFMQIhDDKUeAYEGmsdQizSn4uZAMJAajUik2Al0gVlUqyyD6ljPSG5efl1DA572/dJ0xyVls1xqlBEQUC73aTZrPPs4xfQScxHP/4Sk6xkNbv7YMxgNCbyXYokI6BgOIux7y1wZwegXAh8Cqs5fnyD8XiKdCSOzUnsgERBxVpkUIJQpypxqyXpjTIJROAJF2NTptYihYOMJLmaYuZ6AMZYpoc7ZGnO8HCXJC0wWY7QkmtXr1KtVGi1alw4d46N1Q6/8Muf5t1PnGaUGQ6v3uNgK+PC2VOMZjFvXVecOV9hMBwxuT3g+FPrVKzBamhHNYbNKSYoOLKxzsd/7nVqzQ69bputB9s4vsvS4gKFyrn0+CVu3biBkV1cRz5sqBLzZ6az0MXzPTAW+QUiJo7nUKsFhGGFw/6YbqfJ5U++gbGG0BekKaR5jiMlL791m8Fkgc7UZbZrOHXqOLdvPaDrzjDuNvkgZv34OlhDtBowSse0owb3DkZMVMzS6iKvvniP3QG0GjU6rTb90ZiFxSXyIuPIkSPUa2324oRsFpdMg/N762AwwVMeUmpcL6Q5Z5xzpUQVRVlO8B0OD/uMxzOubY9xHUPgOiRZKe705lt3uPTYeSw5w8kh9cUK+1tjVhst2p0Kb964Ri30uL+7xerCAsVkium0WLiwhHU8Dm4NuPrqDmcvbdA1kE6qXL9+nUalyvJSjzRPWFtaZ9g/YDdP8VwX5lGwBMajMc2oBMeu65aqiGKuHSCgUgnLFHrkMxjP6E9LRsJKFDAYTXCtZi8vMFZy/ngXYwp+/td/k4KCVObE/YSFXOItVuH+mKJTYdYwyMhn/9Y9AiORmaJxdIl7D+5ic42UPo1Ghfvbfa48GOJX65w9us7nrk3JsrQs4QZV0iSlXo2YZAmN2jI5JaGPIyXtVgfBmNlsxnAyJY1nXLm7y/3DKYFTajIcW2qxduQIzMmKcq3YGU5YX2yhdEE6TXCVZXN/h571KXwXx3gYRzPwCzoLHe7dv0eyN8QmWdkAnheM9ocstAKyJCTPJyjl8OkrOxT5kFqrRZxnJRGSlNy8u01HKmTNZ5bERJ1FHBdcx+H4sXV2HmxxOEnwwpDrt+6wsNjls2/cYGsQsz/bYqXToj2I6bVcZmOHt67dZnGpxWxWim4FMmAxjNje3yLyHYo0JfQaaKMY6Andeou6G3FvsImJU4pMsXriONPDKd1OnfHwAJ0VfOzl26Bzap6DtrL0Z1LiWotnNUUSY3QJ5l1bciLMkhy0ol2rEo/7xHGG9CN+6dc+y92dEfcOpygt6DZc0umYWiWk3upSb7RIJn2klPhYDkeDLz8YeLuvkF7Z6S5EKcTxBx4zzIiYTS1vbmVMrVNykb/TMzDfuhzA6jmzE+W+9XACaS5MwpxUSCn9UGHKnZMbSTXvQ7Aw0LYkVAAme0OssUwmZcdkNQrYWF+iXq8RRgFRGLDYayHslALBrZEu1cZEyUfuFJBgsH1FxXG5sGDotgy/dLN82F3j4BqLIyx+IIkTy9b0HZYpC5QduSXS0w9nA8Wc4lKKUpDDWiAvedp1oUs1MgR5nOI4Ltl4hjEClRs8v4z8FrstfF9SrdY4cuQIoZsw6o/xPUU684n8DFSKjUpWtgvnTvDii6/SW1suJZdVQcPLwWgMkOUJ4NINDTNjGOUu1hZ4xnK8Lrk2zlG2bF4ScwDmiJKlC6VKhTULKI0wAqMUtiipUGezhFq1woNZTJbmVKIqqytt1teX8VyfStXn1KmThI5idLiF1gX9/QnaKpI4wRYWVfWxKSgBrbUeOvVwdQG2QNUdpLEcHu7jh7WSsjfPsBmgPQo0KxWX7WkpJLJSk+zPYmZK4MwpdB3pwpz5TFiwhYbCoJRCGkGmCqQRDLYOiOOMVrPOxuoivZUeURDSatephZJ8uoXn+mgLaxtNDkY1mucM07zP4WjIRqeO62W8dXuHdqPC3nCfI71lJoNDGs0qrfMd8jTnxc88ILcex88t8drla8zihNWVFcIoQmYST2rOHFug8L35PSZLMh8hsXMFOknpdMRcFtV1HPJc0Ww2OOwP0MBb9w8fjhdZq/FdQ5JoXNcgHcm1W1tcqq+x2+8Tbgds7ewxicecOHmJ+1cGWOMSdSI6Sw2kqFBrN1h9fB0TBHz2k7corEO37fLgTs7lt6/QrTdYXl4hy1M69TrJbECl3SGKIvI85x1VwUajQl4kpLmlVY8QUKrDeZIkTXE9D9fzcV0Pv9akUAOkAc+TpIUlyzI8z+Nzr7zOY+dPsb6xwnf94O/nJ3/8J+nVAuo1F+HlBIGH3pyxszNj9b3rmMBweDhhPDSMBgV+3cOaAs8q8jzH9V1WVlbYG46QjuXciWU42uXGbp/NzU2CICi7xR0HoTT1qlc+9kKUJDpzlcZ3ZIChZJPbORihrcTaHKzBdwTTNKEahOzs7GJNyoVTR3jj1g2+5uueJstGVCohVKsMJwk17VD1K6x1V3jz1hVETZBMUnpLbaaOQW1OKaoSS4rSOSYHn4JGM8B1JdUoKsV7sLhSsrW7R82XRI7PO/LEruvgWMsoSXhw7x6L7RoYuLs/Js4k2bwUd+3ODu12B98q9g/38Byn7CNq1BjFOQ6Wx959jn42IvAchBKYqos8iBGtCs1Oh52DfQpd4BmFazTekRb3rlxn/eQxnvDr3Lzzq1RrEdNJTOMU1NbX8UKPB/uHpTiRLRUEpbSkqsDxK/NzXgLjVquFlBKlLPsHAwzw1ts3uL/bx1jIC8Pu4RA/XGajUiMQFscLeLAbo3XBUq+KWwkY5zlG5uhDyEMXuTnEEQ5p1bJnCyb5lMHhIb6RRJWQmzdv4ViJVikCTTzJ6J3yaHmLtBo1it190iQttQOAwCl1MoLAf0guVYsiFpYWuHf7LkWeEcZVprNdnnjueW492EdZMEnGJ16+wsryAmeOLJEnBYEfECcx7WaTtMioVWvsjyZfkn//LYGBQhcPZS6h1Cz5py9bhNUIBIU1WMo0UamqZR9GMhYwJUl4uWBb9iCUPygdPsV8kzYGXaiyZmos9VrE4eGIbqtFFAUgJA82d1he6OAHLmHos7FyhN5Sj0qlSpHESAHNZp1Tp05R5Anx4SG5lSWqpBSJKVXhDJgy5RRFEa/up+RbJX2kteWacl3Sf756u0zTSjtXprLzUokumaIEFmHAGotROSq3uNLiSof+KEYIwVK3xdZOn6OrC0gp2TuYUm2E1IMqjU6NpcUFGs0mKi/AKKqVCmcvnCOdTmmEHjfubPMV3R6OKWBswdcQljKyv/CRX+fC2bMkOiU3hixX7GgDorzZnNyU1K4iYpTEKGsQhUFaySvTkrddzB8maR2EMaRFDNoijSbPCqIwZPdggIvHwkKbIlFU6yGTwRRfCFYXWqyurtLpNsniDISiXq9w5txZxoMBYavB7myXZr3Ffn+GoYymKhUX13HQoSLA4WvPnMbhNyAHqgLhviPV6vCDf+Db+cc//s+ZFIpiJnC1wRpF32kyGU8Q1jIeGowppW+FtlhtsdqgVY7JciqVGlu7h0QyQOuCbq+JLnIMkmMbSywvL1GtVciTmCAIWFlZotlosdz1qDkFjWYNoRRZWtDqrPLdf+iDTIYTfuZf/SzLzRr1yKFYr1OvNlA3R9zeHHLsa44T25j+7T75SFFvVUnzgrr1iOOYxYVllpeWuHN/k3g25bnHT7K6cYx/+8ufYjqdPiR5EkIShiF6zgLXbtTm/AIOiDJL5EZl1/t0nPLaG5fnXOrM2dMMnueR5RnOnHWwu3KS3/V1X8WVN66Q5glHNzrsHe7hLkZ4dQ8nMcTJFLdpsXWDEBGf/PgbTMZw8bGjqByuZ3eoVqusrKyy2x8ipOHpr3gOdMGrNx4wHg/LOq8QaAt5nrHQrFNvNalUqyAoSza2VMQLZcmoVhSa16/dB1Hy4Bc6xXchScHmOdZ1ePXKDc4cWeA3f+NFaqEkCCTNRh3lKhzP5c7uLTwZYPeq6NE+tShkdJgxnuVU2pLpYMKnPnuFODEsryyTFobBsM9w2OfskVWevHQOdffBQ90Rd95EqHWBkJUyC6g1nrAlH73QBK7LLE1xHIcsy9ntT+e8/aWSqutIhHSJsxTfddnZGzGLbzKaxHzqN19nY6VFZ6nF4aEhqkTcHCZU8kOQIdnBjNOXzjJpzWhXW3iOx41b2yyc3eDoas72zpDjx44wGg+5+NgTbB0cYJVGzGmLjTbc293h4mq3zIKJGX69giclVkqkhGkc45NTb/YoTFk+rYUBw8mYWhTym5+7zFe9+wmkcMnyAt/LORxYfKfMYPVVSq8eUG3VcU2FGzceEFk4utJFFx6RccmFQi5GLDeX2E9GdGst0NBqR5w5fZrpTLPUTdnf3efosXUq1ZCdg/5cnAdcSuC4bXI6yxtYIch1KRMspZwDtxzP9ZimKXc2d0FIqhWPwSgBLbh25x7j0ZBLx5c5fuwI1moMmtCRqEop/dysN5Chy2A2RSeWXqfKyvGjjOMBd/e3qXQiSDTxYoizPyNYW+JdLzzFm1c2WVpa4vBwn+MnjpBmMdIpdTtKkjWDa2GcJLiNBkEQkBU5hVZ02y0ODw4Zj0ccTAp63RYf+fVPo42hEngMpgVFPKO4XzAcTrA6ZaFVY7EV0qtF9Af7jKcZqysLX34woLMC4b4jNgLa2DJVbspEuZ3zLWPBaou0pX53qYQxf09RNgLORZ1LXXLHwXEk40lMt9VksdfgrWt3MRaiKGRtZZm9vT4qV4yLjFol4NSJFTqtJidOrBGEAUWmmE4ThFU0u02W2i0WF1d4+/pNHju3SJwpCukgc4MVBqsUwnGQwqWIC6QQvPD4Or/4ylsUeVGm9C2AxBY589wGNi+jbGMMqij507EWlc8BjSh/1mvVSv1qYKnXZnN7QDWq0G622N06YDadUIl8nnriBItLbbrdNliHJMnIkhmNRpPA97l44Qw3b91jebnJjRv3maQ5J0fg9zIYGGgKhJ3heZJjR49yyUZMTrX5ld/4LHmeY0WZjbEWTGYQSkBQIR4kYAWylCHH5gqtLToveSOMLhv0zFxmdGWxzWQSc2x9lXv3dgkqpUZ7UuREXpWvev+TLCx2cKRLlhRMpwmdTg2EwxMXz3Pl2g0Wug0uv32TJLY0mjWOrC0gpORw0Gd1uYM1Bh8gK7h+9y6cAhMIRBukqwBNf/+A3igjnRVkcY5xy/NtVcFBokmTDKEFVmt0XmrGp5mi4nlkShE4HmHksdhrc//+Hl5VUgkDaqHHqcdO0O11EcB4GKN1RrPV5PTJY2hc9ra3CIMOEzOm0+ly7frbHG5OWDgy5SM//VFOnjlBpxXSbgS0WnVUXOC6DpsHfYSAm7f3cSYQ1nySomBrb0a7A7fvblJ3PYyRbG3vs7u7Q5GnvPjSq3zn7/sWnr5wml978TVyVSqlCSnxPKcUs7Fl83ip8icIPJ/D6ZjAlwR+yM3bN8rzY6HaaFOkM8bjUcnt73kURYYLyKJgYXmJZDZhoRaysdzFCQSHqk+1iLj2K6/gRQL8gPhun0xrXEKq7VKt8aWX36A/GLK6fpxcC4bDIYf9PV7sNvm63/UeSK/NMwKypNXVmiOry1Q8j3qjWkbQFqwoNyWJQCFxPZ9xnKN0juNEaKWwWoJQ+G7pCAJRgvbNvQGXX3qZ1YUW924+IDm2zP3BAU+cOUNYq+M7IVJ7uELiyQDZKXByaFYc7l7Z5Nufe4xPXdliZGFrZ4d+/wCAq1ev867nn+Cpx06zvb3HeBbPhXcM4zThYCxwpUT6PlWnWTaHUdLWalsKBH3mlcsok1KtdlhZWuTyldcRQuFLSLQgnwPxbDii264TBBWu3dznfBTx9tt3eO7Jx7i3uUulEnD2sSOkhwn72wf4NR8cjVt1Ofqu4+wdpHRaTd6+eYdut4FFk81GHF/v0h8O8X0fQzmG2qnUSwZA1yUI/DI4UoZcW7I8xwkCpOeQ5Jo8B0M6F8KRxHGM7/t8/FMvc3SxwcZSh9B3SVSpPKiE4erbd+k0qqwWMZs3Yt7zrid57fVrjC7vcOqMoWoMkYyI2gHKKtpOjWBR4HcDXvvUHbbvb7K4sMSRtWVcz2G5UyEz4DkOhSkzA6EraIYRQVj2zWAsShgcp1TCrNVqJPEBrdAhq3SZ5ncx5Agh8VxBnGWEvsfW/gABnDy6Sj6bUI18rAuvvX2fWj1g49QieuriyYgbO4fklZArn7rMC0+fwCdiaa2LsYI0Tqm2AkQk2N/bZ3C4x9LSMmBpRi71epvdg32kLUmhfMehMJZEGSrSRylVSlsL8MKAM2dPEc9mDIYxy8dO8uq//SjGCoQ0BI5hXCikFQxHIyqVCsfPnmeh7mHzGZdv3OPBwYhbB78NmQGVpBhRqosJUzp6Md+QsBajBBiDnQtfaVPySXuuSzJNELJE077rlBra1hL6Lgu9No4DszimVq8TRD5SgOsIPAmD/iGnj6/hey7LKz3WVnsEYYhVhuFwwvhwQhQFdLotCqOZjXNOvescv/aJTyOl4PK1PWbTGUKWaXmsg2uh0CmFsKBLzfKPvvQWk2EpOVnMS7DSlNKzZq5oJpSiUqmiVYbRgnEcUw1COp0Gnuuwtb1HJazR63Y5PBzgOA5FoWhVK7SaVVxR8PyzZ1le6tFqN5BSMBlN6e+PcByoVms0Gl2yVPPEY0/yiZc+Q5LMGM8mjA77SC/kunfId9TgMA2pdSVBnpVz0p97hUtHLnHHSclSzWQ6QUmN0RppgLnYyHRvgi7mD45WuEKW0b+QONJlliZU/JClxS67u/sIHMIwxHEks/GUU0eWqFUj1tZ6LC4uEEURaZowGZW68dVahcXlJeJJzKWzp/jcq1cYTAZl/XE4RLo+zXYDZRXGFNTri1hryHNDZmFzf4DAcD+u8Hf+jUO3C3/uAxnC8RFa8+f/13/CJLclaPPA9wP2D0ZoPaNZr6HSnDAMEa4sZ+6TEUtLLba3DsvMh1ZMBgOevnCMTq/B+voqYVBhMhkwHUwwQtNqtrBCEs8Kmu1FfuXXP0lU8xhcGVMUBUdOrLA9mLB3cEi955GPCj7xkVusLC5w6+2rLJ88wvXxLk8dPUNQq+EIQSQiFDlVN2LayOimEbUIjvpNfuCHvo/v+dF/TpGnRL7DpfMXufrmVawVnD9/giwveOm1qxRzWdIkVVQqFSSK4SRHuAGHsUZ4HrbR4SDNyBLNXv8QY0oBF0SA6xWkaZk6dwQo6VIUOY4a8NF/+bN4nkO3HnHv7TsUVaekGfcUUjhMs4J4O+ZEe42d6SGdIxXSJCEKHD70/OPkhcfPvH6d7d0dRuND6tUq16/f4IMf+Eq+4n3PMYpnbO0N5tlCqFcjPLecfFFFQaE0cV5gvRAtXVShqFdqXLl9rxSR8X3OnjrF5z77EtIxWKFxPY+8KLBSECcpd+9vMpwNWem0abYX2I4HFFmBbVWwIiqzjklK0GjiTC3nVzfoT3b5Lz7wlTzR6XBk6QT/0699ElPEnFleYlwUbG9vk6WGTrvFC89e4tOffZ1RnJY132qPDAthQJpl5P0xk1lOc3kFIx0KV5OmKQeTFGsN02nC9clNJqMYP/BwXIs71xN4pydE64zuwgLLa3UW146zsrzO3s4hjU7A6dOrbB1sUjtR7pnOMKfoplQ7IbPdnGtv3ScM6ni+SxBWKIqC5W6PxXb5dyNL0SFsWSrQaMAn8Hw81yl1IKwlCHzOnT5OOkv4zTdvoU2OsQptwPMgVgapFNZabm0P2Th2BMeTFIMY6wgOx2OOHV9lNBphrIt2c27du8H+YZ+VWgsv1Fx+9QpHNtaxXo3FWpOZnhEsN9g7GHDv/gGdbp3ZdEpmBUtLHc6fOcZvfPpliiKjLNOCLHIqFQ/hlCDTzqm7fVfiuiGbm9vcvHmbXj3k1bduYawCBEoXuFLjuT5ZluM7kq29PkmhOHtsiYPBgFoUUKnW2drbI2oG3Lm1y1J3nfFwQnatYHG1xnAwZHxrj9BxObK8gmM1naMNJqpAZQLHcYiiKkky5cypY2xtPSBPZnMED8aRFNbg+BFCOMRZiiMEjnWwusAPAkbDIY16xK/+6qce5uWVKhDSUPVDsjTFcSSj2ZRPvvgKT54/StsreOzMCWqtPoeTGfDgywsGimH8eXEXXapCGVUy+eVFeWO4SFzPQ7gOURQRVOps7+yjtKLXadBsVPAcgXA89vfHJFmJMFWRI3HI0oTJMOXUsRWWF9u4kc/i4gLdXhthLaoo0MpwuDsgSxIC36VVj9COwLEu06nh9Ikeb9+8y87uAUHgUGQ5lUqEW6mTDbIyK4AtFaQcEKZs8hvvjjGqLG9IIahWI/JU4bqCKAiI/FIWVkofo0OsEEyShDAsSR60NviuQ56l7O7uYJUmalZYWKxx9twGnW4bT7o4spS1PTwcM52McbC02y2s66C1QaWGUf8QbTP6gxGuKznYHxMGHoU27B+M+bUbIX/1xwMWWpb/5XskhfSoVhr8b3ffwNl2SHNLFuc4gaQahASezziOGfYnZWOJ57HY65AkKZ7n4rsexmQoAoYPxnNVsgKMwfMEukg4cWKZY0eW6S10icIKWZ6QZ4rtB7toVdBuVKBSKQk3soKDBzv0vuI5Rq+V/RyD0bAEjbrkdMiKUufcqrKLRCtTvldoZrOUH/ypDW7dOiR8EPLpWwXVZp26lNy7ex/HDUsxl1yT5wXNoAFCUK9WMZWSSS6UhsEsxbOC0WBEtxPR6TZZXlxkodemVqsgpKR/OGK0v01eZLQadZxKKYxVpHBqfZVb9zeZJQlpEZOMUlqtKkFQEgDNcsXb1+9z2B2TJYppOmOl2aDebGOGWxRFQd7xCamSFjkVZQhdHznSnFrpMY2nfO2ls/iOx+7OJifWVvgjX/9+/vWrt3Ck5Od+7qN86ENfR73i8/i5Y7z69l2kH5LXl9FAnqUEvksyLdjbPySMQpZ6PQ6mI/q7ew+zAsYYDvd3mU0PKPIMY4KSPKfMzXPt7j2W6h1GgxQ1i2j6AdJvMEnHdBeaBCsLCD9gudZguL2HW3c43BlTlZahc8iHnniSXu8k/+zXPoHnSt579hSZG3D1rbfY2T5geaXL42eOo41h73BcOnGvSuGGaFEwyg27yYT94Yxao0mr1WJwOODe/j6aUvY6j3d5edBnMuvjSBc/8AAfpCgnEbQmVRoRS5KkYPXYBiLVDPpDth4MORhs89VfeY6lE0fBgLul8HuCBWeZJT9iMhzw6Tcvk07GtKOQv/WHPsz//Z/+K2yjwS/8wkf40Ld9EM+F9z7/JL/0ic8CEC0dBddlZjKcyLI/nTBKUh7c2OTo0SPs7x1y+8bNuerevJHY8yh0DIVf9khYixAuWpdNk7NZxtb9XXq9Nse/4iRf9TXP8Bsf/wTj7S02el2MZ+gXBxR3EnZv3kUeO8vu5TsoSo6FIJQ0a3W2d/c4ODjg5z7yMf74D3w3z148xWfeuAaUCoaNyC1LptKh1NAshZ+EI9GmzBgIL2QwnRBFbTbWV3jz8usIUyomFkqVDeFa86ufepVv/cD7aLU71GpVcrPFIB+yslxlbf0s3/Sh383mvS3C6jXW1+oE0qFzokd3Y5HJ69sMpEv1VJudrUP27u7TbIUMhhPqrQ6zgwM+/ZnPUPfguScvMhyO2JsmmLmwl9UFyiqoWKwncQrKPcYVtBpVWu0mhwd94iTF4rK8vMG9u9exVhC4BqUkqVY4OOwe9MnShJMbC8xmMyoNl4ura7j+Au//quP0B2OyImHteIvFboXXbl3hxPF1vEwz2jmgc6bFNE5443P3COs+C70V9vcOuXP3OhUPvvUbv4a7mzvcerCDBqazmAd7KcvrG6VvtXMdEmvwfA+tFGEYMZ6mDKZDLFBr9HClZHdvF0dqXD8gyXKk5zDoD/nEZ2c8eXqVtVadjcUuzVrAZ179j/v33xIYSMcJ1gqEFSWVr3QIg4DlxS6zWYywDkIKLOXN/Q7DRaoKpIVqxcfzHayxJElGmmeoQrOzvU3owZG1DvVqhbWNRVrtJvVGrdSaVhpTZBgl2N/tg8qJAoeVY+vM0gKDQCUZhwcj8nRMd+kiL37uLaJKgCpy0jQlDAOqYZXFqI4b+XNkXEZFt2/fByEJXG8uiOLgey4rK0scHvaRsuxcbTQaTAYjXCOZ2Yzd4bisB6aag/0+0kK7WaVRr9Ht1el0m3QXugRugBEWYTSq0EziKeODMa6jOL62xDgrQJaSk64bcv3GLb7/+z7M1dt7hGGINTlZFhMGtYdCPn/p/1iDquT1zT2+839p0ljo4joBw9GIZDojDCv49YgkLUjGCYmIcRyXXquUJS5UydZVrYa4noMuNNJI4sm0ZPuS5YPy+OMnWFrs0Vto47kB0jEUuWI2mzE+mDGb9FlcbCLDFmZep/NFwJuXb/K93/0Bbm/ulpudlJjCUoki8lzhOy4qM3Np5gLH8VA6J89LHnqwDGcZYS0iiCIOtCC+v4XjeiRJQTofYxWOpNeo0+tU2T6MS2U7+f9t78xiJLvO+/47d19q7+6q3qdnHw6HiyiulkSa8iLHTixbthMbiZXEiG0heTGCBEgQBEYeEyABggCxA8cQ4N2WZdmyLDl2JEskTXKGnOHsnK1n6Z7pvWu7VXX3c/Jwi0PTS6IgfjCi+gPzMtVoVNU9fc73fee/gNCgF0WUfYvHTy4xMztFtVqlVC4VJNU0YRhEDIIRedhnptUiiGOUaRIOE3Qs9rdv89xzj/D6uWtYlkWaRaiCxAACXM/DtC2kknQ7Q0ZxwiiP6Q8imoeWsTON7n6HzkbA2vY2L790hLkDC4X8L9GxbIO8p9HpF9OGsmPjGxovnDzCV2/tYJd8rt+4RXv/WTzf5plDj7G61cYvV0mVJENDmRZhLsl1g5mFeRACKTQGg5Rr16+PI6CLRiSOhywsHub++nUUhWKl6EZ1tjc6dPWgyOPQBU8+chR92KFVabDf7rPdHVF1BdNmBX9xliyPmTsyTRyOSIKQku9z9cF9SFNmSmX+1Y/+AP/8lz6HsCx++3e+yGd++sfJZMZHnnmCL331TYSm0ZcupjLppTrSslD4+EaZOExIUo1bdzbY2rg9LmgUSuVMT8/S722jGxp5nqPrKQqzuAqTkpnKFHbD4dDsAVSaUhI2yhV0RzGPPLZCw6+TpwqVKYzyFKt32lxZ3eKPOhv8y09/P9fur/O3nn2UpWaNQ/NTPP+hp/jq629y7eYqnfaAerWK6/vMLy0yCuOx7bIgU3rRY5drTJeqaJqOZhicv3iNPOkXRe94L6vWmwyDXZSSxfWIVhCtNa34TL7v03CruNg8uHqFnz/zBr7nU/Ys1m/fY2ikmJZJsjsAy6SzM8TNTWIRY5U0PEtDDAdkwuTDjz7CxUvXuLe2yRNPPkqe51y6cbeQF/olMqmwNI0ozegOUx7sdGjMLRLpgjhPeevCRWQOw+GIq1feZTAIMHQbQzNJoGishCDLMn7vj17jpaePEkUhlqWzdbvNzFQF4yC4js+xE0cI9/dYmmvi2CbetIVtWGx09tFKBmsXesxOTYOnYwQp0/UKD/ZCuu09lhdaXLpynZe//dt48YWn+J+vnSWIYtB1RqkEXRQFQJwhE0mIBakgw0G4NW7v3EWJgkQdZ5Jed4DQBI6rY2gWcaZI0xQhBPu9IVGacqjVYLjdpZp7LBz0+Uef+TS6KfjVn/ssizPTlH2X1ryHV/a5+pXzVCpl+n6MKx2UTJmu1dlcG6BUwodOneL8xat88vu+i4+/+Dz5V19jfWcfx/exyyZKMwq+Q5qzvddB86sYQiNJcoRd5vzZq0glkRLa7X2CYECexTiOjW4I0LQiclqHLJKcvbbO4NAC02UX7y8JZPt/LgYOHlgiz3LSOEMTEqGNRzNKMT3uMkumRZKF7PWSwrK2G2DpBUksGIT0+gGmbmJpgvkpj1plmlLZp1Lz8cplSqUSjlsEzhTjbUkS53TaIYNhF9+3qNRLTM3MEsYprl1EQ+602+TZiM/81Kc4e3WHwWCAphfkRX08QjJ0jeEgIGrHxKMU3QDHcahXSuiaie97RFGEVII8U9xf36Ja89F1HSklQTBkNIowNIN+FOGbBhXPpuK5VGo+9UYNu2RRq9SoVIpJgWladLsdZJaTZQb9ThedFNs3aNRnMXyfmqeIw5DRSGP1zg0+8R0v8GCjw/UbN4svXhNjy1lAFF1SuVqj1+lTrk/xYCSp2hGaiBkMAny/xNbmDjIXKK3IBS/7HvWKi20KgsSgs9nDtHTSVKDrGXvtDp5pMNOocmi5xuxsi1LFx/FcKqUySRIyCgfYhkVnf8Cw38X1TOYWWlSn6qSZIksihHS4fOUqRw7PMoglt+6sARSES1lU8pquI3SNOA4xxs8mywqpmJQC2zapN3wsyybojbhze500y+n3hwhDR40TB9O0yGBI05xOMGIwHKJkjmNY1GseR0+uMDNTp1qrUq9X6ff7DAcDdM0k6A+J+n1sW6e1OI/luGiuRx4nDJTG+vpNfvonf5ib99oMh8NCnSF0PM8tPoPQqFdrPP/sUd65cJOybTI330B3NVam50jCEZVQkTRztjoJJ0/NMl1ukOQSmQsyw+P8jQ7376xRCUO+97v/Nj/7Y99NtVZlfrbJ9z52kFfOvM3C/By//hu/xz/8+z+IzFKOPnKqOEBkQQwVqnDF0HWNfDzRUgKuXb6ElEXkq5IFUVapjE63jeP6ZGmMkoWzpkIUWQOuiV2yAUGSpjSqHp0HWxitOhtbfZo1D9swKTs+WeozinM2tmKunF/lI4dXuNXP+NTHHmPG91mer/GdT57is/c36QwGXLl8g+PHlrFtl+MnT5LlhUJHiLxwHxQ5QphFIW47mIbFgwf3UHk6XhdFUdPrB3ie//AglWMCpFI6uqGxv9djuLXPnevb+LZZuOTdhGgQ0e53OPv6ZRKZo2MwzBTTrQXMLOHI3CxPPPY01em3efHECo+stNBlgplGGK5JFsCv/dpv85mf+nvINGVqfpG6FEgNpJZjmmKcbSLIlBpnNimSsDgM3lMWZHnK7vYDSqUyo9FgrLpS6KqQaEsgCAbcjmKWF+rsdkxKhsfu+gOyqSpWOKJrSSrVKrWZOm6jSiJyhp0+TrOMzFOcLOVws0onTCiLhMWleb70pa9w+PBPcmhlganGNN84e5FdZx5N5RhZQiYE/UgjkA579zZpNafZ2evQ7vcLuXea4vklVLBHmoUoQ4IwyKVECA3GU9JX3rnBS888il+yKTk+nrDI+vv8yee/QqbpNBseV85cYGq5xXavz7GFRZxyDcvxqVgKkWkIS6dsKD79Yz/Kv/4Pn+UTzz3JrQfb3Nze4/r1O5w4cZAnT6zwztVbRG4FrVxBl4p+nGPlBvce3KfXjzh45DA6Gv70Aok4/1CBsLW5idBFMQnNrPHas8bxyMWzG4YxNzZ2Ob48gx5KnCzjs//5F5mZbWFrBoNenzyP2ekHtFITiY4yDQZ7EXbFpjzro0WK0f27zB1dIo5DfMfmC1/8Q/7uj3ySD586gnXDQXg+eb1JB0kcS7Is59b9fZK8zdFDKwT9mGarwfZ+p1ANCUGWRUxNz7C1eZsklei5hS5MlKYKDoheSDSv3FjjsZNH6fZHf/3FgGvbZHqGkDmuW8LQdHKlGAxCarUyu7t9Ws05UEOEBvk4k9qzbTzHoOxZ+K5JueTjeh6VRhnLcanVqhiGSZanDIdDUhmDhDRSjHoRg6BNveaxsjJPmGU4pQqDKKHfD2hOzfHWmbNYRszHX36Od29ss3r3LrksVA0ailq9ikBHCdjvddAUGLqJ5dg4joPvuASDPkIGuF6J7e09bMuh5NrESYoaOy32uwMEkkrJ49hCQZhptZokekGIq1drWLbLaDgiSRKCIMBxSoSDnM7+PqbImJtrojQTbBPdsImihDjJCYeSu3evs7LU4ODKAudubBHHMZoGuvE+kS9OY3zfZTSKcX2HimUwCEZsPtjg8OEVdF1nf69DqewzDOLCllhKZA66MLD0hMGgOIT3OwGmgIrvsDRb58DSLNV6mWq1im0XY+Rg0GUw7KIJm1GQsL2/g+fp1KcqGK6L45eJ4oxup0+1XOfcO+/Qapb54R/4Tl49e4der1ccnpokSRJ0ins0x7ZxbB9FSkEqS1lemmWm2aI/7LF+d5PbN9fZ2mmTxglKgOdZgE6uZUgpMEwDoSRRGJIpk2bdp1z2mJudYXFxFs/3cB2bbrdLv99HSsGwlxIN2lQrNqVWDc1ykIbFKEoAjXY75f7adR49eZi9TsjGzn5h4iRThMqpVCoPE9xKvo0tatQ/eorX//QKN64+wPAstvwhJdcGmaP6Q4LRgAtXAi5euEuSZcSJwvUqVGpT2Cg+/uEP8btnzhNtbvMT33eccDhg2O9z7NgBfK/Em7du88ZbF5FCUJ4/gKYbhVGJMVbqjKWTCjA0gZQ5URSQ58X9L0qM1QSSQb/N9EyT4aBbBCIpBUqystDg6tU1Uqmo1EpYLYt2OyEOU5wgxPI17u12uL/VJxiGtDs9bH8aFPi6zuEDR/j8V77Oxw60+Ojjj6DShGk9o1IvMQwGfOnLX+XokX/M5vYutlPG0LXiGWoKyyzSQJA6aZ7jWMW0JU+LTezh5xCSoNuhPlUjCDpomjYmHhachrLn8dJLx7i7tkV/u083DDEcl6phomoahm1gaSWU4xOOQvQQsjzGlCm1cpXf/IM/wWk0+dq5yxxbbtLt9RioEc2pBo8eP8gffuUV7t3f4cKlayyeeBL0wpdEH2vGpSlJUgp1lWaSxQlKRigK7hSAVBkyHaKVpqlUTXrdTsG9Ejm6gnxs4tYbhayuZwzzBCvXwIKNQZvHD68QD7tU3TLdoM/q7R1OPrrAyrHDxXdk15kr+7z6x6d5+onHePlDj/LZd97FMXS+/Ad/zMsvf4SlxSbTay2UEiSaTmzYaEqQqZzydB1XFRK7WzevPCzEslSiKOM4TvFZlEAKULqGTLPiSgFBEER8/fQVXn7hUe7e3yKdqpCXoWJ6jEYRaeTgawLNMBlGQ+IoJp/y6ZIz41UQuYR+zLTvkwV9dBXzw88/zj/9T/+Nubkmv//FL3PgwD/B822m6hWEXSbWnGJSpOeMFDQWl2nqBgjB/dU1ur0ueT5WSwlFNAqYbS2wt//Be3RN0wt1yNjDIIozVu9tcnCuwSDYo1Gpc+/Ku0xN1dnb2KR1ZJHtdod5v4nfqoFrUzFMbDTyfoKvCZSR8eLJo3zttbdYPniQ1VurrN/ZwLFtDh1eZnckGGGjmcVUCCFZPvpIYfKm6bx99hK7u52HCZrvSVVH46YvTROkTBG6AZqGjkaeZ9h6ET515fINlpfn/vqLgbW1DSxTp9GoESeFkbjQC93v1tYuSSK5un6/GDnrGo2KR3WmgmMbtGamELqGbhvMtJqMwojmzBQSneFgyHA0QsoM13JodwOCdp8sCZmZqVKtNlGajjQchEoZDUM0TeE7ZV75xquUSxYLCy0OrSxz/uYuvU4f2zVBSqIopFpxkXnRgVqaQZwkWKYgjRMiBTOlCng20w2DrXbhYSCEYGO/XRRBlomj6zTrDlNTFWzLZGl5gUwomjPT6LpFEkcMo5gkKVzFpJTEI8XGnduUfYuZuofhu5hemTQVKJWRZxmu7XF79S6dzjYrS00+/tIL3Li3z527d7EsC0SCSiWVSgVD1zG1wsUvz3McxwEk9XqZwWDEgwfbCCFwXBOZ59iOQZ4LDKMIBrq/tYvKcwxLYBsarekG1bLD0lILx3NotVoPR35hOCqY5oZFZzdk0N/AMjXq0x6uX8G0C4lnkqZFsJBe5pVX32RpocaJoytcu7lOu9MbB9MUB5GmaWNP8SIiOs8V/aDPqUdWWFxcwrQd3n7rAg827tDZGWDoJtP1ErnSyWUOCKQEmWfkSeFo6TgmrmewtDyHbdk0my1c10FKyXAQEIYDlBT0uxGd3T0qvslMq4xXrhXJjrqOZhTBTXfvddjcWuXI8jwvfuRprq132djcwHYcEBlZXFhWK1Hoxk3TJUkljak6L3zbKXZ2e9y4fY8kGPIg6OH7Fn5sUjYUtmdR0kuIxhSXrlzH9sv0utssuSY//ztfYa80xeb1a3zyxefQNcHpa7dptWYLCWCW88qb53BLPt9z8Agg0DTIs6IA0BDj/IwihGd7Y5M8T8ej9eIeUkpZuHiqjPb+LoeOHGXQ77K7u41SkiNHl2nNNLh47Sa7W32u7XeINYUjDPRVBULH1nRKjSkUBkGioZcMkrBPq6Lz9uWb9DOdr7x5mRcePc5gOORmb8jywhzTjQa/+6U/5stfe52tnT2ee/GlghxsvB+oo2kaaR4hlE6WpgS9frE5jl9/+E+k9Ps9lpdX2NhYJ47jscQ3RtNtPN/k2JFZzKUmI13Q7WfMl3w0I0PaFsNwmkE04t0r1xgNRliWhCzj99/eJeEGpmNxMezzd77tKeYaddY3uqzeXccvP0aYJfz3X/k89XqDo088BXrhIpdnOem4w0eOB3mZ4M1XXy28TP9MhGzxt5vQ7e5y5PAJOvvdwlVSSHRdoWkmHz61wm6nh2mamCpH9wTCMXEth632gGajTLC5S+r5GKZLzSmhaSZRmNHrxiy7Pj/z6R/hxJEDzDgOP/Pff4GPvvT9nHntDRzHxa9UaMwuF5M6VVjDKQ0MveAvmLqByiXdbudhIZZlGfs7G9TqFYKggyJHKA2NIspZ5XnhQyI0hoOQr5++SpblbPWGpHcUO5aGFBK9qzMz3cAeBVQMj43NDW6sdjhwYAGrZVGyXUSqEFKR9To8fWSe5WaDH/rwSX7r4irlWo3f/tyX+MEf+A5urG6iOzYIMW6YKGTfhjk+3DWazWmuXDgLQj78HDKHXrdDyasxDHvFzypV+N8I8QF/iGGUsLbdJtQjPG0HqRT3OzsszLYwSi5+5NHp9djtDykbLjNTFSzDZDaRtBoNnj6+z3c+9xgfO7rAD/37/8Ijxx7ntz73eT71qe9jY7uN2zyAkhJdiWJSJ95PO8yU5Pgjxzn9jW88JEa+l+Y4Gg6oVGsYRkgUhUiZgG4W1/RSkf6ZoKRbt+/99RcDlVIJ17WKe8k8YyQTslyys7WHaZjYGti2TbXhUyk5lGsVThw7wk57H79awTD0QjJnO4hOn539Lo5jkElFyfdpb++xcXcXlUcsLTYpl2fRLJfCWLHIDRgMephCYehlXjv9dRbmG1QrPp/4ro/y7uoua2vrCE2Qxim2bRS2vBSe57peLBLLNBGi6FA1XWdv0GcYxWztKbIkQ9ckWRJS9WxMXXB0ZQnbs/FKLs25GVSmqFVqKE3R6wWkSZ9MSqqVCjJXdHb36O7t45g6y/NTYOoFy1uzEcIlSnsk0RANi+ubawSDfRYXZpifmyLKFPvBcDwV0LAdjSyXeFUPmWXkeUaWSWzTQFOCvXaXOIqwhCLBwPMcdN0sfB9SSZpGhXNjLjFNg2qlyuKBedIsp1IqMz3TKHLtM1BIer0Ovu9hGDrpUHD31l2maj5zU1WqzWmkppMkkjAaEscZyBxDK3P67Vc5eGAO1zN55tmnOX3+DusP7hebfKYwlKRcLqNphQ7esiyq1RJPP3WMc2+9xfXLN9GQJFlGueJy6sVj9AcxUSRRAgbBkGF/QBwNcSwP37NB15lttdBMjfn5OZI4ZTRK6fU7WLpRyFX3I/a2NzE0RavZwPJ9LNcjzQVhNCq+00QyHEk2N+6xuDjD4lKLrU5At9sDIUjSBMsqSEkFH0aMr4BMRmZG2O3ieDaHDi2wuNiA/QH7hkQpnTnTQdo5iWYTJi16gz61+gy72xvUamWurG3yVp6jafeI4xE/+wu/zn/8Z/+AtY0dVm+ss7y8RK4kUZrCKMQzNaJEIrOMOCkIXJoorsKgGL2/ffr0+wfQmDyoUOMJjSDPE9bX7jIz0yLPFIoMwzBxSzYvPPsYSSQZdDpsD0bUSlVanolWtdm9HzC1/DjvnD9LKRGMhm2EUtza7vEvfvl3cF2XUX+f1869y8eeOsnr52+w2e3yxOOPIZXizLmL1Ot1yq5VZMELRRwl5AljMzMx3rQzXn/lGw83vw9CkmUxnU6XqcYMa+v3Cla5pojShGEYIaVimAjSLGP1xho7pkmYCw4ceYReb4tSrUSSx3S7W7RaLe5sbyPzscY2EGhK8etfO8szp05we22XTq/H62+cBiCMY8oyJ89THFMnTDLyPCdOi5wPTRnFxEak7O1uj9nr7+O9wieOI67fuEyeAeRFrgmFgdTjH1rB1nUuXLjD7maPMMzwp200y2B2qoVQkv24Qy4jwjjm629cY3e/S6m2wJyf8+PPP8NbFy9SsXRGo4DHTxyjVq+wH/T5xpvnKFXrfPv3zKPrBrYlEEonVYVngkKioXPrxrWHa0gphW5AFkUkic3S8iHW7q2iibzgj+kauVQIKcnHRU23u8czTxxhOMio+SaGZyD1DNfx8G0HPYOo08M7MA16QLlqkCeK+90BO9sjjO01Pv0d34WnKUqOxSeefYw/ureN0G2urt7F+sPXuPNgj48sHsG2dEzAtDSk0onz4uDXdZ1oOAKyh4VA8SXnRHGE601x+NAxbq1eR4gEXRljh9j84bqr+DatuSkcJbEdl1EYgSbY2dmnNl0i3tin25LcW93hqXKFkuuTK5DS5MOHj3C87NP0TYaxzuLiDJZns9Xt8au/8UU0y+fl753FsEyMcVAUCrKsUEWg64XCg+QDzwIALaPX2+fo0eOs3r6JVBkiL8zvNG18fTPms/zFv6G/HP9XxcBgGLG33yGTEt91SNMEU1PM1kq4ro1rm1TqZY4eO4wqkuhRtsnc0gJlzydNUsI0YX+/jWUbVCse8zOznDt3mdvbt3ANaDSqLK+cRGoaSZKRjnuf4u4zQZMZUrqcfut1Hjm+jGEarKwcYLsd0h0O6fV6CF2Qyxxd5phmcTAKIUCAaZpUKhXCMCxYm3FIHIYYpk7N99HLFqZp0Gw2mJmdYjAYMb+8gO+66LpOyfdI4pTt3R2ELnAdh1KjRsktcenCuwzae5RKHsePLhZj3WqNYBRhOQ6jJEPoObqQeG6NixeuoPIBS0uLpEnIR196gbcv3OLu3bsPO3QtgSwbj3M1AZogbu/heMVYplJxySsuZd9B4iBlyqAXIBNJ2TaRebGwDq4sMtNsMIhSSiWXSqWC7zgEw5D9vX1KJZ9qtUTQNxgFKXdu3qTsmhw6MItVcjBMG9OySXKJrgts22LQC7DMKm+deZNHT65gGCYfe/4Zzl+9Qz8IHo5xFUUktOd55HlMGCYIBPvrq+zduwlCcWBpganmFFEqCdOYMM6wLBPX0Hhw/z4ySViZmyGVZcq1KTzfQdc0qrUGSZKyv9cBofB9F4XHqD/i3updSq7F7FSZynQdJTQcv0wYJViWRpqYpCj2dgfs7tzj0OFFkiTh2Wef48yla6ytryN0yLLCJEMp+X4OmSoCafb3OjSbTU4++jijJEIIjY2bt2mlglsP9rkx6tIZjTh87Ana3T2OHjnKjZvXKPmFi90gi4u1nSVkec61B7v821/6Mnp9jrR9i0uXLo85FSmxEHT7A3zXpR8E6JZLlqdIyThWt7DFlvLPddSMu1aK9Z9lGaNhwL1BoT9WKMIopDLlUC8fQrfrXH/nVeYqLXY3Nhj2c6zAxPeb9IMeXtkl39um0ajT7XbYDgYFkz8uZLn/9Qv/g3YIuuEyGNznzdNnHuryoyhiEA5xTYcwjknzrJikJRTcIq2QHYbx4OEm9t7neO96Js9zOp1ddnbSD+xPuZTs7ee05mY5+tgJypUKbu0M/XafOAu5eOUKjx49UvhhGMtE0aiQlToOQRCws7PzsEn4wptvsxFGzDanWN9eJ89zDKPonIPBgP1un+U5B7K8IGnmOWmqoZkZIjO4t3r3Ly0EoOhYHcchjuP3zEyKNaAUkOOZPs1Kg4OffJROu8eZM2fpDke0t/rsbvTI85RyyUU3NI7OL5IojUFa7AWaHPF7r7zJmcvXeezoATxTMDO/QrvTJpM5QtcIBl0cS0PXx9MllT50dyWDnJSrl88/JG4CGIZOogmCfkCSxsRxjNA0dMNBaDqaksjxGstUhhDwg5/6bi69c42SP02uFJcvX8IxHUYhiDwjt+v0NiOCfsDb76yShCmN5hJT1RovfvhJfvk3v8CxYweZa4wYZjmPP/khNjZ3uXb9Jm9dukq1VscxwNQVeS7JlUSoFJFrZOPr0TOnXx0T797vlA1TkEvF3v42SZIRRzlCyzFNhVAFzyQff/bnXzhFmsScPPYUozik5JdZ217l8NIiSkpkD3zDpT6b8KA7onf5DqNBjInL9zwhee2daywvLJIrjWdOPUGMy2tpRpDEmFLg2hpCU+R5Nn6PCilzBDppnPGn3/jaB55DsVbGPgoqY/X2dZK4cOvTx0ZYhmaQqcJwTaJAy7+p8/2bKgbeeyOdXgfPMvAsDUeXlE2Lku+xvDLP3MIsiSpMNjTXJk0zWlNTKAVxFLK++QBNN/B9B9uzWZ5b4szps1x48zyGJvB8m+WleZqzM4RZzuZWB8/3yFWOoSuG/S5ZptjbC7l96xzHjx9At0wGQcCzzz3NG2evsLZ+n0Sm5GmOrhV3jbVKjWEcoaRGKU2xbZvBcIijg6YLfNPENk0qlTIzzRkMxyankBVWKh716Rlq1RJC6fRHfTa3tym5HpZlMLcwS3u/x8Vz7xIFfaYbFQ4dWqK1NE+UxGxu7SLNIvc7kZIkHLF7f4+p6SVef+M0jitYXponzWI++pEXOX/hLu3ekOEoxjSLA0BJSOKYMCp0yrph4U/VOLCyhFSFQchoGLK310bGA7Q8p2ooEhTNhWmac0063QF+uQK6YHauhu/57O7sMhgMSNMYr+RimBp7211Wr94gzyJOHF0hQWCXfYRpoVs2USrZ298lCotrllGoc+6d1zl5YhnLtojDhEZzmltbN1lduztexBLDUERZhu2YSKmI44xhP+DxU0foJxmJhDBKebDXw3PKqDRj+85dDKVRqrjMTdeINI0Dy8sEgyGmY1Epleh1A27cuoVtm/h+GV2XKGVz7u23sWTG9EwVv1wtvCt8jzjLGQwjut0OaZIwVZ9hdXWDfmeTg4eXyGXOM899iPPv3qTbHhDGMaalk6XFhm+iEwz6xUg2ihmO+mSZoh8OuHbrJp1eQhj2GPXBc6scOXqKy5fexnRLvPnm6ywszhP0e9RrJQb9HjOtKmHYIIoSwjAkTVMGSnJrd4uPP/8oN9YN4m5UHKRKkcucrb028zMNAIajAWkqiGIX21ZUypK3z537QDEg5dgIRPBw7K5pBqYlSMYjdoCN7R0u3+jz7NPzPNg8z/ZGwONPLLOzESDFiHv376BrBgcPHEKpDBknhXsnCaWSh5TFtGdzc5PbvSGfO/MWK615rtzKH6oWAKIoYnunw+xUjSjKyFBkqU6aSVIfHF1x+fK75Hn2gf3nYVcHD3/Xn+94hMq5eXeNKCo2R9vSSZMOrpsyY7mYB+vcun2NCCDss7y8RLXmsLUVk6YxjUbj4e/s9XrMzvi4ScQbWVr4pZhmwR/Jcna321Q9l+3tXZxyidHQIIgdXDemWc+5dOESSsgPvL9srMt/D6ZpFgUBxfXBe68F+wNszcKeqhPnOYsrC0xHfbxUIE2NoUyZ8Xx0V+PyxQccf+oj3NmLGHTbbAY9bu31GPUDfvbnfo1/8xM/woWzN9FL/sPnL4Qgi0JyTTAaPwODgnhqmBrJKCn2nj8zmXmPsyQ0ySDoF/+XphR0Ux0lDFCySJ2UxYRn7+4GBw/MkaQ5/WCIJnK2N7dA0zF1jXrZx9IFTx5bpDl3gNfeukSOYHNnm99a77AXhBzY6FC1TYRucfv2JkkaPnwv/X4XmaUkeUacJMQU1ujGWJmRKUEUhx8oBN7De6ZE7c722AV3PAHRc9BNiivJnFrJZaq5SJ4F9Nv7XL10la29PS5fvA1C0O8EtFpTlMseVafEpXfXKDemqemSf/eLv0I3iFg5fJSTMz5vvHuLRnnqYWEbRoOxqisvJJpp+vD5GLqBAuJo9BfWeTr+uaJJyJCqsCaXsphW5kRYwiZREk2CEu/vB/87CPVNzBDu37/P0tLS/+nHJphgggkmmGCCv4FYX19ncXHxr3z9myoGpJRsbGxQLpffNx2aYIIJJphgggn+RkMpRRAEzM/PF1bgfwW+qWJgggkmmGCCCSb4/xd/dZkwwQQTTDDBBBN8S2BSDEwwwQQTTDDBtzgmxcAEE0wwwQQTfItjUgxMMMEEE0wwwbc4JsXABBNMMMEEE3yLY1IMTDDBBBNMMMG3OCbFwAQTTDDBBBN8i+N/ATgkijS2J9vUAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_augment_2/1719298626_tango_video2audio_clip4clip_augment_2_best_steps_300_guidance_3.0_sampleRate_16000_augment/OnYPsGAjYBU_000560_tPnt7aeBK44_000120_4.wav\"\n", + "show_mel(file, save_name=\"6_wav.pdf\")\n", + "show_video_frames(\"../data/video_processed/video_gt_augment/OnYPsGAjYBU_000560_tPnt7aeBK44_000120_4.mp4\", save_name=\"6_video.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_2189924/99652230.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAvCAYAAAB+KskzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF+ElEQVR4nOz9WbCdWXbfB/728E1nPnceMAOJHJDzUFlVWQOryCKLIilRli3ZUot2tMMd6o7osPut+8VP/dIPjvaD7GhLtttBmZpIiTSLRdacVVmZWZWZSCBHJIDEfHHn6czftId++A6QWSXRYoWl9gOxAogL3HvuOd/+9v72+q+1/uu/hffe88Ae2AN7YA/sgT2wv7Qm//e+gAf2wB7YA3tgD+yB/e9rD8DAA3tgD+yBPbAH9pfcHoCBB/bAHtgDe2AP7C+5PQADD+yBPbAH9sAe2F9yewAGHtgDe2AP7IE9sL/k9gAMPLAH9sAe2AN7YH/J7QEYeGAP7IE9sAf2wP6Sm/6LvMg5x8bGBs1mEyHEv+tremAP7IE9sAf2wB7YvwXz3jMcDllZWUHKPz/+/wuBgY2NDY4ePfpv7eIe2AN7YA/sgT2wB/b/P1tbW+PIkSN/7s//QmCg2WwC8F/+h48yN9dGKo2Unnd7nqVmjXNHm9RnGph0iBchb333PXSeI51nb1ByaKBXBpzreFpNRa0ZE9UDhJSAAKXIjePubs5eapHGcXwh5qBwlIXlzEqN0kJeeLJSUjoPIiRQkjAKiSNJEilCJZA4vHMUpaMoICtKssKTlxKpLM04JRCGZquDc5ZSSc7vCr54LGb56DxKeZzJ2dsZc/XVK9QjR5o5DseGm2nA8bpkJnF0uxFRPSIIFUpqrJB46RlPHHd7BanxJHiOzIVcWLc8vhSQ1CRF6UlLQWEkxoNSATpQJGFIEkmiUBNIh/AOYxxlacgKR1Y40hLKUlCrlcRMqCURYZwAljupICfiheM1OguzmGKIUpr3XvuYdPuAUHkOBpZh6bk1CXhmDhoxNFsJYSNEKwFC4bXCGsdu37KfA86y1ADjJdf3DM+cjLBAnkNWSgorAInSmiDUJKGmFmuiACQenCMvLWXpSAtPXnjyAqx3dOoZgcupt1t44RBK8+aO56mlkBPH5ojrESYbkqWKC9+7SF15TGHZHZVsF4pQBpxoOLodRdxICGKNlAqHACmY5I6tXsnQCiJnODIXcXnHslAXLHQ1hRVkuacwitKBlBodKKJQk0SKJFIECnAO7zxF6chKT55bssKTGU8YWhoqJQ4FcaOBd4aeDbk58nzheMzckWW8SxEebny0xeZHd6gHMBwaBrnjahrwREfRDD3driZsJiglkVLhpcQ5R2/s2BobstIyGws6dc2FdcPzJ2KkgrwQZIWgdBLrQcmAIJQkkSaJFZFWaOHAe4xx5KUnn66prPB47/ni4xFBKCgsGAeTfh/vDN47vAepNQcDy7eulnRrgmcWJEtzdZqtBCUFQkukEIRBgAC0luggQOsQJyTOeTyK/t6Yi+/c5b1rhzx2eokTqwnWekwJznmMtxwcjviDV+9wfX8EUuCcJ9CeY0st4ljTShR4x37fMN+OWWhFeDyPnmjy2Ue7GAelA1MaJsMB4HAWpAShNG9cz/n4wPPs0YCjNcnCUosoVkgJgdRIDVoIpBSEcUIQhIggRkiFd5JrH9zh/Hu72NLw1LkjCGHJixIQlNZSmJzX39niOx/tkVuPcw7wHFms04pDGonG47mxOeDkcpOXHltAupw8tYS1iGcf7tCsaex0HNlojClynDM479BByDAV/MmllGYseXZRsbrYoN6MUFKgpUArBa5E4oibbYIgRAchKghAKvbuHDIceoajkt7mDsvH5hkMx0zSFC8lKEmRW/7nH1zjo50xQaDxzvLbLx3nP/4rxwGJc5BmGWVZYA2MeikCCXGACBQr3QDnJaVxOOcYDfrgHc55pBRIpfnJ9ZyPDyzPLAWc7GpmZxNUKFFKIYFiPKSe1IjbTXQYEugArSRozWRk2b4zZDJxjHt95pfnKMuCwjq8lFhrGYwm/KPvXOHSzgQlFWD5lcfn+c//9mM4X2LLkqK0FGWJKy3jYU5UjwCNF4J6rfo86wTGmGpNTcbgBXiBCiSDieAbHw6Zq2uemlccXW2htERgENZwuD1gYaFNrdMkSBJ0EBDoAKkERen54J3bzM4ukw5G1OpNQDLo93BC4ATYIucHb2/yzXfXMUJQCxR/7zce4qsvzmFMQVGWlMbiSkOWFkgd4PE4L/AeJmnG3/tvPrzvx/83gYF7pYF6TdOoTReVgkYJtUaNZreBG/fxoz1qC8do1TTK50gBWQFFoRhaQbel6LQ1SaxJmglCgneCw1LxzTc2ePfmkHFegPcc6UT88mdWkNIzziAMBbOdhFrkiUNFvdHGC8EkNQzHJaPUsjeyZJmjNAa8IJAVQGjEAbMNEFIipEUBjUYIzmG0pjaBZrtJLQnItm+iw5hGLaIRC2qRRAOlkcSlRGvJ4oyiWQ+J6zFhUt1CKxTvrWd8840d7uxl5KZEC/jio7PMLjQx3jMxgnqsme0GJKGjltQI4xqlgdG4YDSxjCY5o8ySFxZvQQkIpCAIAmbqgkhJnBJIl1NLQqIkQghHQ0mkj2h1m0gzhoN1osWjNOoaFQrCQFAU4IRHZYJWTTHXFdSikLiVIKUHLxl5zTfe3+bNq0P64wycY3Um4rc/v4wOBJO8egDarYCVSBCHgkajiZABaWYZTkpGacl+3zPJKxAgHGgpCJQgCRSdRFafpzzKOpqNuMKEWlOfeBqthGYrId/bQJqcemuJRiKpCYNVgqzUDL3EI5nrKtrNgKQWEtVDhBdYFNf2DX/0xi43tibkZTUXz55qceZUF4FgUkiSUNGdC6mFVGCy0cQ6GI1LRqljNDEcZJasNNiyAj1aeiItadck8xq8LJEERBqSeoTwAd6HJB7a3SahcmQ7d4k6szRqimYkqIeAEXg0QSFJQsnivKCexCSNGB0I8AqrNK9dPeDbF/fZ6WcYa2mEit98fgGtA4oCVCBpJhFLs4KaFiSNBBnWyAvLaFwwTC39YUFWGPLC4Z1ECAiVIAoUzZakHkG7HqICTVEaCmPwugIkzgucdSitSCOPDgRBoKjVAnq9jJ9eHuG95fFHTtFYPI0WEUoHREGMVBFK5ozWfspb76yBUgRaMxmXLDWa3FjbZT+t88zpJaQo8NIR4RDW04irTbgwDodjUliu3DlESoUQAoEAAdfWh5xe7fKVJ+ZYmQlp1MLKiRpHIRwilCAE3oH3DhUookAQhII41oTas703oLSSWhzQ6c4jggilFDoI0VmELAKE7XP5449JS4cvPLvjjDw3DD68w/OPrpBojbUOiyOUHmctjSRi0p/gvcN5y62NPlIppFAIAR7P/vCAa+tjvvj0Ct1EI1NHFEgayXQc1qFsgJEW5wTOW1SgME4QhQFxJGjUFImWRMojhUZpidKKKEiQ3iNVgEIjvGI8zCisx0jFYNDjR2+vUYtCWiueuKZxxDgPDk/hHXiJkpXjd87zrfPrvHP9ECkhDgPGaYFSgoeW29QihRdggaVuzNkvLuI9lBaM9fgyB1dgrUXIyuEnYUAYSOr1gFosaTUSVBhUoEZJdLeBtCVRIyIIE8IgRgcRKMlcN2C0n/Hj89eIw5iZZUEtidHG4bwjxYIXOKGRUx/mnODOQcbLF/aIA6glms2dEYUTHJ+vkQ1yklJTOiis5ezRmG4zrACr0xR5ibAFUKXflZYYJwlDTRgH1GNJPVYEUYDWFVCe7dShtDQ7DXQYosKQQCu0ihBak5/M2T8QbG9NWJr3tLoNanGAxWOlJHUle6MCJyWBVpTOsjNIqdcTsIqy1AyGGUIHCOsIwxCnA7xXgEOq4Gf8+P8mMHD/xUqgtUQFarrgPEEUc+vqNocf3+LRp5dQUiGFR0oItSCOJDUhiI2nWZe06iGtWp1au44KNZmP+MMfXOPN6z2s9zjvcd6xfpiydZCxOh8x2wmqyLI0DFOBA9RuH60Uka6i0bm6YLEhUMLhnK0iEeewgJ8iJCc0pTMIZ9C6QudehSjl8FLz1g8u0ZFDHnruEURZIoVHSUEUSuJIEudQj6FRD2jXI5qtGmEtREZ1Pt42/OMfXeBglOOcw3tH4Twf3hny+bmEWlKnlkhKA72xY38IkBNIg1aSJAioBQHNdojsgsDhjanG4MBTjcF7idEhJhPVfAQKKTWqBC1i9ndH3L5wjUfO1mmthoBDSE+gBXEIBkEceBqJoFWLaNQimu0EFSqsbPEvvnOdH7x3iHMW66p7eWc/ZWt/gogjZtohxlpK49nNwXqJ2hsTSEk4nYtuEjJfn2543oIxOOexeLwX1RyjKaXB56C1AgE6VCgFOoz54I0b+IMdHnnuBFBFdZLKGcWhILECL6jWVCOgWatRayXIMGFjKPi9Vy5yd39Sfa6zlN7z0VqP40faBPWQmZYiL2GQWXpjVW2yckCoIdIhcRDQaGpUu/pcbx3eWYzzOMABwgtKKTFljlIQ6ADwaKfQQUCWOz7403c5uuA5Nn8EIYb311QYCmIHUSpo1ATNuqZZi2m16gSRxEdtfnr1kH/+2i6T0mCtx1lPPzVcXRtw9OQ8raYGCcY69kYCZxXyIEPLglBrolDTDkJmZipQWa0pi/PVODwS76tNVwoAjxAOU+Skk5J6S4KtHK8Q3P/LdC1u7mfsDx0BlubCIyy/8LfQgUJ5jxMBIZZ0vM2iukKnLmm324RxjfcvbXHr9Q0atYT9dMw7V+9ybL5OHAhC6UkiQTvxdGKBI2KUG8alQ8pqu7p3PX46Dzc3eqzogqfmFpF0sXik8KTjFGc9KgAvPNJPxyElQjgQgv6k5O0bIwYTx7lTS7z00t8lbi8gpCQIQkDibE699226m3fpqJh6ktDfSqmLiB1X8PZHdzmz3CYJJKGyCG9pN0JqwYhWTeO9YJDmn2zIwvPpA2F644z9/R5njyQcXUiYbQYIKXBumiEsDQiPkALhBHiPF8D0HiAF1+4MeOdOQRTAF7/4BRorjxEGAYHWSB3jpSQu1vj47T/jxtaIKA5JlCZSAdmk5NtvXufFx1eRhZs6EM9kkgG2ugZrsd7SGxsG4xylKlDmK6/I9mHO3/zqGeaCgpnZhG47QUqBRyKcxePAOcT0Hnjv8dMMnqiSw1gLm3sTDIJmEhJGdYQOCXWd0IUIWe3Vh/u3ORgWVQZrmJEWlkk64QcXbvLCE8cJvcO5EmNKTOEIgwAlJLkp8d7z/q0DPrh9iFIKJSX3TueZbcU8/8gS7XiIFwIhBEuzEcvdCK8USjikrtYPrgID06cBNX09SiCEIggCpBRorQjiCCkUQSDRQUSgY4QKQEq8CGnNzPPKW+9x+c6AE3R5shHhpcB5SV6UjCeG3DjkNMPmHPzw/R1u7mY0I42UcHWtz6nVBqdmI+p1T0mBsQ5nHeO0/Iv5918EDAQ6JIwShNZorVCBJwjr9G+sMTM/S/f4aWSgUEqB8GitSAJJjqTuJZ1WxHy3wWy7Q72T4IKYv/9KRsYsv/z8PHsHh9zZ3GWcZpS2oDFN14z7GXGgmE2g0YpIIkk9Dmm0O+ggwVnISktWOCZ5yXiSk6WGcVYwzizj3FA6aDdCFrohwjjCKMR5B0qjQoVHkh2MWPrsaZK5eUY7eyAdUlTjrAWCWqRpNjTdVsxCt0Wn3SRuBFwf1vnWR9s8fuYkB4eHbO31SbOCSVESB5Iw0JS5I7MljUgzX5fUE00SaJqNepUakgHlNIWblobRpGAyKZgUBaPMMM4MaemxFk4cSQjCiCCK0FGAFAJVCAJZY3jYpx5HzJ45S1BroAINOJQKiEKLQ1GLFe1WwEy7xlynQ7NbR0cB//iiYOjbfPaxiN39A/b7I/LSMMlLkkhTyIDJMCNQgnYMjUaF5muRotnsEMY1nBfkpSM3nkleMBznpMYzLgyjzDLOLMYKdGA4vqLxLiKIqrSWDEO0BqljBjt9zpxapbV8lLQskAIEklBBEkDiQAeCTitiodtgtt2i1krouTp/8sY+j5w6yepsj/XdHv1JziTL0VoTxwHGeUbDnHqomU0EjUSRRAH1OKLeaiJ1hDGQmaosMJ4UjCcZ48wxSasxpIWncLA0H9MKYwJFNQ7vkVYS6IQsyxClYensOeJWBx0OphutJg4l1roqKm9oZlp15jstOu0GYU3xw7t1Xrmxx5NnjpJNRmztD0iLai7CWKGVJJ2UBErQiDzNVkA9VtWaajWIkzoORWkcqXGkuWE8yRlPciapZ5QaJnlBYQRCSo4thYSBROBQEqKkSmN6Z/CyAl5SSrSsog2tBA+vxjx12pMODY1I0m5WIKpMM0o8jUBTZlUG5pFTs0S1DipI6M7MsrPTY7h9yNmFNu/fHDDJQySyKgt4z0o7pttuIKKQb755syI+CSrvd88JMv2W89w8NDRaDfDV98BhrUWHIQgL2OnvObTk/htFyvNLj9ZxxlOrh4RxjTOnV9neGZAoiaXKjPgBfO7JZZrtLiJo0q41+dNvnufU8Q63tkdsH45ZnYnAVoHIkbk6zxtH0Ig5f+2Awd1sCkI+ic7u/VtJzbvX+zzWFawUAnFvEALwlnE/o9EJ8NZOwYSoxih9NQwvKHLPajdA+JL6/EmOPfU1hLNIwHiBFpZyr+Czz6zwpbhGlDTY2E/5kztvEUQBg8TzxgfrnFmo06lrQg9pVhCHik4tpHAwyAqcBymra/CfDIRBWvCdn97mq6sBRxptVubrSFEFdwIPpsDkljCRSMA6W41dVM5UCk1vUPD6xwdMSs9XPvskD335dwiSJloGCD2Nbic3CQb/nNFoRLPdYnG5wd7aiDgXpInn4qWbPLzaJQ5A4WjEksWmYisRGEKGuSfNC4SsMov2U6hsb5Cxvr7LS59d4NTZOQpnWezWEFIivcBa8NZUa0x6hJ9mB0RVIrs3N2sbQ3YnA1q1gJXVE6iwhlQJQSHQQQ0tS3bWLnFjvYfzEuE9h4MJD9cabG4N+WmW8/BKBykE3pUUeY6WHi0cmfFYb7m5PeD27mQKQiQez7XtMUszdX7l2WVasUBMM3Et9Rdz878YGIgjgiRETFN1QVChoIcem2VuaREVJxibIgOFwxEEAXEoqUlJTWpmmhFz7Rqz3TqNTkKhI0hiXnyyg04PaeoFivExhsOcP3vvBruHGc044uhMQKAkQagJkxgdRhgnGZs6eRkwmhT0hyWjNCPNC8qixDtfpdeVpJNI4lCT1CN0BFJ7VBQirMUKSRhERKHihV96iJmjq1hnUbpCk1JCpDRFYKnFkmZNMdNKmOvW6HYaRHXFlmywekRxrmuJXUl/UOJyx4+vbHD+1k32hiVPLmiOdCDQijAOCZMEKUNyIoqyzqSEwShjOMoYZzlpUWDLEkVV7qgFgmbsiAJNox5hi5IojlFBBDh0IDAErK426Dy6RNRtY21RRQYetII4UHghqCWaTiNirp0w201od+uISBG3Yn71Mw3ifECkzjAcpIyGjv/u5Z+w3ne0mobldkIcWIJAEicRQZRgnSClxiBPGKUlw2HBcJIzzgvKvMRbhxIVSm7F00xLrIhijcEQRjHOW7yUBGGAUoqnP3OE2SNHQUmErVKR0kIYSuLAU0ejopBuI2Gu22Su0yJuRjhToz0b8qWHS1SZY3PIJgVX7/T4xrsf0BsZFuKA4zOCQAvCUBEl1X0svWZom6S5ZDhJ6Q9TxpNiOhdVZKOlJNSSJHDEgaLeCvDeEQSCIApwzqIKiQoiOm3L6q88RmNpEWtylBZIqMYiFNYJarGmVY+YacXMz9TodBqoWBD1Ojz5cMjR2pias0zGBWXueeXDDW70NqgPC2aP12nHjjDUBHFAFCd4FJlPmOR1RrlhMJ4wHGVMspwsL/HWI3AEUlOLJN16VQrDOCoX6ZFKEUYKIXwVBXk/jYKqOrr3HqkkrWYd6SeUE48OQvLM4IoSLQNAY5FIFSCcAxTeWfqDlNfe32PHBLy/OeGjrZRQejZ3h8w2Erw1lMayulRnbqnLdy5uUVgPSH4mnK58EI0kROMZl448DMBXjtR7R6MVk+clAoG3VRahSnsLpBA4D81GRLcNxTijdJ4gjBgcHCBlVSpwCJSsIQhRogJFxljmVuc4+fgpXnv7Olluma0pAmdpJoLSQBBpPvvkAmNivvnm2n2Q4r2vyhxTICCFoB4GCCy1xTkee3YGrQS28vIgPPV2jJRVyr7yodXepmSFirSSPHwsRumCySggCQOiQCAcSFc57ZoKGKmqRNtsRegw4myrwed/9VG+/6MPWJyvcTDJGReWQFj20ioIOTYXc+p4m4+3Mt67uYeUgp9PN2tZ3dOd3oSVXzrNkZPN+1mYas4c1pTVsywFODct93iU9NORVv/+pXM1isIz302YWTjKTLdFOkrxXhIGMLYJp482efKRJYK4jQpjTh5b4k++8Qbzs0366wMORwWdxFYcMqF58mSXpbkYFdf5Zz+6ipTVdYj766ha0wLBtc0Jt9dHnHtshlh7tHIIoacZDU86SqdgoPr/PQCAEAjvKY3nxvqI3b7jxMosZ371P6IzfwRrLVJWvBQ7XOO436aRxLTbbeIk4eObW7z72g1W5mN2Ryl3toYsdyv+WBIq5uoRM7WAiZMcjlPw1RquQNknD8bOwZi99V2+/leOE9Y1OggZ5xZ+/9/s338hMKACRRhF94lNQSCx3jNz6nnaq2cZrf8EaR1KSqz1KAFxqHBKkuiAbrfO7FyLZj2m3qph4iat2YBr1y7zfNdTF56kliCEppflvPdeD1fO0Ypn0FKAhpmmodvQNDU0zCGLKwscnW1jsoRBr4+IOwzHOf3eEOc91jjG03S2w6MV6CAkiENsWVZRaqhARCw+9ZtImZNuvoP0rtr4jCWIFUkkaHhFsx4xP9ug023QasSEzZButEDfblNMerRjQSMEHyX0xmP2BgU/OX+Xh+ceZlAGCCRCGRY6hlYiqQnL/ELI/HwHORcz7mssNXLrGYxSRoMxTiry3JAbg/UgBchAEyYhIgrxxqCVx1uoz59h9swLTHYv4IrtCsVXtB7iSCKVoGYVM50aM/NNmo06jWYNWQ9pLs5w473rPNHySFvQakRs9fpMCsvL5zd56swMF1ohcaDQEpr1kplWQDPQ1NIey0diVmdauDKitz9AxS2Gk4J+f0xZGox3pFmJ9RUhR0mPmjoyaxXWe3SgMFYw/9jXqLe7jO6+jsBW6bzcEihNHDnqWiLjgNm5Jt2ZBo16QtIKKdQMNpowGG6zUvPkvkQ3I3r5mF5a8u3XbzH/yw9x9UBVKTdvWexY2nVLTTm6YsiRhTn0XEw2CsnSFKMUg3HOsDfCCabZmxLvpg+RFkRRSBBFlKZEWhBaEiTzzD/yeez4NvnB1arUIQDjiaOKPFu3ilY7Zm6uSbNdp96M0fWA2cV5Nt69wYrIiZIQHUeUoaSXTbi5Oeawn/LQ3Em88DQSRxRZFtqGVgyxHLC0UmN5poYzMcODHjJsM8xKhsOUNE2xCNLcUjpLVlg21kcce2gWa/19h1Vt0VX06Z1DSIEU4HAICToIMJkkLTxdKUmasxhbUJgc6wrS1ODKMaWFazf3yNyAf/DHV/nB23fIy5JAS47O1vjNp5e4fH2XbT2mXQtYXWiwtNBmP3O8eXn75zFAtRepaisfpSWBgqPdhNcu7LDw+WXqM9GUpCanmzh4Ie6DGqEUQlSlPB2F6EBRSktRWGrNWQpdBySpMxjv8VaQIEizkqHL+fu/f54/+8l18txSGsvDK20iK9jaLphvJyzPNVhYiKh363zrh2sMM4NQip8tDnjCUGItDNOCk4t13r8+xFjHS2daLC62ps7KE0YKZ6vSq7dVqQ0v0ELgvUNoSdSIEMbgnSEKY7IcpJBIURE3J64i7FWzKtjrGf7nP73IB9d3Wd/uo2/2mK8pinHBgQKJoJYEnD3aJWjXeeWDj7iXc7m/Pqo/RIEG70mU5Np2zuJSkzDIeHhJIrQCPEEUEplq3XBvLlxVMqucMXQ7Me26ZTzICYMAj6RMU5RQWCEqUqHWSFFxkKRw4EpOn5jh9OPH+d0/PE87CTF5hmkmNGsKqQvmZ2JOP7TA99/ZIS3sfc7JJ+u8Kj3VkgiJI00SVBKS5wbhZEUqR+BxKH2vNc+C81MgUIELDwRa8vyZBtI7nIoIo5ClhTb9gyFeSOJQMMwiOs2QEysNgqiN1BHHTyyRGnjvgzvkXuAmGd1aiIwj+qOMpY7mN48e4+0bA85fTau1/fOgTEmSQHF9J0MoiLTH+ZL7G9W/wX4xMCAlYaQpTMVMVkB3fob5059n5sRT5DsXKc0QsEg8AQ4daaSDho/ozHRpzraIpUDVYnytTbeluesCNvYOWZ1tIJUnczlCCax3vH39kAu3BxybbfDCmSW+dO4ID51sE0cJzmtE3GaUWlI3pGdGDHczdnsjDnpjcuvwQuG9QAjHvDTU66qq4wS6qsXhicKImeUllp/8LSbb71Puf1DVFBEIb4mUQMSKhpQ0Ww3aczM0mwlhoBHNNrWgSxj1OejlxE2HF47cFngsoYTSe/7g1dt0mzGff2SF5abki08u02430SoElVDKOsPhiCJ17O4ecDjK2euPOexPcErhUdONzdHsuiptFAZ4BaW1SCStbovZY+dYeuo3WHv1Oj7fBhwIj/SeMNKEGuo+oN1p05rtUg8UOgmhPkOn1WFiFZv7Q+a7NYoyI3cZtThikudcWutz6e6QYzMRn390iXNHZ3jhyWXipAZeQdQlK2Ew6DPyGf29lN3+mIP+hHFW4qUCqhp8PfF0ugKhFUGocVlFHNVK012aZ/HRX0FrSbpzHlmMqLZ1RyAdtVhROAW1Gp3ZDq1uk1hKRKNFpDrUG4LtDUtcZsTakRclDkMcaEZ5wZ9e3GGxHfDFR+exJTz/4hzLix3CsIZFIYIOo0lGWQh29if005y93pDD3hgjBA6Jp0LmJ+qWlnbosCJtlSavNpZ6je7qCVaf+Wtsv/f7FMPrFcBEIDDEQYSWioYLaLYbtOc61JOIINaIRpdWuwM6Yq/vqGGQ0lA4qMcKJQWHqeP/+4M1AuH50uNH+KXHG/zSM8vUG21AIYI6pQ/pD8dMVMHhwYi9QcZhf8xglE7XVEWuixU8fLoxrZ2K+73I9zLVFe9ETdPXVQRlrWWUel6+MKQ3LHhB/JirH12kLA22LCmLnMKUaCyLnYg3L+/w7q0hl+72cNNUv/XQTw2rR2ZZmUkYjQxCeObn6tQ6XX73j95lmBk+qQ9UUZyUgnOPHGNpZZ7vff8C3aQqlTWbAVFSgbx7Y6l+T1Yboq+iOTlNreIdQgg+vptxY31CPfY0zv8zHJ6syDF5TplnOFMyF4+48vEtfnJ5wMsfbGPvZ0tgbzjhN547yXiUIpxnYbZGt9vk+l7JTy9t/cz1f3oMTz5+nF5vxPUbe2jpGU5y4rBNOsoxsxakxdlpJoEq6eHvvZMU01S3x+EwCPYOPPv7lrmihyh2yMucshhR5BNsUdIo7nJ494D3r9/i2xe2eP3SzrTLA+bbEb/x/CmuX99hNPY0k4CZTo3l5TbfeOsu+6Pi3mK4b3MzDUIdsLnTI9KK2VbEO9cOEFKx1A1pGcPisZlPautTrsYUC1QzI+X99RbEIVKXeEocglpjhhKLn/KXirIqKZQGdvczhPbs9C3ffO0q33njGmtbA/7G509g0hF3xwVz3TrLy1XgVsqE195fr3gKfDJ3UHW+hFqTpgUzDc3azog/+tEupjR8+YlZjs0lyKTKOiW1iCzLADXNQFXvWIFTQRBpOm2NmQwZF5YorLF/OESJoMoqeYVUAdOkDsZavv+T6/zg/B3eubbB9m6Pz5ydpeEMV0eaZqLRSrK63MLV6tx67e494s6/kmXyHkpjCaKY3YlmYhXGOgap+Qv5918MDCiJVBLpPF4KAq2QSpKPDynHvaoVrJymh6a3PQgFymtiIuIkIEg02jqIGqDr/NWnY764dIbr733Me1c2mOmEKBxnZuvs91NGpUGjke0VhrLJVj9i8NEBOq6j4w5hkhNFNaJwkYVjTbqTbY6sNNi6e8B41Kc128KjKY3H+RwlCnRQsVXFNMUWhxHWlRSjfZyZkLQi3LZFCA+uQntSeuoqIIpDwkQTJEG1IMIGXV3j//zVZQ7uGl77ySVQlkhZjtTBnZzn/bVDRoXHjDxXRm2efuYMl65toWoFQdQmiCVBEhBFTaJOm8UoYcEMOJG1+PjSbbrzETqsYVzVpqN0Cr7qbPBSVjVBpfBBSJENKIYHBIHHRRrvKwKQ8BAFskoZEhIlmjDRaCEgTPBBnc+ebHJGHePd80NubB3SSjyNwPDc8Rbvb0i2+ylRGOKai+TN45TRIhcv76DiAh23CeIJUdIgCueZO9KlMdpgdbXJwf6QzdubzC23QWpK6zHGoGSOUhohJQ6QShAFGiEcxfgAooikmZCOpgvQV0SdJNQYH1DGmrimCBOFsALiBoGs8Z+8FHJ4N+fHr1xkj4JGLFlqwLMnurx7d8huL6U3Lglna/wHX36Caxsb3Dk4JIgNYdwkTDLiKCGoN1k4VmO+OOBYWefm1Q2iyBLX21gkZWkRMkMJiQ40Qgm8l2glCFWAKScUwwPAENVjvLPVc+EcUaAIlKfuA6I4IKqFhKFEBCFEdU4v1PjPv36UndvwkzcuEdUksYajXc2jx+b58O4eHkFrZo49upjmUd69eohMLEHUJEw0URwQRl2aix3CxibLKynDQY0bl2+zsNpAqATjPMaUxEm12VftV1WU433VpmuNB1sRmNQ0AhJCIJVkfqFBZ8azcbCLM1uVpKms5jJQ4JRg5GMmssXHW5vTliyHnBLQhpnhzn7JF88tQVkilcIqxR//ZJ0P1w6qef+UL7238XVn5pAeAgmNULE/zGkmEWEcYAGtNWVpqxo3VRTqrEVodZ9ZXpHYYJg5xmgGo4xvfeMPcAZQ8j5pVQpBkgj2JiE//Xif8l7tfno9O4OC9aHjpUcWiXVIGASMfcAfvPwW48L8PBa4t5TJcsnxoytsrB+ANQRC8KUnmjS0QoQKY32VfTFFda1C4N29zICrsjS+inBHE8srl8ZkhWPnj/4AU/5TrHc4SoxxSCuJQ8XMYpsffbDPm5e37tfLhRCM0hKd1PnyZ04wHlWttJ1ujSvbGT/5aKciLH7q9VIKThxdotlI2Nrp04wVvbTg+GKN335pkVA5EuWq6/4ZYDYlgHpXkTqnqZvSOpyQvHMt587WhBPHbjP51n9FbixlNiHPc5wpiEVGTUw4f2mHYan44Xsb7A4yrLMESlGrJzz76AzpxCClpjtTp97p8k++d5md3uRTjvMTcDnTafHc02f43g/eJgyq8t1yN8KLkDBQ7O+PmV1uY639BBAJ7gMLISqCs6cqq1kfMpgoRsZxRuTgDWkxxtoMWxTIdBs1KHjjvU0ub2X8gz98l1FekRu1FJxa6bDalKyt90F45ubrLCzN8o9fvs7huLh/3ffGEASaJx8/wdWrdymznFhLvvXTHWqRQnhHaexfyL//YmBAK+S97IAs0FqDFIw2XsWPLiJkTpnlCCpyBd4TaYETjhCNDlUFIISHIEKJktOtPqa4zfEXQtYPJO9dWWelVWN5ro67uU+tHtGdnefw8IA3ez1ePDnDLz8/T33uJCQLGNEgywpGoz69vQl7Byn9ccruYUFRRlw7HFIYg3OOhXbAqdValS6TkqhW1d6VlliTsv3u/0jc0JiyxJZTNDVNZWnhqcmqkyIMNUqrKvkexDTtkHPdWxTBkDTt8N/9yw9JhOD4bMiuDwjjjCgOEEpz++5tXr97kt95SPD0c8cJmsew4QyFC0gnI0b9Hpv7BYNhysZOj1TX2dzIyPN9Slsx2B85GdGqTRG11oRxiCqqjTfvXWXz/N9Hx5ayMDAl8HhnCHVcZTpCjQoUQaBQeNARQgqO1vdYmbvF6udr/O53+ly4usORlubhU7P85GafhcVZdKAZjEa8fXWdZ594nM8dnzB37CwkyxjVoigc49GA/uEuB72UcZ6xvjnEiDrrN0dkhcX5ijh37lRj2lMviJOQoijRgcB5w96VP6TeisEXmDKrHJAXKOFR2hMDIgwIgulcCA9BTOxTHulsY9mk9vl5fu/7N7l5d8TRmYjjR2a5uD6mVo9ptVvc3djg4uY5vr6s+dIzi0QzJyCcpyAgS3OGwz7b63v0DsZsHaSMCk0+8qQb/ar9zlmOLwcszcQoWWkcxElEOs6rlqN0l83z/y1B4rBlQZWlqb4EUuCFJQ41QTB9LpSAIAAVMhcdMjNzgywpsfkM//i7H9NSgoX5BuW6JanFrK4ssn845ObaHS4uL/ClLwScOHcKWV/F6TZ5KZhMhgz6h+xuZkyyCbc3+rigxc6dnDyfYKwjUJbFxyNCFVQM/ekGLrwHVz3L2zspjZkmSiq8c6AEzVbM1z5bx5QlveEQUxQVKXca9nkPEwPfeH2dV97fn3YwUNWL7+UcHFz4aIdfeu40cd1jUPzw/C3++PWrGPcpD+r5mQjo9Z++S6cRstSOmGlo9oYlvVGGsxX3pLr0KgQV07GY0pFOINThNPOnQUo+89QSn1UwGI3I8wJnDd5NiW84nBWcvzbhuxfWmRSfbKz3ojLr4J1rB/zqiw9TCxVZKfknf3qBKxuH0+v197/ei4I9cPnKbXa3EmbqEQ7LXi/HlAYxJdTeI+lVHVZVScADRV5CEKK0whYWIQXtdsJvfPkUZZkzTjP81HEpWZEIhahKpedvlnx4Z/9ngIAQgtLB2m7GU589jisNSMXGYcbvv/IumflZJFPNg2Bj84DZTsBsI2S5GXJ7f0JZepKwRAlHnLSq9L4Mqq4iXzlM5xzOeFBVRC1Eld+QSAgCmt0aO4d7bLz6/apEqARKKoQUKC14+MQSX3rpcf6f//BV9oZZxTdQCoTgxtaIr71wHGktYVB1Abx7q8/3zt/EfSob8Om5GE9yrHXMtCJqGrwzPHMmwruSdl2gqWPxKKWrDJPgPqit+JuuIvtN339tt+D1DyYEKmXtv/1/UOQlhuqZ8mWJljA33+btawf88MNNJrkFxP37utNP+fLTpzl1bK7SxwhjXr20w1uXt+5nAz4NZpxzLM8vcLjT53C3ZDgp+Ovn2qx0Y5wzjNOcf/bKv9m//4LdBDHOSzb3MnaHBTQSlArxrof3KWVqcb7qSQVw3qJV9dgrBNr56U2rHk7hLUKCijQiK/nplR1ubue8+PTD/PGb1yis5/Fzx3nuxef4oz/4LoP+Ae9fvcFcc4m4NiQIAgIdEkUBQagJpGd5tsNCq8ZqK2I4HJClkBYeKUPCekyY1FAKJpnh7nZGgUC3FHhwdogxEUVu8UJ9gua9I9SCyFcEXnV/U6/KDAKDDAIIJNe3Rvz0xiFfffwYot3h0ntXmJuv85kXn2Vr+5C33niXC6+/wrN6hb38JlG4idYhYRQSBpowkDQjQSvsstCMGA4GjIaOIhcU1qK0ptFuoIStxEMOCzYPcmQtpqkVuBzw5JnA3iNeMe2xlhAIgfYC5SpOh/cCQTmdCwdhQC0x3Njp8f7dHp/5tcf5s4t3CRTMtTRf+rVf4pt//Cqb62u8c/ECrb4juWUIghuEQUgUaqIwQGtYmungbMFSI2Q4GDAZV6JDCIUKNVGtBlgK61jfKhgVHtmIkEJi3QBnHSYzeC8rgqFwOA+RUkRCUgqmG50AX7UvCRxCVy2XM13P+Wvb1IOY5x5f5hvfu8TCfJfTZ47Qmpnle9/+Ma+9/DInXjpC4XKiZJ9AJ4RhBfiiMKQuLI3ZGRaaGePRiOFgRJanlAUIHZF06uhII1RAf5ixuWchUIRzIV6kODHElAGmcHhXkdbclPehpCbkXpTnQWjwFfNdCI8MFao0rPdGvHp5l9/5pcfoGc/2YcpCs8avff2L/PCHb3P1yjU+vPQRby0u8fHhFcLwDkEQEYSSMKg4HgvNGN8IWKiFjEZDRqMxee5wKJQKCFRVE3XeTqM5P21hE3ghSGoKpaqNqHq8RVXyMAXCOZwzWOfAVj91zuGF5jtvHvDye/vTtUhVZ5af5Js9nivrB5y/usuR5Vl+8NMP+M6bV0nLKotyb/9OAskTJxZYnIkorGO3l7K1N2J7YNjq5VjnORwV3NMUmOr84L2v2ouFwvlKNEZQte4ZKvGbAFvpYHhL4Q34KenQuen1Wf7pDzYZ5e5nnMgnY4Db230+uttnea7LH3zvHX78/u2qVDsd6r17GijJTDOm2wiReCZpwcEoZ7PwzDVDvFRVdOmmc+CqeXDeViDMw+FBQdINuFc0EKLKqM20PXmh6I8EReHucyS8r/r8v/fGLt99p09WTmfwUzVn5+HC1S1+7QuPU6sptg8y/uGfvMndvfHPJDU69ZC5VlKJYY1GXDtwhEqyP8qZFJZR5nE+IFD3evEdVTOuvb+mmG6d+4cZQkXVz4VCaMHnnl5ECsthf0heFtMxu+lcOoSQLC02+Ad/9BF3doeVL/nUOK7cOWBoY5baMXjJ7d0R//03LjDMP2mv+3SJAGAySfn+jy/SjjWogK3DSpcjkaYKbKflmHtO2N0Dit5jckAJQqXBG5RUrC61+M1ug1GaUhQFwoV44UFbtIgReHaGios3e2Rl9VDcA2VeCD5eH+HDDvW6R4iA967t80+//xG5dT+znpSo1qG1ju/96C269YhuI8BYQUBOt1ZpQ2j57yAzkJcFw8EYrUJmZ2pc28kYZnuU3QmL5ZgAsLYSlXDO440jkBWZSpX3akMWgQWbIXxepbxkyB++tsZrVw+oRQl/fHGTta0D/g9ffYj6qRNcvvoRoQLvBLnJ+eXPLNFqNgnqi6Ab4A3WFOTpmKKwDAcpPWURvqzYyVZTOo/xHkuJnZQMrGdpvsbt3YzDg5x3D4c8dkJRG4/RUuK9xZqK04t1BElA4B1SVaxRvKnoyTZDlAVeav70zX3+3//8XazzXN/usTIb8NeeW+Ly3oRmu85HFz9Aa8lg0GNp+RRf/+wiUa2JThZARFVvbDamKDLStKDfB00BpmTkPMZX/AAvPKUpmYxSilyyvFjnymbB3u0RZTLm5HJBhMNh8dbjrMRbN+3TlxUQkNUTKQBsgbcThPEgE15+9zbfPr+Jl4o/urBFf++Qv/f104RLq7y3voa3KcaU7O3e5HN/4wVWFmcIkhlkNAfeY01OkQ0pCsNolNLrGaQrccZgnSW3HuOgLsCmOSOjabcCzMizc1jy7vCAR1ctZXpAqFWlG2HBW4k31ebjJaRKovHgy2pd2QxhCzxQipjf/c6HfLQ+5uhCyPnbQ5481mJ7kHLi5ArvX3wPFUj6/X2S+jxf/9xpakkDVV9GqBhvDbZIyfOULCsYDKAnSrA53mdVycZCiEd6SzaZ0E8Vq8sNrtxNGW2lmN0ej52MCH2JEBZjq5S7Fw68rUAHHiXvgQDASbAplAZkwp3dMf/DN6+QOcmPrh+yvbPLv/fiEU6cPsL14SFmfIBQikF/l3MPP8xTZxcIkllkPIcQEmsKymxIUZRMJgX9nkMLgzOVol1WOsa5Y/0AVub0NJM0jdvF/Z2Hek1jlUIoW3XpSY+XUyfnLGKatboXTyMll24W/PDdA4z9xAn8POnJe08/zflv/sXrVeq8MPcBgJ++VAAvPbnC3/rSCQJKvLFY6xilJec/HvCNtzcYFZ7CBWQlaG2nTO97n1khA60EnW5Ivz9txxJVzdohptogtoreXPXh3gtGGfzZG3sMswqcfNo+HaENspK//y/ewFjPODVVS534BMwAJIHmd75+jqdP1qkpjzclRWnY7xu+fXGH9cMRYaAYZRCH00iygrsILwCJ957ZmQgfVQJY9tO30xm8tVV2ZKqzApWjf+96yvcuHpKbaj4/XWu+Nw83t/p8//wtEAHfefV97uz1mDaR4D0cmW/xf/mNR5lvCpyt2p1vbA750ft7XN6oCNtFUU6zPwHeghef1Ocrxz39PAlJIhmYe35hqgHhLEoacCXeWrytOE9uui7HmeO/+r13+fEHB5ifmw8P7PYnfP+Nj/nrX3uOj2/t8T/+L6+ztjuATzlz7z1xoHjqzBxnj7SoBYreKOfy7R7XN0eEgSQvoF6XFQn9fnlm+nmuAjjeewb9DF2XCDx2eo3tpmJxFg4HkKZu6kfcfX7G3X3H//QnN9gdmPsZr0+XL25v9Png+iFPPLzC+Q/u8rvffJP9UfYzcyWo5uPkSoNGIChKx14/5eZWSmY8o1wgna+4FlbxF7FfCAwY48lK6NlFTh8P6I3v8KevX2N9dZlHTzY5Gq9RC7NKoMVStTFNW3nKQvD2+xlHBzELMyWdxggVhSAjNnuW//5Pb1A6GE0mXL56l195eoFHj7f4IHc0yoLFmQ6jrGBvlJEZiZtYivGAvByQFb5S7kvTasMbjugNxozHGVlRkudV3WRhHk43AnCeYaFp1h7m5NJVbl8Z8YPXr5D/5ldZEHc53jrA5GOc9XgxRYJCEApFWmhu3s1ZXhR06wJhxnih2TrI+K9//xJZ4Vlohnzh4SZPHYkIVJ1j587y05ub7Ozu027PsL+7zSD1jAvHsCwpeofkuWOcGUbjCWmWMxxn9IZjBoMx40lOXlqK0mFtydPdBgHVg7+fz/PY6SWOZJf404trfDgpeOmzj7CsbjBTn+CswU0Fa0BM676a0grKwqG0R5QpRBpkwuHE8F//yyuMCw8Y1u5u8FeeXWamEXDDaLY3D7Clo9OZZX1nTOkUvYnBTlIKu0WWO0ZpwWg8YpxW7PX+YMRwnDLJSoqyoDSOJAloztfx1pN7SVE7w9HlXbZGA7718i3GL73AkWafo809hEunm7XAlJqyqOOTSjCnKKu2JW0sFCO8ChBC8MGdCb/3/TsI4cmzEeeWBAvNWUZxhwt7fXa39kjCmH5m2e2XTArHxJbkwwPKAtLcMR6nDCcZozRjMBjRH1ZzkRUlRekoreWhMGCupcEJelmbpe4jnMzf4duXdnn1yhrlr3+BeX+NxeYIa/KpGFYVuQrpUVLhnKQsLJEUeF8iTIaQMc47/snL69zaLRHSs7G5zdnlOqeXIw7DOps311lqJQzygMH+NoNU0k8tJksp7DZF7hnnhtFozDgrGI7SahyjCZOsoCgMpXGUziLikFPDjEeOxkxRLlN9HHAWFURY5yv+Cb5ylq4KfaMoYGG2U6Vxp8py/bHn//VPzzPKK0f86bTmp51otYl7Jrn5mf932nU63RZrd7YIlOD5h2dR3lAWGXLqzGohfP7hJpN8nj+7uEuhEl7+oM9nztRpxFVUL/AVWdCVVT/7lBNxr4bt7nk7PKGIwMbETUUQg1SK7761y9WNyZRD8XOF/0+ZdZ7DYTbNUlXvuLLcQWnB3bUDHLDYSXjudItYGlyRg/OEwjNXF/z6M8v8yTsb9MeeD+6OOTkXcHQ+qEDiVMSt8u2+Kg9wL0j8xJE4XwmRJWFAEt5rhxPc2TX8y1dvk5VVG9q/bhTee4Zpyf/wx29UP79XKppyL5WUfOWZIyy1FTafgLO0I8mzJ5qcXmjyj16+xbtrAxpJgJSSnWHB5sGIc8frqKnjFMLz6ZxQvRYiR9P1wH2mSiXf7B1agK06W9FU3RCvXNjh1Q8PMd5Vcyf4GSdvPHzztSv89NJdtvarsuQ93YZPz99LT6zyt79yHGVyvDV4l/DFM03evjnk++9tEemQQDtu7OYsz4YkwbQD4hMKJx5PsxNCIFHSY6cyy/iKn3JPc8J4j3QV4Myt4A9/vMv2wEyvx/8roGyQl/zDP36DKAzY2h9UhP1PZQQAjs03+b/9zcdpBxZhCnCewjo+3pjwe6/cIQ4DojDAOYmrHQfe/nPX7j37hcDAjUGH8UHCzmiEimaxxnLqWIfV5oSg9TA3Jk1ms6sIqZGqGrzDEgqNjBJmZ1vc+njC+fGQp5/yPPZoG+vGfO+nNxmMCx5aqvP0sVlOzteoJY50OEZPLD433Fxbx6K4dGfAN390k9OziijS1NstwkAylzRY6iTga0xGAYNDgTUJpXVMJhNGkwwbCEYm4spmk90R3BylPL1aTciXn19GptuUR5/j8t5luuZWVc8GrHHgJK24zua25htv3SEIHb/zH51jrpmS5zm//52bnDs+z9dfOEE79kTaUTrJpLDcWl/n5rU9Ng/HzImYorT88Y/XWKprQgrqjSa1RkIcKDrdNjJoYU2dwaFmPJB40SLLC8ajCaM0I1SCteEcW5uKu4djaAjqxjLbTji6AjKIWVfPMDj8AO97KF2N0U6JT4ENGIwTFgqJEQ5dlohsgPMDvnf+LpfXB7RixWcfWeCZM12ascSWHts/YO32Dpu7h3TaXdYGGX/64zucW42JlKfe7hJFmm4Us7DYRAhFnmYM9gVZGWCdYDLJGE1SMltSWMWl/TkOxpJSDPniI1Xk88ITy9TdNmL2Ba4e3mbeXatkXJXDOktRatJyBlMLubspiGsh3ueIdIKhpMgVP357jc+dm2exHTDfEHRiizGe9HDE5o0eazsD4sRhreFH7+zw3Mm7NLUlrsXUG3VCLVlsdFmZbeFck0k/ZNATWN+gMK5ysOkEmQj2iibX9xRbPcdYGU7UPGGg+dIzs7hiTG/mBYaHH5DYFDX1Rda6inMiIfMhzgqsE0hvIe/jXJ/DXsqHN3d48mSHZx+a49hsQhIIyrLE7B4ghjkXL6+h612y0vFPvnMNO5kQYai1myRJRD0ImZ2bQagGZVEy3JeMJwqHJMsLhqMxmXEED32Od9+9SL2XcaRduVHh3f32KSk8uCkZ9d7G5GAwcshpUVpMe569t7z2/j53dsdTp+Lukw4/vaH9eRYGilY9ZmVhhiLNcNmEuYaiSCcIb5FK4aylyA3eKU6vdtHvbRE1OsyePs3F9Su8cFyhpcV7cT9KrjZqN43a4V7Iax04p/A2ouwVyFQSHknwUvPu9etY/4kD+LT9/Dg+vamHocSUVVo7STTjsSHQCpyjKKtsn5xKPWeZIRABk0nJH/54ixe/8hXeu/kxKMeRDvdr7TiL9xapwqrV04NEIu9fhyKOdZXhUqri0kjFH7xyid1BicPxv3brfx7wSCV4/PFTmCxlb3OPx440yNMJ3pppo13VvlgP4AuPLXFpY8jBIOdfvLJNa6ZLa3GVVy+v8dkzCVreu4cVmRNRdUMI55H3P98hpiCkE7em+h+KMKyI69fupvz4w2uUzv0MuPz5MQxzw3Crf/87Uag4emSG22t7FGVVqj6xUEeYEpPnOF9xGFzheOZoi/W9ER/eGdOZ7aLnT/DK5cs8dzyiXfNMF3LFw/IV4dZNO4uUqFru7bREFUURasqrCwQgJN96a4+P1ob3+Qv3oOinzQHbvfHPfG9xvo1Sko3NA7z3nFpu0dQOk0/BsffY0nBqLuDZU10a9ZDDTOLnz5KGD/35k/4p+4XAwILewlIhzzjb5iAVBELx1OmQw+HbDCdz9FvPYtwakRL31acEkBcZIjRESUFXzfDee2M2t4ZTrfAm//e/8wKxEihpKYsSY+DwYETQO+Qn768xSEva3Q6D4YRBr8/KvKbTbtNc1AilqxQ6JePUYYsCYzyj1HM4ShmMU8apIW7AbGPMilxnphEyGm0RuYTBgeP5sw0Wm0PWd1/DqLPsixChPsZ7sNaA0Ni0TagFy0djLny0wZ+8ssbTzxyh109Z7jZZeb4BDmxp6R30ORiNeePqIa9f32VSVpFKWZYorVnb7rMa5wSTAYuLHaKGxqMpfU7uLMO0wBpLbiqm78Fowmick2aelY5hVu+g5IR6MyLqH0KgyMeWJ5+qkaaXud1rMOk8jXGHBNM+2YqNb4lKy4cfTdjdLjh9ImBlpSpH9IbwnTfv8qvPrPD82QWWugnGWMrccnAwZO36NhsbuzgHSgqy0tA/GHD8lCPSgu6iQAYK6yVGpExyQZ4X5A7Gmac/yekNx0xSg1ewOpezqraYjRW74y0SEzMeOuZbCU8es2wdvsbQHOMgfhovblRpV1fQaPSIXcqt0TLvXDJs7BlqdYfVOcYLTO45Mj/HkfkO1jvyLCef5Bz2S77z7lUu3OpRWIcQOWEUsXkwYibMmC/HzM0uU+8GlXS1LyjxjNLq8JncesaZ5XCUMhxnjCaW2dDTSnoclX1mWwm6f4BKJMNexlc+00T5dW7v7WLqj5KNSpS6jhBV5KDQBAYODko2I431JUIYVFQySlN6meRvfOUcgfDgDEVucA5ManF7u3x4dZ2DccFcYnHec3Ozz2o8S1ykzC3OECYhxmuMT8mMZJIZCmfISs8wyzkcThiNC9ISFpZTzj39GT547wKlTVmIBAhFISIMOcK66YE7VQlB+OrQrT97fa2qaAg5FaSR9CaWH723UekYifsVgn/tBv7zWQItBN1Wwvr2Adu7PY7ONjl7cgabl2TCoKVATR1KWVTR2Ie3D0mNZ9AfcvzESW5rzVt3P+bp5WkjvJBYEaLwOOsqHqeoNBNwjo+uH/LR7QECQehgOYxYnSywPx5ix46ZSHOYFZj/Fed/b3xCVPLOjVrI3v4I6xxaKbSASFoGgxEBJfFUJ8FaT5Ybeqllf1jwHzyywEIrYenzX+a9d88jZMpcaKZYRN1rjMM5z5JOqq6u0pMN4Z1LexSm0hsxU6d0MCr49ptrU5D2s3PwaXD2M6Q0BErAySOzRMWIh5YaNI+uEtqM3FikcBXHxHkKV1IayXhSSZenRrE42+D442dZPPIoly7FfLS7zqPzU50FX51VooSsxKgcVeZGgHCe3f2CYS9HTTSdGUWQwLAcMjKWb7x6t9Lo959kGO4LBv05QFMgaDVq9PbHzLQSdvbHSCVQWEaDMcLbKnNdOrLMImT1vO/kMcce+yVqUUyYzPD2R+f5zHFJLKusWMXsFFXXiRXUgK5qINKAfGQRNVcdrBRJhJAIETApPD985yql9X8uIP755wEgChRaVSqptSRkMiloJ5oizcCaqgPCe7LU4bxglFq++/YBZx9/hEdOPcH75y/8az/r5+0XAgOxtszM1+kUAcLDaDgBX6PIhix1QhZmR+ztvcG+nFQL1vtKUx3QRcH7P93h/Ed3OPPYMZIwYrBeUmtUrFjlS/LCUBQ56STDWsk49bx5c59+aT5BUl7wD753h99/rTpM4+jKDF9/4RSL3eZ046mIKs5TtbDpkKAuadc8UhlsnjPbUURJxPZA4Ixg0BvifYzyKQ8v1xgVNxlsb7M7pUo5W0VBmRlTBA2Wl5Z5qdVFBpJrtwfkpcGaElsWlJOc0djw4Y1DDoqMHMVMO4JRFYXmeU4QBKz3c/6z//4yJk+JG3d5+swyX3nmBMG9MxO8xblK1Mk4EFFETYfETQfGorxhdTFhkYhxCeO0oCwcWWrp1gQz7Zy93lv05T6prwgw3liE15R5xtbduwx2u/SGHW7vFLQ6AYeZ4a9+4RGKvMAUJfk446A/5uCw4O7+gPc3B2itsUVJaS0IyT96bYNvvSPIi4KFhbv88jPHeejoDF5I/D3ijxMVZ0NIgnqdRlKVIEyW00pgcTaiNgywztM/GNNtRLgi5eR8zLLfobe7w66oWt/sVONcBiXD8R7eBtxNE4g1UStEqGnd1FlsmWOMJU0Ne72My+tDrm73UEFF+CmKgqReZzDO+S/+p49RpkAEd3nk+AK/9uIx6knEvTMhEFUEaQ24ICRsCrq1GlpZfJmzOBMSRDE7IyhLx2RUYMuQZlzwxNGA3ugDBqwx8BInwVmH8xq1X7K7vsPh1YTu0gxOCURomIhKr6IsHKUrsb6g18soSstoYri41mdvVCBlde+V1lzZHPKf/oMrlHlGu7vF58+t8PyjS1V9/J5DxlPaSvdcJjH1MEAXntdffZW4Ocszzz3N7Rsfc3Nnwuljx9lkgbI44LS8gtamOvsDic80pg9Pr85TbwjiRBFGEuPg//PHHzMu3HQd33tu/3xHek/gSAnB2ZU2p1YihJrn0SMt5luKQBi8sVNF0OnvOYEtYbNf8MaVCqCubWzynW99i9NnzzF37DF+euMKq0lCff4J7vTHdOUOi3oTISr1PuGqc1BmmgkPr0IcCupxQKAU+sAzj+a3nzzJ86eWefnD21xY26ew7j7o+fnxeF9xcY4tNjiy3ODCR9tgBQ8tt3jmTIdTiwmhrDRBnKiiTOs9toQbmxN6qWGp7bl25R3KaIXTDz3F9WsfsIvnWCtmXx9jODpkRa+jZElZFLScwu9KjBGs1BcprUVrTVaW7A6G/ODaBsPc/qt5jWnGRkyjWikg1IrZdsSJpTaPHW/y0JE2tSioDuaZpr2t+SSyt85hrWf3sOA7F25RWE/dw7Onm3i7yaV3cxaPnGRrW/LO5jonGzFhoNl1IYmfEPsRUJ2LUfErHFfuHLK5VzKjA+azMQvdWQobkBWax5aWGY7hnVs7pIWpyKJ/nlOl8tczrQhpc0Zjz/HlhGdPHuHEcp0j3QjrLVpMCxROUhQlh6nhYFzy1ecWGTvLe+ff5JGzZznx2PNcuPou5xYlkZQ4H2CEQbuKBxUKmB8LsrUh21tDbozHDAKF8JJ70OX2bsq1u/371/jpa//XHSIkECgJs+06WzuHlXx5EvDwapPjcyHGGCJVlX4dkOeWUSa5tjngP3nhOI9/6SXeeucyg93tf+09+nn7hcCANQZrcpIwYLeXcTh2NOcVkhLnIAg93ZrlIFCIsIZTJYYAS4BOoBZZVEPx3TcvE8cRcV0jhCcKJS+eW2Zluc7WOGJrEtGabRIowUsrRzl+e5sL791g5EFIzc5gwuZh1S54dXvMl194mF/56hNY4ypiXZYzmRQMhznD0Zj+aMQ4K8jTnNKVKOXxtiBQmv2eQwQhUlaIVaBoxp4yMhBG4EOMqtEvWhgRIUzAaFDSSODdj7fZHOYoAUfrhrMnGiSzCS7usGZrtKOA9mzCZ5Vm2LdcuXSLj25tY3RIlhd8dHcf6xx+a8hO3/B//Z2vsrpQ9bPmRcY4NYzG1RhGozGjScpwkpNnI7QCqyxhFLA7KNkfChrtuOoQcBAowWzdMgokKk4QwpILSU6IqcOjzy+yc6vHzTs5mV0gGHpy7xiN+tRihxMORMCGb1E/2eD4acvSs4K9jT4X3rnOXlodpbo/nLB1UOCc48r2mGMrc/y9v/vlqlZmLWlWMpkYBtMxDEcTxmnOOJ2QTyYoCcbmJLHgoO+ZWImOKsVEj6AWelzs2NMhMpCgLaZqiEQ3PA1dcGdrwJsXDkkaCVFYkfHqoeOFJ1bozHS53TNY5Th38gxPBCHjYcaNj9d578ptjNR4BNc3+xhbgvfc3pvwd/7aM7z0zEms9eRlyjgrmYwLxqOU/nDMcFyRPIusj1cOEQgCX+CdZG8giJsBUBG5pBR0ao4s8IgwQkpFKQSFiClCx+7hkP2tPcqtDYI4RAUh4zwlTgL2+xlfeGqR5SNLrE3GBPMJrVrAiw+VnNoac/Gdq9zeGyHDmEk64dL6Ic4a2BmBVPwX/+lXiIMA4wxpnjHODJNhJVHcH46ZpAX4CbIYc+vWiDTNePGzL3D7tuDli1vk5T7NToPubJMFdYhEVFoA1nN4t0c9TGi7Ji51SO/Js5K5RouFZsr2MK96s+/tH9ZU7VkwjZaqVtFASzqNkCeOd3jxsUWW5xJqiSYQEj/VpCjTgrLIqvSskBhnmRSely/tcDip+AbSlmxvbLG9O+DJJ5/g2JlzvPvOO4zXbuMRLM+3aUfbFSlPfOIMVxdiVrsOJT1xKHFecHv/kLu3+6ysLvDQUod2PaBdV/zoyhapMSgZfCIGJCpSsZRQDzUrcx1mGpK/8aVTnF5ssTITEyiJKYtpW53F20oZrsgs1gg+2hiSlobNgzG9Q8NHWzusrW/yuc9+huvXP+bWrTG5yEEE0OxwLN5joBy73tJthwRiCOOYVi1GaEUtjoi15K8+d5qzy4dc2TwgKxyBgkY9ZGGmTreVEKoq6qzVFO0kpNuKqCWKcFoHl0KDi6pyirXkkxRbFNjp4WPDsePPLmxyd5jjhaAwhrTIaMmCt8/fhvcu8/xnnkPNnOKVy5dYWj7FfqpJXJ/HkutTtn7VAaK85LmH5zEP5URaUgsDsILNmxO80Tx5bJ6jcwkPLyS8dW2LK3sp91r/naxUCUNVkfkCrZnr1Hjm4TZLnZhmknB0oUaoJc5YrDX40uLKsiIEeo/1gstbY3qpJbF9zMYPOVjb59u3b7O4cowzZ57gwsdXmdcePX+O/ckhS+IOc+GEIzjK8ZgsG6NCwUIn5PTxJq12TBRqBkbyyu++S+n+1UzZzwMCMVVlUtJzfKnD0eUuzltWZxNeenyB4wsRiQCsrYJuqq4Baz0f3R1wODIsNkuKGz8k2xcM9nb+7YMBhKQsDVqMyfKq/aQ+V0l3eidIxynR4uOcO/VXODjoc7C7zvXxAAT0/IiBdcw9GaOXety6toXLc4J6nS/91V9l6eRprty4xubBLn62iZo/w5WLrzDXLjhzosnh4Ry3DyHNStJ0fJ/G4Txc/OAO3+uGeDzGVUd9Cl+JwmSmrECCNRV7PjYoFVJkOaHyXN8SZHkGvolzGlMYnI6Ye/zrtB5vsbu1yfBwj/08xZUlo/EYCo9OS0YEDPY2ePRoyLlnztJ89AtsjjzXrt0mXAzoLDxCrzeht3aelcU6Tzw6y8Ek52AiGQ6HuOmC8MA4t3zvh+9wZKGJQ2KMQ4hKQaoiehmMtRUa1AYpJMZIEBM8iju7lqArQER4r8jGGbpzjIe+9isMRiX723fZGO6y6Tx9MWbPWPTCLJN+ysvvfkzpU5x3/NKvvcjR5z7HjbU7bNzexjQUtZWnuHzxp7TCHY4u1xj2upj1AuNHTCaVItA90tH1O/t89wcXEEJXp1C6apnlZYkpDcZYjKmINbXIolSCyQrCSLLf1/THKc43K8niUpCXJY1TX+CJRxbZ3dnl8GCTq+kQYSx9N2aEwK+WzNuQOze2wXuOHZvlq//+X0U1W1y9cZu9/gG1laM4WWPt8o9ZXgh54uEue4Mhe2PFeCyr/vjpOErnefWnV5j0+wivsa46EttaKMpqLkpTkVK19MioyliVeUYgAi5tiKo1jAjrNEVaImodjn7288w+q9nZvstuf4v90jMOctJ2SpAadFZw+/o6g+EAJQVf+MqTfPHFr7A33OXNWxtMAsXiwjNcv/ohKt1gca7BubOzjL3mcFQyGv/sXOweTvj299+hkcQAGGuASnmzKC2FtZSmqj3/1mfm+fGVIbcOerx78QIvPvsow7Wb0DnF4cEOrjZCBFM5XymQNVhZnMObgvHgANIWQRER6oDfeuExnj91hLdvbfHejQ02D0ZYJ4hCxZNnF8F7lmbbxLFkth7RbcfMtCNqUXUKaRBUxyxLIREalNJoqdGBxhQ5RVZQlp5Ld4d8uDm4vxecWKzx9edm+MHljI+ufEQcac6dXOCjj/YZGbDDEqsMEOO9rTIm1UNYncKqQCiNN5L2sQVOdpdxwwwlHMe6bX79+YdYmG/w1kdrjEtJFAQcWWqyPNcgCSWNRNJt1ZlphtRjTTxVOhVU91hrVYGjaX23mGSUxjAoPWuHE4z1vPXRkP/jrx9HvHvA9f093njjp3zxpc/z7uuvkbsRw/EIFzm8rp4tJwUiEnQXGthxRtbfwWQaIRvUdMhqp8HyXI1ffu4IcRIipceagijSqDBA60r217qf5eZXFMsqppWiOppYKw9OMCkqInOWw8vv73JxYzTlmHhS47i+NuZrz3b52hMtvvfhgLfOv83TTz7N2cef5LUfXQCdMD83S64l+Clx1EssniSuWPCB8gRBRSQsE8G3Xr/FV585w+rsDPWzAQ8f6XJtd8jGQbXmW42AI0sN2vVadUBeLKjXwkqXRIrpCYUVIdYGU5Ki9diiJJtklGWKd4Lrm0OGaUmvZzi5rPjNZ7r82dsHXL78EVk+4bFHz/HRhx+wcf0DdKgJjs7QtRPsYMzepKSmFKFWxE6xomOaNYmuWd57a5utveH9Fpkqe13tg6HS06z2PcE+EApOHjtCTMFCO+Irf/0JjsyExOG0dbasunhMaTBFSTqpDh17b61HMQVpTx6doJcNjzc0f/z9f7N7/4XAgHMOgcIZS1lCKA1lmYMIKbIxV26PuX0xQEZDJgcfkwSG2U6Tz3z5b3Hpgzc5f/59HjqqmZ0RLD7R5rkTTV69VXDpygY37x4g7DYn52sQCq7v3OZXv7zCiWXFOLUcDidsXkwJguA+cxRAes+zD83xtS+cxjlPkRUYW50xPRyOmYwnpGl19vjh0DHIK0QrBYTCs7U3oVlXGGuw3jAeFbz2wS5its3hwSGh2aSeaI6feIjTz36e733zf2F3e51nHukQ+AN+7fllllqS714eEOzcxJtdmnHGE8fqrPdu0YnbfO23HqLV0GzuDDn/0Q6lbLK7t1eNQQhwnroWfO1zpziy3MGUjjwtQYWkacFolDIZT8iyjDQzbPdTjCsQSJypDp1JJymqI/E+Is8mbO6VfPCGIZ5THG5doaYzWo2YZz7764SHB/z4lZ8w15iw1A15+ITg7JF5rmynXN2asPna+7jsJouzMbV6iyvrH/PF52c4e6xDYQU6cFzd2iAKk/tg5h4R5sxSk1/9wllAUeYlReFwImQ0HDMZp6TphDQrGYwlh5MJzlUCJ8JYDvoFrbikKHK8l+TpkLcuTRjHTcb5LfzkFkkkWVpY4pkv/HU2vv9Nrl25xnOPtlidEZybWWKu5nmnL7jwwSaCK9T0kEdXY/rpFv2sw1//9VPMdUMOehkf3tgh8zEHql+VNLjHXHZ86ZkjvPT8CWwpyLIUT0JeGIbDMWmakk4yssywN5yQ2wKoZHBjBXv7faKFqCITlQWDYcZPXh+QLNbZ27xFrA6p1wLOPfEScycW+P63v4coDzl7vE6QRYSiy6SYsNOfkF78CJPeYbYtOX2qztWNyzx5ps5jJ8+iVcDljxMuXvuQWtJg3+/fHwfAYkPz6184Q5LElEVJlhWg6oxHY0ajjCxLmUxyiqKgHhl+5cku797NETJD717kudWS9f3LHGla5rRE+Km2/bT2LANPs5PQnU/YWyspRjnGlIQhrNQDOo8s8NLDM4yKHCE8jVjTbSqkliS1OkpXglHOC7yzn3qmwYlPRF0qoRKJjiJAkQ5L7uxk/ODyHoXj/msEjoeWY6JGi6tbE+rlHRbEGNku2R94WtITK4mYytp6P2Wxa41SVfq/tJJxESKabcKaZOj2iYyjTHNWul1qNcFTq01kEtIIBbVmQpyEqCC4r3Hg3SdKddXJdgJbWpyrxGmElEil8U7hDlOubo/p5wYvBB/eGeC94GtPd+nccYxyi9l8hydnhqwNLakZ0XXm/hn1+ClpU3g6CyFyLqbXz9jaGKDGIY3ZDjIOkMoRRVVrd15WRzwHQoJ1GFdpGDjvpl07/n4foJIVSe6eUJsOApQOyHpjXrt8yCvXDiuC5VSIx3u4eL3Pi492efRoQtKIeO16wWDvFkeDJs8uGHaNJxjfIGpXuiDSK5QXuNSiZiQyjJBK4pUCJxgJwVoh+JML1/mbz52mO9eh021ybDUjqlV6F8blSK3QQQgiwHlbtbj7KekPNyWPuqpdkUpBU0YSY8C5MTtDw/qgIDeeq+sTlmdbtBLFb704z8tXM27v7XKwtcZjXU/Dhqz3hjA4QMw4pJQkcVyBwnqEM47+TkbpBO3lOsePr/LMOcNPPljDmvsPERLH8W7I+qDEOFedLxBKTq60+ezTqyw14PhinTiUFZgRVcbU4vA+QGqDd4IsHfHx1oTb/Qzr4ObGhJcebTLflETi38GphWWRY4xAac0kL5lvQ1Hk5KkFUzDXinjicyfY3jMkapnZ2YR8NOb4qVmCQtNOznBsFfL+HmxuYrIJx5ZmKes9nn7xOcLoKBQZ3gtWJ+ewg9eBgCiUnDszz0/evVZJ8N7rkwWeONbhC8+d4HDoKIoCU1gmaVEdLDPKGY8znLdkRRWVSiUo8hQRB3gXon1BGEXkeUYpUtJc8dLzi7hul8mhYaYdEYcKIRPmT3T50nMdxuUcq/MFu62cZFQgAsli23P68YIjxx9FCIfLRzxVe4gPLh0ShlXNptlMePyheV6+MEDKT8YRhZJ//4snSep19vuGoigo0pJJPuJwmDIe5eRFdT53ljuE9DhvptLEAXnhmGt4xmVJkWV4m6LR/NbXT7AzDAlOzzM3F2GyjIXTHcb7E3R5nMVZhfQ9shsZMis5c3SWluvx/JfOEifP400JJufU4y9yuPYTvNAo5Tl1bIZWss0gVffBgJKSY90a/95XH6Y39pRFdn8uhmmP4TBjNMpw3pEXBUVZIpWo2LAyxEtNWabMNQRFkVPmlrL0PHq6RevkEvu7h7SSI7RadUxacvzEHOWTEadXH+fkqmF/HWp7AyIFJ6KA+VMDTj12FqUdPh8RhEtcuVMjia4gENRqCU8/ssT1H2wglZrufZWE7lcfX+LEsQX2B44yL8lzS5Yd0h9mDMc5k7Tq0c+zAuMdUnqKIiMIQgqgFRlyp8iLjIgJeRrwV75ygiF1zIlZZmdmkN5Tn6kRNut86TNdkniRVi1jvzYmHuZQm+PmaMQzL8Y0Z54DVyCLlEeee57rH72N1JXzWlpocWyhxqW7eeUbqHrn25Hmb33tLKnVjHrV6ZFVVm2X3jBlOMowzlAWBleWnFiwaDfm8XkYTzyBdLhGVUtOJ4612z2OnJgFobnXkmct7O/n9McTIl2jdaxDlhm2b+4y3+oSt9t4aUBbGvWIQGqyYozxvmpBBGxRYq2vpHOdwVtXiRiJexqFAmcrR+pyU6kIjhzff3+bvcn03IKpnoAXgC1ZjTLqc67icxSGhSao1GBSw8CBjIOKlOlFRbjKYTKeEMiAQMREzTpOQJpm3N4+JLGW+TCAkaLbatOq10nqGmuySlIXj7QO61x1rd5jnbmv4Oi9wxhHWViklCgEzlVRdmklb986rMAPsHmYsnM44cic4rkVS29gaUaHlA1QckAaGkaHGVFYRwg1TTlXWavxRDLop8T1Jgun5zlYP2R9Y51aUqdeTzh0JVILavUQFcgqt+49xkzBgHMYU1bdH74KmLwQ5MZMO0okRW4oxwXvX+/z3Q+3yew9Ud7qOgSCt6/1+Nb5A377xQ5Hm5ZfPg2FGVN3A+LFgubhFtJLxgNLGEUkUlArHeVBSd72qEZA6QWBdYzHjsWlRf5Pf/cI3/izN/nu+zd54kiX1dVlap0Qb8ArWSkZSgForLEYU+JsibWOe8JH3leExTIv8F6glK74D9PD9X5ybZ+0rEDQt9/eZPcg4zOPNDm1HPOVsxE3dgWNcIOamyBrOXM4GtIjbEi31WQmEKS2oNlqcLC9x2Dfk1MnN5DUFH/nK+c42anz+qU7bPWGDCeWx47O8F/+7Uf4ve/fIRch587MsDTfZnGmSRSIe5JxU20bO8U0lYaPsxZrCnxeYHPPT6/tVfwyIXjj8j7zzaqDa5B+Irj0bw0MGOcpCgOl4+Z6xsJCiC0tpvS4MkXX2gSh5/RDDzEeWJK6pEwzrIfCgqckK6tjFTdHMFsaVDxm4fgjyChmfXfEfDvAmox6Z47vvz7m0aMjjix1mJ1rMzMb0U9r1GttvJTMRPAff/1xbt3a4ebNnSlAqNLTpXEUxmCnQi9FaRDKkWgoywIhYTT29AcZ7aaiLD1GGkrjiZoN4maD+bkWotzAm5Ky8ICmNDmFqxTCRBSydatHNCup19ssrCwyKSXDUclSJ2Y4GZPMnOA7r77FV16cJwhqnD41y6sf9KjXG3gUzju+9vgMzzy0wFtvX6seqOnhSsY5itJOywMOOx1TrValoYuiRBrDjbsp1TGhGmMslBky6hJEiuPd42QTR73mGJUGnKdEYt2ESdmkFSkGVhEMhqi2ZPXkKeJGk62dAc0kIBQlQVLn0ppne2+bR07P0Go1ObJaZ2/iqNfbOASRtPxnv/kI42HKG299PG2/0VjnqlJHabHOTufC4jDUG1X2QBZgCsfmTsbq8YiydNjCkJclre4SSaQ4/cgZyuEtQu0YZyUOjTFgsORWEMYRd/sFqzVDFDZYOb6ERbOzM2JlpsZwPKI+/yjf/uYP+PLzczQbNY4fm6NW2ybJ6tRzg0fw+HLEX/vCWd7/YG06FxK8orDVYSnGVOl1UzqMgSBQIEtsUeCs4+6grNaSdZjCYSiwQhLVaySNebxTJGpENhoAEuNDrDFMyoiWEBgRsX84Yk6PmF+aozXb4aBfIIFuElAay27a5dYbF3nxmQWiOOL0yVmu7uxQq7cIjcNbw9/+8nFm6wlvvVnNBUJhHZTO4kpH4aoT92xZRUxVq2O1+ZSmwBuHEp44gFJAEgd4Z5EiIEHic1hf22HQL5mUgpoecvykpjcpubHf4+7GLqeOL9GdnUUGIWVmyMnxSk5ToRrjBM5U3JKqa6eqS1vvwIArC/LUMBplpGlOlhlyI7m6lXN5d3w/GzVt9AJXpc69h1gphuMU5RR56hmPCiaDirwrk5wjKGxecmNYEG9AbzDGuoJmPeaxxxJUGLC32eP23UN6k5SVesDZxYyWqaPqAcZAmEQESlVtoV5ijJ/+rcjEzroqlVsYiqIkyw1F7ilLjzMOpjXq7VF+f4/NS8skzfA2IfCeSDqySYmwliSSuBJ6paVIIVaeTlIj6+fcTvfpHZbkWcaZk5paQzC0guv9nI1rO2igUVMsLHRpRJ4kFISBJogjhqMqmxRFkkBJtKy09oW3OONJxymTcU5WWnpDw/7I8PLVXUblp3UDKqflqZQg37894DefqwOWVuTpFTmmrOr6nYaiv18wOCyZn0s4nnlCC6kzvL+/zfVigg4CHjnSZvnIXEVYTUc88/Air168yz+7cIOFjzf53CPz1JqKKElAyepY7loNIWWV6RF6SpSsVGKdsWTZhGJSMEkzTFnV2UMUH29mXN0e3eeRXNsccXp1hiTRGFsiXcFqq5KC9s4w05QEWDbvjlEolIJmKJE6obPQphaF7O0csrPfY1a3MVv7JO0uX3pohaeOtjmYTNgdTGg1IwaF4re/fIawFlYnJ6qgUl8tTSUg5X2VQZ12UZSFJR9XYmjp2FKMHe/cGbI+qA578wJubE94fy3nzJEaMvx3IDrkXcWIL1xAWQpiJRkaQ/n/a+/NQjRLzzy/39nP+c63f1/skZkRGbnvqlVLVWntltTd49YyHmMPDcN4wBh8MfhmwODxjW3whTdssJkxY7ANA7IuWlIvardKpZJUqkW1V2Vl5R4ZmRkZ67ee/V2OL050Y2M3lnFfDNb3g4SEDJKMOPmd93mf5//8/4VFmjq8cyfiPBMm8Ts4Ypcvv7RRqdnQfPo458MP9jmzXPLUhRa3DwWv3ou5cM7jwQfbnHeW+Wf/8hZffarL81cbTA2DN94dEGrF6lKbeuhydq3B5sMYx/UqW1rP4rkLSyx2AjBNDMsE7VLkgkIIskxQSEmWFWRZwTAuOUwytAalBDvDkm7dq9aUhCA3NI+GFjd+PeHEqT2uf/Qpf/CVEzSCklILZGnz8jsHFLnmX/vSHNgeP7kdcSkKGDkTavf2ubVb48237vGP/2iDXKcMCo/X39ji81fa+J7FymKdXsNhMnFJM4EFzHc7vHhttaq+LbOatwuLvMgpckEuJFkhyNKCLM95MkmJRQmlRJU2g2nJiQWHUaoohCTLLN57lLFbjjG8W+xt3uS7f3ixasVqxc4EXn1vn7n6Lt98aYm9tOS19xM+f8XnYLqNO7fGP//eA04tOnznd+c4nCo+vBWx7O9w/mQP13e4cKrD+58O8TyPQmocy+byqUUun+xUz8K0MEqHolCIoqiehVKkWUGeFUzTmJ0oqV6kSjLKwHOq1lkhCnJRchhZ/PrhlLP5hPsPPuHqSZ9TG62/tsx9/fqY3d0pxlWfxY7Nrx9lfCgV9QUHdWMf4bv88Y9v8G9/a41Wo8YkcPnlW4+4suHTbNTo9mocWwg5GBdVy7A0qYd1Xry2WoVTWRaGaVOqSrGf57L6VSiyLCcrCvaiglFStR4NQ7EzUHQbNttKUghJog1u7JY8LCa0Fx9z84P3+Te/falqV8qCXNj89O09PEPz7a+vkJUWP/go5gsXPXZ2BnTWY/7Xn+wjkyn/3r9xnIO84M624PEHD3ju8hyOZ3P6ZIufvPUE13fRSYFpuqyt9Hjh6jKGcfR9GDaiqLoyeSYppK4+F3lBUWRYZlodq0qTx5KJkASBfTTKKun2fJzS5ESi8SyPwZ2ETOQ83D1AGDZfvniOzU8HfLh3wO4kptSa+lKdBcsGBWE9wHZsMm2QJrLqUmSS3cO06k6U1UqwFtXsWpXV7dmwDfaGKaM4ZXuQ8nhckCoDN3AILRPPsgkDm0bT4+xah7KsWvGONpFDg0kiOBzE7O9nTCKBbTmELUVmm2S6ZGc/JuOQsOFR903cYUbBJgv9Nrfu7bI3muB4Js+8uMHV03MYRxoYpSuzpk9vHfCT1zfB0ASOzbGFJmVpkkxjLNPEMKp1NaE046hgc79gaz8hFeooZKxkvlXH92zarYBWrYqh/Su01gyGBYFvHrWINf1+gOdZnDYDUBajA8Xt/SH7k4xnTy/jRCbv3XrAdpzxYGeM55h87YWTfP7pZXzXwrEsHM/FtV1M2+Qvfnmb/+xfvIFlGzRch8WmS7teBSWdXF8EI6Z0a+wOD3nwJOPBfsKoKAkcG+OocLAtC9+xaIU1TBPG0ymlXqwCI8sSmWtyWcU2g4Htw2I/oBil2CPJRGqmWqEdF9OBdt3DME2kMkhHYx7tDNnaGoCULHUCvvmV01w5v0gQetiOxdbWmH/637xMUigCz6UZWpxabNNrd3CdanVaZhlSVyFMm3spt57ETFMJpkFalDiuRei61DyHg0nKT995zDMnPXo1FwwDG80oynBs42iFFHo9F8+H3XFBYIdYroXj+5SFYlIIdvOE0O1gtWrsDEd0C8XiXI+FfodzliLwDTzXRkqJ1KLSTigDkevqEqgEqqguH0IrirwgizP2xzm3tlNub48ZZ5rxUTSz75p4to3U8Nonu5w7dYovXenzX3z/b7kYUKKK1Nx8IhGFBhwKIVESrm/l7Iwt3K0hv/j5B/y93ztVrU9phSwEjXrIzt6UfmhjWX2CmsXdgWD7huD4yphz1yQyjfCcFp6reeOdPyeNDlicX8c2TErXYXmpRV7cx/c80lwwzkv+q+9dJ3Q0i/0aJ1ZamKaDUvrIzEOQ5FVrTkqFaSbU/AIpBKZp8dGdlFNLNWKtKYqcwoJffjTk/JVF/vTH7xIP9/k7XzlR/X1SYBoW9XrIm5/cofh8D8+10ZbiZ7dzpG9y5nJKqWxMnWAaCt8e8vMf/4hu1yUMAgyDKtq263DvcbV/LFXJ658O+I//x3dxbMXGaptOu0ZZWihVtUWTtEBqA44c98JaUbnCmZpRLNg/FKwvVGJDUQh2B4ob9yPChZSXX3mb5y620EoexYAW1IIaSaLYiWMwTIKayX4s+PPrOY2W5iWlEdkUz6ljm4rHt37J44d3eealLrZVGZksLjZQOsNzXYSqDvp//ie3mAtN2k2X02sdHNs5uu1pikwS5xLTtJCyROucel1W6YWWwcd3M1yjeglKqVAK3vwkpt5p8dbb9/jk+qdc23juyE2xCo9pt5q8+et7PHVmBWvOxfXgg3sp1iQk6Ed0VwSliHBtSein/PjlHxAGJt1Wo9KM+C4LCzWKT/ZwXRdRaO7uxvyn//O7WChOLLVZXmgABlJKlCyrXX1R3UmlUrhOiuNUq2+FhNsPEp4914QCpJRMi5K3rw/5/BeO8f3vv8pcvXIeU0ojC4nb8bFsl837j9DlCn7gkCnJX15PKH2HL2YClUc4RkZpKLLRDW58cJOLqx1810WbBp1eHdfTOI5DbkpKDT98fYsb9/YIPIuza33CwEUftYRFUXVXyqMDl1Jxbb0aDSgFO48ihGnS6xtVSIxhYjvVKl86PGQv1xymEmXAMFOkUvGT63fAtoi1xrVtPv/sCl/94klaNRvXsbCPPPcNywRMdAn7o4z//D/4EbuDBN82WGj5NP2q5bu81GbtzBy9fpPJJw+p+YpjjYBzjS5e4NJu12k2azTCAMM0cGyYdxPMYgdDQxYpRnv5kbdFyu445kmiWO52Ob08x/3BEEMIcBVppsmnAsOqUZoOO7sx04lgME5oNxy+83cuc+50F/evAnMMG9Oskvtsx+Of/os3OZgWOLbJf/hP/l1kNuaVH/wxnVaLIDC4dPkUuSiJDnZZnw9ojhPqtYBOu0W7XadR8zAsE88zCRxNv9jGNApKDfsPI/YnBd25AMc2sA0TwzI43I2JC8F4nJGkgoeDMcNM89HmHjefHLIbp2TKoOFb/L3fv8BTlxfxvRLbdjCs6lnYVrUD/80vnuKHP7vDKx88xiInymssCYdJLlnYMFhZnQPTY3cU0+sa+GEN0/Vo1H06nSbtZp12M8B2HRqhg1kqfvXLd6vuglkFOW1vxQgL2i0X60gcmgvJ7v4UU7tMUkGUaxo1g/mgxXCUs384ob87IawH3L83ZHNnQrft8ve/c40r5xYqa3XbxjQM5luL/MPvPMd/9M9eJVGCmgdBq07sSBaXl+jWDTY/+hDPc7Bdi6lhcHxjCcMo6bRbdFs16g2fIHDpN31efeMGL7+xySQpsEwPA4tpKnm4FRG2XHzfwixLHNfAtkoGqkQWGeGkQNkOdx/ucvvJAbrm8eSD+/S6LQ7GCYE65Eo8ptXq0Oi2kIDKcyzHqGzFpylPDjLiKKnGN6WoPreqxHRMJpMEv+YyyEv2MknQbTEf+rSaAd1WSLMesDTXYHdvyP/yp+/zJ6894tqZ1m90vv+/tCNWKGGyP1G055eJRFbFMiqDlQWLC9fmKEyPR0sOKwsNhFBIBbu3fspy0+TsiRbnzsyDUbLYD1lq2wxEzupch6We5p/8O1doBSWmyljrRlza8Al9A8tyUTi4bogGLMfENhpoJfjVp08oZcGJ+YD/+utfwvWqOVB1CEFWlBQiRwjF/mHJzl6MFFVAi8CHWp+iGKGkwjA0z12sc+3pNjKfoDtNDEqkgiKbsn/zL7mwHqLyDRqNBmWuOL3S4K3hhIbj0mtZXLjU4aUrV2gFIPKU08tjknpY/bAtB8fxsO3KatZyXQzDZ38a8/KHDxFC8I/mXH7vM8eqwCdVoiRIBXkhyIWgKAzub02r1p4qOZyWtHrzxNpA6glaKjoN+MaLCywcC7lz3eXsWru6fWmD8aP3CbwmZ47V6HZWMQyHTrPGxmLA/VHOSqdOsyb4x//gAqGjMFTOSnvKxZM2vZaJadpgujhHM0vTNrFcH0p4794BhhLUHM1/96UvMddvUGpQssoWyGWVbyGEZjJN2Xw8RAiBYTpMUovllRVSMcU2qpne+TWbM5d73HxYICc1GjUbJTWllOx+8iecXnV4eGaB5aUFDCvh+FLI5v0EQWUheuGsz/nVp2iFCl1knFkaYiUhpqmxTRfbtrGdSuhnOw7YAbFMeOWjx4hC8KWrBd/5xlrlNaBLlNRIVZIXmrwAKRQPnxQcjmKU0EQFeLUeqVFHqiFSFjRcxZef63DhYpOthz7r8261YqYMktEWShecXwtZ7p/Dtl1qNZfTq3U+3ipYmnNpBIJ/8O11bCQ2Of2w4OIJyfF5HzCxTA/HKbEsB5BYjg+Gy53dCQ92D1FC8Z9cmePZy320rgopJUuELMkKWY00pMJxCqwwxLV8TjViDNfDdqtUP8excSwH2zaY/4JAycoPRGqFEoJcZJV3vpLkWUxpQKtZ4/7OhNA1Ob0+j4GJWVb+smblMUOnHnD59CLh3oSm7zDXdFia79BsN2nNVweladq89NUNbNfFdVxsy0ZTzU6LoiCKYobjCbsHCZkZ89TGEqYbUm8r+l3BvF9DaM05baAsm04tpB86nClyhMgQpaKgoMhTUGXlPZAnlTmRuYRnmwgtyHKBG/pHb0J9JHo06XRrfPbKKvd3xoS+zfbDG3zjm1/GLF8AZVALfVrdFpbtc9m5hOu6mNZRfkMJRV4QRzGjyZSdg4jD/REvnITa/AK247FgLtGUJm7oYdgmjuNgWzbzGjJRVroVlfEZXV0YlKxCx2RRoKUk8F1qdY8bm/usLLRY6ruUGJilVZlLUmLbBl97foPH+zG1wKZX91idb9LstDl+eplm26EoNAtLG7iWQ82voqJNq7rly0IQRzHjKGYwitjfH+J5LoYTYgU1vKbN3OkuZs3F9R0s28bxXGwD5j4j0RKSQlAoiWtbGGVJX+ZIUSDzDN91Od8IWdlIuXSqx6XzC9imgYFFWVrVbdrUvPDUGs+eu8XuNKMeWKyvtDl5aolOfx4lFN3u89TrIbbr4DoeQRBgWpXbZp5lTKOU6TRjZzDFsy0+d7LNQt3EcAIsx8MtSzrHGvgtD9erElMd28B1XU6v2shMYmQJuW3iB3NcON3DNEqyPKdQivZKSNO3Ob3awSkVpiGo10PaHR/bcylNk1+88YB/+RfvY7oOrZrL0mKD9bMnsVF02026uaDXbeLYDl/3aliei+3YoEuyNCFKcuIowQtinlnvACUf3o3+r4f5/+dioJAUrsUgtWg0ugwGB9jmlLyAY4s1vKbCb5h4Xz5Du+kiiwKURCW7OLUGv/u5ORzXwzQL6qHPvcMY18pZ6iwi8yl136NUlYBlZc7ni0/PYZuVsEVrQZYX5IWk3qzjhUskwyccRhmmEqxkNm99sIvnO1BWNw+tSqQ0KLRCKQNZVK0iLRQTYWO6LbbGdYSY0LEKzK7PpVM1fDPhxaf7JHGzEgOKglIViOkWx+drzLccfM+mUBZuzeGTR0N+Z97FNQsMlRC41czYpOS5C112t6lmP0pRlppplJHlBe2540xTiyybMo5jGjY82o5488MhoCnLyt5SK5NCakRZzRplmlJkBY5Vsju1MWp97u4n6HJMEksWllwWGyaNluL3vrJBq1m1obQUlPoQG8FLzyyAYWOaGt93OcwEh4OU4/0eRTalFoSUuqpKew2Hrz67QCnFkdAoR0pNmlcbD2H3GPF4wGh8iC5S6i2Xd64f0u1UrefKr0RRlha50pWLXpGgshxVlGQmZMpnr2gg84R2IFFzHufWQwIn59qZGqud0/iuSVFUc7QiekQraPCNLyxQq9mUwiGse1x/MuHKGjQCgRYpNd9AyWoOeHG9RdsWlTBSa0otSRJBkRd0+n0S1SQZPiSKElxDMx4nvPH+fnULxEQpXWlRVInWJlJJRB4jsxxKzX5k4oYd7g4tlCyZTgRzKz7n5mvU3ZjffeEEDprySHtQipg8Ulw+3ULIKobVth1yE7Z2Rzx/KUCJhJrvYGiJVBB4Jl9+ep5oEqGVxDAqR7YkFohC0OyvMZ2kRMkAkcX0A5sbd4doXfkgG6VRidl0VRBoDYZt8vzvvEi900MrhTE3ohCCoihQOJUxjlF1R7SpkXlKko/JsrRa0y0NkjhG5oo8qzILRqnCxkIVOR/fugmyGgGp0qRU1UaPKkuev3aMby51sUwTP6hTn1vE8lsUsnKOFEVBnmXESUEcj4ijlChOUNpn/2DK3uGIJ9uPyaYRL3zuPF/5w69hewFpkuDEEVJWa5SqPJqHH5lNyWiKsAykUMjCANMkzqqirkiocjscB9f1eDJMePjkEbJQ2Gb1/0BqhVIltuPy9ZfO4YU+hgmeH6JUxLUXvohWlQOnKAqKLGeSZSTDKVGUEkUpUprsHcTsH454sr1NFscYpsUXX/gu3YunsWwPdzomTYujNjJoKm8GExNbCLwiI4pGZGmKS4kS1UhUaIOsKEkSk7R00BIeHQzR2fZfC+fUkVZElSW1MOTf/0dfrg4516HVX8RpziHLSghbFAWiEIgsZ5BmRPsRUZQictjZHXMwjnj8+CHZNAXT5PypOZoXXsTvLVBiYJ8eH/2sFRoL0zKxTBMlCvI0wsyPijNRFTFGkmCKAmVYTDUE3YBeq87jScHBq5u4RrW9I6kuTNpQzC90+fvffRYMC8f3aC0u49S7qLKy8BZFgSwq47dJmrF9OKjE5hPBzv6Q3b0BB7t7ZHFBvVGjH/pMrRaty1/BbfZoSUUzjlCq0qQZR1oByzCoKYkoUtI4Ik1jVktFmqZoWVCkGXkh8TwPMNma5NTdSsCpxxP042kVYqY0o0nEH/1bL+H5NmEjpLd4HDvsIHWJPFrPFkKS54JpljPdnZIkgv39CYNRzIOtbSajMRgW/YZLnmT89I3Hf/vFQDwtKW0o0gI7uoEjNYUNRWExHaYUJNTqddZO9DEMXb08VOUFbRDgB9U6j2naOJaJ51pEoxgLTZEJtCyxLRP7aB3EtnzsYAHDMJFFysHBmCxJcBwHahmepXlmo8eprsFXL3ZZ7Jm4YYDSBlKW5IVkPE6I4hjHD5goxYMIbMtga6RYcA55tLNHt2eSS5c0kwiZYnoJ7W6PXqdBiUDIKv2vNE0su45fphilg2V51HynMkXJMpTQZEmOY5vYBpi6xMSgVl9BlzZgkqYJBwcT4mhKo50hlcdq22d1uc/vXGhy6XiTTtfGsF2k1JUGIJfs7Y6wfRflwF5ucTjS1NsmeyPJhnebR1NJWTPIhUE0yclVTK1ZZ3WlVYVoCIlSJZY2oHTwAg8lJQY2tm3huQbjSYKlFDJXZKQ4lsVfhdLYpokVrh2pjyXjcUQSp2AWhH5OqTXPrXdYDJr8/tUex5YsgmaIKkFKTV4I4qRgcDDCa4QkpeTB2EJkBdNcExoRYu86Yd2mKCDPJWoQUdoh3YUaaye6lGUlotSqmgtbVkjNzzBxMCyJ7zoYJtW/S5QUWSVYswwDmxLbKAlqXbDqYFjILGU4jMiSpCpOCOgGFqcW+zx7wuezpxr0umC5PloZCFn54R/uT5BGCa7DQJlsjaERGjw80Cw3t7i9pwk6JkI4JLEgEzF+PWW+18SyreogkRpDlaAtHKeGQYaJi2Xa+K5DFKcgBSJT5HaGc5T4aQGOCUFjA6UFllYkUXK0uhkTtDK0llxeadJ1fP7wqQ7rSx71jktpmFWHplDkmWBv5xC30SBX8MMf/Yqg0yWZTml2l5lbOk63v8r773/Ir15/tcrFmESkuUAphW1YNJt1Fpf6PP/cFynNnK2du9zffEI0jVBSACWOKjje9ZgkGVfPL9EKXQxD83C3IFGKWrdLeZBS6BLTt5g3TFKR8vGNT3n4YIu8yBiMxkgpSZOMWhBw7crT/N3v/l1ef/1NJvFNlhY0ZicimuZ87/s/p9VrMxqOWD5xnv78Enkh+N9+8hfs7WwTTRIm0wghFVppan5Af67F2XMXWTt+iUePbvJga8De3h5KCAzDIE2nnOp7gMHG2gKdWuWEOIkERhgSxBpbKHKtsT1JxzIR+wU3bt/lweYDsjxlMBxTFDlxklILAj5z9Tm+8+1/nVdf/QWTZJPFeUUpI06fCLi/+Zjrdw9wfY+8KFlc3aA/t8Tm1hY/e/VloklUrbgm1bMwDYN6o87SUo9nn3mBNB7xYPMeW5u7pGmGaRpoUTBX0yAF7UaD86c6WCYkWcmD3YSLF5tMYoWRapRtkLkuZaS4ef8Om/fvkyQZg+EAIQTRNMH3PZ59+gX+4Pe/xU/+8mXG2WPmuhllPeNzVzucP7fKK699ih1ukyQJtWaPTn+VemOB115/jXt3bjCdpkwmMaIQaFXieR69fovLV67QaqyyefcGDza3iaKkEtGpgpYDbbek2ayzvtTAtk3SXDNMJE6jjWlbRx4CJjoKyEYFt+/c5cmTHcbTiDiKGI3GGKaN59T4oz/6h6yu17nzgx8QBF2W+oLmiZJvffMsf/6XN7izD+Zrt6i1ugwGQzoLx+h050kywc9/8Qrj4bAKk4tT1NHKYqMecuLYMic3zrD96C4Pt7YZDsZHnisaX2cc79UpVMn5420syyAvSu5tTzl1do2W30RqSVTUMJMa472E27dvMzgcMBqPSbKcweEIx/M4e+Yy3/rD7/KzV14lzrYqzUO3xR98bZ3RMOaPf3qPz17s88vrm3+7xYDfsBmlmparaHuCxIKh6SCVJh6mSMsjbabYvoVtl2hd3cpMU1HvnqUsJ0wONjEsXRmXmBZRrpgOJ6TTKX6tQelYlKWqrDrzAuUrRF5VdItzPs3QQRQCy0upeS4bSy7f+uw8rZqN5biVHrqUlFrjGIpmaBMGdYSEQjs0eyHpaMzhRHJxwSQuNDUXDMcgHkW4rofXiHE8H9f3qgNIaEqpsR2b1urzjLZ+hSySSt1pWGBWEZjR4BAvDCgdh9KysFEooSiyHBWCyHUVJnG8ya37e8g8wygdlrs1njse8uIzKxi6xHFMVKkxS4FVKjyrZGG+Uc38pWYoXRpdnzjLMbWgF5hEmSZyLEoTpgcxnrKJpwlu4OC6RmVtfGQw49eXCdrzjLbfO7J5tjBNm0LBZDIlHo+otZqUtguGxMSoxF1IilwglaRRs+h3AvYGKaVMcG2btfkGX7vc4NRS42i2WsJR1r1jaELPwF1oInWJgUO9FRKpgoMDxVxdk2pwfUgtmywtsNISM5ji10Jcv7IsrboMJaZZ0l58iunhdfJ4iGUqDLMS9oxjQTQa0uy1KD2/KmqMKkq0yAp8P6TIU/K84MRySOA7iCyjdHN6zRrnjwf8/gsrWKbGtm1Aoaisa12zpNv1kRqkKImVQ2uuRhFFJEnB3IrDflSCA9gG04MItwlxFKFx8Xy7+lwIhaEVrl2nvfQ0Bw9+hSwyMMC2DUQJw1FGPBpU7VjHoTSrl4ksBIXMkEcaHsvQrCzWGE4SdJFgWR5ri02eO25z9UIfKLEs4yhBrXoW2CWLi22khklc8MabH+G02pQYzPU14WaMkAVvvfMmuwc79Bseh4MYwzB57tIC7U5It9NhZfUEx5bbGGXOuaUrJFeXOdjf4+23bzLVNr1QkkSSayd8vv3NSzTrAdE057/871/h/jBnHOUszdexwzrSq7MbJRzs73L39kfEoz0agcW8b9DteyzOL7E43+DkmQU8dRe98zIbvdPk3ZMcHNxnrguv/uJdugt9Smx2D11qwS4PHz/kzXfewDU1vgVPBimnjnc5dbJPu91kYXGeE+trNMOQ9f55nrt4jOnkkHd+/RHTwsG0a0SDiJPtGl97dpW1E32UMvhv/4ef8cnHT+i0AubmQvxWC+ms0Eolg8NNbt78gPHBDg3fpu1Dp++wsrDI4kKT9bOL+OoO7L/C6cWrTNoB8eQRn3tqnu/96EMOY5Ow2aBW67KzY2GYW7z/8bvcvn+HXmAxjVKktnn+8gLdTp1Ot8Pq8TWOrfRA+1xZ7zGdrvHg/n3u3R8yzTIsI6Xvt3n2TJeXXjiLbVn88Y/f51dPhgwmKYtzNZrzPTI6tBLBdPqIT258wHj/MaFnUPNhpeWwfGaBlcUWGxfmcfJPMQ9f48Lxz/HIU5iMuXp1hfEw4od/9jat/jyGaTO/oKg3FNPoY37+2k/J0oiWb/H4MOLMsQ4bax1a7RZLyytsnFqn5tpcWA5JPrPG/t4e7713j4mU1BxBgMnltQZf/9plbMviez94n09vP+Lh7pCl+SZ+q410lmmMc/b3d7h1812K6SFhYFHzLK4eD1hZ6rK81OP8cYNbH77MnD1gbv0z3LuV8cXP9ui3fa6cXeV/+v6v+fjWFvNLy+jSZnHZohZOuXPvDu+89yZNrySKM3Rp8cyFBTqdkP78AqdOn2FhfpXzq02SK+uMDvd5961PmEqoOQWl0Dy13uQPvnEJx7b54Z+9x8H+hNH0U9YP5zBrAUboExxmbG3e5f6d9zFVRiMwaYcW5y+2WV1sc+rsCnU2sYdvcu3UF7izWbDSNzm70WE8DvF/fp/1xe5vdL7/RsXAX5mBFEKxtSfoBZU1sRAGWWkQJQpbC7JJhnMwxvEknmdV60y5wLEE6vHHmJZFNp1iWZrxJCPLcqZpwfbelPlxTFaUuJ6PWWaoQhEnU+LkNioNKYSJFgrLtBCqCrWYZoKPNhN836FZ8yiNKmu9PNqf1f+H2EdVgmFkuF5OlJeMJjn2sguqpMhNNAWplhQK1ChGaIOgFlRrfhoQOYUco+6+jUgmqCKGUjM+Eno8OUw4OJziNqu1GMexQaZkSc54EEMZMrVdEmHgmgaO5aBkgUJxbzchKEukNcS1OMq3tdBS/7UxkT7K1JalxvMzpBQ8GkhCSyKliSxKcg3TqKCmBVmc4xzEeJ7CCwIMDLTIMVHI3bs40YBsMsU0FMm0SnVM85yHOzHro4hCW7iewDZKdFEQJzH54FNKUUdIgzQzsI3KkIRSkouS9x9E2FbJzZ3yyDCmPNqLVWjDQGMBVYKcRhL4OYnUPD4ouLpsEicGRQYJmiQAw9BkowzDGOPVBI5tokqDskhxnJLH995BqQiRTLBszWiSIITkMFfs7ceE/RTXFbiejyFTRC6YjqcIMSGPAxJRVqYnmGgtMbRkZ5TykZHj/7oSCaGqdqDSujKUqfzkKFGUGmwnwTQFh3GVUYAyULJE55ULmGsI8jjBPIyoJRq/FlbmNEph6hyp95H33yWdjkELZJExniYUUvJoL2E4jNC2V83LbYtSZERRzGR8iCmbYFhMRBWOY1t2tXssJB89iCmlw0FuYB51d0qqFn159HtN1boXSvOZa8do9UKUliiV0Jpbo9Hw2Viz+NEP/4z5/hIO27z0hQ3OHguwTEUtDOksz7GwdoLND3+ILibUaz7hcYvBnsmnt4bs5h6rCw22JyO04ZNKE8PzSAwLt1QYyQjP0BzsDcj1NnfuT3Askwun5+ifmWd+oUW318W1FG4YYpkOzX6X1sJxnn7+HL9+/WN6/hzeYoNmE770Yg3XK5GixHIF3fkuV67M0Q4O+PjmNt3QZWWp5Otf2iCwUvxajXq9xtrVswx3PmW8/QGebVNfaPKZK01+8Yu7xMqiPTfHk/0dcjMgUy4YJX67S37nANPP8GyIBjFC7/PO6z/F0CVnNuZYWOuxsNii0+vhWRIvrGNbDs25Fq2FdZ7/wkXefP1Dlut9Jm6bVJqcON7hWr8HhkTKklrTo9Xtcu7MC/zpjw4w7Sa7T57w/LMbXFwLKhvksE5/dZn2Uo+tD1/H1AWdZkjtdMjh9iZ5XKC8BkLlJKVLhoOhodnrcjC+zmlf4qCJD2MKuc3H77xJkggunF3m2WNdFpY6tHsdXFfj+3Usy6Q916HeOs5nXzjHm6+/xsn5PpHqkhYGeZ7xzLVjLB3ro7VE65TmXJNmc4HF3oif/uxtFvt9Fvtjfu+rZ//6WYStkPVLG2zf/iUi2SIMHMITDuNdzc27E7IypNEwybSLNKpY7d58m4PxdRxSvAWTaBCRqie8/frLeJbJ+dOLLF9ZpTffotlq4jvg+gGO49JaXGEt3yBP93j48C1OHutg2HXiRLK02OTUiSZnLq3R7jWQQmPamvZCj8sXWrScbfYGkslgwPPPrHNm1cOyS2r1GscvnkLkEwb33yW0LRqrIWIc8N77j4lEwGIvYJyVFIaP0hB0OoySm5wMFTZDosMBye4297cmdLsNPneuxeLSIt1+i5pv4/k+jm3Tne/RmF/j8y+d563Xf8G5Y31w2sSpxnEN1ld7KIL/0zn+N2GU/09fATx69Ihjx479JnXDjBkzZsyYMeNfMR4+fMjq6urf+Oe/UTGgtWZ7e5tGo/F/m640Y8aMGTNmzPhXj7IsmU6nLC8vY5rm3/h1v1ExMGPGjBkzZsz4/y9/c5kwY8aMGTNmzPitYFYMzJgxY8aMGb/lzIqBGTNmzJgx47ecWTEwY8aMGTNm/JYzKwZmzJgxY8aM33JmxcCMGTNmzJjxW86sGJgxY8aMGTN+y/nfAXFWHbI/wQj0AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_4/1720425300_tango_video2audio_clip4clip_4_best_steps_300_guidance_3.0_sampleRate_16000_augment/0 (3).wav\"\n", + "show_mel(file, save_name=\"ood_0_wav.pdf\")\n", + "show_video_frames(\"../data/foleycrafter/0 (3).mp4\", save_name=\"ood_0_video.pdf\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_2189924/99652230.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAA9CAYAAAAwNGqjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvz0lEQVR4nOz957OlWXbeif22ed2x17v0viqzTHd1daM9bAMgQXAw4gwRDFIjKRT6Y/RVoQg5hjQxw5gRKVFkcEgGSTRBmAHQBl2orupyXZU+r3fHv24bfdjvybzluoERqfmAXBE3zrl5MjLP8+691172WcJ773kuz+W5PJfn8lyey19bkf9zf4Hn8lyey3N5Ls/lufzPK8+NgefyXJ7Lc3kuz+WvuTw3Bp7Lc3kuz+W5PJe/5vLcGHguz+W5PJfn8lz+mstzY+C5PJfn8lyey3P5ay7PjYHn8lyey3N5Ls/lr7k8Nwaey3N5Ls/luTyXv+by3Bh4Ls/luTyX5/Jc/pqL/sv8JeccOzs7dLtdhBD/qb/Tc3kuz+W5PJfn8lz+I4j3nvF4zNbWFlJ+vv//lzIGdnZ2uHDhwn+0L/dcnstzeS7P5bk8l///yePHjzl//vznfv6XMga63e7HfheE/IJuXhUgBUgfPhNSICWgJAKNlhqpIpAxKIUWCUorlE7RSUqWdem0eySdHnHSJsnayCRD6i5ECnQCKkEKjcstvY0l2mtLVNOSfHuIWIzpv7xA/vYhfn+IrwtkDRKDcICwCO/D93MGfIV3FryjNhX/+A/+IafTU2jwiAabaLBFZ3ALCUKAUBKEQssYKVXAqjRKaZRsIXVGFKdkaZtWp0vW6REnHdK0g05SiDoQxaBj0AlCRfiZpb2yQG99mboy5E8G+EzRe22J6qMT3KMxoqzB1EhvEd422EA6iXAWqAM25/DO8E//5P/B7umTp9iYr9cnXgUBlxQCKQReKqTKkEqA1AilUNqjRR+pY6IkJU3bZJ0urXafNGmTpB100kJE7YAt0qBSpE7xU0ey1KG/sYy1jtmTU1CK7uuL1DtjzEenyKJGGAPeorwBbNhrTgIGqMF6vHMIa/nXf/6Pubv3/lNsvlm3aI7nE9iEFCghQMYomSCkxEmF1JJIaKRsIaOMKIlIshZZu0ur0yNNOiRJmyjNEFEbEWX4KA57Ukcw8+hui4VzK3gks+0TnPV0XlvGD3PK94/QRY2oanAeSQXCggflZdiTWLz3YB04yx//5F/x1v0ffuzczc/cJ9cNCVKBEgLhFUKkSKXwWiBFjFIxQiYolaHThCjNaLfbdNp94rRLmnXQSYyM2xC1EDpG6PDq8xqZZixeWAYdk+8eY3NH69UltLHkb++jihJRhvMkfQ04BA7lFMI78BbnCwQOHPzowz/mT979/adnbb5O8x+tQOjmrMWgIoHQErxGuAiJwPsULSRKSYSMESpBRRlJ3KLd7pG1uyRJlyRpE6cZIm4jdAZRFtYtSvCFAR2zdHEZmabkeyeYkSW93SfNNNO/2EHNCqgt3jmkN+HcYRFehu/vLN4Z8DXSed7b/hH/9kf/8imu+Trpub5UIBRIDSISiKiF0PMzHCN8hhQOJWKEiBBKIqVGRS2iODmDrUeStEnSFiJuQ5QhdPoUG7XFo1m8uIJqtSgOT6hPa5JrPVrLKZM3d1DjHKqgG5WrwTugfvrdhXN4W4dz5xTbB/f453/23zQnLWCb/8SAVAqURWhQWqCjFB8J8CLoJ6ERUqJIQcZooREiCfdAnNHKMrJ2n6y1QBx3idMYnbQDHt1CygyvNB6Brx29Syuk3YzqcExxMiU93ye+3KJ8YxsxqBGVwfsaYQHvmnUD5S3SG7BBhzoMR8N9/skf/UOsMx/TkaLRJ1pKhHJIDVILdBzhtUY4j/ASZIRQAikyBCmaCCkVssGWZW3SVpesvUASdUmytNGVDTaV4mUMQuIKQ+/iMuliG3M8Iz8cEa92yF5cpHxzF45yRFXjfRXUiPeARTmLxCK8QzqQWJxzFOWY/8u/+d9/6h7/pPyljIFPpgY84AjqOWwKgfJz5eSRziMceCuQ0uOkRdoIIYHI45RBWYXyjtobKlMwLj1qUqPTKVnaIe306LQdabtFrGIiHMp6ZF7iHp0wHdes/+YN/KU+s67FvHvMbH+EtI62kWjngqL0FuEsChe+GyCQOG/BW6QzH8Pmmg1QP8UGBtEYBx5cwOlduGCcskghwTqkEthIoVQwjIyrqWzJuPbIaU2U5LTSGWmrR6sTsCVKE+EQxqHzArF9ymRYsvobt1i+0mcgS9TelOnDAVhLx3oi5xHeIUS4FJUXCO/wgPQCvMN7g2su07PY5usnmvWTZ7BJD9I3nzqB8hXSBc0sI4ND41SNtBpTGipbMaknyIklSmZk6Yys1afVtmTtNrHsEiuBtA5dlrBrmA1yln71Fqs3F9ifzojLitO7J/ja0HWOyAUlJIVHeIt2AnBY4Zq1s3hvwsWD/xQ2w1xViadGHQ02ZT1WeHAVWjmEU3iZIr3DyxilDdJUWCGpnGFaTZBTT5QUpMmUrNWj1XZkHU8iFbEUSOdQZYUoDPmwoP/tG6y9eIXtgxHtRLL3/hG2NLStIXEe6SwIj3AWiUI0o0GEF+DrgMALlPdPMZ3F6HimgKMzH0gXLk/pFUp4pDM4GyGlQyuB0g4rKkylKF1FUQlOJ6DTijSdkrXatDqOVkeQZIpEgfAGVdaImaEYl3S/epX1X7vC9qMhCysxe//+PnVhyKwl8w7pXPPkHcqFV4EDb7DeNu89qsE8xxdWWGDwKMBYgbQ+OBUWhPdEzuHxCKdBGoSXOKFQLkbqoOhr76hMRV5NEVOLjivSZEbW6tDqOLI2JEKTyBjpa2RdIycV5bSi9YWLXPq1K+x8NGDpfMbed+9RzWoS62hZF84bDolFOh+wSt+cO4f3HunrZr+GPejPrJlt9Ii0IK1HGRBGgDMoZ54aDsFwTVD44GAJEN5hqKmspKhmiKlDJRVJPKXV6tFqW1ptT9JSxDJGeYOsDTIvqd6vSV84x4VfuczhRyO6l1IO//0DynGFto6OC3gEwZAT3oXLTQTMXli8B+kNERYvYD7NZq4rZVhZhBUIK1DGIyOP9QXCxwivg+7EBh2JR0qPFwIhDcYZSltQ1B5ZeNS4Io6ntFotWu2SdrtLlil0LJFaQG2Q0xr3gaG6vMrqr2wyvjclupAw/MMH1Kc50npa1oIVzdoJJALpPQKB8BKBQXjACxIPCPFUo9jmRzTYagfSiXAHGTDehLX0jYslXfNvehQCL13jfFZUVlHUElE41NgQx7MGWzf8tDQq1milwNaovMB/ZCg3llj9jfNUT7q49YjZD3YoD6cIa2k7A1aAcwjR6DcE0gds3pugy71/iunnpfj/UsbAZ4lvHlZ4cCJs9Oa/nXss3nuEDUpYYFGqQniFVAIlLVKZsIGcRiCJKJDWM6scMq9hMMVHLS4vFqwvL4HQ+NgifEU9qth/sszd41PqAtLhlLitOH/jPNm4xDw6wY1OkVWBMHOr1zen1CF8jXcGX5fPdvcZbPM/mRs9dXO5BIMiWLvCg3ACKQxSqKCUnEGpGKUcKI/wNdILlJcoA2VpYVYjRlNM1OZcP+fCygoojVAOL2rcpORo+4SHsxHTsaM9KVGZ4vz1LdqFwTw6xp6eIusZWIP188vcNxGBCrx9Gv34rLX7+KZ/ZumHIxOwSeOROJRwQTlrIKqRSiKlQFiF8gLlBKV1lJVjkDvkOMfqNqudKVfX1yDSGGGR2mNnOYOdE36iSk6Parp5jYgE526eo+Md5tEJ5jismzQV1jeXpxcI58BVCG/wBI/zs7CdNe/C+4BKEYw0vMK4oMS8BKEtWpQIp5DKI22F1BJhPdJJlHUUpWVYgBzX2GhMrz3i1uYaKk7C99MOW+SMdo/5aAb7Ozn92oL0rL+wTjdS+McnVIcn6LIMexKHRwSDwAXD1PsKj8R/xrrN9+P8yjUNYhHUD9IJBAblFaIxopTwGGURViEa4044ibIC7YJyLI1lVDrkxGLjKa0s48WNNaI0AwEisbgiZ7x7xGM5YfvRmN49cN6ydnWFTi9Gbh9T7Q4QZYkyNd5bfHOxSGdQvmyMVN9EsD5vP853IOG7VsH7qqOAWVAihQIMQoDCIrVAKkBapLJIW6KcRFpJWTlGpUVOamw8JU0GvLixTJy1UF7h04BtsnfEYc/y4MkpvScCW1csX1hgZaWD3j2m3BngyynUFcJZnPfhmzqHsHOjoAT76T151iAQcz3iPKoiRMFsOH3SgxIeIUqErJHSgYtRIkJIi5AGqUuklwgnKWrHuHKoaYXXOVE84ubmAq12G+V0g61gehBz94nm7u4xrW2Jm+X01zucP7dIsn9M8XgAxRRnK5Qz4CXK00R1GgPBeYStzqASgH96D9igFQNCB6oCaTWq9kiaC7iJzglpEaJCKY+QEiEEQnmkA+UFeMitJ68Mx3kJJyNEOuDm6iq9TgfpNT4poaywh4rHOwl3907JnkjsMKe7HHPl4gbJ0ZTZk2P8bICqDMo58DIYBL7CexPWz4MyjWFwZk/SIJwbPQJQTjbRAFCRDfoEhRQOIX1YI5EjVYjKCelDxMCK5hkKSuPIK8dxXiJOR5CccnV5leV+L7hmcQl1hT2BvZ0OH+2doB9KxOGUbEFy5comrdOC2aNj3OwUVdZoaxFeNMaJhXmkx9dIk3+mLvmk/E82Bj4uQak1Qd0zHk3Y+gYN2ObQSITxSFmgpEdqETaZg8gahLZQW6wGKSFJPLatkDbCqZjHPUfhHOdHNYM//zH3vKXfbtFZWac+OWXn8RMmzrLQgoVYslDEyN0Zoi4R+CZa4MNF4i3CFPApH+yT4nFP/WnZmD2iUcIyGAVeIioQ0iFUiVIgZIKwFcJKlPEo5Zlpj9NAGTIEJhUIG+NFwm5fMMRwbhQzeeNtPlKOVprQXd3EjsbsP9nmgfBkqWdxVbFYxsi9HF/W4aBhoIkaeO+CYvqMC/PT2ESziqJZsxDcfPqbtwgTByvbWqSskEohouANaNOEPpXARiBKh4wcC5FB2gwvFId9zaGs2BrHtH78Dh9lAqUVvZVzCFlzuLPDtvZEkWNlRdKvYtRega9mzUXuQ9jSm8a+MfCJqM4ncfFsxQl+qeKMOg7mgbNQKbQQYCukckiVIk0NFpSRyCgYdr5SCO1QkaEla6RpIUTJaTdmR1dsjGMW3vmAj3qKGk9nZYtIao7399hPJFIZ1lYUvToiPihxkymCoJwUvgk3N0arrX8GNnFm3cJ70Zw/gTpjuIpgRJmgiKSTSO2RUY3QBuWCl4MGHwHKIyNL7GukaSPrikkr5UFSsCpjVj68z4fHkqmxpMtbZIsJpycHnOYS42rWlhX9WqKOwQ6nwQFAIrzH+6oxut3nYJufL57uRzvXKkZS27CWKljgIMrGUxdIo5HKI5RH6DpctFYh6oDJ1/4pNtEuwaQoYynSjHtpzqKKWX/0mI9mOxyVhmhpnc5Kxmh4xMQMKeuStWVBv1akpxJ3PEXg0GgkJjgVPsQ2hCs/d82C0fPUTwuRuVpQz40BZAjzSokUAqTBK40SFUJbvAreqTYaUXuILFTglUNpSzcroNbI2lEnbe62cjqRZnN/j0c/OuJJXrO1uMLiepfpySn3dybMqpKVJUHfKFpDhT+cgPcINJIahwmROAfYz8f2DFnA6bxEGBV0Pjbs0SYSIIRACBkuSm0R0iKlRxqHMgZMDlGIHtjKoxQkxuP7KdIIbJLxoJWjCs+5Qcne9094mHs2ltosnVtjdnTEvZ1tytrRWxD0Ohm9UYk/PGkiASESInzQIR7wtjqzNp/ENjdYxdPXgG0efwzRYSElCINEIaVGKhvSx1IgoxppZbhvIhDKY+sEpSCuwXXGyFrhkoRHnRJTO84PSgbfG3K/gtWFlNWtTYrjUx7u7FAaR2cBeu2UhYnE758Efegbo8wHF9Z7jzPVZ+D6tPxHMgbmj2vuO88fmXp6sJ9mYZwKv1oFeJSxiMiCr5BW4qMQzpCRItOSSDhcJfF1hs0LsmGJ2Njk9OIW4537TKYV1pT0sy5p4Rg83mWzrhDC0CotzhE8LlGGS84LhG/ys86GB/Uzpzh/MrTyLJQ0R3lWkQU3wENdh7ynE0hbI5QFrXHSoOKKNBa0MPgKfN3CVRXJsKS9usL48kWGjx4wnhYU5ZR+q0evsBzt77JVV0hvSWuLb/LLEMJ5Dof0DlyI5Xlrfw62s/jmWfdnaxUuT4dFPQNc64BaWYSVCFUjawFa4pRG2ZokEvSdQZQWV0/wRhENK9orfaaXL7N//z6TQY3TNf1Wj+VScrS3y2ZdklhLaizCgGvqBjxghUE6G2pAvG+s3p8D7Sm2kJWex63Cqz6zbg7rPRgFxiBUjtACrECqGmEdXmmkLkliT+YtsrRQz7BWo04H9JY61Jdvcu/BIybDGTklvVaPdZtwsnvAelWQWoN2FRiP8aCMBxFCr67Zj+HLuc+M6Hwa0zOZx3b80yz13N9ukl4OqJowtfNgNGiD1BXOhEhBHAk63qNKg69nWB/BYESvH2MuX+Oj7UNGoxHjuqTb6tASXU72TlgpZ/RNjaJGVhXGq+BhYnHSNREdnoZkcT/PQD2LK5jh+GCIWz838FTARQS2RCqHUIBNwFikqkAFw1vWEMeSrgOtLb7OscLjBxN6XYm7dJl7asxgfMowL2inKR27wOh4SO/xlLW6QskaXVZYNMo6EA5HiBKEVCTBSPlLGKhnV8whGp3o8Xgsz6I64HDCIFSNsAqvm4tFKIQ2uNoiFcQxtL1DqQpXt7GlwI5m9DKPu3iLh7HldHzAcFqSRpqeiJgNJvBkyEZV45UhLmusD1EwIRwO1eTTy2B7eQ+fa+g8M3CCHnHNXgTvNQIXEkBePNP/hGco6gyha5jXR+gKaTS+CnVYOo7JopJYgCsLbKHwkwnZsKa6cIlHnZjJ6TGTyYxjWdORbeyopn68y1ZV46Qlyz21CM4mwuC9bHZVjXfhirf28y7Ms2tGc74AFM7PjXGN9RLcPNETDPpgDIQNKIxAKoPUAmdqUI4olqRaECPwVY4rI/xsTDKo8VtbbF9aYHZwwHQyQ7qETtRBTQynj/Y5X9dYaWjnDotDWxfqkJzEe48XoX4ML2iszZ8r/z8YA+IT78/+KOYZJfFU+ULYKGe/mMLaJrDrQ54aZ1CyRAlPIh3KJvhSYKYDSqcpK8HSo2MeFpKHg5y8qIlLxSO7w9JCn0vUdCc5GhNyYM7jMMHDEBqHDMUjGBAWQcGnb5WzCveTyneubOfZW33m753NFCq8qfBO4qwAGUGUI7RBC0ssLZGMoZCY6QDjEya1Z7k44kmVcH80Iy8qOtqz7baZLixyQTp64xmRdUSibg6rBSRSAATPWfigLsXcy/zMtZsf3PnvnmelTu7MZ/OStY+vs7cG7wVYsNaCJRQOCUMkDFrEUCrsbIxFM6o8K4+H7NVPuDcpyIualJo9v8NscYlzESyeTImMIxLhMvTYxrcXTci0KU7zgJUNvk+u2bO99XHlNP/8bNZd8Ww/zp+BxFuJtx6UafR0jIgKlIDIulArUGvMdIoTmkENS9sjju1DHswKZkWOsjVHbo9icYn1VLF8PENbg5LzC0Q1HgogwuGVrgmjCz7HGDi7bvP3lo+fu+gMvvlnNO8VzoaiorB1DWiJiAxKCLR0JMIhqxBK9rJmYDwLs5qRfcST2jHJc6hLTv0BZd+w2pKsnEyJaocSBcLVT3OnAg+qxjmJaiJxeIF3nxf1OLsn1Wd8Hn0iEdmIlzjjwRbB4pAZVlWgJMQ1KhZExpKIGlVmuNkEYyoGtaQzlZTmIdtEjPIZpiiYcMK9nmO1FbF+NCOuXLNuZVPbQcjTCsLvTR2LaGqlPi3yzOvZCwOelRbap4acP6tLvccb8Dbkyr1UONmEFSMQsUYZT4RFSY+bTbHOMjaSZALePOZR3OZ4mlPnBTmCeyWstDRrRwVpbpGyDvUqoslBM6+tCjUSeNcU7XJGnfhPYHoWOX32efh9HjH4lNHgHd4WYauLCYhFrPYQOdAGHUu0mZEoiTY1NtdYZci9RI4UPXPA3U6b/fGYMq+pveCRPWKl3ebKUUVrWqBkibAK6V3zzYKxI+eGlm2euvukMfBJJ+nsmZs7gWdLKOfn79ld4KwKBcGiBAVWCbASfImMYhJRkIiayFjcTGJiT+UltpIsVsfcXzI8GY4oCkNmPU/8Icu9BS67mva0QMkCTHBu5+dNiOa7zo1UAcr/J40MBOCd/iZXXniN05MjhifHVLMRpprhrMFj8UQ8uzjnvQeOoLDmF5Vv9HHz3jukrolNaCSQ1uMqjatLhPTIbouDuqQ9PSXyhtSXLI8Ed4dj3MEe56UBVzOOQzVlv7BENmxwpHkWQhHNA3Iln04TSJLWCtdf/irjwYDBySHldISppjhjmsjHvGZ9Xso1NwLO9h6oxsCxoH2oyheeyAhiBUooXFliyxwnPbrdZreqSMaHxNZiXMHKRPBoPKM8OOCcChfiRAPS0K0cqWmscBEiBKJRut4rcNFnZEAUUdznxsvfIJ/NOD7cpZyNAzYbwp3+qVFwtm59fiDmr1Hz7yvwcbDyRUlUe2LpkUJiqwJTTHEyIW5n7FSGZHRMhsO4krXCsTs7YHp4yJaSYEumCqx29CpC9AMTPBULogl7SacRlJ9IgYS1UKrH9Ze+gjGWo8MdyukEU01wxuB8xbPLMuJZdMDxzDA4Y/zY5uFZi1AV2noiJ8BbbF1jywKvEuJOxm5pSEcntJSiNiUrpeFk74jh4RGrscDZmkI6al3TqiXtusDNz4DwTR4zFNh5WeP9Jy9MiRAtrt3+BYSMODrcJp+MA7a6xvm5wfNJQ/WsEms+9xJsc96ERcgKZRyxAqEU1tTYMkfqmKSTclA7kvGAThxRVSW9uqTYP+bJ0QlLicTaEi8cRVzRriTtqm68QYFzNcKmCOeBCoQBX3wKGyLh0vUvkbZ7HO0/YTaZUJdjXF2FYt+n33+O6eyl2qzpPGLk6gZn1eSnDUrEID22BlNMkC4hbrc4cY5odkI37TCrKnqmgoMTto9OWUg1xoZ0xCAytGvoVBXKe7xXeDmPW5hwWfoa95mXSszW5ZfpLa1zfLDNZDTClGNsXeKayN6ztZs7F8/Oa8AmQ8GYdYQigzqE12uPJkUJj68EtpjgsCRpykmikMUpXeEYlSUtU5EcGbaPBnQyTW1qIhyDqCaz0Kks0obkjBce7wVemBBF9R77NL1z9mKPWNu6xerWVY4PHzMezqjyAbYuQ/qk+TvP9uXZ/qwGq1fNPzfPN4ZaAmkkkSzQLgYnsNUMW4GO24y6MHUzurXiyDja3pKNpmwPJ2SRCpE+bxhoiGXFQuFwziJFk6wRrlk3cE7gbHUGk3j6/RZXrnLuym1OjrYZDSaU+RBbzfDOntGTnzQM7Md/b5ymp3ec9AhhiKRAuwjvLLbOsZVA6jamKziyBe0yQltP5hy9ScHD0TY63sOgwOUMtUDrmoXKIGxTYC1CQaGf148JMJ8b0fm4/E8wBgSoPrQWiReXuPCFb3PeC4wvwVjqfMb4dEQxHDA6OSSfjCjGI4oix9oa7xyhEWW+MRpLsgn/Chfuzdh7FBbhzNNWudiVZKeGQbfLcT5lVhm0NjzxFikjOokim004Si1GOi5OCIvmmqp615TxeI+XJhTG2PpMKF2AakNrjajT48LL30DqmMrmCOsw+ZTx6YRyNGR4fEA+GZKPR5RFiTHN93z6SM9aloT/10mUcyRYpK1xMliKylk0FfVBwWm3zU4xYlZ4dOzYcw4rIjppQms24iS25FHN5TFNQYwNBUUIQmFkE6YUoazzYzXbMkNkK8ikxdbtr5K0e5T1BOEctiyYnI4oRiOGx/vMJiOKyZhiNsWYphjxUxGCuQEXahWkU8QelPN450OY3Rm0kNiDktN2m30so9whY8+htBRGs562aZUnnMaWaQQXJjxtmdHUT70tT/XUUwnXqHn2fUSCyFYharFx63W6y+sU1QSBwxYl09MRxXjI8PiY2fiUYjKlmI2pa9PsyWeRgY9FTLwDK1BWkGhHhAVfI4nAS2Ik7dMJs0TzRJaMZxYp4EQbhiUsd1t0iyEjXTNOBOdmjqgO+0H5UBUPPqybByEswrozRXYihFCTVYROWbn2Civnr3GpGINwmKokPx1TjkeMjo+Zjk4oJiOK6Zi6tjjnz6zXJ9dNhTXSltSL0NWCR8uwbyMUrcGMSaR5khiGowIhPFPlGFSOhXabXj1lJnJGqWA9r4kr1ewVe6Y7JW+M1AqHbZ73XDQkYd2WLt3m3M1XOV+MwyVU1RTDCcVoxPjkmPHohHIyppiMqGqDs2f29sdeHXhNSKgLIh8TeR3C3dbgnCEiQQwm5DJiJ9OcDgbgodaOQenodfu03YxSVBy1BcuFI6margIXzpazwSOTLlRze2EQ1nwcW7wMSY/+uetce/WbnC+nOFHhK0M5GpMPx0xPjxkPTygmY/LJkKqqG2yf9LTVM13pAOuIVE2EAicRrsI7Ewp+pzmZV2y3uxwNBlgEOq7ZnjiydpcONdaXbLcFvcqQloAP0VTpg3NhfYiiCmdD6taZM884QsQLkHbprl/i+ld/nUvFFOMtrq6ZTsbkw1OmwxPGJ8eUk5xiekRVWKzzjc5NCCW+c535LEIsnCfGEc3PgwylpVoKRFHRGmkeLEmG4xG1EWSxZHfmSFJNK3aIWc5Ox5DUjn4hMN6hfN3cAaEs0HsXaqyQCFefOR8KES1AtkBr+TxXv/KrXKpLalvha5jORuSDE6ajU8bHxxSTKeX0hLKosTYUKYY77ow+aWoVcA5hBYlWJMEWB1UDoVVW1BWdsePBUsJgOiSvoRULdmYQR4pWIogmU/baJdLCei5w3uC9BSfwT/sgXBO1AvEZRa2fJX8lY2AxVtTRMnVrGSsEUiVs3/8AKyTLl++QLrZpr2iSTc/k+JQsH9HKEjqtDlnaZzI+ZbD7mMnpCY/uf0Q5mWCqAmdsCFF5CU6ghUTL8BDntag0xtXEa1oTxygDbx2l9VSmJo0s47rkLVGQl54rscDXnhiPcAbnm1YPEQoG/XyDe8dqqpBeU6lV6vYqRoKOYnYffkTtHStXXiLtd2kta5JNmJ6OSCYDslTTybq0sj7T6YjB7mOmwwGP7t0lHw0x5Qxna+YWp3CghUGLCITBOYn3zaXtYOAl0ekEmWnwCaX11FVFEjtmteEnFMwqz5ZwWOPInGnCQQrnJaHnIRTozC375dRT1YpKLlG11zFCECnBwe59KudYvfwSWW+BLI6J1yz5eEI8OiVNJJ1Wl3bWJ8+nAdtgwJOH9xifHmHKybN6CxkUovKWSIQqEedk47nXCO8ZIFHDESpVSJdQeoepLZG0FKXjPV+QW88qinPGk7hgOIY2Qh+UhKiDZykseMli7FlJFBV96s4mtYrQOE6Odtg/fMLyxdtk/XWyxZRk1VDMZsSnx0QR9Fo9slafqswZ7D9mejpg5/F9hof7mLLCmbqp6A8V8dqH0tHO8jKLm1dpuRqtLB7HVCRE1hO7kN6ogMp7lAZjJnxIQW4NC5VkwwgSE/qfLS4oIu+Q3uIpaRqE6EWO1VRS+S5Va4s6ihHWMR4cMxifsrh1g2xpjWQ5JV1xVEVJdHzEmrJPsVlTM9x/wuT0hP2dxxzvbgdsdRk8B1kCOvg3QtPq9+mubJJai1AaHwmmIkE5SMuK4XyHuZAKNTbnAQW5M2SlYdkK4jpUMFvhUd49TcmF8GVYy452rKWSyreosi2quAu2YjYdcff9P6ezdon28ibpYka6AnVVER0esSwqeu0eWasHzjM43GF6fMTh/jb7Tx5iyxJb53gnwn7x4XxrPNrXYDVSSFTTSjeVgqosyYxgEEWUhDCt0ALrK3axPJCOqHYsOElsbCiP9qZRui60GDfpLOtqElUGbC4N2JIu3tVUZcm9D94gXVynu3aBdKFFuiJp1zXx4RELLqfX6ZFlXaRQDI92mRwdcnK4x87Du5iibLzteSrSB34AD9qb0HlhVTBMcIylYlaUZCOJimMmQlB5gZGhE+OQij3tcVXNy94TGYPCBW+SGiEc3oPwZfNekqopGy1FYRVltkmdLOKswxrFw/d/iG4t0z5/jXSxxeKqp1vXnB4f0SlzFroLtLMUrVqMTo4Y7T9hcDxi++GHmLzE1LOATVQgJVIqtIpQWiK1RKoEZIRUCbWQTEtPZ1RTJBmFEBRW4LUlkoKBhx8rh6lqXkCijSFuOCK8E+EukDVizu0hHJEcsZFppnVEmW5gshWsC1Gnxz/9C4hadC+9SNrvsiAE3XMFg5Nj2vmUfqdPO0uIow7jwYDh3kNGJxMeP/iIelZgq0kTATLBJxOCSILSEqU8ktC+LXSCd4oRlva4JI8TJFDaiFpDR3vGzvN2ZCkrw3UZoWuDnvOy+BCJk9I/LZVG1qhPReL+IxgDNxcsUo5waopBo/wItTdl5hTT6phiYZ2ou07c26SzeZEF3RBgRBFRe4kFX7PyQkHSSin/2X/L4b13yatQ5CCACIfNc6JI4yOLEwqtM5K0g0r75NZwGGeoxTVSI2gNjphWBbGyWFszq0tEbdj0joUSHriS6yi0AU+NEyCoQoX1vMLVeS60PaupxXKMFSMsEVK1iA4KZkYyrU8oFzaIuutE/Q2y1S26m1fQcYpXEbq9yIK0LN+akbZa+N/7Zzx+6/vkRZvgXUIkLCafkkhBHDWXp6sRrsK5GusF265iKBK0A60F1jqk95i6Ji8qpKlYwbNWwwNbckPYJmwdrHkpGmIXL0LY3sH5tqMfeSynODnFuAQRxcQHPyI3jqIaUC1uEPXW0b1VkuVVWmsX0XEGKkK1F+hpWLw+Js3axN/7Lh9+77vks04oVPEeLTyumhF7TxQLpPNE3iKb9s3aS/Z8za5UqFKgozq0KlqPtY5cFihfs2wF5zE8NoareFLncb5AY4EoVFrbUDErhWcjhXjJ4/wEKx9gRYRXivhIkteOsjzGLJ6n6G2ge8tE/RVWlrfQUYOt1acTS/rX7pClLXrv/JC3//0/J5+VjRFvA7a6IPKeOM5YuPgCv/6/+wesK8PBW9u0VzVv7I64fzCgODggmo6IlaAscuqqxJQlI+FYqjyXKsNebUgoaLlg+CJCSD0o3IZDAcFKYrm14PHMcPIhNRoXK5ITKBxUsz3s8iV0b42ot0rUW2F5YYMoSkHFqKxLmmh6V18kjVK2H3/ID/7lP6KYFFgXcsBKeLwtiJxFJSm9S7f4G//bf4A6PMTsT4kX4M2DCYPRjOn+HklZ0Io0+XRGVRdgSsbe0qksV7EMKkjJ6YaKz9DyKixQhVoIr/C6YDEueWHJ4ykwbGNEjIkikqGnHgvs+AGz4XXK7hpRb4W4v8rS1RfRUYrUCSppEWcp7asTEqUZnOzzR//v/xvFZB7FCm6EcDm6LkljFYwSV+L9PJ1gGRrDRzYJxalCoVVIH0VSgVPMYkXLaC47x7gyRKJmyRlcQ/gV/K7GYHU1AklXGW4uhb1jxA5GxlhikqnAFjHutEU+vkHZWyPurRL1V1m8fLPBliLjjKTVonVlQiwkRTHh9//7/xOz4YC6CiH7wAlQIcuCLJZIQjuxlnGTBhUUXvJAxEwBjSSRGgTEicEZy1h72rXjJp7aGE6EZc36EG1ryGygxgkLVoO3xN5yvR/qo43cx4ojrE5Jaos7aFGLiDwfUvVWiXpLRAurLF+6jdBtIh2BjsjaHTIz5TwW5yJ+77//PzI5PkTkfRBFQ3zmwXoW1y/R7/UxxYxWq8/yhS1arZhJbjhsjRnlOf2FZW5d3WI6znm8c0xZTilcgTZwxSqkKdmn5rzzIZLjQ72AcAKEDUa5CG2NV/sO48DKXZw4piYj8WPEwRGlU+TVhKq3RtRdJVpYZvHCrQZbgleSpNMjNTkbr7yG1l1m/+T/zOnOY6q8g6DCCx8qsqyl01+h0+kgakOr1aO/tohqxRS1ZF8WTExFGne4vrWMrS37JzPqekbha3wtuWAFrbrkia+47BzOGYQP0TjhRUiDOEDUOPOzilqfifD+55abMxqN6Pf7fHUdIhkHdkEhEMHVDv3ntEF1msu/hUgXEHEfG7VwrSXU0nlIesioRXbhKv3FZUbH+9T5lNHhLnsP7jHZf8xofMJ6v8fGSp/hsGLz+k3OLS7STVPqqkKe3yBaPU9pBZPJmMePHvDhez+hnJ2SiSn9qmbFWs7VNQWOxHtWbdMvLwUS0xQ4WTw1loq3j96msEW4uEXwHgJGDdojRALyLLY+Il7Axm1sawG9eCHg1Snx5kWW1jeZnh5STCeMj3Y5uH+f4fY9Rie7dLXm+tYyO/cfoIClbpuLGwtI2hyWEU90io00ot+jMIY8n+JtQUrNQpXT94aLxlN7gxY1awaU9yE06ARSgBcNz4AwvHf6LuN6jECDUHivUapGkoICISK8ThFRhohSRNKCeBkbdbGtPmrxHLK9AiJGb5xjZesCxeiU2XDI5HSfw/sPGDy5y+hkmwTPCxe32H/0iEgk9HodLm72UarNpFDcM5BjKbGUCioTesXb2tErCxad44Jp2gfxbDqL9lXwWETgCQh5dYnH88HwJ5xWJ00kJKhmKT1SBCYvL2OkCsxsIsoQaQuSJVzUw2Rd1MI5ZHcNiFCrmyxfuIKdjRkdH5OPDjl6+IiThx8xOtlGOcuXXnqZl371d3jp269w+1qf/d97RLII3csLHJaOg5MZO9v7vPXgmJPBgGI8oh4e4o4e052N2ahrpK2oqDnvJImYF/7YhhjFggvh0PuTj9jL94LhKkNnh5AOJSKQCi81QmUInSGiDJmkkCw/xSZ7W6j+Bp4IubTGyuXr+DpneHBIMTnh5PFjju//lOHJNtSG11+6wyvf+R2++Otf4tZ6xr3/4UPWbnZJ13vszyqOhzkH+8e89WhAUedMT0bMjg8onnxAND3hXGmJnCUXBVvekHqNxCFRCCqgQNgIpyp2p9tsj3cRDZ3nvCNHColQ4JVCqjZepUjdRiZJWLe4j0k6yP4mamEL7yPEwjLLV24gvWWwv081G3D65DFH9z5kePiYajTh5RsbjA8OmA3HdFotXrx2lU63y6ASjBcvwmoHIoFQkq+9+gJJkvL2wwEfvf8G8vCYrXFFy+RM6xmbdUHmHBKDFCaUt3oQvgYqjooDPhp+GIwOIfFSgJBIL0I7rvJI2QGdguqg0gjiZXyDTfTWkIvnwceI3iKLV28SK8np/i7VbMRg+wmH9z5kdPCIfDDk9pU1qtGQyWDG7S9+ldtfeInxyQQftWFrnVM3YXdvwHhac/HSChsLKe/c2+XkyWPak2M2Kk/HFEx9xYap6bjQg6+o8SL0rnuvgZpxOeH907dCrYsg8AT4DCEsXkvwCVKloJt9mbQQ6SI+XsLFCa67RLSwhVUJvtth5fxtoixhcLBNPZtyuvOIo3v3GR/sUlrPd/7L3+V3/v53ePDmT3n4k32u3r7BV799ngVb8vtvPuYP3rjLt775BX75axfYlIK37+3xD//F93n3x2/Rmo1Yy3MW6ym5q1gyFX0Xzpnyokm+BMPbiZq8mvLOyZs44fBEiHkNkgwFqUgQUgfGSNVqsPXwyRI+SrGdJaLFTZxuYdstlrZukfV6DA53qGcThruPObx3n/H+DrOi4ovf+jb/i//qt9l7/wEP3z/k8o0rfOmrF2Aw4Pd//JAffHCfr3z5Ff7Ob3+B87HkzZ/u8l//yx/w4KOPyCanrOQ5K9WM3FX0bMmis6FI0iuEsEjfdCZ5R1mX/B/e+2OGwyG9Xu9z7/m/UmTANW1PHoKV70VgNbKBdAE/Q7gCXU7R+TFOpkRShraf7RhPBqqNebPNUdbFZQvI7hZLq5usfPVrXNz4bcaDHR7++B2WVZ/Xf+M1vvpbr/KFtZhxbhk7SNopaSxJPdzfn/LdP+1wtHfAoJrSN1O+0j1iL19AJZL+qWUqSryoQ/7SSuY0sCFNHMK8xoKzAi8kSsqQtnKBHENaiZAWXA6uQNZjZHGCFDFaRgipEI80QkagWhjd4bDVxrd7iO4Gi4tr9K9dZdbRFMMek5MDBifHYA2RjInI8HGHZO0Kd87f4aVum/uPdmBhiVppTk92GA2P8MMdvth5zFHeQTpF79Qzw2OFIaahtHURzjfFkl6AUNTWY60P1rZwobrWCxAlwofCR2kMwo4R1RhVSFCPiXzwMOUTDSIDHWGiFsdpF9HqQ2ed3tIqveuXyDuSYthhfHzA6ekJPk7ZuPEal19+hV6/S7/dZfPCIu1UYXzJv/2Td/iL9z5iOiuxtqQtZryycMKszJAuJhs4SuuoVI0mhGSFd6FzwqahYh2HtQ7rXGCAlKCFCvUF0iKFw7l5V4VFmRJVDkEe4EVEIgXiSRQoX3VCHXc4jruITg+RbdBdXqZ/+TwbqaOYtMgPT4jbC3RabU7ffoe79g7nv7bJD7/7NrOffsCNO7f5zuvnWPn6BT4YGx5i2Xky5qM3HlD/6f/AwcNDqDWtkSEyMFOWyJeBMayhkBa+MQq8wjkbasWkxAuBbNgWROjzCqrKFVAZlMmRhULIQ5AxqQKhYgKXb4rRbU7SFqLdx2frtJdW6F9YZz2qA7bjY+KsSypjjt/8kEcv32D16xf43nffxImc6y/d5ldfO8dCcoF7ueexMBzsz7j340fM/mDG4d0dyiglm+TElWMW5bRdi0BYo0DkeFeHQn8v8RZqZ5Ay5GiVUKGDQjaFj16CmyGokC5H1xIxHeClIFYSsZcgSEApXNRh+P0U2ou4bJV0cYWLmxusacN0PSM/3KUcjyjzEGKPkjb9136Jr/3NX+TJoyELi4t84xtbLKWCo5mBsePOuQ773vLGzmt8/9/9kP0f/IT2wQHZ0JGLgrRxJGj4LjwV0hmE1+AqjPVIGfSkmpOTyYYBD4FwFdQ10lQoIxFiBFISKY88EAjaoGKs6jD+YRvR6uNbyyQLK5xf22BVXWG6lpIf7VKNBpiqZvX8RW79xt/iF//Lr3Py+JjDNw544RuXuHmzTzGc8Wf3x1xc6/Da+Q4H4yn/r//he9z/4z/kaJQTDyzJyDITJS1fBoIoEXg9pHd4ipDSdAXzjK6QovE8q5D+t3N+khKwKJsjzBg5GyHkg+BkybBmXmp8nDCN2vjWEj5ZIlpeZ3N5i6Wsjb20xdq5y3zxl38Z4VLWlhVplOPefpdHFzSXvniJ3/2tl/nar9yhZUNdSqUlv3rnAq9cWeEf/YsVPvrD7/LooEIXkqWBp/COnqchhzJ4pxAikOBp55HGY1wwSr0waOWDsYpA+BJcDJSIWiDrCmnGyGIfIRsCdK0QMpw5r9vkUZu81cenC6ilDdYWNli4/TL1+TWWljd45Zd/lfULm6z1NFu1JBnVJJ2EL770Al/86k3eOS2IC3BlAj3F3/6F63zp1gb/9f/nTzj83p9w76hCFxFLJxUTJ/HMqbILRNNeGOjBXVjPv4T8lYyBD08FHe1JtCDWllhLEimJIoh01VRFa7yQWK/AF0ir8MjGkg7GgrBDRKmQowh/+A5+v8/mt36XV+78IkuLL/LkyhbDvxjRe/EF0sWMiYSZNew9ztEd6KxlXO4IvraesnuuzRsLy4wOHxELQTdRCKV5MrO0XMmWd0gZWkF8wyvuGw5u78Fax92hZ1oLUgWJtqQRxNqTKoFWhI0hGw5qHxjcvGz63pEIH4X+WJ+j7Sj0ck8SxME7eCFxQhP7DOcdy3HEuJNQxetIJ8lay3S3btC7cJVk+TwL1y/y6t/8Be4+GLHYX+HevXu8++47lEDP75NoxfYElJtx0Ru0rHHYQEdrbeOlWJAV3uc8GBqOCklLeWJtSTUkWpIqS6wdSpdIsqZmI8a7cLFK5xuDIUR/pK9QdoqujlFTiTj4CeahxIkITULXeZalJG9HtG68wOv/1f+Ga69fxQ4Lkt2cV15bZiPTDMqaV778Eu++v8u//R/f5q13PiSuJvSVZSGr2Bl7ju2Mqy4UtHlpGmrNhvjE5aEAVBiejB0PZ6LBBi1liZUijRxxpFFSNN0RoW4hrJ9DihzhOsjGP5CUZDZHVMeIXCDdu7jHEnybvoCeAHob3Pzmr7K0FDF9/Dbjh13y5Rucf+ECH/7ZQ9778Y/Zzx1pKulv9Fi8vEB7wTKdDuhGgs2e5MlY8cg6rtmamALv45C+omoIlUK9hfeK3Yng3aEgU55EQRYZYqVItCfWAq08SBvSCy54oAKPcCVexA1ddYXyNZGdIYxE5E+Q/n3sExB06CLpCI9N+1x+/eusbXYod9/l+MOExdevs3hhlb333+SdN/6CJ4MShGH53AJrN9cwXvLRT95no5qw3lE89oL7Q8d1a0nxeF8iMHg3J4I1CEq8izmaed49gVRCon1z7jSxNiQalDI4pULFkJR4EQoshVehap/APAiS2JWB1rfYRXmF3XZAlzaKzIPxljrx9Bc0xics3XyRl3/911l9YYUo1uz98+/xw+0e1167xI1bV3liHB9Oa1YzwasXlun81q/x48UN3vh3v0d3OqNlIrwsAkFUUyMivUdYCaJmkHvePRYkSpzBZom1INURkQvFcFKFcLhnTtVLoO11EkmO8AZtaqQ5heIx+iTB7lg8LVo+JsMHbLHHLCdc+sIdLl26wuDIMNw9ZPL2D3jj3hvsf/sO3/7mK/yNL2zwZFyTAxeXOvzu3/1F/sPiCt/7g//Ak7ziknIsmIKnvJY+tLpiA5OdQDDNDe+eGhIJqRKkkSDWjkgpEg1aVSEC4kPcVTWOo3cRQoawtQSk00hbQTnFl4cherTrEKpNGnVJzl3j/MqLsP8RezuGB2/8u0BR3L1I9fYK38+WefFGn9Fxxf644MLNRWwEAxwLrYRv//bXkOOC8nt/xqOjinOuZNHJJrXjmtqjAoxq0i4Vpal5/zTUTcTak2lBqh2xUsTaE8mmbc/ZcO68CrUpNm44V0SggQaktVCPodoLRtCeA5WRRl3i9ctsbdyiXZxy+BenPHzr96m395BukUf/ckz5q7/AS7f6LMWhk2VpWXFaWmINm/02f/t3f4k/FJLZH/4pj+s9Vv2M1XmxfSjywHmD8PO19I0T/x/ZGDitPadnCAwkoIUgEhApidY1qZK0Ik0WxWSxIok0Wmni2KMjjfS6qZxuDoFQdJfW2dq4yPDRT7n/Bz8gPz6EzgbFR7C3nfFvdg5QSFqJZP3CVUR3gZ0u/Mqra/zO168xGEz57w4e0j4ZcjqxfDDIaSeOU1Gw4V2w7BpLXoY60mDUihIvKibGcVq7ZwMJnmJr8ClPpAyJFqRakUWOdlyTRBFKB2xRYwQFRrKoCX+G/n8hHUIaou4mvSuvkfSXUEkXkxta3Q1Wf+EOt19dZktL9oxHdTTXXljEOcflGzdZ3Fzl4Kc3kR/GvP/e20g7QsiqGZ5iQZR4rxDUCGF42t7iNVMjOa0dpx/DFmiEIhmKCbWakShBpkuyOCaLFElkiCJFFFkiHSp+pZc4r0PlMiCtDp6OqENkSLZYWr/OtV/7O6ysbGAODXaY8/iP/pR7bzmuvnaLl754g1Y/4fUvX+KLL67xj/71ZcZDw8LkMW+/+T0m1X1KbTCmJHW2UYyuaZazTQQqBVGRO8ugdgzOYJvzXWppiKVEK0msBZlWpLGkHUckWqF1TqQNUTRve6qRLgpFOMIgTYoQOUJC0lnn5m/8fURccvjjP0H5MaM4Y/9Bl/bSAssri+TTKTs/eZe37z1g9fwqv/53f5PCwvTuAdXBkKODkqm1VMJQYcmMR4ppyPM1LXKi4RH3viB3JYPaM6j9x7DN1y2WYUhPrAVtXZPFkiyKSCKF1oZIR0RRjCD0WAsnGyPdIomQYgoSomSZK9/82/Q2lzj54E+Q9SEqSjl8vEBvoY1Z6FHUhr33P+DHH91lYbXHb/2D/4w4VrRMxPHBjGpg2c1znDDkVLSNx8kcISzaRUgC2YtouBGNrRnWniE+OJJUCKqmkFEQK4FSglhL2rqilSgyXZFEGhV5okihVQdNhMCiXCg2tqIOWJtiT6Qgkoq2kiymimTlKjd//e8ghiNGD9rMxhW7w3d5/MOcx7tb7I6/w+2v3OTBbsEwjXl5SyHWYsS37zAsHUP/B0T3SsgHCFGBLFFGI6wJkQI8xjmGxoOZY5vXp4MWU2L5DFumJe1EkeqINNLoqEJHikiHv6Ox+IZ62FI0CnuGIPApaKloaYHqr7C8tY4dPWH80YR6MuDAPyQzPcTdI364eMKtlzYYzDynk4qXz8dsJjG3v3aHuzunHB8MqYYjOqYAihDx9UGFBAKkGuFTnIdh7Th7t4RgukFLQSxEc94ULa3oxJDEEbFOiFSCjgriKA61GS5FujiUVInArSHcDFRGp5OQiSmjB99Dioh8sEMWpVgxYjq4z6N3Y4ZH67SzhKzdYn8AfhnaOhSfd7Sn88KLHP3Rj1B1xYCC/rwgWeTg61DjYVN8ozutrxjWHuM9VP5j2JSoiGVOpASR0rS0pB0L0jgijkoilRDpmDiK0JqQLjFxCM4iccqhfI5UGb1+m05UMbn/PYTQjHbfI4tT0v4m0k7YuX+AMZ58OCJLM6pOh6W+YugrlknoRIrlV1/m+A/eRGE4lQUrdajzgLpZm+BcCBzOyb80x9dfubUw0GPwtDu78j48O2efMh0JSiQzJBolFJHwRFqS6Jgs1iSRJos1WZLSX+pzbv0q9WSbycOfcnLvLbTMSO2Q3YO3eefhiOG45Nq1G1x/4SWOD3coDg55d1ZyerLF737nJf7ur7zI/bsPee/fHXI8WOFcPkPMQmUp5Dg5RlqNE/N2pygU2ogqVAc3j3DeCfsMW8D3cWwgKFBIpNCNsQCJjkhiRSvRZDohjSVJlJJGEVEqiHtrbN3+Ojd/83c5d22B/OSEgx8/ZrY/ZnZ4wId3BcVaj4WFhLoQjCvI2pKVtYQvf22dg80V7kdwfm+CffwOMRGIAicdqpm9EJz4MuTPxZwPwT7FNsc1/6mdD7mf2n0MmyCwnEUfwxaRRRFZHNGKNEksSVRGHEkiHaEiSbq4wrVv/SYL60tM7r6BbS8RJ11cHw63P+Bkts/ppOLG6y9hE0UrTvjP/4uXeDIwHO9dJxd9Bj/8faaTN5EUCNVQDnsZ2sKEaXgHCANr/NyzDzJfu7rBljsLxj5VyiF/PUOgiKUkksEjTeKYNG4MWB2RJZ5EG2KtidKMpYvXcGrKkz//V+g6DCyKorscfJAQd7rUwwdkySJp2mX/6JhRPqIY5iyfX6S3kPH4RyV6HLFkKyLCpehkmCopXEMdLMompF6DUOE9z7rp52fOAOZT2CoUCsEUgSKSkkhKUh2M8TSOSOOYVCvSRJBGCbHOiJOE3oXztNfWefTGP0ZMjslaHaR8n+23oxBOneyQdVeJ4oyDoyOG0wHloGTxyirnLi7x5h874lHGep2jhCPyFqeKhupV45k0REoWjw2Dr3h2luQnsXlPYXz4pbTNMwjeMigi6YMxpCekUUwrVqRxTKIUaQJpFBEriKMIpT1Chcikaq1z5au/TWshYbT9Pahu01rqE3VSyKfY6YidDx5i0iXiOKY4qdhYXGSpLbiyItl/+Qpv//h9SvVBCJHXUbPT8iZtanGeptr/mQFgnmITAZv1AXD1DJsgJ0x39cRSEKkRaeNMpVFMGinSWJPGmkQnxFqhlAwMkiojXdygu7zE7PB9yuOIJOmQxA7hBtT5CY+fnHBQ1LS8orexyK6JuRLDjcWYl3/hNsP3HuC272JVgTQgRHA08ODm7X7knC0v02ewWQTWeUp84EGoHFA22AoEE7QMKa9MBt0YDKAsGLCxopXFJK0uqY6I0xQz2acaPAqzT6YnqCxBxhXT04Ld3ScY47n18qukS8us29uMxxHpxZSFVHA5kvx0rceKSJiNaiJrEWKEEBJvA0E+NgzzEcI2nVd8Djaw3lM1xGrz3RqiijkSgRYCJTWpisgiQaw1WRywpVFEmkUkrT5ZOyNKO5jZAfXpozC1cXqMjWMK4aAVsffhuxw8TDh37TI6aTM6dtRecr4b4xFc0JL3uhmbnT6jRwbpJF7keFHhzPx+s00qOHQUCPGzqM0/jvsvLW3gJoIPhWDyuXSp84cYKB9r7yg8iMoiqhIxm8/KAymn3Ghd5JrWlIc/YXLwLnV5gExS6vGY3f2cB/dLNrfWuXR+hePBER+8+WPWNq7whS99jZ2Dgh89HPEr1xf59tde4vGfv0N1eox0hthZyHLyxUOmKmdhrx/oXwm5c+Fp+lkBBC3gOoInQnLyM/j8m6aeUETja8ombSBqg8ibIjAKBBolxkQqor+wxM0v3uH6+UtUVc69H9zn4L3/QD04Rier2PsbHO2tcDdZJep16PX6RHFGbzFjYS1hdVXTvQbDww12frxFfvgAY0bM2jOm6YT+dkoy5wBv2PvwMjAEErp5ryM4FpK9n4sNwGE91D6QJonaQG4bI083uc8ILWYkypMmCb2lRb752stkCynjx3+Kryao/hYmXcQzRKkZbpZz/603ORhEtNf6ZJnm6u0NVlcixic106MjRruPkQwplgaUnYLOdkRWhNoGT8Wzq9GAqImAK0ApNA/nHAufI+4pI1+oGhZOgHFQlI3XWjTNrBGRnJJECZvnL7Aoch5+/7+F0RNE0iK3NXHWYpL/CB13Od55n2svvsSVO1/gxr0NhoM9isMhcWuB5Yvr7OgkdA5YIC6peiNGiznZTkx3luKpEORhpZxqomcOheAioRbiw5+DzZ5hG6xd6CQZGw9FIFoSmOZSrYmEJNIJq6urfPNOysM3/p/Uhx8QxSm+XkRoxXRWYI1jfHyf63de5dZLv8PDR/cZnuxT74+ZJIu01lZI+gvY8X6gwdaGqjtmvDxDHij6k6a/GoG3vnnyE3CBIGULQU8o3v256+ZoEigYB7lzCFMiikBmNm/tkxAMWDkm1oJWkhDHEb1+h5duXEW3LPvvfxdRD9C1QcyW6PQchR3grOXw0Tvc39tnXNVsbm0wsV/klRe22OpLen2FaRUM10+QBwWLA9eQAEV4X+C9DIaOC5nzNQRrQvITbxumj8+O1c5jXiCwTlI4F4ZYlWE+gKAK0R0ilIBYKmIlaSURaSfhyq0tLl68QXXyhHqyTRJrRHuBLC6x+YTh/lt8+GSXQQ2bK4tcu3ObQtyGiz0uZ5qltgJZYLOCfG1EceLpn0i8NU0Rmm84G8JAFYFgCc8loXjLO8wZrTHff/P3z1wMGdr0nGdGhaiaSFgz3k5i0TKi0zZcu32erShicvg+FDllPUMxJo0Es/GAd94/5eGJQ0cxKs3oLy3y6PEhp3lB+ZtfZ/VL5+hJQbcFaSIwrkRmE2Yrh0wnmsWDdjNMKqTZXKMjvTAIPAvAVaF413uKjzG2neHnYF45pwJHow/7e2YNspr3+vunjfFaprS7jqsvbnEuUUwP34diFrgP7IRMtbH1gPvvvcHOqSdJO3yxeJ2ku8Ti+dvQVuhX1lldS+gI6C8qlPSookJFE2brx0xrw8Jui9iFcQBChLbv8I0nP/N8zeWvZAx0gCGevDGj5nx0n73N/dPHFt6rM55q2OhWJPhOi9KMUMUe1WQX6cZo38bmBWZYcGmxxxdurNCVUx7snXK4t8vJyYQvfukrvPzKbR483ufRcodb186zdmWDncc/RWmBXRziOwOqdEY8EbjOBDHshEItl4T5BJJQnIajC8zwjP0zr+XzUy1zMomwqQMR5PxJOJqxOhgvqZyi21tm9ep1dCQY3f8BkydvMNn5CC0TXDaCepfTmeJ4opHtRTYvXKO7fpXZcJW9bZhdWeDVlxb52te2cKNvc7814ehwyKg8QBeGXjYLOUsTLN9gq9fNfPSwbjWewRlscxSfLXPWwUB8MmfaCkaQav4NR+khNxotNOvnbrK8ucZ4523MZD+E821F1BqgzJC2ngKWYvqY7fcl9//oiMtXLpFmv8yt28ukdY2fnWLTA2x/SMUY5SraaSdMYSw0XhZARBiLGjZ7u/nGx82FcjZK8OlVnK/ZMybM+S71TexkHrSvnaSWbVauXYPJA4qjj5C2Qguo3CHFNKPilNEEBkc7pLpgYe0Sv/iNl3j3jx5TbN9j5dwWv/GtW+Rv3eDeH2wjWjn15imVnSFlSRJF2CRHFYEvXWCgma/ucWSEVqSDz8T2WSIQRE3IWjSqaM64KJopD5Lah5nyNy7fRNb7TA7fQZgc5RcprSfKIvLJKcORYXR0QJYY+qsX+fbXXuadP96m3LnL4rlN/vY3r7Ny9BX+9f/1Q/Al7uIhUzNhpixLshsmy+XzeQth5Kr3oc87ARI8+34+V3J+mj6O5+Pr55+uX9AncxbQZ1J7HYbjWMHAKhLadM+/xtL5LXbe/WeB+z3rEUuNqA5JdYlIKpwzjMYHvPXwLuPaUtW36W1eZOY0v/CVdXQ3wa0rxjsTlmWNS2rUNLQsBw9sErqQREUEZHgOGkPgbATk49g+jnO+E5/hmxsKzX71isIKhPUMHSz2FulffBGTP+J0/wlaWFzSoS7GRCG0wsnhMe/s7JGjmQ2WaHXanM4kH77X4u/82h2ubPRYurHE/UPwvqaHxKclaqyaOggDong6wVDj6QAH/pn5Ga7zz7oJ/NPXsxTLz26POfaIyim8FXT6Xez4Efn4CdJDORuQJY4o6rK7X/DWgwElmtdeus3S4iq1rxFuygdvv001PkWnv8WXb2yw3Gshu5riQo4sSvIIMipsVxANs1DzQQVIhK8QLqSpOsCJt5RPsYmfgW2uH8XTV/sUp2Ve3VK5QO61tLKCm25TDB+jhaIuh0TSEusWH+7nfP+jI6a15NKF8wxHOVG5x3t3H7FzdMLRd36Jpd/+Ele6CYtpTNyWlOcmiHoCSUVSV7guiGGY8ulFHTqRBIif3zAI/BWNgXR1g6KyyMkQYaszAfaz8llXzXxDz4PVER6BijTOGcp8hCgOKEZDnCmJhURENWvtkvPtNgtxTks7rq4tk89KRoWgno3oL0RsXljnSVVwc63P619/lX/9gx8ixuDSKbO1Mf3lgs57CR6JsybkgV2o4MaGievtVg+10KKqDGIyQJsK9/Rwfha2s/jOcuCHC3ROw+yRxK0+K+cusrSyiiwGlKcfUR1+hCsO8aoLjKBW2DHYsaYYLzJJI5aWVmnF6+wPD3n4cMblq13WehHnr55jNvkG8qRiOjpBvJ2DtHjjsd6hXFNsJwIjYCvNUL1l6triJ0N0XTAfy/lxXB9XquFi0c1TmH8+Z4zUPOXm1i22bt7h9a9+geL4PcryBOUFOlIoKXDVFG9yIjtD6wgrLTsPP+LhzjGdXsZkXPF4r+buB/cZ7dynFlPqpWM6S4b2Ix0yAUaAmCF8uK5xFYgZaazprJ3DGoeZjNHVjOZvfMZenK+RePqZf8qCOf+zudEDyJirL32BG5dazO79GFdX1M4RWYvzU2ajQ7zuMTiZMplM2X8yYfXd73L9W/9LttYWSMyMyHsubi7za7/xVf6bH/yAmTnFLIxIlxztwxoOc3wd411zDJ1DUIVcd6TprG1hraOaTtDlDLz/HC/zGU7fKLiPGz3q6eegcUJz7soLvHRni/rJn2CrHGtzojjBGUc+kri4zfB0Sj6r2X/0mJWF3+f6N/4e6yt9IpETK4+OI17/2qv80T/9V0yO9rG9Y9SCozuukMcSMZvPVpc40bQZeoWWMd2VTQCK6QRdzMA77MdwfXJPijM45tg8z4xWgBhPgschowzVX+fCS1/i1/7WL1P/9F9Q73+AlJKiroiiFq6ckUShTsHGnpOdY7Z3j1CtNv1em1hl5KXgsLT4SLN+/SKDR4vIvWHYOzKQfgkXeAmsc0hl6S1vIKVgNpuh8yk4i/sMbfJsHZ8xYIqnmOfMfOLM5wKPxosYOsu8+kt/kysXYoY//T1cXWC1xNZTdBUTS41SEeWsYDqY0Frsc3FrhU6aodGcHha8cX/MSy8sceGla9x9IMjqAnXYCu6aKEFVoX6AGu0tWgj6i8tEOmac56jZpMEGHzd3zuqMsz9n127+ZxFz+t4oS1nolBSngUBKIJiNTnGthP6KJ1WWSz1Lp9/iS1d73Lv3Do+PJ9y6c4svv3KHu2+9w9u//wPWln8TnSqSrIVLBhSLA/rdEelpFyxIXzKfeoknjKP20OsvkkQJ46II2Kz5zFvg0/vzLMazRs5cXzqiJKabTimODjHVBCsjZuMTOr0WQsWcnJ4wmc1YWOryygtbKKWYFiWXL67z6MF9fvTd32e5HWN+6RVqKYmkwkVDyqUjFhanZG8ngHs6OCvMk9CBnvhnuA9n5a9kDFz6xreRIuXScMTjD95ie/s+n+1fng0bBUtXkKB1GooIpaQ2DkeE9qBcTjnep8qnWFOTJRYtFVJ6Fhc7tFotWq1F2s6ifE1LwfT4IbPRDbYurlOVktLB9Tu3uHTtJsen2wylYSLGtI8l8S4kMxkMAASeKbjA9Kao6CyusvnFr+C84Px4yu7dd3nw4Kd8/uS4ZzjD4Z1ji5FSY6ylKh1ELdrrm6ydu0K7leGLPfLTR5jpIaIe4n0ZWLVcm6Q2JEbS7S+x0PJ0E4cvB5zs73J8Khi+epGtnubmtYwPPszZPvmQeDhmaadFMiwa66/iaYLcx1gcSXeB869/HS8kW5OCgwc/5d5H7zSW8SfXbL65n3G/CyRKJcRRhlAx1lmKogSvUGmfyy++zO/8F7+F3f8zyr2fopXEK4mIWsxcM53Pl3Rjj46XEN5TF0N8eUovlRgDg5FhsZ+g6jEyEgyEI55alnfapMcNZz/N8BvvAmGREERpi2tf+hYiitic1Zw8uceH77+JN3MzdY7pk0o3rD1EKJUSRTFSJTjnKMoSVJvVy9f55i99Gffg3zAbjYniiLzK8dMZaaIxxQSnQ36wKkpE25GfbjO8/wb9TgulAjXtNh5xbpUsE5T1jENVszQrWX3UoXMCwtV4CpxtIakJtNUKpROufeHrqCxlszCMdh7z03d/hKnmqZKze/PseXvmi2qVoHWM0CneS8qiwMuE3vpFvv0bv0w8+DOOBgcopcgLD2JCGltMnmIdaKWpywnSGorBNoP7f85CL0PKCuFqDgFW+iwstrGjgm1paZcFq4/bdI5rpPN4HzXpqrAmEo+Siisvf5m012WztEwO9vjpT37ILJ+cWa9PRgTg2ewIiVYxkQ6K1ANlmYeBYEIiswVWbtzmztd+iV/81jeo7/1bhgc/xcxGgXfCnpKPFb7qUnpPr6PQ2qKo2coM3UXFWgZPPnyPt3aO0fFX+dY3buFe/jLTt95jUtUoMwIxxYspMsyyDU9dwIXbX6C7tsJm5ZgdHfLR2z9kNBl8xnn75O9BHSuZBmw6MNNVVYGpDYECuM3ipVu8+JVv8doXLzF965+SD/dCIWqksa6mLCJyD/1el5VuxIvrgvZKREfl7Dz5iCIasXHzRY5PZxwPOty6eZM3FjaQ7zygM3DIUjZESgp8icfhTBvI2bx+h+WLl9mwhuLkhLtv/YjTwdHn4PlkZEcgRUwUxSgdg2hRVSWmLpFRm83zG2hOmE53UE4HmnQzpZgKnMnpJAW31jVblzeIRY2tS/b3t5nkU/5Xf+9/TcdZ7Mk2xcmUzqUFli9t8tFexMTPWNyXpMeSqHA4zrAPIhBUCBexeuEG6zdvUltPOTzlwU/e5OBw5+es2TOsQmiiKA5nTkZUVU1dGaROWT+3guaY2WwX5TXWTSjzHKU0Ys2w1vF8+YLiyrVNEl3xx9/7Hzkcz3j99S/z9S9/iXf//IccvPsOJy/fIF5pkfQyKm2YMKZ/EIjWdBHmeEgvEV4hmIDT8J+itRCgdiUmilBZeubRnF30T0YEPIKILOmxtLREp7dA1mkzKw2Pd/bpdBR28iG2OKIyM2xl8cYhIk2Wdun0u0ilqOuSyXhMPjkliTMmx484vHuPbq9NnMR0FiIW2pLLr9xi9OCHzMjxw4TuTpt0EqpChbAgqtDC40F4SaRSzl2+glOeui4xWiKz1hkMn/ROzmIMYdkk6bG0uESvv0Ta6VN6z97JCNle4KUvvc7rX/4qcbXL9GCbfLRDORug7AxMBUoh8CRYFto9Fs+vsbS1RpoKTqaHZEnM6XTM/btPuHL+BdJOxBe+8jrbT96g+ov3yaZ5c1k2tMZe4pgzpGnOX7lGpcAYg5EK2Wp9OgjwVJ4ZBMGaTIh0h+XFRfoLC6TtBUrvePjwMYaEi3e+wK/84i/gj95meP9HKFtA2sZFLrCUlYaiLBCuwPVaJO0eaarY6Cp0KVhPKgZ72xxOHV+8tMrNV17gT999F/KU1oOI7FSEy1JW4A3OC6TLEGKCEDnnL99hHEusM9TKIlqtoI0/FrP6pIcpn+5WrRKW+ussLvZJO4tYCdsHJ+iFLb7+a79I295lMD3AyynOtyiqmlles9RNkJFq/ukYITxpJFCippjuINIVcF1MaSgrSbbQZ2F5icMjgykE2ZOY9Chqhs5MQzGknDbkF4Co2Lp4heM0wuEw0kKrjVBzT/+snD1788CmRsl2CCMvLpN2+6A0e0enuNYyv/Ar32G9fcDgwROMdSA9eWWZ5ZLlfoGIh3jZQcrgtSUxKFFR5gf4dBnl+piipiwFvXbG6sULHDx2VDPN8n6XbF8gTBjQEgZoyWZJAvvbxrlV6nYKwmGkgSxD6rPRi7N8/GfPXTDklGyx0FlkYWmZpNNDRjH7+7sc7BwQLa5y7cvf4tv/2W/wypdfZfb+e9z96E+YTk4RdYlSgQConE5xlcXXFdJIFtKYfjbj6pJhcU2SmTHJ4gW+cvHLRLbDhhDUi11e+NLfZu+oxezuW4jRHlVxQDU5RtYOLQwrq2scL3SQeCpqfJYh4/lgns+TuUcpESKh115kcWmVtNNDJSnHpwfsPN4n6i6zfusVvvSdX+IrX/sagz/77xidfkhVjJGiRtoQATVOYeuaiIqFxWX0ZgppRKQthbWMpycsmYKl1UVqq1Fpm2vnvs2TP/oA7PxiD63XuJB/Nj6hvdBhcX0ZkBjr8UkblSR8+pKUn8AWXgUt2tkyi8uLdHpdoqTL6WDA9v4JndU1rr30EkzepMqLEFsVHmtLqkphq4pIebptSZKAkJLbL1zHxjGToiTLEpZuXuN45wPcLEf6ZZavXqL4YUZ0qmk/zlClDVFhkTd1EAYogIq0s8zK+Q0QCuMqXJyh0vQzztdnGz2ChFayxOLSIp1+m6TVZTTOefx4n2xpmau3XsSX72GKEi+mCFfjXEE+FThT0Ekn9LpdVhYSSgEryz2OxgMO9nb51W/+IjofoNwIO62QKz2Wrp5n9o5EDxM62xFRHmYeiIaGWzQdOh77tKj158lfyRh490c/IIpStI452n3EZxsAz0Q8DeOliDhBpxlZq0Or1yfWLdKtC6z1p5jJPVw5wxpHmQucqxA+Ik0zdJQyns6YnryHSJa4fvkcGkU/U4x33mNbWpbOXyCTi2xuZHSvrMDNi3TM92kfeVpjg5MKaRXSl01mpyIMP3c4r3j08KcM7n2IFhEqSjg9eNRwEXzy1jyriCVaprQ6GyysbrG6usn65nkuvPAC3Y1NCiJk3OLyhfP40RMOfvw++cFHFJN98ukp2jvaicFWChkrtBSs9FZZXVsj7fTIi5xiVpGqlLVem8HeEY8eDVm/sICI2lxd/ya79R/i9f1QRfqUIz2Qagg5RboOu4/vs/fgPlJE6ChhdLKD/dgwlU8aOL7505CT1XGGTlpEWZesu4DUMavpAucuv8DXv/kNxM6fcXz/+9j8KOTLpES5CGtzirJkNBojxAxBj25vmSyt2VxUpD6jRUFLlSxdW+LG9Qzz69/iz4vf5+okpXficKJEilBxj49DDsyHXLhwGQe7+9zfPgAi4iRhOjymrj5pBZ9N58zzfOHC1DpCxQqdpiStDmQdrpy/w5d+7TtcW4k4+JO/QMnQ8ueMQyvHtIwYzsb4piVMIohVFXqt0xjnFHXlaXV7WAumtuhWm/YXbsB73+VaT9P/qQ50ocKFCYzeI/0sEO+gEC7i9PCE93bfxOFI0ohyOqbIZ586YZ98DerKIlWEimKiNKHdW0K0uly+eIeXv/lL3L66wf4f/t+RWISQWCPRypBXMJwWuEgSiTh0AqmaWMakaQvvNFWlaHU6OOdxtaPIFN1XX8A8jri8JOk+auo5CL3p0lmgxEuL8BFeKIbDYz44/h7WRyRpSl3mTCejT6zZJyuSAo+CxyClRsYxKolIW110q0uPiBldVm/c4Tv/+e/ypa+9iqimnO78BD85oS5LhLF4XaC8ADmjLj11PcN7S29pgYVUYNOaXmxpRRYXeV547TpJFnFUg4oEq7fOEc9+heFCm8mHbzJ6OKZWEdQjrHeMJxM+ePvPcU4RJyneWkaDU36eNOWRCNlFRgkq0SStDjpr00LRrjPO3XmNv/X3/j6vfeNFTu9+wPFgG19VWGvCvAhVIcQUR0xZGPJc0+5Zuq0IIx2tVsbS0nUudi7S3bzIQjej1ZZ44+h1N4nbm7jjE6SoUc7ifQWEkeheDSnzFvfefpvaQ5RkeO8ZHB/y6Uvyk8b3PMoIQmmUlsRph7jVIfGe5aTHq7/4N3jlznnu/d5bFLlDapCRxxiPc2Oq2QneKxYW1mj3FhDpKvHCCv3tbbpZlzo/YXFli8XlLSaneyy4c8TdDls3Vim+t01U2eAMNhMnoUbO8+q+hSkd99/9CaUTREmKkILj/d1P7MFPrph4ig08QmpUpIiTFkmrS0JMb0vz4td+lVe+dItH/+FDinxKKwp0+FVdouwYWw1QoqDT6SMjRbezyBeWLiBjSX9hCaUk5y9dwObHmHyMNMvIdsTalQze16Qzj5pHO55Gz1xwfBGIzxwH/mn5KxkD3nkcFfsP7lJVn9Wu8PFNIUREt9Vn7eIdFjYvsbF+gbWNLc7fukF7dZVZnbP/Z/+E05/8eRjjaEusIxD1OBAiZjLJGY2nIBVb6+dZj1tIFEkr48nuI8rxMcIOaScv0VtqsXbpAt3LfWb7izw5GqEuzVg+SFBjC7ZpGBE2jOds8jlVkeNVCxsZTp88Is/ngx0+yyIMbSTL/WVu37nDS1/9NTZvfJk46zEdPEKImqyvcapLlKT40SMO3v8jRttvU432MfmUsphQOoWWniiKULpCqhZp2sbZisPdJ5yMS2YOVNYhSTtYVbF7d4+klVHVUCnD7FpKUs2IK9OEZH2YXiUqaAYFVcUEoi5O1pzuP2Eynn7Wyn5sDQUx7Vafzct36G1eZmVtg9X1DS68cIuFrQ0cEcIp7P477B99gClOqY1FCkNda8KQmJyiMkynFcIXpKknL3KiYkakHK2WIo2gl0p67YhaedZevMTln97mre//BeZqzsqhIzoB6mcNaEJYBALnVQh7x208ntPDJ4xPBz9j9z5TUJFKaPc3SBfWWV3f5Nzl61y8fYfexjmSbIXlfoLd+SEJJ0RRGFlblQU6qlGqoqxTTkc1mSjwUhIlBqkUUvdAtVHpAjrrIpWmmnpKD9mNWyxXV7h/b4/q8oy1fUVyIvFl8L4FIuxLQttSXeR4HeG9Z3J6wODo6Gdgk89WLsroLp0j6W6wvrnFheu3uPH6l+ksrwIZvSxCnL5P7I+IohIlHcXMEilDrWtyE2NGJam3eGVJEo/UChX3EapDlPVRWQ+lIkzumRmHXtxg9aWX+fDDB+QXTtk8iEhOBeQGgUPYDo5ZuFRETVkJahHjnWM2PuVkb4+Ps6LPC40/nmfWMqG/tM7K+dv017ZY39ri/PVbrF+9hkpiisKR9RboKs/pu28iZscwuEckC4QoqOswgEhj0JXByYqqdihVUcymRCpDpxVp5uj0YspUUp3ksKB5tF2TZlDmhqk0nJqc6XSXYraHr0ZIV+OZUlcJ1nZxTlDmE453njRDaj5/XwoEsUroLW+R9M+xsrHJ2sYWl26/zMrFC4BkPDFsXb3MUrvN9OEB4uAJqjpGigrnDWUBcVojrUNHodivqjXWh9kMSdKi1e4Sd3q4XpckjqknNYWOSFJJb2OF3o2rmOkR1b7BO4+wEZIZXjSljdZTWUktDL7IOdx+iHOfdQ/MnSbZxHIkaatH0t2gu3KO9a1zXH7xFTauX0FHEUUhWOkvMHj/n1IOnmDqglppvIXKGxIZY+qSKEtZXF1Cp4vYOGU0PGRyus/Kyjqj/QckypNFEa4YUU1zlrZ6dLu32V54g3Y1pHPi0YMaXKtJOQa9Il3otqkNVDJG1obD7QcY87MH/ARTQJLEbaL2Mq3FLZY2t7h08zabt26SttuUJawsLDN98O8oxrvUpsJGURheZSztxFLOxiSJZHltDdFZIe2vMjkeEdmKXuwZnz6mlXWRLmZyus2qv8z5C+u88VafR2lO65yheyRIBk19gJeh5qMZWifkf4Kphd6M8E6HMY2fGzIBJRVLC32uXr7IjRfucPGFL9PfuoPzkpO9t5ge/IiY68Te4qfHGFNgbU1tK6xSOBfjhWAw8pR+Rtxq0el06GYRcTfFWIe1U2IG1KNj7HCR6vQcs8kmZVlRFRE7d9uUU8f0UklWGaJK4aeB6jRMUKsIYywValZAYsGBMZ+1uQMuLSTLvQVu3LjO+XPLtDot7OgjHv3oHvn4kOL0IUnUIl1/gfUbv0C/t8Do4B6n939EffIQW46wJow7ro1Da0PWioKlqrtYFOPjPU7HUwrCcKcUTS/t0omhGh4w3lukJA6EQZsJs+2aaGygkg2/vUP4BESFp0bkNTiP1GCq4nPXDEAJRa+7wOVLV3jhzgtcevFLLF14GQuMj+6ii13cEKTuo6sJ5vAD/OwATIWpZk/HJ0vhcGiqUlDVFYoSrKcqD3BVl0in9HptWt0OWZJgJ3A8sCjVIpYvodxtxht/hjYReuqJKhryE9dUaTRh1XIMPoR+bTHjs/OUQSSQZRlra6u8eOcO1774dVavfAUrBL6a0l5YIG11KY4fYe49pj7+EcIcon0g9HBuTtDkmNSG8USSO0GUBL4F51N8HBN1eojOEiprIz3YMchIURcJT+6vM3i0Qu/WY8bOkuSauLYI35CFeB+8Zw++nGJtgVaSIp81karP3pcSQZZmbJ1b4/bLL3Pt1W+ydPE1ZsUQX47pdRRZrCiHTzD7j3DDv0DWe8QIpLH4uiaKNUpV5KZgMotIqYnTjFgpjDBY5Yl7PXx7CZWlCG+pJ44o0wiXsP2oy/DBeVpX32UkKpI8ISkl3sQhbGkTgFDQVA3wvkJqRTUrnuZuP2tvCkRog1xe4sbNa9x69Uuce+EXyBbOMzx5TDHcw+3lRIvn6CQ95PgJ46N30bNTRDnCFwdEQqN9i8KOqX1FjSADoihQPFsrKCpDnGpaWYu4lSGjlCSKKEYDPI7j8RFaVTifQVngnAHv0NZhaoejAAy+rvClQURRmMjqPmvdgggkaZyyubnGC7dvcfWlr7B586uorM/o5DGJhHYGNk5Z6EqS4pjy+N3/b3t/9qvplt/3YZ81P8M77LFq16nhnD6nu9ktkt1sk2KTakKyIMu5zk3+jNz63ncOECDXAYIMSOJcJIATKIptypIiyQzHZpM9d5+55qo9vcMzrikX663TlCPCVEAChlk/YOPgoPbeVet91rPWb/gOyLChf/F9sr9FkSEnptmXTpOSWLtGqJkkOnzYI8hUrkYpRcoTihH8LfvLDt9bTs5PWJ6do9+7T7x8F5Nm0sufIOJ0EMWCzEyOA4wz2khSyP+O7ulfxB0JtFSsV2u++sGX+fKvfIv73/gO7d2v4LvX6DBQrVvU+pywGxg/+1N2n/0Zedoyj4EUM1VlGAdFvdQIVSFMRVbHbHd7lJMoU/ErX34Xoy399ROu/JaL+18lWcf4akt7fkLcHtNoy+bRFtetcGhEHkq1LMq/PzGRYiKPM8o4YhakL7qnf3Ffqi/WqIRg0Sx57+G7/NI3vsXDb/w2y3tfJ8Ue6fdUizXu+A5hCIyf/4DdR39K2O8Yu4BRCkTEB4NbKhCBqjmjau+y8wIdJrY3z1lXsJAz2+c/R995QNM4wrBn2A/UzSl6/nXk8D22j55h+zVmqxBzRgm+OCNz0oXW/FeIf69kYBwSce7/0g1upOH8qOXdd+9y//5dKmdR6ZpnP/ldHv/gv2bcv8L3NyyOHxK/8pvUCoZXP8KPe0JKDHMu7cesUVoRJs84zqxOjmjbspmLLFZkHG+I03Vh4KaOOO/wU8RoR/CSvIM2CHTOjBeB5qaQ4qTQBdAkBGVmlJhSYOgVIUSCfyOB8otNIIBVbfjSvRUXd1qM3rC/2uFvBPM04OcN0Q9YKfD1McmeosYbRn9N/+pn+JvHzOMNOQZ8mPAhM/uE94aQZoKviFimzQ6XHCpNrJdLlsc17XrJYtWWiyLs6a5eEk2DSzN1c5fhgcS/ntFiQmIoZ4MpJlJ4PIm+G4gR/Pzmuf3bB68UkrPFkncfnfHw0UNcbRHhkpc//Zc8/9G/YNi9QviO9uw9Vu/9BmcXj1CiJw6fk/KWlHtm35NDEeJQUpGSZp5mYhxxdkKLXFrGsUNpQ1U1GNMis4TJM+0dSkvef/fXefr9P2LKf4K/NzBfSuxWorIi40AMvJFNCgT2fYKkmMb4/7OuslLBcbPg3Yd3efToPs3KYWtB2nzCs+89ZvvyQ2QSrO/9HY7vvU8l9+j5lmlzw9z3+MljnS4ukiJgjCROmm0vmZE0wuAayFIWz4NmTapP0NWCedqhY40ymdN1w9nxPcIna9rwmHBnZrhMmE2Rb30joESWIDqCCPRDUewcu3+3aIhEcNIueffhBQ8evcNi7bBVZHz5Az57+ufcPv8pVres73+Tk/tfxoo9Ntww3b5m7m6Ic4exnoXQRJExNuJny6bLTGKmUQGlHAlPFhpbr0n1Kbpe4H1PGhVVs8KKkdP1mi472pCIp57hMmNuNVLMCDkdDl6KoA2ZcZgQWMbuLwM3CRrtuH/nhPfff8jx2RptEv76Qz75/U+Z+i3T7Qt0UrijB+jlOxxfvMeynVD5lpw8ee7J/gajPdZFZD8zzYnoBcFGatEjDUixJEaQUuHsGsmCmC0iRuLmOcP+mm7zjJxn7Mk9dKqYx4F5dwNhJKaRclE4Ej3jNJLnxNj/uytLgWDpah5cnPP+Bw9ZHjVoB/72Iz7/k6fsb54Sttc4t8Ku36E6vc/Z/UcIa1GpI/Uv6V99hDh0BFMofgB9b0rXTo7EHAueBUUWgiTKmEUnj552ZDwxeUZrmawl1jPm3HJtdriciy5EUmQRCh1USFKOdNNADo6p60oHsGzaf2t1VhkuTpa8/6X7XLxzgXGCSt2y+/wPef2T/4buxU8wwuKO36V98GusW8Pu0z9h3l4ixEQ/zYjJkhAMY+DuXU1SLf28Zpw1U5io7MyiXlMbwX67ZX/7jNC/4HjhqBfvs7+6wskFas7oMcE6sz/vaK/1F8JDmYNKn4CYBcM0E7zCj/sD6PW/e54kjLTcOVry7qM7PHj4kKoxVM3A9PqH7J99j+3zH4H3tMePqC++ycnJMfvHf8Zw84wcR7q+SFELYZinmbpxJLEkqVNGb+m6DVLXvHN2jDhblu7Sk5+h/Ejz7pdIQbF9eQPLNTpWLGSDFJn9xY7mWqO8Prxr+XCNTSD+IobjL49/P2qhFeznYqSS+cXcWQJHjeHRxYLTE4HVr9i/2tOpGqdgHjbMUw9hoqoqJr1GDddsti/Y3Dyn7zxIyW1nSsYUBUo76gqyikgliDnSdXtUDgggDTtqZqS2BL8jDtf4/S1N3VIbRZU1Nhj8LYRloq4F9Y2Gg2FPEegRkDVaCWol2UePRBG/0J8qkibnS8WDE0lj94xXHV0AIYtfe4yRGBJagGqLLM+JFaTpkjHsGbafMw0bwlRUuGKYiPEwpsiWlAxITQiSgEeHnnZhqauaZSOpa4MWiZDmQq3zHXHYEbfPCb1n0gm5HGkv32zeA14AIEuUDFirGH3hsv9FcJ1A0BrJg3PLvXOJNrfsryZ65bASbseOMO8RaaKqFsToOLnXkzcvGcIV3e1Toh8IfmYaSntKqogOnphGJj+SSWitsbrB6gahWrJwZGlAWnzMqHnC7xSytsz7W9x+hx8SQzMxrBWrV+4gszxTlBUVWUxICVZbYuZQXWb+YgK3sJoHdyouThe4akfoP2c3O7RI3Hz8A8K4Q+URU9+BZFgvLUn3hPmGMFwyDZ6ULG27AKHZdnu0LkziGCLD3JG1YtVUaGOQukWZFuWO0HbFNA+0IqL0yOcf/j6bzz/B+I54LRgXYI8iR89NwdaIItGdSWSRkEpglQapCvWJ4tRYqmVorOLRnZZ3zlZYu8dvP2c7OAyRq3mPnztEivjmmIxlvbRksyeFPWHYMA4jU/TU9RK5sGx3PRqBzoYYPP04k9TEomqRugZZg7Bo2yJkc1DTSNS159mT73Lz2ccovyXdSsZFxpxMrJ8KJBFEAcmSFWCQImCUQFpBv3+j0vGLQ9dIyZ214t2LNcs2IsMTti+vUVIifc883RC8R5KxbsF+P2DrHUt7Q/AVUgsiscjbhhEhe7T1SB1gyni/ZPCKLgXqukIsNCFJQjJMsqayR0wxY7MnDtdM3Z5peInSlmgk05xJ4xW+36DmIlebhUcmgRAKqSTGKYZ9/gLp8OZicUpw78Ty3t0VVTUS+0/YzBatYOtH5mkizSNOW0a7IL16zrq75qjNBEsxC+peM+2fEeZbZr8/GD1NdHNkxOBFjbUVTXKQHTE75iSopClurHHPtHlNCDNVs4bhgkVVupgb8V3OBo8KE8hUzM/EVM4NIVESjKsY93v+u0BdIySny4r37605XktQt3RXIwiF4THe9/hhj04RWx2zu+lYNC1pDAybj4mxL4ZIwOg9aZT0ocK6U6Je0g2ZfhwxVYXRFikVox+Zx2uE35FRjLtr0vQO3faGbZAM+2vSBmLMsB7xdY2ZJGRLkWz15d0TEqkydaWZB/jFqKNU2ErASet4dHHC+YlG6Y5x85hp5+hyJszfZR52iNjhqmOG244HbkHMhv3VT/HzNSl5fBBsunwwrmpwixP2scHPDjeV7pJUiaZesrt5ge9vmfeX9C4yndbotmZz+ZI8eObNNaKbmWTGLwfGpsJ2b55HcZosVt5/A9TC6fYWkRVKyENWmJECLlrJ+Tpi0wa/KQK/3m9BSLocSSGRIzgHs5hopSaO12yvP2XorximiEDR9QCOIYAwhkY65hwwqqjqbXdX5EFRVzUqTTQWdOWQUhL9QH97jTrStI2gkgq9sUgU9TajbCbrN6I8ucj2Iskp4/vEFDeQS/vnzf6WwN0WzttAngIBiYiJHAUpZN4U2jGDMBDmjK0FlRPM3VNCv2G4fcY4dMQwkk0mxEBIuahW6UCUkqxmlAKMxlRQ1RXGaLSUpOQZxx0+zGgiSysY/Mj21XOGx58iLncYEcjWkOe5ZIVZH5DbnjhG/LQlibKhxV9IdI+d4J11phITsfOEJIlxi5Yw5uIKmGOmqmBmj2p26LRl2mwI0w3D7Uum/pJ56JnnTMgjWWmQNYHAPGRynLCmxjqL1g6lG9A10jQkVeFTJu+vsXOPOTkjjFv8y5fY3uAbSRUkOBAjh0TgzYuaiXPEdzuylIUrflDckgjOGsm9I0mlRlI/M/SSlDYoZVAiEMaIJFO3CR9f0pzeIQ0viGpC5i1K7pE6Y1uNxBGDooqKrAPLCH2IbGdBP0z0Ry2qblFOoWyNdC3GNajagokcnzW0Rx6bOnSXUZ9WyPNIFRK5BtEVjQqRNVn2ICRpDvjtvhzAoqhGv7lSzmrFvWNJJXvm3UAQmhTBGoGIkeB9aQ03kikG6pNL0vicFGZy7lBiRxYC5SzSFZql9Q0pwKIVLEPPZpL0fWBYGZRboaxCWYd2DdlU1IslUSeq1nJyp8KwoRoy6nONuJupZ6CdyZtcRnNqRAgDyRKDx+96hBz/LQlwKAY4D49hVUcYrxgjpCDRSiFSIIdI8ImcoG4kPt+S1A5tNsRxJNkjcmrIQpFTIMVitiVlwpiEthnCzBQE+52g954kBLaCZDNiYelihn5AuR373ZZ5t8WJHVa3TK+fsLu5YX76E9LuNSrsUYf5bEaRYiLsRlI3oDJk8QujmFYL7h/D0nl8/4o8KryXWAcqS2IYCXPGKIFqZvA9kQ3qfIUcr4iTR7BH+g0q7fDzDTChdSRjmEImpEhQkYXQrDCYpoHaIawlSYpFb+oYuitiijhnSMGT54zsA+bpNVGPKOFL8iZ9qS6zhKSJXSD2Nwd675u1FWOm+2s4bjxiuGbvy6hQCodWxZrbzwMiQ9MIhuCxWFTeMe63pLgtZ6BIaC3ofaabJGPKJFkjtUPqWAyUpCLlSIwz47gnzltkHnFqSQoRP40M8ZLt1Su6y2eo14I8aarbTGoS3CwKiFyWrtQbyd7YT/j+EhELkyHnIpZnJNxfwekioOZL9lcBIRyCLUaXjuc8daQAbQtTnJFRoekYtx3RXyJVGUsLnQ57TlE7i3InzJMkziOrOKP0gXofZ/y0IwxbNDPEkXG3oT6e2F+/ZN7cELtbzJUhTYZqW86SLErBJ3MgCcgiktXfQGfgvaq4heWcyCmTJSgr0DYhi84B5EyKGZEF3kdEKpelLEU4KQrqpmbuLknDBkImxMiUIqPP5CTZ7yemKXF8vGCKCmUEQiR2u2v6YeDO3QuOVxZnKrJeoFWFRDDt9yBqnLA4rVGzxlwbFkOi7guLoHRM3sBaiuDIu1Wkj+kLzf432CVpBcaAlproA/hESpBSLm33Q/dWCDC6/H9lViiZidMV0/4SP9wyDlt8SOQsCRk6D0qUKoLUkJNFOYmuG5RaEGNFjJp56CF4QvQgNVIJREwlYd8NyCdXNPtEu6kOmuIFoS4OrT1I3K8SjSobO+X8BQ1dGoGxh6psFmQZySkgk8CHcvOkTLmIFAQVUE6S5lui8MzTS6bxir7blew8J6YgiXNizjMxG6ZZ0FiBqzTGLFGmRZolojpB1WuysUgxMW6fkKqaal1jMCiWpE3LOuxwm0T2now5dHRSwXxkuGdBpYKeF1WRBUUI1GFthEQqbQNCmErfJI/4BCGAMwWbKMyEyjOMNwg7I+WIUgtOzu5jVMUw3dDtb8laYrMl2kyUiXQ7garxk8KLI4RqkLalWZ0jnSNgkKrms093mPgQJzQxWmzXYKtIs5kRcyDLghVAxC9sU89t5MtN0Xw8MLyKlbGRWCshJeKYsYdLRGbJ1Bd9/BgPa1MJFQMqeRhvwHqkCiix4Oj0DKVrZn/D0F0TxYSNBpwgqZZ8O5NVzTgmxrRA6AahHc3yLtk6shRUdcuTz/f47TEWS44avW1Y1QPtViAnCWo+iGAVfYAsM8da80FTfEEyB/M/KRBaoLXAmEwcMvnwDLOPBDwhZBDl+5WCEBN5BGRGNDMEj8gBxVhoaaTS/BMaqSW2arBhRk+g0sw4S/oA5JEs9wyyQg+e1lt0s2bstvT7S2qjWFRHdDc7Xn7+I+KTF4ibpzj/utDUMORUMBFLveeDtkhJ50PHKgmQGt54YsUpwSHRV0Ewj5kQD2dkBmUzfgxIBUkXM7I03JJ1JMstOW2JeQA9Y60h5WINHrJknDNRjkjtmFJG6RXWNaAtOXjwHTlF8jCASlRWkNPM9uo549PXuNcC0fsvlEYK9qgoWVYi8UFddC7eJKdZCIQE7UCbXBIWI5Ek/OxBDUwpk1Kx0rAaoheI1KN1QkZPTh21q4vYXD6lG18yzBNDEOSsmL3GWY00BltbpMn0w4YQPaHfo/E0laJZVQg9Mc+3bLuZZ68+p3/8Ie1NRxsUywzWS4pvQkQkSxaJLMDJwFebSEyZlMUXPbgsE8oJjIU4e7SSaJHwc48UPXMuCdHkQUmwpoga1YuMEiMp3OKcRaQ1+85j9zeMPhFkTRIeIQ2100ijkSQQmXHcIZUkjHsIW5wNOFfuQD933Ow7tt0lw9ULTBcwk2ChHLXPBTxOoT1LEckiUATp/5qTAZOLkx+yvJRSA6pITTpXEacRYiaGouo0h+KAKUT5kEIEiaGyFdG/JsWpSHiSiUmTciDGzG6X2O9Hjk8j6+WSJDM5BZSIhU/LXLyxpUO7CmFrQtbM3USIG3ab7ouRiUkCbRXyNtCsGuraMA4jYfbkkMg5oClitOoXeQJCgVSZEATVcoGsZvzQM01lPbOHcQKtwahCGRdJ0y7P0TmTxo5p2DCOe8ZpZpgkMQkiittOsawPKiWUB2iMQVcNIcPc7bFzYJpHhCoZeLtY48zBBdFnuleX+NeXmJVHDha3cCwWlmmcmAfIMZCjQeYeRamC82FtUoEyRYjZuZpweG4pFsbIPJdnpeSh4xFKdVZVC0hbcu5J0w7fd8SptOBykngv8VEwmqmMAhIcVQZXOUxVo6sG42piVRN12Xr97oZhHDm+c86wu2Z3c1W6Gj5iXUZPGldrFsuaabD4cSalHqJBMhYAFRQtf1GemVKQk0RKSQq++A/ETDwkASkd5AiMIMz50MJOkGZy7Ak+ls9CbMk54qPEVAvQhhBr3jlpaY9n2u3Ivves1kfU6zNSdcK+2yOnLevVXVS2bG52fPSjP+Hpj39GnAtwVcWAqkb0pcCYitWRI0yJeZyJYSqCWLnoWEIxURGU0ZRU5YIRSpJjLBsvQoyRKfwigUML0lwSwCLBPZNDX8C3B++ZlDUZi2tOQO+ZRsW90xPqY0+zndn2E1XT0qzOyNVddt2A6q5om3cwtmKz2fPxT77Hkx//gDSCICJjwpiMnBVKZdZHFwQ/46dA9B5yRCiPERwAk4d3ToCUB01IYYrNbyrJDQdPpnEu/24pQelCDkqiwErdlMlRojJIEmVgd3AL1ZbKrch5IDMQkiCMiUBinAP7YYB+D01LIzXWj4RxYLaaZtFwcnSX6AOv/uSHbC+/T3PVof0V6xMLwTEPnjBNiCxROCxDYU4cOgLisC8TlO4PsSSqiVIMheLJpCRoVRKCUD4qlFZYZ8lxIDORxJ4UR5w9wdl79HbD9eYWvYvYydPtNWmGbrTErEtnyTiEruj6gZjBOYerHNJZ6uUx5MjLD39I/+onmJCQ0bA4PkaSmcZrgvelUJBvNCDzFxeHoDyPlDM5lgKLFMmhTBl8KB5vb965rATzBEJLqmpNSj0iBYwE5RRtPuLkxDMON+ynjhhqhnGm0pKj5RJd1ShdMY1btrsrGjezXNXkRYutztHtkm5MPHv5it3tCGMkxxGlPTIpdCepTx1KGHw3EcNYbKOFQh2KJX1onwpR7oFEJsXi7EGKEEAmQYilKIypPDPtYJ5BZsFxvS4y6gmczVhliemUvveMU0/vR2bfEGPmaO1AV7jKEHPm5uolRht06lguK2J01Ksj0LDvOra3gZvrK+L+Cj31KC0QJqN3lvrYoI0hdok4lRdd8DfQGfiLlMusIRvwUzmk6lZhKo0fPNNcNshcknW0LgdUUOCUw/sJayLLRU3OMzHCuE1INElYZqHpPHTThFsmjDGEWVK7BqUUTltyTgS5ALXgcjty+fnHnF5ETu8p4n4PcSoZnq+JxqNWFccfCL7xW49Ar3ny05Gf/P4PiTMk5jJTOmwAFEgD01g28H6zQUsQh+5HluW/MgtyPnQJAuimKBHOY0eOe8bhlmkciDEwzhIfFVkKpjFiJYRsIJcWmHZHGLNkt9syDD1Oe+pmxFWCqmnRTmOMwIeBbbdjd/ME3/fItYCVYP3Q863vfBnlTnj5WeT7/+qPiHMu4KHwi0MJDTjB5Mth1SwrtE5M3cQ8lURh9OWgtZYvfI+sMFhXE2MPYk8Yb4nzXJI5VbzCc5B4WSQ4MxOVsShj0KpB2AphW7JZEtEEP+NiYBhH0IaqXTHtN3zyw99nv39CM/ly6S0cy4uZb33nXexyydULw/f+mz8kDDNIT84J8QY7aMq+nAMIKVkfHeGHa8IcmN6sbS4XZmMoLzMCS4VRjhT3ZY6uW7Ss8PQM4xZETcoS4xbF/0E1nNw55e67a/b7HVIKbKXouw22egavLFFXtMsFLz76MVef/4QcukKJ1JKQMyJlUl3R3vX8yt/7JdrjFfublj/+r/+IaddDHw+iL4ecUZWurY8CkSTHR6fM/TXJB2ZfxnXzXF5PZYtrY0ygMVhdEdOW2U+l3aosOXum/gYhDFnMWNuW2b61HDdH3H3vjO1+S8qJZqHphw26f83u6mO8aWjX8Pyjn/D6kx9B6Mg5kFQsjpkRcpNpjiJf+3srju6cMe+O+ePf/RN2tzekUUHybzCFZW1aEDKEMWOcYbFuCf2GcTwYHOWyZ7UuXYEUwWdIolRxPiV8SMTcEYIrRi1JgJjQOlPbFqkqpF5ja0/d91TbxH5KBFlRVxXLRcvx6RFN4zAmUNUVy+M7aLXgo599l1c/f4wwT4h6YtV63v/2fe4+uEcYz/jTf/ZjNq9eF/XLw9xDlJnVF2uLE5zeWRGnjjBPTGNJAHwo56Q8GHH6AFFDTIK1WZJ8JMx7kpywKqKEQwrL7BMpa6xd0jaZOUX2wTPOCh8C6cD80tqgK0vKnjlOOF3h6hbdHjPLmu72mg//zb+ke/4prZtZuMyDXxc8/OARyf8HfP9ff8irzx6TY0Tk6dDxeHOelAwhTInqbFGwU+MWP2fesM+HoazT2fLOpQwCTTdsmfoKoyJapoOT4EzTGO7cPSLqjs0uMU2RHMEoiXPFKr52CpMlzrWoKoGoqFYPkM1dPvrwU+Z5gHlP1gMBSQgKX4M+Ttz/VcUHv/IVkr/DT//oE5797GfkUZeuL78YpQotkVrg54Rd1dRNDd0V0Wemudguj1N51saUhMeHcq0Ow8jQbbHaY2TGx4CUkaPjJcOc2d6OzCEyjBN375xSLVaIqmKOAaMGRJxxjaGuGlK21KsLRLXm55+9KmfYMJFyxEuJjYrgImaVuPdV+KVf/yo53uWT77/koz//Pnn6G8AMjLFkhsoI6iX4sbycWsGw3b9pGJRkQQiEyAhZDl8fDtT3/cBm84rzU4nRCms1lQsFaJQzVZNYHTUk0bDtMrqaaXPR6RZZ4myF0JYsa2x9zHaI/MGf/zHPr0b+wT9cUy0N/e5lof6sHb6SzCcTzToxzRuuXn/IvQ9W3P/Gu3yyv8t+MzG+GJgOhw4iUy8FMWSsFTRNOXiGvvy5kuWrHGDFRS0IiDMwJcbxtmS+cULEhEianBQpSOY5E5Vk9ALdSfo+4ZcSoY8w9QKUZponZj8U8NjhEUlpULoi4xh3PZdPP2SYr0jnDeK4o14KEhtevvgJj752wsXXH/DJ9gEvrybGy4mxD180IRZ1afHJwwbutjdFNiO9afuVv1UentscyiXU2DUCjZ8GUi663m1jEUT6GVCKLGUBVEaFUBpZC4xqymGkG2S1AFeRYiL6kRQGpIhYU5OCZ+x6hpvnTHKPvFiQj3rsAmDP8+c/5Eunp5y9/5CTzXs8eTYw7R4XP4sESgqWrWQOpao3KrK9fo2SkA8V8xvXXyGLa3MOgKDgVfa3LBdHKC3IKjL6lyQUUlqca4lMWFchVIMXlqRWSLNESUsmEvH4aURJgXMNpm04f8ew2y54+WLNePMaRMAvLEOzIq8iagmaHS+e/pivnN/h6MEFF99+wCefXjP/+JLxZioVFYK2ESSVCT1YG9lcv0bJXDwpUnm3Qi7PzUe+SACd0fT7Db4/I1sQyuHDthj6qMLqSFmibc1StXhhiHKFtiuUqvFxAhmYxwFJonIO27asjgWmmtFVxbQrIiexMQy2hVVAHCUs17x4+hHHFze0F/e5/537/PBHLfOnNwyvxjeYNKpaIo1g6iLOQBh7Nn2P1YJ8+J50KLOzKA65MZTkLqZcugQp4sNI8AKFQpsZKQ5CVSKA9qTkQGSquqGqT2iXkj4EkjKs1sec3HkH1zTU7ZJ6eUyzPiNrx2cf/oyPf/hHRLXFrRoanbGh58XTz7hzf0d9MvDwdy549aeW8cWG7un+QO8CawXKSaYuYjXsbm9K5yZx0FI57EXKODUduh05FVNEN490+9csmrsoHahqDXnE+5lxzgXlLyLtYkUQkI3g2atNAeHFRBKZGEaMiGgtiqCRNRjXkrXl6Wcf8dmPf8Dl8x+jG407UVjf8/rlEy4ezjTHWx5955RnZma+GhiedORckk9jBKYRjF1CCcG43WKMwqbSNi/MQ0E6fP8UDg4uGmCm6y6ZxgZZgSAR0lB0LWRFZRe062N8Mli1oBsn4nZDmzTOLcnBI4VkuTzDM7NYv4M+epflw1/lnmj57Md/zOBLBTCfLVArTbXe4caOzesXTH1mcbbj3d9e8jhdMG0D45NtcVcErBa4hWTsCrXSDz05zFhK4hYjSCXw8dCtK4rU6AwpB7r+kmloULVGiEyYI84ojpYN1jnWZxEfLCkJ9v2EcCNtc4wMkdpKtDRU9YIEtOv72KN3ae9+jcX0Z8QXnzL4kSwi4dgyNSvs6S1uDOw3HfvNjzm+t+Xhb5zzyfQOU+/hJ9d/vcnAlXXU7YJlE0jzjrrOLFogS7p9ZuyLjI/UpRsQ3jhghpLFTwmy9ozdLfOiwcmA09DWjlUT6Hzi9NRxfFRTty1JanZDZN/fkCiUibqqUA3kKMheoKs1y+M79MZz+ugddtdXiNBjbYZVhTKZ2gmauSPHzO2m48IbnHnCo/fvsfn5hmdB0RGwxuGMxuoZKz2rFpqmdD/CTOl4HDrKMRw6y4csmQTTOLLfXrFaKmo7UtkK6wJ6CAg5k2IkBAcSopT4vMCnmkjpGCBnpEoorZCqlBVZWpJ2bIbMEHuqOnPz+EckblGtpLKKhdiSQ2az3ROnBdr0vPf+GTf+Fc8SvAqSyrRYG7HaU+fI+kigVHlu3S4We1RTDt5sShIQKevKHoahZ3v7EiUsToNSFWjQymOkw+gZYz1+lMwhY3VFu1jQLNZIY1G2QhhDlgXkp5TBp4lsF9ijU252ez774Z+Rpi21LRm5cYKV3sCc2O53zHNNrS557727XO0TVwqeC0O1WLCuJdns0QqaIzCqINXHfSyYDlMO3nBo673BDaScEW4u2IexwbmIVyX5rIwlC4M1gqw01hqkrTCqQtmGlEsrXOklwpTfpYTAmop60bBcK37nt38Znyw/fPGETgaUU0hlUZXglC1iSnRdxzRuWagl7757zItbuNW3PMuKul7QVoqF6xHTxOldiVWCoUv0+8OhXMbxmMMoLhzazCmBcp6uu2UcWyoys9whBDhrQWqUsmglMNaiTYtVDmEWZKERaqYWDdYZsgCjFFpXtKsld+4ZvvLgO/zL37/H9//JP6GWGek0onLQSE7kFjkmhnGk7/as7C3375/z+MUJ/dM9L4TGVBbnLKYekX7m7I7AacE0wv424VPhTBtRkgBtDqTSWJ5dVuWcsVYw94E4j4RZY4QjS4fUAZEyaIOSLVooksiHGbijqSwWQciCqnIYrVGuwizu05y/C8bw4vOf8/zDH5CG56h6T3aBI90hYmQYYL/tOat23Lm74OxuyyeXGz71gspIrKs4rT0LAsdngsoIxr2g35ebw6pyMYYIXhzWdjgrk4SqhhAH/DwxzwNLo4jBUxhDGmMhC0WSBmkculEciwXHp3fxIeGcYdMH8suXHGWFqZegWpJuwB1xff2aT7/7e1w//QFCbsBFju2IDp5pgu3mhsXKcHJccffinBe7l3w0KZRMKKM4N3CSEqu1oXYQfKbbBPyhoDCmIF6sLe9cShAmAR5cIxiGga6bqK1Fyow1Cq0FSiSiqVDWkITB1i1Vs0RIy74b2XU9U/CkmFmcnWOX54ijB1T3fpXFgzP8T3t0FlRyYrIZlEG2npUdcPPMnODm5prFWaJZPOLivTtcf3TJp14hpMQ6y2kd0TGwWGiaqowd9xtf7jRA64KVMOZNoVFsjH0A0yiGqafrBmrbILXHWlCy/LC2DuskWbY09RExt2z3gWG6JGZPP/YsFmuWp3eQtsYeP6S6801OvvouJ7fP2Tz/HCs8lRHkhUM10FqPm0d8ylxf33B85wjnWh586S7DZ1d/pfv93ysZOFkn6maiUhHhE3UNri5ZXUrii0tTSvBzJge+aAUWggYYlfF+T4yWLDPWaI6OLFWreSdr2ralak7QzRFJWeYoCb4MFkMOdFNAjjM6SoY4sD6/ywdf+yYfuGO++fWvcPPRM776LY361ldo2rvo1Rmyybz45/8Xnv/8e2w3mXFMhJuZe2eJnz9ZY43AOkHbShorUL3HWTBWoPSBCVGVzRznclEesJIHDEXJ4hGZeezw855KFzMdayWVyzR1JqTMMAaUsNS1o16cIMyabpKYYQQvUErgrEFoDdqh3DFXm5Gb68/46jtLLi4Ef//rnurvfhu3foRaKm7+8P/F4z/7N+y7xNAXr/fz4y2L1TFKappqpK1HVo3AiUhjNLZOKJnwITP2h0rrzQjoILUgKBlwihCmkam/xtcttlYFJxAjWkkWtWacA1NKTBFyUEilWK2PUU1LkPIwNwyFbigVzlYkJNXyhIsPHiGv/pzjV4/5zX94jrOP0EcPEUeZ7s/+OZ/84T9jGErSEkfPqrllfVZzct4Q1YzKc5GPHWea1tA2qfgtBsHccaguBTkdjIpzqcJiAGnBqMAwesZppHaWECPOKSQBow1C73HVaTGiMjWTEviUyiWqEsZmtKvI0mCNwxhB00h2s0DpwFfv7Fl9DfSj91HqK9jTe6SVwP/8D/joX/0XTHNiu5mQsadygdO7K45OK+7PFkWiMZk0zDRLRdMIjCyMlumNnYEUpJhLZ+4A/HyDHdA6ME4z0zzS1JYYc/EayDNaV0g1U9UnaKNRtmKWAh8TWoHTRVnR1Q6kxboaYxR1Lem8wIrMV++OtF/zmIf3UOIR1dk94kqSn/6Qn/3uf84cJm5vAtYopLjk4v4F7eeGOxcaZxS1lsTR0zpBUwmMLu3XoYNp+kXF7A/7UByo3/kASl40EuUO5ugRYhrJ2JLRIrBmTRaWrCw2WVIuHvQ+CuYAo4+EOTFOI3YYUOsT7OqM5cUjWvkK8fEf8+6Xn6O/9gHLu79EWGrE7ef89J/+HxmnjsurSLuUxPCcd+7fQf28oakkx0tJ7cCJRK2gaSROZ4gw9aVTelBERxw6dV8ARQNoC20tSCkxjD0pREiF/29M+VlDjZCGtl0XCeJkSXbNebLMU6YfdgQZuNpuCVqxOk4YDNmsWNQT5/P3eecrN+hfeo/lna8SVgY1vuZn/+R/T7e74fIqcHpHMo83PHjwgO9/1iAUtE7S1JJVFakVtEtBbQTTKJjHyNgnpCzPJ4ZyRr5JxAuTS7BYZHL0zMOOvF6RItTGoLTEmYSQCqmPiEoh9RJhKoxb4WOhc0/TxDR1jPNM7c5xp7+MOLrAtpp//B99i8/dE+L9M5RoqU/eIa9X6HzNx/+P/wM3V8+4vPbcG1umvufR/QU/f1yeW+0y7QIqElUStEtJ7SRxzvhJ0G0zUpZkwB8o5YliEZ8PzIq2Scg4MQ9bWBty9lgDWlmsVcUsSy8RpkHpNVlXSFMx+4jGkKVhmj1jyNSrE1h+mdBekKzhO7/zNR7yGdOT51T6a1RHF4j1Gm12fPZP/0+8fvoR1zeRh3Nivt3y4N4pn798Y/T+15gMHJ8dY/D4bY9xpQMgZLnkrYOmFUwiMwyHTX2YnSlTPrwsQahUhHrCjqZWOA0iWppFQCmNsRJXLZCVg2rFnCtCEMSYmYNnGAdCDGgnQGk23ZZsFEftET/4L/8TzKvfYyVmdJsRq3NM/oD1+tvc/e1/zGc//yFzF3j9ouP8OCHFh/z9f/wt/vkfOHyQVFaT93ucLq1LZRNClYqkXQmkzowd5PkA8gkl8REagixtSz/NhNATk4accTayWhbw4DxDP2Zap7hzWnF2XFNVLbOPvL68IYst2hiUVvgUyVEydiPXr19xLv8/NLdXhQPbSNS8RIivcHzyW9z59j/ikx99l9D3vHxxxYM7GfzEd/7+b/Ff/ZsaqSeOlxVy6KmEwNpUOhAqU1WZsBRMQ2balQM3Hqhs2pQRUMwgc2Lqe8JSgamLkpxU2GqPtgmhLOE6kXHU9YJ6UXN2tsa1DXGceH2zZZKXVEcaZSwiFU18ug0f/rP/Ffqz/xu13BPrCO2amL/C0fo3qX/zH/HJD/+E/uaaV882vPegIo/XfPu3fpMfPz0jBo3KE+PmGgPFWpdcLjMXyp7sM/OQSxv2MBc0ulRfQoLIkX7YMI6a3NZo55Aik2KNsAERFGneksQaIRNte05QK2J2RBnJeUKbFcosUKY6jMci2Qt+8v/+v/Lqv/1f4uJznI1UC0fkPY7a32b5rb/Hpz/6QzZPH/PqxZ71l26J48C3fu2bfHJ9xrbLGCGYtrfoXGauSkaUkliXqFrBPMA0lnFVTL9gtiDL+ylJTFPPNG0gNEjTIlUiHRzpZJ5IsyKJU4SKVNUdrFkSkiNrCPMGpY+Rpjk4zSWEihA1H/3e7/L57/6nNP4xxoxUiwVR3Oeo/i3c179F8+M/4uZnP+Ty1cjpeoMUO77+tSOe9Bc8ez3SVoZpd43KqeBTJEglUSZRLw7z8/GQFBxYBMYUzIB2CutMWUtOhy6DKp0GOxV+dV6RSCg9I3SF0SukavE5EpH4mHDTjB1mJp+JKSCEJCnJ5Yf/gs9/8J+xDC8RNmCWC/rrH7Oqfp3mg7/DyVe/yYd//Htcvh65ON9gxMB7jxq++Rt3+fOffMLJsUMffHCcE0hZtCO0S7gWcicKHXcq7xqH983okri6ShWRpZgJ00xOPSSJcoYkPFYuUSqWqtdWCNnQ6hWzqsnU9EPAOEHME/McSXFGRo/JHv/qu7z4s/+SlXgB1YxeGfrrH7Fwv8ri/je5+43f5gf//J9yfR3YbzdUInJxT/Prv/WQf/Z7P+F0ZahkRIeIqw+UZRmRWmAdxEkwhQJEzod3zmionCAKgXEGSEQP4zCSc42rDNpIcnYoUSFFRumOyp2grMM0K6JcYoUm5oibe7JvS5Jga5YX5/RKcP35Y37w//yfY3d/ilOButHM+ZxG/V2ah7/C3d/6D3n2X/zn5NvAzeWW1nacnCS+8w++xn/7xz+hdgrJSBpCWZs69P9VRtuMNhk/w3zAXKVUzn1rC35FWYcUkRQyYzeR4oSuDc4qYqywxpS9oAPGaaRVmLYiqoY6VySRaaYeP/WE4BGmpb37LrssuHp6yc//xX+Cfv2vqPSIbiVzfIdG/BrNe9/ind/5j3nyf/5fE3aRy1evOW4dzgz8/X/0bf4X/7t//debDDgpkGHE1oJF65BCQR6RGSpXWAHkSBYHhGU6zFaM5Oj8Ls2yZexfIU1gUSnapiv0DkJB+qaeHAMxbEmTJ4UZzAmL+hwhLYHAbr9h8iNGaipbcb25JosZL2Dz+CcM857GJFZKUPGU5fiaSe65yRCVYtx7NrvI3XuS5CdM9zMaNxKNw4kZ0UoWTYVSiixmiB6Z82FWlPEG1GET2INdtasqMI6UB6RO5OwLCtgorDE4G9HSUVnPybHAVktOVmuWtcS4RLCGIc28vrpBmoq6XZOnzLy9ZE4zVltmPB9vR6oWjoSm5orldIMXEzeVJGpBd5vZbAOPHnpiUJjuIxZuRzp2LLRAyCWLVqB0hDRDnDAW2iWHsoQvwJBE0EZQL4+RFoLvGIeJmGqEGnGmdH5Ak7LnaG1BGy5yjdYLbO1oF4F64WC9YoqCy80tbRZU9THTlOnnidVui3/1PfrNa6omsEDQ5InFdMnMjt2Jw+tMPwi2uwi6qLqp4acYv8VJhwg90mkWbYPWINKESJ6qEpB+4RAfI0w+I1LBvbRtjWsrwJP1RGUTTWUKXiPMCBxjd0kSEu2OcdmgsyJuF2TXUp/fpz39KmP/mjA+wdqENprb18/ofgCr5SkvPvwzPn71DF3f0qTMUkA7vcaHju5izWgmhkGw22WiGNFCo/pnmOkSp2pkmEDPLBY11lLMY2LCVaWU3HMAZKXCKsqH5Ns1lmZVHfxEBEYp6qrCuZkcEyJb5u6SWWSUnXBZYIBAT7KO6uQhy8XXGHYv8eMLrA0Ya9hevWL40fdZr+/w+uff56NXn6Oqa+qUWKqO1r9k8rdM8112ZsswCbb7jE8DjXPQ7VDjayrjkHHA6kh7vMDYhMgeUnFJlIuCOepFAfPyppOjy1ezNpxe3GXRnJEJtAvByarC2IRMEykkxniLTyPtcoHSDvQtWQz4BFKvkKahshbFgBKeLBNzt8dvr+mvfsjjy+coM1OnzJHZ0ITvM85XJH7MjXqOD4JuyEy+p1pIxLjBhWesV45FrcnDSHVSU1Ug0oxIgcpl5PqApxoEwhcqW/AZoUpRVS1rjk/uYo1nGHfUlSmFU2UOSWrLNM+E1OGaERVFKcyCJBKRxrBqG6pKMfYbbJxQMpf3JGxJ0xVPts9QtqcisbYTTfgR6/EFVzzhdX5ByJJ+TPRjx+JoCcMOM36P49ZysrKoNOBsRV1rZNSQdhgjWKxAiIzsYZxLR9dPGSQIC+2i4fT8AmcjXb/l+FixaCxWCQgJkRMzjwGJSWtMMpAcGYUXEdPewx09wIZbYndNIiHTTJ48PuyZX36fz579DLihcoGlNDTplmX/Giefcz2+JCXJ0Ef2/Y7j9Rmin7Dxzwo90TlyCNijlqYtDpeECaETi0V554YOprkgKOcJEBlpoW5qjs8eYtzE0N+yXGUWraS2AmJEZ4HvOxAR4yJCKDQSLzJBZ3S1oDp6SI47YneFTzNKHFh08y3jyx/z5On38dMtznnWEuq4ZdW/oFFX3PS35KwY+8Ru33PnrCWPI1p97690v/97JQOannYhcKYleE+YAzlR6F0+lC6ALJm7MiClKHMiMkLPrE+OePjwDCVB5p5+k8l5IIZIs5BUuobkmMcNcbyk7w3D/ATdnOEWd3nnSw+pkkKNYGTEqUyjA/vLj0m736e/fcVkIxpolOIlMOKx8ytyv+eDX/uAn/7Bz9htAxNQqRPCvMbZHVM/U9c1VasJuWOaDuYxWcEcyD4hD61XYw8tvtL1wy0rLt75JepqR+aWRWMxsoi/xFkRQmJRm6IzniVSafx8y9Wzl2RVoasF7cldFu2KzW7AukAWhnkeCHHDxWpDHHomJ5AeGiG4FZI+Bky4JNxseP8bX+Knv/8hXTfQx8SiOiNPxyzqa6ZxoKkNbqUIfmL2BRAgUhFPIpXZs9SFSvgm2clIXFtz8eAUZwbmec/RsqZygRRnQigSx1JGlBIsWyALpByJYc/22TV7+wrZnHLn0depp5HkJ0Q1o3CM10+ouz+l237IPiTSnDmrBXsl2AaPya+ZX8986Wsf8PPNz+n7LTvvOV3dIY0rSAOEHZUT1Ksl3ie8D+SkkTGQfeknC5lRBoQRSFfme0JKTGU4vttycmypnKQyman39HlblCj9jqqSqKpGaM8wbJGzx99es+sT4pM/Qaze4d2v/w5oy377BJcy2+3E/PSnXOobLh//C7ZRUAfBaYJBa679jBXXjNcvePD+mnAdGYYrNr3k4uycPK4gzOTpkqoW1Is1KXi8nwlZoEIGnxFJIEVhD7zpzqUIQklcA+tzw/FRS2UdtZFMY8cwdAiRidMNTd2gXIs0inEYmecrYrpk20mS/i7q6D73vvxt6nrF7vZjXMp0fWJ6/hFXpuf2+X/FzmechrWCYBSfzzMVN0w3G87v1aSHF+yun3OzD6zWD8nBIRhI/gpdOdYnR6TgCX4gBofOE3lKiANeQB447MUxWhBC4eSHKTCPPSw3rJcnVJVhmLbcbq6RMRGnyKJd4pqWMFpmcUOWe6YpsduPJKkResHpxZdxlcLoiZASKm6Ynv8h+8t/TT9IrIQjL5Da8LmfsfTkzaecHAvUVx5x9fQzrrYDJ+cPyHGF1QotO6wStKerA8J8T44aFdPhwjt0N0wuTro549xB3kSWsauxifM7J7TtBSp7RBzZbvbk7AmTpqkVtqqJs8TPO6QamP0rNttAoEYs1py+82UWy5akE0PfFcXEsGPY/wH7acKaROsFVhs+DzNfEiN2/xnLauS9X36fpz//kOtN4M69JeS2rKn5EGdh0awRzPhpJgdfqJS+uAAW6rKgkgIhBM6VZyZMRqgAquPobMX95j5KJIaupwsjEkuYPMu1xtYGkmAed8Q5ETav2Y0jYzTo03OWd7/BvfNHMDxh6Dbkxx+RxY7dn/9v2HcjshLYWVCvNY/jxF03ctw/w3HF+7/2dT7+wY+43nreedeR0wUxjUj5FKUyzaJCCUWYenwMiJgRMZQiQoG2AmTBDFRV0WXJqnTMpNlzfL7i3XaBlpkwJ272Vwg0YbqhbSqqtnh7zFOPnwN5+5r9lOhmiTt5SHX2VR4+eA/bfcY87Nm++BzkxP6H/1t22w1Zg54E7ariafKMeuJifIkaX/LlX/86P/3uD7jdebyW6HyHGJq//mSgrlqUgLGfCQmMskUe0wfSVJDNUoAzb3gngjlDlhprNTKV2ZeQMA2RlCxJFGT6PBpSiEzzgHWJOXa8fNUxTgZZbRh5jV2vODqqsMKTciL4AasCCxOZJo8yLVXuyB4++TRz+iAjbKEpzuGYZ9//jBQi85TZ7gT1yQItV1yc3eP2Zo9IkWEY8UkgRTywATJphjQLyAVkp3Oh7IUo8Si0MQhxjbOgtSbNiW0/EVJBN1stEGpinArE27jM66uZ/eDJMtDHwOI28KUPvoKpyrzdp4QQmmkots6CBpt3yCD45PPM2f2AXBv2XhDDXX76/ceEcSYquNlk2rpFiwV371yQ0g7yTNf3hOixiuISOWWyF4hUDIvdob2cKPTCJCWuBqMjba2L5sMc2FyO+JBIuXB0F21DzJlpykWAyniurndsdwKlPbMe2YeWd99/hJ8HjM5onThdOHLvEbGhzgIV4JMngtOLSLU2dN6ROeGnP3yC7zqqKnNzHTldLpCsWK/3NAuJSJGu9/g4YXTBPPiJg3lTSeCcLUlBQDD7Qtuy9sApjmUeOwwDvs8kftGXjqmmEopd9wJtW7SueHl1w83WI2TNZD/k1VXk17/1DV589ocsjmZSzvhhi3EjNqyoI+gQefLMsJgDixPFPgiyuMtHP33NdL3BWri69dw5WyLEEatVYLkKkAP9WEy8jBTkpJjHAIf9KKWgthTcQErMcxnraGFQuZDxRaoYpxHfexIBkRw5SFJMVCKw628ResAaxfXNltc3nowj1p/w+FnHd37nP+TF589ZHJXSfOquUW1ATy1VltiQeLXVVHNidabYhxoxH/P5p1eML69QCm42gfv3BU4sWbeZo6MRUmQYBkIIGC1AZuY+k0fxBS7AmdI2h2Jn66MgZc2qaWjbBi0EOXYMXSaMPdMUkNmjVGYKe/w4M93cYKxCOc2ry57NdiBLTRSG13vPL//KN9A2MHYzw+s9ba0Qc43LCh0zlzeK3ew5ugt9zujpjKtnW/rHT5HAZpvwyVGZhkVjuHPWIZmY/MQ8B/RBwGSegUkc8DgCZzJOlqZc8JnBQ8ZS2wbnJnzo8HNgjp65n5hDX+yFs0FkR0QwbjYopTBVxeXNnqubnpQdXrY8eT3yW9/+u5BGtAxcX18zVwKVTmjyJSrM7AZBNwWO78EI5Klhd6nYffQYEux2mTlIWrOgaQz37r4DdMw+E+dCIoZEmMv4lAQ5S4zOOFPAAt5DzKl0qLSlMoY4B4IUeDExdYkUA1oVOui+gyorprBFqB5n9mx2I68ux+KZ8Pwp08cdv/Mf/0+R2xldDzz9+b+ilgNyXlBpRw6JYRR8vPOcPoSEZpxhv1uz+fGniJzp+kjvI0unsay5e35BjCPBZybvkTkiKD4y2VPmp1kU0KoudJHgf0FR1lpTmSJCE1QgCMXUd6QQ0DJAzgwTCG3ZdNckUVFVmm4/8ur1yBTBvHxJZ15S/0/+Z7RzQpiRlx/+HlYMWN9Q6wUxXONnxc8/Dpw9EOA0nQ/04ym3P/gYERPjkNkOidNFfWit/TUnA837/wAt5aENN6FQBL+HMJP8SPKBGAIxFTERFcscxbYnLCqB4oqUtuTkkbYIb+RocbbFGth3A/thxswju07w6QsDLrO76REycv5sx2J1hBYTzjYIY9HWovNDkj9CDgt2n95QiVgyvG1pNUl9jFB3+OjqlrBL2F7w9HuKR/cVd9+pUI9+k/auRoaeHAZi7JBJkMMIMRW5Tu9JIRSJ3pyRqfALXXtM4yRabUl5Wyx844RUB+10W9DoPkT6waOVpp8CL24kfdT0UeBT5kxFHglJ1TiEiuiocLVltXwHI0Z0XBKur3FzQstEtZdYWpQ6RzTnfHq9Y7oO2F7w2Nc8uhE8eCDh3m/Qrg0y9hD2xDigsyTMe3IIECD7RAqRmBOxQOxZSqhXd2mrjGVPFLfEOZHDhBCFfSCEwdUGaSTdvmcYAjpG/E7y6QvJlCydh6gCk9tw/32Fq2u0syirWZ+cEOuEqWs2n7ykGnsamWk6QSUcWreweMST7Z7N9Y7KWZ7MLc/2mYcPDOH82yycRYQO5pGUerQQhLHsRxES0ccCdsyRnCIpJ2KEqlmzaDKWDiVnICKFxrnidx5jxpiKujbs9j39OKGNZfaBz14odkkzhIyXA4N6zAdf/YCUl1T1ElNZ/OhI08xyXdO//BQ93CJlYtEralmh5QJx9C7Pt4nLqx3GWT71jhfDzHv3I+P677D42n9Q1uYnUpxRJKL35GlA+PKsQkzkHEkxIVIsyV61YLGwWNlhVESgQfSFox0bQsyYqqJuLMM4st8btJnYBMXjV3A5GmYiUx44m5/xtU1PyDXGLajaiqpWJD/Rriq6V5+jt1fUItKMkuamQVOjTu9x3SueXN6greOzWfNyinzpPuzcl1n80q8i4wDzTAojSiRSTKShK88tREI8PLN4GD/mSIumWZ6xXiicmdFiRuZEjlukyUWrJApspRHSsN3OxJCR08h8K/nkuWDvFT4qvEoch45Hw0RlIsooci4zCWnv4fxL9DSidKadFe2tQucVRl+wHWo+vrxEaYeZJa9C5kv3HPvqHu0v/TIqj2VtfkQSyCmRxgkxFVZRzIKc5/LsQianxCIrmuUFRyuBUfsDp39GSImrJDJYiKZgIyrNZjcxDgIlJ+Ju4vEryetdxZwSPg+sw8xuP1PniNQVq5NzSCOSlnZzjbwZkCbhpKS91di4Rut7DPPEz16+QEmBmTWvouD9ewa/Pqf58t9Byhl8QMSJHDtIRRo8zyM5hmLZfEAep5hJMVDHgFmsOD5a4sSISmOxtaYwrlKUyJxRroiM9aNnHEHImV0ceHmT+XQzYFJFfz3i1q95/fwZy9xx3J5xsm4Js0Cs3md5/YL55RVWBKzJrG4VJq0w+h5xEvz86gkyLahmyas/dLz/TsSeXNB88D4QyCEggifHXRmd+nDYp0WkJEUPKRRZ+hhookfUC45P1lRyRueOxBaFwFpH0iCyR0lF1TqGcabvIas9/T5zuZF8cpkQsma4nNCLV7x69pw7Vc/qeMnRsmWeIqJ9l2XzguHJS4ycMUqw2mhMXmHNXabY8vHVU/Lc4mbN8z9ueP+dxPL0bwBAmN0aXdkyCsgZmYoGssiRFCeiDwRfPqQ3AkUxeTIR6SROt2g5FltM4cvPiYCRNdY0LO4IxlxUBcfZcfwVGKaJKSaUdDx496ucnJ0h6ZBCI2yLz5rRHSHlTD29S5xOIfRkneidwTU1SZ5gF3f58t//NVIoqbh2jsXaUK8XyMuXCDEj1XERzcgeGQMqFxmwHBMhBmLw5ecBmYqUaqEISaw6R6kOkUZk9uQQyblUYlpoEoI2KZSuiLqhfpTo51i01xGsl6ecXlyglCiKUgepwPlwmOjU4eu7KGaygsFpYrMkmlPq+g4f/L1vEHz5zKWpaNYWc9rC7jUpdhh9jBEZKTIixQIeS75w8EMkpZkYD2MRUYjQUkicElQmoNWAiB4ZiyJRTp4oMlpkrKloziFmjXItIUH9cKabE1MGZZacnb3D6vxeQRlrjdaW5Gd8fYpc3CP4lhw3CCEYnSQ3LcmcUFf3eO83vsnwKx5FRmlHu1jgzpeIj18Sxw3OLbArgUQVidsYEIzkIA5Kb4GYU9FNy5BzQKBwCmrjyzxciiK1HcvFGqVECUVTOZZCk0WN1DUBOO8823FiCDNJtZzcecDFw/eIpw2mWh0MoQxKJHz3isEn5u1LMpHRSnLdEsyKWl/w6Fd/nbMPxsK2UYblYoE9b5HPb0n7S4xbYZX6QlkvpYhkIgeBSLHQVVMiC31Aa81lT0pBY8CaosioRU86KDEiFEoa6sqylpqYapStiAKO94HNODP6iaQaVicX3H3wgLNjhW1awJKRxXSrf80UMuPtY0iZ2UhoGrxdUalzLr5S0V50qFyg5c2ixZ4sUZsObl+i1AlWKgQCJTLEGZEGciySnjn6kuyIA1I5eRAaqSS1TjRWYKxEy4yIEzHMhOgRSVJpg7KO46RIQoMqZ4l5d6CbEikLMEvWywWn79zD2VwAW5iDqNGIsCum3StEzkxaIaoWY45xHHPyqEWuv4NCIaWmbhfYowXae9LlC7TK2GUB1xWd+4RIY+G0xkROocgry4NMc5pBlN9VaU9tM0ZLtCgaLCnMhBgQWeCUwlYNi2wIURTRnxhwm5GTfSzUSVOxWJ5weu8RlX5ITBMpBEQOZBFQZk2/uQQCwViGuiK4NVacsLxY8dX/6NvluUhF1baYVVuq/M+f4UzANhYtMzJHVAIRE5EIMRBjJPkIMiGELAVGnECJgqXSkUrMaJlRMkMSZEYyBqMqXK05kjU+NShtCNmz3PWsdx1gEW6JqmvuPnyPY3cf5VqyO0YqTe5eMCXBDWekPBFEpq8txi0x3KU6WfFL/+gbRUMkS1ztMOsVujKEZ5+iZEDXBqsUMgdkTpB8AcOnQyLnE5mMVILkfVF7lRKlJVYnKjmhpcccBLiimACJUpaqsghZ47NDGkNCst5PLDd7IhppF8iq4uLhQ+4sZPECqU+KH8P+JUFp5rAmp5FEoq8dpmrx3EG1J3z5H36NmCQya2xlsesFpjXA//2vNxlwzRG2shilUFKjckQxQ07ENJNjcXNLUSClLM5MQiGlwRqF0xIhJVpH6qocANIsEKIuSmi5mPjkXGbSx2MiS1NMVZTj5OQurhKQixMWtkYrR7W+QMhEmnbUi1OMKNBc6xyuNlRtRVQ17ck1YUgoMXB83HC8WGG1pvlkJowRJcu/yYmMLrpVvOlXhpAI8c3aBEplhJBIURX+tZIombB6prI1ChBKk4QrBxkRP0dy9AjhOfGBkARJCoQ0VNUS4xwxFiMOVLFUlUIhtUHlDvzlYeTQYCqFqRrq1oFuWVzdMnceJWZWS8vx0RGVs3z3safPDqt00RI4bPKcy+UqciIeEp2QBFIZlNKARoliEGOsxCiPlpHGNGghkcqQVEVBBhW0sp+LQY7EczRHQhYkpZHGUdUtVVOXNpvRGOMAURwp547F6TlGBaRwGGcwtaNuHdKuWN1sGbcjisiyFpydnlFXFT+9jtzOFisEWgiMNuXgTHM5gGNpnYfkiSmWtUmLoMiPaikxBqxJGC2prcOq4iKJq0Cp4h+RS5IgQ0SKmXWY6SaB0JpkHM3qHsvjE2KzRjkLssbURzir6a8/I0owaQChUU5jqoqqsRi3YL/d09/ukCQaKzk/P6OuHS/Hp9RbgRECLTRam6I1HqeytkQxxYkZmTxKaaSyhyQyo5XEaYHR8oDkVhgpUbJC2SJwJaQkE8voLkYkM6s0002AMGTjsIsz1qf3iIsF0hiEqjDNmspVjJvHBCFQ8asgDNJprHNUjcVWC/p+ZH91i8oZpyPnd+7QVjXTZ5fUVwktBEpKlC6Jk4wjilBkkkPCx1hmtVKitUMIXb4kOBMxWmC1xTqN0xotFcK2yINtr5ClKs1hRIoyljgdM1OQCKkRUuNcRVM35FQSf9W02KpGxIl6vUblGSUdGIt1lqq22GbBOAW2r64QOVHJxPnFHRpX8fnrjvqZRwuBlqV1rGWG7EvhlCCHREgR6TNCKpQxCCG/WJvVsYjeGIMxisoYtJAI2yKELsm6ohgx+RnBgM6B4ynTzwIpDVkpjG1YtEskE0J4lG7QziBzoF69g2AoolnGYp3BVRVV0zJHOH5xXcCcInB295S2arjaztSfjFiZ0EpijC5OkmEukt+i8Ox8GomxJFbatAfBqIhWIIWhMpLalN9hrUIrhXIVqJpEYYioNBFDRKIRMnLke+7MRUJV6gblKs7O76PTiHAV5uQR1i3x23PmrDg6u0ArA1piK4WrNa6uCdlx9GpHijMmeS7urGjrJTsfqD/cFel2qbHaorQs3at4cK1JB6O56Msj0G1RYsxFs0VKSaUllS0Ueqc1Wimks6BrIu4vrG1GoFFKcBRGzqZSrEhdI4zj7M59bPYI6zDHD7DVEr87J0hLuzrFKAVKYSpV7rjaEmXD+tUO7ydMCtw5bVgujvDpL7MJ//8jGcgH9a8pJEQMxFiyVSMz9oBmjlEgUyaGsqh0UOASJaVCqZa0OkG4wg2fY0akuVw80UPYkkkkIipnVJK4qgjuSOWw1QmyWTCmgZQrhDJkLwr36NCGCNNEVDWzCGhREUXhTCcvmYbtoTICpEZExewD07Rl29/SB13a+jkRBWiZsaJowcYM+JEUIjkbkpKElIvut9JI5dCLY7JbEvSIjxIfJ7Rx5DCT802pNrMEMlIklLUoZRHaosyCuj4iJI8IEbRknAdUkmgpCGFAigRmiZcRKxwRhY+e7B1hvMV7T06JTETnTPQDgw/0uy3D5JmFwOaMFwKtZowoTmcpcxiDlGopqUSQMxIIukbZGuWW4JYkFZgQhDiitSOHSEpbUppIsYC7hEgoBcJprK6ReomrFygtiAfu2xwg5IiUEulngu/wqiWS0SiSEPiDXkH0t4R5JlN4yUo45jAQh0C/7+iniZATWnh0NigZMAe/jJSLN0H0kGQEPFFORXFROaRrEMs1uVoTpGAiE3KPRYCP5PEWkUNJfkRCJEkyEmWaYgera0y7wljHNAzIqIgkEgPZLADJbhwZcMyiWGMpBHNK5CDo0oYwd4AixoRSgjmOpEHQ7UemcSaQUHJGZYOWGSMSWZSUKwRP8pFEEUkK0iJEEUhStoF6Qa7XRJWZBaTksQhSjKRpQ6bISQsMOieSAqlrKqkQokG3R2hXM49TGSeRSPNAMg1SOLb9RIdBibqsLQtCKpTKnl0xWqE4sLVakfxAn2HXdYzDiCIhZUlKNQor88FrQJXEe/JkAlIogphI0oAsKqTZNlCvScoSRJGXzDkhw0wOQ2mvC4FEI5mIMiF1ScJUtGi7IIkCdovKkqdYgIxDIGUPuWMSFiEcqtT/BIq65TB1hGGPkJLkA1oJsh8Zs2G/3zGNHVEkgkgoimmREBIji0p8jJE4++IZIWWRwtWFo2xtuRRFtSaa+gs9cJszKkpS3JDzdMgHytoQgahbXO0QtlzAuaC0SVoT55nsU6FICklOA4NoEcIisyhjw5zxEUY/EccdSEEMqeidxJFxcmz3e8Z+R7aGQCCMxTtBZYHMouzDQ5cx5wQiFHnmLBEy4yuNMRbdnJKbmkTEU0QWsrTkaYeYe5LxKGJ5L4RDOoMxK1oVwR4j9AIhD0JGIUP0CDeRomLoeoaYQTVFkEsFEIX5FMLMPPVkIUkhI5Uhx8joPd1+YNhv0dagmIjsUUYWL4YsIZd3oHiceLI6sKnywY+h0qAqdHuEaBaEg6GfkQGjlmTfIaYNUXuUKOD0DCRtMXpBIxPZFFVTRDG1m2MidxPZDPggmfc9Y4hkVZFkRKhiFhi9JmiND8PBIyIhcOQomb2nH/y/dY//ZSHyf993AE+ePOHhw4d/lbzhbbyNt/E23sbbeBv/A4vHjx/z4MGDv/TP/0rJQEqJZ8+esVwuEUL8933723gbb+NtvI238Tb+BxA5Z3a7He+88w5S/uUOhn+lZOBtvI238Tbextt4G//jjb+a0fHbeBtv4228jbfxNv5HG2+TgbfxNt7G23gbb+NvebxNBt7G23gbb+NtvI2/5fE2GXgbb+NtvI238Tb+lsfbZOBtvI238Tbextv4Wx5vk4G38Tbextt4G2/jb3m8TQbextt4G2/jbbyNv+Xx/wXfWC9mxhBm0wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_4/1720425300_tango_video2audio_clip4clip_4_best_steps_300_guidance_3.0_sampleRate_16000_augment/0.wav\"\n", + "show_mel(file, save_name=\"ood_1_wav.pdf\")\n", + "show_video_frames(\"../data/foleycrafter/0.mp4\", save_name=\"ood_1_video.pdf\", frame_rate=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_2189924/978430674.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(80, 1280)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAvCAYAAAB+KskzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnqUlEQVR4nOz92fNl2XXfiX3W2sM55w6/IefKGoEqFFAgAFLgTEpqhluyut1uD90RdtsOuR3hcIT/Cr/6ze/96Ad32Aq7w3ZLbqklt2SRFCkSJAGQQKFQQBVqzMo5f8O995yzJz+sk1lsOxSmIiB3gMwdUZEZlRn5u+eevfZew3eQ1lrj+Xq+nq/n6/l6vp6vv7JL/5v+AM/X8/V8PV/P1/P1fP03u54nA8/X8/V8PV/P1/P1V3w9Twaer+fr+Xq+nq/n66/4ep4MPF/P1/P1fD1fz9df8fU8GXi+nq/n6/l6vp6vv+LreTLwfD1fz9fz9Xw9X3/F1/Nk4Pl6vp6v5+v5er7+ii//F/lLtVY+/fRTttstIvJv+jM9X8/X8/V8PV/P1/P1U1itNS4uLrh9+zaq/+r6/y+UDHz66ae8/PLLP7UP93w9X8/X8/V8PV/P1///1kcffcRLL730r/zzv1AysN1uAfifff0lzm7+It96/W/RYo+Io7aMTweaeIqPIEJpjdYaKiANBBCxX0tt1NYA+1URai3QGpUGIqgorWVqLQRVVDtKLQTnKbWBU0AQUVRBqUgpuFpJMdKaUEUIvkfyjM4jX/zTf8CNi7e5NijTVPj9L/6HPL71BkUVEaGWRMgzzXc0F2g0aoPWKiJAw54HqM3+jLY8S8P+jZqgQZWGsvy7LUEFrwFVoQGqav82gqrgFYKCaw0pmdYaNfZIbdTQI01wZaJ7cp/X//Tvcd3tkZLY9y/wz978H9LWW6oKlYabJxxQQo84pRV7F/bTBGF5If+1dwG1VRTLImnVfhXBOcXVylQyIopTb+9WHaXZu2gIXhUvQpAGpeLbRPG9ZaIiiF+jZULTxJX3v8ULH/9zXhiU8TDyzu3/Fu+98k2y94gqtWbCPIGLVB8RgVZBKKgIPP3M9lqotWGvodGW5yi12LvC3k1wkHOiVlD1OHXU2lDnqK0hKjhRvCqdYj+wJLRWWj/QagPXE7wnphF32PHyO/8Fx/uPWNeJuXX8V2/+j5hPb5DVvmBJE641mu/AOfvYraH2qRAa7ekzNHuOp+9CaNDseZ7+HVXFU0i5AIJzgQaI6PKrIPL0XShBK9SK5pnmPPhIbQ0X18RW8Hlkde8n3H7/n3C9XTCPB+5f+Qbfev3fpnYdqFJrxc+jvZfQIyq00pbPaE+hNJrYZyz18/1WW7O9WO15nu6p4JRWCnMtOHE45ym1Pvu1OUUQvLM95VtDasbVmdKtcEBTj7gBlw/IPPLS9/8xV578Gddj+5mP72vuEi2JfX+bf/bl/4C23oI4KgU/jzRRiutAhYp1bp9+dmn/32etAKXV5axt0MqfO2stuErNeBWcdtTacM7RaqM9jd/l76r8ubM2BBqOSsOHASkZlydu/Oj3eeXjf8atrWfcj/zw5b/Ney//EtV7EAd1xqWJ6iLVBdDP941b3sXTO+PpOfX5u2jLuyjQ6rP4tv+XoZXlXQTbu87Oqaa2p3S5M6QVtBSkNVLX00oFH/AaLG7HC976o/8TV9s9Nq4xt57/6s3/iHTlJnV5z+QZXwvV96D2PbTl7vv/3FOlNWoF4fM9hUCrth/acu8JjVIz2gTvAkhDxKr5hsW5c8ueEtDa0JooouCj7c9ge8vnie2dH3Hj7f8r/+hPf/DsHv9Xrb9QMvB0NDDEwOXqGBdXtK6nquBUaFMk1EQQj4RIVSUt5ylUpC6XSwNdAsmp2lHYGrkUGo3e2wYspVBrwS+XEa3hlqMziCLiQBSVRqsVXxNNoLoB7yKlNVyIeHGoCA5Ye6ELkS4IXiMMR7iup6lDlxcp856uNZLvEB/ssmnt2cXSWrGNunweXQ4aAVItUAte7dlqreScoEWcOuw12/OXCt47agPnlCANVzOxZprrSKGzA1A8GgdaLviq9KqsvSP6gGqjbI6Qbo32A6iiohAGfBkJTSwh6NyfO6SXQ7mWZxtVnz7HcjnNJdNoRKe2iUullIS2Hu88rVow8jTZc84uWxVcLbhWcQJNV0jo7e+5Du8jmgVRYS2FLjh679AuwOoI3w007xF1NAHcSNcyxTkIPUvaSK3VLswlgZTWcKLPDgRZ/qzVglMhOEdtlZwS4iIehxO1i0qE0irRe1i+h14Fv1w8TQMldDj11KaE2OOlEbygNbEJni44YnW4sKb1a/yyp0SVEgdcHvGtkUKHuricAYVaoEmlLQeSCHj0WRtPgFQyhUrnFBGllkLJM+IFr94Cn+V90Ije0xoEp3SAawktieoGajfgGlQJdF2HLzM+KCvvGWKkrw5XHW59jOtWSBdBnV0sviPWmSZql9iSfJRSl3TGkg5p2GG+xLedYJW5FJBG5xzQyLnQasajeLUEwIvYO1F5tpejgtRCqAVRT3Ud4iIALvQ48Ti1xGOthS54usDPfHx3Pti/sz5GuzXSrciqOBVq6Al5JiK0YElmEqjFzlpag1r/3FkrOHV2QS3PUVuhd355h4VaM9rsM9M+B5Ipljg/TWrsAs1Ao8UeHzpKbajzBB+RecSpsnbQx44+KK5rMBzjugF8WIqHHqaRrhWqelyIJBVKw5Junj6D/d41kGVPNBqtNnLNiEBwjlIbJSd7b2qXPQ2cCK02onOAW5KfZu+xNKoqNXQEHNkLPnZoAxUh5Jl1ELoW6FzFxw0MW1xnFz+qlFrQdKBrQoo94vyS1NdnCX1bzittzZKpZ2ctzNXuueDs2UoplJJorSOof1qzgTRKA++8xYhXAg1XE0EsGamhR2tFXERDD2nGOWFQGEL4r93j/6r1F0oGPl/CwQ8I1Q605qAJzQdqarh04CiP9DFyro6DRgq6VF9Wx5VaaLWSK5bniB3YTiHlYgGkai+wNXItINWq1OU/O1AbpAkn4EqiqreMvxbEBTofaClbBtUqnWuoU6u0NJBcwIl1IyyIlaqBWgsxjxRp1FrQnCwg1dGqfZmlFmpbLqanl5AIQwi0BjlXRBrB2wtt1aqjpXZF1dHqkjXWQikZxRKi5jza7LJ13tsB0DKeRiiZ6D+f+Rz8gAg4KrUqKFT1lOqJrSDpQI09PPwYXwpy8gLEniaWWJXaKLVSy9PnAKeOqDCXirS2VPYdsS1/fzlUgOWQwQ7OnKBlpBZL1lxEaqWKI7iItIqrdvF1reLVLuQmwug7FHANWrPkrflALeDLTAGaC7iacc7TxFHs9LYqa6kq6lI1iCi9V1QglWIb3YWl2oZamnVBaAR1eFH7+YCmGU9FWqGpR12AWnHO0XkHacJLw9dGp1Ybt9aYXUcThwdye1qhOap6qJmQDtTlM3tpVA32HCxVUK3PDhLbj4JTpVdHro1Sqh1SIRKaQG2UVu27arbXPLYPQ21Iy/iagIqEDmfhSxc9TkFTxgMdlaBCK/YX9r5HlnqvNGcpovMUCrEWSjrQQqTd+TG+2yBH18BHSxSwz1lbJZdmyalA9A4vMC9xocsFLcuekvZ5lSqinycV82SxvyQDsryLqoGgAakJt1wcvdhh+5cnvoUpDFg9aJc7zdGcVbyaRtZpZNv1XDplr5GEoiJUsa5NXs7aYpkC+rRrpI5UinXGROwib41cq+0XtY6PV/f5yZ9noOJLookjOw/FYj2GCLXhaAQaPRXnLQFBHZPvsN1RqU0ApfpIzTNuuuQ0eyQELlxgFItvWRL2tryHVhtZCrq0DDpv8ZxyoQHB+SUhq+RaUbHuW3CW0DWWmE+jxXnNoJEqjlYrzncE52nzSFQItdB5RbLYO3cdTQUndgba1eUtjmshzCMl9rR5xKvQfG8JrJSlS5OtU1OXruByl/UhWHznCgLBByIsRXFladfixFvxA0jO5FbsGURoIaDVYsh7j0hDWsE1iDUT3F/smv/XSgYyngu/Rp23TF4UaWqVUBup3/kv2ZF54eU3+fWf+yrvjYUflZ598+iS6Hl1T8MCr55m7QMAuuDJpS7jA9sILDZKTgWnHqnQKLSytClLpaqjLRvaNoZVf4WCKoTWiN5RmpBKZY5rZt/h1dFQsgiKIC5SJNshUxLhkz8jv/175NMXyFdeIbzwRWq3Rn0EUZYz7FmlYPleYxUdqSzt3laX9nWz7Fbds4pEGpAnazE1yD4iPliar4r4QKsNJ9bic1LREEiHghflMhyBc0S1Z4MlIXDBKomaCPOB+NEfkT99l+S3zJvr+NtvUI6u49endpBjF4991zZOiE4QseSNCrVlnqYBIoI6C3ZHQ2qCmu2dqV2AIs6qRRcsocgJ0YaWRnACGkn5wKwde79GnRJUybL0gFy0xBAILSPjjvyH/zfq5jr6whv4ay9SfLckHvb9K4Jzzn6v1gLug7fuRitoq8vlYO+7qR14joqjoaXgRO10dxHnwzKfEEIMdkFJQ5qiJFynlHNItbELW6oPOCe4ptYOFYBIFcHXhKsJ+eR7zO99F3nhDdyN15CT61Q8qrp0z6zToWrjNqxQJjpniVurS5sXaNZpcc4uAY8dPFqyvU9RcAHv/TLm8AQfoGacClIbTjOy7KmigcuwRZ3Dq2NCrDXplNIqWRRtiTBeEn7826Tzx8xhSzl9Eb35BdrRNfzqmLJUk151acNbXPTBU1uxUUBt1FZobdlT8GxPKQ2Wy0drpToP6i1eRFAfrb1di8Vfq3jvaDhSyT/j8e0tvhHO/QbxniBCQaHZxYY6+OHvcXn+Gdde+CK/9I1v8IDK9+fIRYtQLSnyqhTR5ffu2ecEITpHlbaMD9pS4C3JDJYwCEJrxfZOK0jDLk8frJJtBbfslVJmVBu+NDoHqCflkaQde7/COevSzvYmQAM6Pib98X/OYbXly198i5ffeJ23LzMftJ65OrQV2tJ9LNX2hV/i4Gl3so+BlLMlfE87h09HnKI4WZISqiUvCFKL7SlvBQsI3rulQLBkKLZKCJ48N7LAzm+pPtKpozSliuCwc6xIxpeMzxPxnf8X6c57lKsvUa6+ir/xKjUOqPM0J0vHxkYCdYkNr+CcJ5ey7KnC09RSUUsqno5IaFBmG9uJkpx1U6kZNCDO00rBa7NujzYkfJ7U/dSSAb31CuP2FLGoRJZWVAPctONofMA073nnj9/n07d/m1/4hW/y4nCdH+pN6I9RqZQmdOqI6jnk9Kwd6p0HgVIyJc+AVUlFFOfckhlb9qQ52+wtWDBV8ah4m7+IzYNdzTZnpBFawgXFbY/pjlacxRs0H57hGrRayxbnbNNUON7dYbz3Q477mensR4z3fkD+gWeWnrq+il57iXj9Jdz2Kin0yBLwwTlKabSUKTXREJsBOb/gJxpeFGpD87S0jWz/JqxFqa3ZXBuBOlv7B/BSIShhuI6LHbuTWzanbA2PtYxBwAVabqxJ3Dz7EY+efMB27dnvH1MePaQ9/iFn+8wFEXflBfqbr1CPb+GPrlHjQAsB7xwpF3JKtFaf4UCcDywvw8YwNeHyRPM9rtmx3p4FGXinuFahJpRGqAkfFF1tiJtTRt2S+xWfV0DJAgUH6iitsMp72p13OCpnpPv32H/8x4xuTdveol55CX/9VTZXbiCh51CKYQbmZO3/UikpU8pEBlqtVpWqbX0nggd8na3K1A4thjlBFSkFfLAArkvnA3AUxHv88QlduMp++7LN01tDKUtiJZYcNav/V7v71PvvcVwfsv/xHfZv/1PS6jr16BZ641XC1ZcZtsckUXJZxmvUZ3sqp5na8jLPrngfnqY1BAHfGr6M4CK6bAWW2a/QEHX2Hddse7FmnDaki8Qbt5jomDanS2VhiV6VRkUQF2ilcrWNDJ99l316wnqAw+EB5bP7cPdPeXg5k/yKcP1l4vWXKMc3CUdXyT7iQ0RVyTlTUnrWmULsIETa8r0KWmd8TVTX41Cr6Vyww1wVr0/fRUalEVrGdQG3PaHbdD/j8e3oVjdR37E7vfmsC/e0tdxaQ2vm6OIO+fCQj9/+lM/e+Rd84+vf4I3rr/DtfAVW13DaKE0IovQ+MJVMaZVasiVWah2QnGbrndRGBtTb+KlhoystBcmJtiTGRQTVSC2Ftox5fCtQLH5CTXgv6GpFf3Sd0a1IvXU4BEEbiDTDdO0ecJzOOTy8z5988jaffP8qX/+FX+SiHfFp9yIahuVUE9bOYnCfEk4aOVc676lL56XlZPdHteJQUNBGe7qXS7LRg/NYE8zb32nWIfCiaE20WvACkYzGgIarxNXA5eYV6zAs2Iun3xHO0UrFUVg//pB8/hHH4cB4/3uMn3yXrJGZHjm+gVx7me76i+j6hOR7u+NQvLMuSE2JssR3bQXnA0vv0fZUqbgyIT4gy89PokgtSyHkrbtaE9Rm/9/mP3+h+/1fKxloLjK2jpYraLW5hQ/MtZJLIYUtLid6nynpwDvf+SPylLl88oTh1hfw17+Iu3ITvz5ijCuadjSxWWeZDpScqap0wToPrTVyszaN5IpIxS2ZbPVhaa04a+UWA4/E2BNRa/eUjLRGVc+82zM+fsS27xljZwCfYsAb76BJIBX7SjqduJEfcW//gJwTOc0EB5tOaG3icPET8uMf4T7qKRqRsKFtruFOb1NWR2i3oY+RPBzRRABPKlZFSAZaRp+VHYFSCt5HqyZTpqkSXUetBUmzPXMtZITx/n3moJy+9AUOrbPLqjYcGfWR3KA0EA34cSQ/+hTJs7U+a0WdsBp6gk7MKeGnz3Cf3Gf+sDIRSN2aur7KtLlKXB/RH11n3l6nLK3KsmTevjVimy0ZDD2lQBVwPuJapZaECx2dOiTNxJKXWaQyThV5/IgVW/LJNRKeVqzFGKSCeuZqebFTx6vtMWfn77GvE5DpPKzcSJg/5f7332ZMjXZ8Bdleox3fRq6+SDy+RlK3fBeezntrWyPkViyZKQ3fko1UBMRHWslUF1Dv7RBE6dxgrd15xrWC1kaVjuniwPz4Mf0L19m3nqVotzneMudP1dqJG9nzWvmMD88/praCUFh3Qu8uODx4yJP3v8WokXZ6jba5TrvyMnrlFro6YmqNiuJ8IPqwXAtCqtbtCMVwDqFVSwSXarv5DieC5Iy4SOd7yAlNyUYhtZGyYzrbQdsTrr3E2AI2w2t4Cs075mV8g3boxRM4v09LySr81vBeWfU9jkrKI93+I/jgI6bSmDUi/RFpfQW21+iGNd2VF8n9EYWnHYKGlIavldjsZxN6aqo053A+IjVTSiGEFQFB00Rcxk5VA4fLCR4+ZBNv/czHdwrKyUuvsm8D1EorDS8J9ZHSIJfC5NcEd0n0GWrmg3ffRt/+Puf37tPdeAl//YvotduE9Qlzt6K4wbqx3kHOzHOiqBC9xy8JY2hKbhUt1pHRZh2z6v0yirOuDLVAzXjf06mjzYlYErpcbvOU2D1+wkohn1wht0DNFeesYnUaGGtlztDFDb4UNCYOuzO+9/u/zcVuYj/NDLdew994HT25BqstY1ghEqgCwTvSfrROwDLCUwGaJy3IYs02zvZPAa0+UFIG5w0LURKtNboY8E/juxa0NYoLTBcX5PGM1cuvsG8d1EYtDUdBvVLFkargxLOWzM35Pp8dnpBaJpeZ6JXjQZmnHdOjH1IevoP7SUfWDolbZHvD9lS/xnUrhm5F7tcLPjoYTqVVtP65PeX8UjY1vO/sLMgFnCdqpOSMprR0bA1sPD68/9NPBlJbWp+t4prNT8BmH/noBuM3/3tsn7xP+PHvk3ePOeSR/bjndO3ZtnPyZ99hvgPiAq4/Rre3YX0K6yPy9irNGUimIeT6FPRWDCmKINU2Z1Nns2V1yDIPKSXhY6Tve6uKVNBqKORWZmII7BAO08zUZfy8R52iPqC6ojVDfHoqx+MZ8eMf0KcD1/uOKpk7Y6K0hmogdoX1piPGbpltJcr4CeWjjxhzIVUhbo7RX/zvci7rpUq0g6ku80KwLFVqxam1grQuDIrV2i6jku1Qx0B/WjMuRM4Oe9r5BandI44Z1w204Yh2fB0VuySutpGvl4dsZM8HXvnK1VMePL7P25fZsuqux4dM8A5Vz0rt8mptpkyfMO0+JOdGO77F+PV/n1kUXUAx1pK2atQKYMvCUWfPMo80FfphhUMRp2jF2vQlE52BjuYKMx5tBc3FwKFq6P6nnY6hzEw/+R754aescmbtGneTVesije2m48QFut7R2mPy/ftMn36bSQMtHsH2Kv32hPryzzFrv7QMMeQ0bWnzVprYu1BxVFVarQZO7QbUB7vlnzIZWkVKpgvKoUGuQsLhayaWurTVDaxUMABUv3vE5Q+/gxwuuLnquSBzVi09itFxejQQ+57gM2X8mPmDD5jeE0bf04ZT3PYK3dUXmW98gWKAiaXdyPJeltGBiB0eqoYNydmqzn7Fn6svnwHNPBWnwpPzERcvgM+Ih0sDtq1PaduIIJSWuV13fL0+prqJu9Hz1tUtP7l/jx9PlVIqfT8YBsFZXK7lKeJ+T9lfMp2/T8mV+uLPcXj9b1JYLlBZ5tkN/NIcbc3GH+KsfUuySm3oB3s+pxbfVFpJ9i5Ef+bj28fIVDKZp6OBZYRgpSiIUMKK+Rf+O4SLT1i//3scHt1hKjP73Y6jteNID7SHP2C6/zaop3VH+M0tOLoG/Zp0fAOct5GYCOXpWbuA8iqGSVHqgi8ysLZ4j6hQUsI5xzAMy7jG8EZaM60kghPEOVKDhEekPgP62rDCOkDthTcYT65y/OAd5ve+BenAZTow5gNX15F1esT80SPSh4Dv8cMJ7fgl6DdwdJW8OqI5A7FXjClRa11GU2qFwDLGkQX87Ly3O6NVSsl0/YouRjubVIz9U2bIM7GL7HeNwzyT0oyb9jgFCZHmPBVjacRWObq4T7jzLn2Zee14w5OzmftlOUNCQLQRYiQu+JpWR8ruJ6Qn7zHmQkHor73M7ut/i7EGwyRgI8qnzwEGOn02ShSHlJnSGt1guBeejd2bJWxU9N8EZuBH77xDuzOicSCrR1YnhC/9IrE/QkTZDAOv1wHddvxkV1h7ZTMIezy1zgT1dM7hXKWVh5RHD6gPlH1/hfaFX2Hs1sRhRQyBiiM/bWuJod4DDikJcVYlDU7skt8f2NPousFAhlRaKwZUapVOG0Ea5+PEh9//ITl8QOz+kLnA5FYcvfVrsDrhxdPr/OZqzy8cn7P65hs8ubyF5sx48YTv3bnLn+0KUxOSG5hqYZ6T0b1cwAdr9/R9QEQ5lARlZj0ckezctXpOdKk4bUZqSGQDG1EK4gMhdBZcT1t14lAtrKTgnPDJo3PywzNq+AAnsJsy8egGmy98DaeRX//Sa/zWes/NdaVe/SJ87XXqnHh8/pjX7z/mxxcH9nPl7mHkImXQTHQe8dYGKzUTg2czRHbS6L1hBJ5y+ZwIvQpaZqoLCy7AWn9SrVLpVsdE9Tis5eWdQ5rgVRhc41AqP3j/I/Knj+m6H5MJXLqB9Zd/Bbc+5mgY+FoY+evhAde+eoO7N5TD+Y6QL3j7swd8e1fI6tgOK1JrVgWq0PeR1cou2dp2pN0F05NEuH6Di+MvUJpVo0a/K4SlfVnVU8Uvk1OoyWa9Egbycom0WqjNrtPIjKuJ+2fn3Hn8mF1/n8EPTNXTTm6z/vIvkhu8eLTmN3jIz195At/8Ep/cPaFLE7vLh/z+3XM+TokYe4Jvy4FWcE7ZxMB2AcvW+pDp4T3K/g7DrVc4aGcXFwa0C1rxFRBPUU/Vz9kHkhPSb+3PBFzLy5DH2CMdM7XM/PjTe9RP7yPxPVor7FJjuPYyw4tfYtWt+a0vvsBvrHacbALlxpdBv0oeD9x7cos/fXDBx5cH9qny2WFklwuu5SUpcLRiCPahi7jBsaMwBJvlU8SAUyJ0smCAvEc0oK0aJSwbEHLo13ix86MmwwlQBa+NzsO9ceInP+vxrcKn95/w2e6HTKs9rttQXIA4EL741wgnN2kofdfxqqzYbiMfnAuUmZO14zx7ak2og01QnG+0dkY9e0x5oow6IF/8NQ7rU3zX08UN4MmuUbIxBXTBe2guiPM47+lU6UNgnCcuayYMaxvHAq1lRBWHw2mil8o+F9754GPKnUt085DqO5Lz+OObuDe+Sec6sionqxVvHHXstj0f3XvCzSFy1pRJlVpnovMMTlFNtPku+d5n1Krsjl/Fv/x15tATV2u8CxQM4V/qMpdHCA3DljiH956Vs7HzxW5PE6HrelTAPe2ELEyglRYccO/8kg8ffJ85vk8MA1NuMFzh6Od+jeoG3rx+g7/RPeGtmzvclbd4snuFkDLnZw/54zsP+NHYKKJMTplbZZ5nVO2ziFeCU9YSQITLvKOXhgRPWujStqeW6l+e4oPUWGCynHv9gHP+87GOGuHXqbCSaoy8n3YycHn+hDjtoTbGeSZ0HfGz79Af3eRrX3yd37i14vbVQtm8ySePrjJd7jhcPuYPPrjD22NChxUikLPNeYzOJej5p4R3ftcOrdWW/OKXKdubdojUivcexChuzgfLShU2XvHaGEtiWB0Z1aUJvhYEQ4BLzeRWDSgjNof2Thj3TyBnrq5WdG//Q37j9df5Oy//HC9sV7jQcTSc0AfHfkxcpsxbb078h6Hj/HDJn37yKf/Z2z/h0bW3CPMOt3tEHc9IOaG1IDTilVvMfmDOaaHjgROl1ckyu9Dj1NuczSmkieqg3x7TxKAsrhZEFCd2YM7NDpjYdUirFK1cXu45GnqG9pjrd/6Y/8Xf+E3evHpBF3uGoed0tUJoXOxHLq5e57XXGmHo2e32/PP3P+Tv/eSC3YvfYD6/j5x9xnT5ELTixj2uXLD6yluctwLJgC3BObQqrRYDjrpIswGWjXamA261ZhjW1GbAOdGKYtU2IuRm7dP9nKGeI/sz0jhxvF7Tf/snvHn1Jv/eL3yDL223dF2k8wO//MIt5lTYzYmf2+/52xXuX1zwzp27/O4Hn/JYt0RJ9C3TWmU6jLQGsetYrdagjthmpmKjDocnuIq2jPp+ydYbBeN8t5qJ69OlC9WopVjLXT2lZPalkksmN9gdJqj3yIcJh7I5fMjq4Xf5rTe/zG9dfZ3rmw7n16yunvCbr77Cbpy5mGe+Mc48SZnPHj/hDz74iO/ev6QOR/RljzQoZSZNCVVHjBHdbJhaIZEouSLq8Aq+Lihr7ylNDKGvDUl7xA/Efk2GpeqpVhHSSK1wSJmuVULXUbUx15n5cOB0vaKf7vDFxzP/8V//DV483hFix2Y1cDwM5JK5OMzcunqDr3zZ4WPg0dkFf//td/lHlxum01fwZ3doZ3eZ0hkiBb/fG7bhjZcpZbZWbit49YaCrzbqslGH8atda7Q8EbYndLGnNvAlIa6heFqbaU0oCOq7n/n4FucY50YeL3C7H7JSYT/O+OCJd75Ld+U2r73wMr/12jVe3Rbc117jsxePOTu/oO7P+NMP7/CHux30K7zvKDmRi43FVB162OPf/X2G/pi22lJvvEq59gWj4xZjAUCj5oSIJXO9CGsv9B7yfqbr18RuICO4lq2ztxReTdqzi+x8NyP7e6z2jxlTZi4F3w/ET7/NZnuNX/7Kl/jFE8eNF4T98Vf46NEN2O949OQhv/PhXT7JmWG1snFxsjGRXXTg7v8Idmdov7XO8itfp8TNQpu2TgBiVD0XepxTVmoJErWwb4XV5gqiniaysKAW1L7MzG3R0nAetBC0cbh4QFRlKweG7/7f+Xe//nX++mbkyrrH+4Hj4QreKbsxcZFmvvFzmeIjjy+e8Hs/+ZB/8JOHTNffJOwfo/vH5PGcUrJhqlqle+UlLpozHEern+NNSkZR1EfT5aDhncA0UmMkrrfWiaTi6hI3i8BPatDpvwEA4Wq9oTrYnV/QBc86Orb5nP/oja/yK69sCFER1zGcHPPzL95mPybOppm33nzMB5cHHux2/NEnn/Lh2cgYrqJ5h+TEldMr3H7tqxxS5Xy3416rjMAQHBVPKsnAJyESuxXb2OEoRvNImeHohNptqGBc91qRIAY+KoA6mipd37P1nkNK5P2O9dDjvHBju+F//pu/xrWVoX0lRKIY+GaWRJ1H8jRydnEGfeT4ynVWLw/cfenXIUSgkndnpJJg/wQef0pdb5g1Lsh2XeZZDS+C9j0+DNRW6FSRmmgUhpMbiO9IxUCPzRm1T6vxtNUFCD3ro2Mkej67f4+wcN2dE37+tVf5m2+9aQjghf8/HmbUKWlOTOPIZ08e8enFjqnb8PHsqbffYrr2RfSF11EgTRO1Jvz+Arl4wHx8lSIG4/LeqjVRo/C5sLJ2WTUKZ533hNWK1dGptemqzULVG0Ogzo2mRh9z6llvtyQyZ08uWA0DfXBsVfi7v/FN3rp+SlWP73s69fTecThccjiMrJyji56XTo946eZVPmlr7r3wmzTnqBf3yI/uUOc9bv+Y+fIRXbdiF0+hWrYsztppcdFlENeRSqWoXU61zAxH13H9QGkFX5vNUJ0ujAkMjKaeru+R6Dk/7CkVjjc9UZWfu36Vv/ur36B3xgfv+p4OITghT485IGydcmVzzGvXTtieHvPue5kHL38TmS+ZnnxGOruH5hG5eMC4P6PbvMBFCyaOFOwZnAjReQiRKoGcMuIF0mgU2+MriPNoLbhScF5wOMi2L3BG2duenNAcfHr3HkPXLeMj4be+9nN88wsvk1sF75HWOOxnRGEeR6Zx5CcPH/BoylyGgQeypd7+MtPRi+iLbxhwbhqhZsrlE9L+MXXzAhXBCZ/vKTHwmgsrA282m93WeU93dMyw3tKQpZ3ebE81m+E2pyhKjB3b05Of7fj2HevthlQKTYXDxQXBCesuMNQd/87Njn/3ret00eb3nd/wtRdeYBxnLubMW196wq9d7Li/H/nunTu8+/CCvT9C6ojmic1qyyuvv0WSwMXukgetcA4MziHBMy+jC1GP61Ycdz2uVYJCSZk4bHCrIxsd1ILLf+6srYA4Y+nEyHa7oQnscyYfDqz6jiEI18sT/pdf/3neuNrhOtPWWF+5wl97+WX2Y+bx4cDPfeUJH14euHtxzrc+/YzPdpUUBzRd4mrh9gsvcOXWm+ymkbP9yL1mwld99OQGuWQbisWBoV8xeM/Tvl+ujfXJNVocDANVC+oWZD/QiixMHGUYBsJ6xdluT2uVVd+jTnjrhVv8j3/lm/TOxgYaAh22D/b1QJsnxt2ey1ppMXD1xm06XuL8xV8A7/Elk/fn5DKTLh/Ck0+p114mo1SMQi2tWhfAKS6scD6aRoQqLY/glfXJVao4pFZCzeAExUGejKrrIoTup58MXL99k3v37+FU6DuP88q1zYZf//KXuT44sgrORzrniKpoubCK8cpVXn9pzWXJtOGEzx4Wzl75NWS+wJ095v58YHPzi1xZKbedQw6OO1lZh0iumVg9ggkJ9d5zFE3fIE8jhMh6c8wsylQaoYI2mw+pwX9poyEth82Gvu/54IP3Cc4TFozCiycnvHLrBq4VUrHMNk/WURBxXDk+Ja4Tn9z5jL9/V/jWYUW++SWyelJpiBPa6tgSlu112vUvPOOaGxfdOM1PdRJc6J5pKfhaSPsZ2V7Bd2uqCt5VfK40IhRDz0oLJu7RrTi53nGYLmmtEoNfhDYcr1y/wWazJs0TU6mUXNFmQTx0PXG1wm02PLz7gL+3v8l7Q6RuTqjARbZqsjmPaKQc95SjG3YQiI0GRBYxEwrOd6DGk+5CpE4Hio/Eo6uEGCgCfSlI8wjFWqTOeLcNJcTA1dsv8Nmdj/GqRO9QVa5ut3zt1VfZRiUVmFujTJndOIMIR+stLU18+8OP+MOzxLfGnvOjNyn9hizKeP015PqrUG3OVucdY56RfsPgvHUmaqGXSvQC3vjZ3nu0Nsrukro+xQ/r5cJRYsk0IlpnaBkXgtGvQmB9ekJXM48vL+i7aIqNqnz1lVe4ff0apRTmagI985SYpNHHnmMXubw451+88y6/O214v0Qubn2F6jsufIfbXKG9+BWjk9WJur9kiiYo0rmlu9ISvS6UXHW0pvR+sMutCe7kKj4GUMU3QVNDqvHzcYKrBqQKXeDarZs8fPiZVb3LngrO89rNW6xWA1NKTLUagwnjRW/XG4btlrpacefeGf/p4QUenUbKcERrjfNiAwl8h9KTT3vq6W18qwQRvBjKXxoLKMvEs7yK0UwPO6Tf0G1O8N5TpBFyg+aRVp613QuTtc5Xa+Lp0c98fB9fvYrvAvcfPICLxtAFvFfWXeQ3v/JVXrp2QqKiwahunQvs2wXUCT0+4aUbtyg+sN4ec/eTSx6/9OtG/b18TL48Y339VW4cddwMjvWsvDM6VjEsAm4BoaI+ELxnGx1OPXkcyaoMmxOK84y14Sq45mgakNJMZrEI6jwuRq7dukWTxgcff0zwbilalC9cv8E3X/8iHZniFe8jvfOWFOYL6Af664GvfuGIu7tz9v1VPjusmG5/DTmc4c8ecVdgdftVrvbCS+KYdo49JqKVSqE1Yz350LGKnk0ItJJJ04j2A5vVhtHoB7gCSjBtiOXOEBTvA9vTK1QHj8/P6UI06rAKb9y6xc2rp5ScmRdNgHmeaVS62HM19uhqxXsffcr/5dGKH6ct+eZLFBy7vCifro9RHHJ0g3brTXK1czZIZzimYhRp70ywzKkaEDpNpFbxx9dxoacphFpxadEwqLNhUprFh4/DTz8ZCGERvHAOv6hzDV3g5HhDVKPMpNqYDjNJ7AKOQbgshT9+/33+KK3555cd+fYX6PoBHVbUo1uUVvjAez5KmTAVcrK2ya6N8JSO4oSgjk0/EKWR9hMZoV+vEe8oeDzZAGs+UFLFBdCm1HaGACVNzK0sdCZrz6kqQ9dTFwWouUGuJuYiKow50bJlkxpXfHLlFXLuDKG+VJiCkGkginNKySYiI63QSlnEaARKQWNP0EAIAfKBctgjqy39emPULxW8qAkJ2cQYr/Zigxr9ajzsGOfpGZ1Jl0MoOs8hFXsHreFpFGCqlXk6gHdM48wnsuVufxVpjrAAYdRYuhTBKmBRXM544XMFSTUQoZFdlBCCoY3HC2qphOPrhNihap/HtwrBU5MpYzkfKQcD4ajyrKUXvJp4lAibrsfHSKFQxIJMMDzAlE1quI8dN2+8wOOj69xPBpzpnDyTty6N5dANFB8sa27FKjRRgihRWJT0FOd7Spqo+3OIK1bbU+Mdq9H2XKvgFSkOFY+oHeAs2INxmk0HAxNMciIcr9c0dYvGgQmhBCfk1ii5oE45Xm84fulLfJxe5rwaeLKTp5zABUCmpm6YXY+jEFqjlYyo8c+dLLoJGg1cNF5QppF4ZMh9NaI8oRTEVZpYW54QkHxm2gmlcjnuSNnARvoU0LdINO9zZW6Qnu6pBodSSNMB8Z75MPKuv87FcIqIo/OeUlnAoLaP3cJbr6UQpNGKxaE4h7ZsrXMRQowGtDtcUMXRHV2x5EsVDzgtEDxlbqj3qGtoe4JplCXGw/izHd8iuGAqkaXkz3EHKgSvnJ5siX2H1kpqME8JgxsqMUZGGj/49BO+N0X+4UNlf/MtuvXWKt3tNUor3PGee6XgU6Zlo7Dup8n0Q5bdp6Js+8HiahxJpdBtj9DogGDJG6ALq8uFhpMV9bAzgataieuOOU0LJXkBFytsVz3bzQB5JgO5VMZpRGUR3RHl8cXIH//wXX5nWvMn+Qi5/QZdv0KHNfX0RSYqP3YOnZIlXKVRKOwWmqY0UO8I3rPuekKrTNNMdZ5utQLvcFUBY+Tggu1TExe0AqZWcpqYZ1OQehbjqqy6noyQGkzVaPB+ATJO8wwqlFRIq6vcja9QqgmYxeU7bkBBnmlTlGxAYNpTMahF/bPaPo/e6N7MO/I04bcndP0AiyaJF0Gbt3G4erxEyJOBOZ/yU3+aycDjx49sc/qncsAGTJhSNqpFg5IzHaYHXUpBnNDFiD++yp/WL3G2AU0TMl7SVEA9IQy0lEjFcvzQDTZnozHPBwOEuPBMNjbnTPMdYVjRYjTgVRECy8VVK94p0XsOhwOpPyI1pUwzF+OI9x7vEk4V7zwX48j98wtWXbS5FkYLSnNiStk0/kW54465564gWqjjHjftAEVUFsldpYz7ZxQQ3w+oKqVU8rhHfY/4SN8PhmUohbg9xa0NgKkLl1lbMg51LSarDOxRXHdMa439xSWpFboYKSnbQek973zyMR9+4VVW695mrcvBPc6ZOVd8E7I4fuSvMccjmEY47Ix7vsh9ahjQnGjFRIak63DRpDzzPFFKtcondKjz5Ml8KfzxyYJoNdU5zwJsLdZNcCEwzTNTGEi+J+TE5WGPOrf8p4gTSq2c7UZWvQlQOUBVmaaZfcmmcaHCo+z4Qbxm4hvjDjcdTPFNQDUSQ0eZDvjaKM6hfb8I+1TaPNLE01zEdx1zEVKakfWWYXMF54wTL60Rmh0KFOOSBzXEeorHlJQZL86ZWzHGwdNRQlAudgd2cyEVS6RM+rhxGGcyFdeUnBPfb8ecDce0cYJxb0Iry1yUMOCBMs6mLhgD4iOqYlTaNIIzaV0NkXFBxMfT6/SrIxBnTAJMPvlpUud8hFI4SGRyA3UauXzyxGi90bjNqopznu+89x43To8I0S8ULbtMx9mohUphcpEfh2u0sKGNB9hfGANABRVnlUkaTT1QBOl6XGeiPnkaoSnqO3w0Pn+aDuAHuu0poesXBcAF81Ab5GXW7gP78UDptiTxlHniYvrZj++L8ydcXFqx5ZzFnmDxmXNmX0znvpRMqAJq7wSBECKr7THfX73K/XWPzBM67uDpeC6ukFxIOTHR8LEzMBuQ8khO9pmc9yBqHH4c4egq0vcUhFKEICC10J6OqkIgzTMHv2LSSEiJhw/uL4nZokC7IOBbaxzyUzGzRk0Zp96kkpcYGvqedHqLP6tvcDmZSBTTpVE5XSSEjjLN5FqYRPDdiqhKbYVpPuDEWFLNewQh5YJ0K8JqbR4Ji9SSb9nUPxfvm6DCbppp/TGlNOb9nsPSLUvN5LK9D9w/P+fJYURESCUTMOXRaZqZS1m+P8d7/ojLcALTTBt3aCtGhxeLb62ZOs9W8IaI851JmadMmQ5o7I2i3fWGO2nQH1/Drba2LxZczVPdDUfFhw4thYOLpLBZINE/5WTg/OyCbtWbkIwKIXRczI0/fPd9vvzqK6wc9M543OOUTC51MWj5uK25649QbUh/hFOj1JRcFsEIBzESQjQfolqpeUYJhNUK33XE4E2ISBt+s0a9+SMAIBVfKuRFWS4OsPy7zZuOdmuViyfnDGujk9RaEY18lOB/8w9/h1/41b/Jbx45rqSdAZhqYU6ZEAN393v+ILxBrd4oNqvOkiFdtPBzIhdLUsR5YojPpDRryfhuRRhWdNGbutvFAYYtcXuMqge1uXyrlVomA8nERTFumtC4ouo5fuiZxpExJYbNhqk2coHYX+FP6oY/+/anfPOv/TL/VnvAcd4ZXa41Yojk1nh7L3zfXYHmkLiihfWirLdozeeZJo0WV5bNe2+SptneZ1wfEbqeGAKkxFxhOL7BalgvAWjzXkclY7ezG1Z2oWL/rviAqHDx5Jy4GmzM0IxueHdO/G///j/hm7/0G/zytYHjMtKaUEtmmhIuKufjzL/0r7Cv0Vq4wzFgmuS1VWrO5JJoLkL0xGja3KU2yBl1AR3WuBgXb40dLm5YHZ/aDFsVbYK0hs8jRcFJQGOEeaR5T3UBFz3zNLKfMqu+53A4WJXuI//4hz/mJyP86je/yVtuREtBG8xpfnZwf5SE78abUBUJPc2vjDmji6xvmo1RE3rUBXz0z7w7KAXtN4Yk9iYN28pI3F5jtdoaenoBRUaplGQVj/oeFSGniRZXVHF479jv9jT1rNYrDocDpSp1e4v/4knld773mF/76pf5jXyXOB8WSib0Xcc+TXxr3vCxbm0k1G9o/faZAU4ulZonmnoItp9FZYmLmapC6I+JXUfwnjKOZA2sj6/QxwFVt1CYK1qKGbKIw3XR4luVGgZciJTylyO+02HikGZcHwjBG7YiBLIE/uUPf8wvf+UttkHpvFDFwNxp6TZVEZ60yI/dFVzvaN3G/B4wfQJysvMyDnjnCd7Zc+SEVKVbmb9GDOZdkHPFb9fEuKIs2IiWG6FAS7MpYMYBajb0e1xZYucd+wdPyAoxmmSvVyHEnk+fXPLtn3zCy9evMTjoFOaaGafZqvPFY+MdTtmFDbLM892yb0rOtEU8idATQ8SMsCotJ4LrCP0KF+1z5JzREAmrDUUjTdXYOGIFkqiaWF3wtHkyVVbfEbueNM9cjhPDZkUtlVYFCQN/+OCMH/+X/5Jf/dXf5FdCYkgjAtSSTTq8VD4YM9+JX4Bi8Y3vlz21xHeerTsaesRZN6nVugDnC2F1ROwHYnT4JoyHHW5zSlxvEdVFedCkh0taNDX6jrAkccQNVQO+73/6ycBcHWShX5+QcyGvX2J6/Rv8JxeBLx9u8d8PD7nVzohiiOtSrGq9Nzd+v/8KuQbaomiWFrSmOmdffl1MJlw0qhhGIeyGyKrrre0yH9ilwnq7JYSeJgFZDHUCxS4y5/AxLpVsWag9E+nomDlEZLjOxeqYo+MjmutoL3yV7ud/jXPX80/jwHfGx/xi+pDTdIaWmRiOCU347tEp7/oXqfuJmgtVGjNKbsWydt+DNxStU0dxgVISUNC4ZugHuhjQVpgPl2RRutUJLHNSp0afJM9MTWkuEmJc1BgN7Vqo5PURya/g5he5HDYcb9bIcMLqS7+IvvAqYxX+pcCfTZd8aX7Acb6kFOOTg+Pbpze5LB31MFFbpTUhLTxnEUW64XONfw0kEbvWHfi4MkCNKi3PpOmA9hu6wWSRmwrOCTRHmw+m9Od61HvyeMA7h0uJ3K2Qbs2UIc/CanuVqcD+9Asc/Y1/n09Wp3y6OeVP8jm/NL3H8eGMvjbW3YreKW8PN/lO9wZlzNScaVJNtW+Rr1bfUXxnam1q7n6lFKAQYk8XIqHrgcZ4uCSVijs6xseBJh5Va/VTMmVuJp0awkIttO5DrZl0dIWpOcZcaK2jP94y1g7/5q9Tv/GbfMcP/HC95Wu7D3lz+pRhuqR3nm0XyCr8TvcK991Nyn5PFWsam2iUccslrsyXAfNQKOpM7U6FGLwdeD5QS2La76gh0q+OEN/RRNFF/rSlg3H3fURjR5n2VDUBnOI98/aENlxQrn+Jw7Biu17D9jqrr/4q9fg6FxX+cWv88fQir/uHrOc9qTX6Wtn7yB+tbpEmoczz4vhnUuBULD4X0RpVRV0wNUsy4pUuRBMsEqjzaBz21RGh3zxzzFMnxrPOycYN/VK15kxUpbR5iYvuL0V8j6UwV4FZGFZH5JxJ4Qry5i/zfy6R37m8zv9gM/LG9IAoxtLJKeG8cjYVfjd+gUM1EawKjFhCoyrQPVVmFESjxXdJiIqBf/vBkoo8sxtH1usNoVuZYp96UAhUKGkxgfLgA/mwt8SNmbQa0NWKMd2n+M4MpNbHBpy88iUevPgl/ncPV/zyyQv8O+kTTtqBIJ6cZqBRppkPiuc7/UvUYuqUCWFqy0jMO1ji26kzn4NSaDWhYWUmSV0H0pjHPTRhvT0yoySJ1ulpELD4NtphZ4kdGS+VRGU+ucKsnra+wsVqw9ELRxQ3IF/8JeKbX+eedvznoeOP93f5hfQx6+kCaZ4+DjSEf3Fyk7tyjbY7UMX2TmZxVF26sCzAR6+BokqpyQqoPrIaVkTvoCamwyXFd8TVyfIctqfEQZtHsnjwDh878rS376lmshfKsPnpJwPjr/xd3CuvI33PlaEnHl9lOLnOOE68Wxr/STrnr+1+xI3DI45b5qSLVG38znCLd9MV8jSTMHGaJpapmgmnIN68Dqqz1uaw6s0SVz2lWiaooaMERx2OqMH079Vbu1HHPUW9+ReoVXVuMeWReSSp41CV9JX/Nu0bf5206tlu1sTY4YeBDuF8nLk7DPxn8Rrr4GlNaGVEcgH1JqWqyywbrEXd1Bz0eDqbEZo3yUvnDSEfxVzNUk44KgxHdD4yrLdLkDmCF6QkchqJYdGbdgZsAcGTKM4z58ahrXC//j+BK9eZu8DJeoMGT9f1jHMizYUHfc/d7ioxGMJc20QrNosqh0uyJKuU1VwN86LJ/9TZSsSQ5gB93xFUCeqhVqYymyDM+pTtakPoelQ80SneLa1fEVzwpjcvoGHR6E+Nqo6xNs79TeLf/l/B6QmbzYbN8SlxfUxQ5clh5v264Z1wg+EahlbOe1xOTG5gV6HOZxQqCcxamUZe9PmfPodzjkkU9Z7BW5s/LCDCVgvaDfjhmH57jFMD20U11sB8OKc5b//fWVBK63EI1QcSsC/C5av/FvlX/xbr1cDVkxPC6ph+taaWwuWU+b2jt/jt1eusg6OWgi8jOVfmsKZMB6pMFBpVFNSwD2bK8jk/WJaf160i0Sm9c2hrTDkZgmNzytCv6IaNxYUKUR01z6QEhGAVlwA+omAtZh9IFcb+BeRv/sfE7YbcRY5WazQGQojsDzOtFD7SgY/1Ft4F8jwiLSFNlgrygsJioKIOGyBYKmN6+piBj5pw2bAaDESoTyVlZzQENKxYbbZ4H3Hiid5wEWnc2ygrRhtF0Wg10kRwUyajjBXSV/7Oz3x8PxozfP0/YPjyz1P6jtPVCl1v2Fy7TUqZu6nxvy8Hvrb7Ea8c7nGUJk76E4KrfDue8i1eZN5PZBaBNuGZR8HTZ9DlOSy+4+fx3QopZ1QdrI+oqw01mgeIuqXTN41kcbjYPaO/udDZGKAUivPsCzxsx6z/7f817viYfjWw7TpWV1/ArY84HEa+VRvvjS/wi4efcHp4zLH2HMfAToR/5F/ms2lFronU7MKumMuiLBLFKib3XdS0A4YwPLPvLiXTakW6gayBNmypbjHIciZINx8S4qMl/ipoqUhcRJecMqPsa6T++v8UXnuTNPScbDe4EAj9gC+Vw5R5b/Mq7/S3WYVgvgl1hlRMuXGaKJpMAXaZYz59Fzb+AUHAGwsirCKds3chDaY8G25rfcLQDXTDxsYMqubxkkYyEENAnTOTqRBRHK5ZR24un/v//NSSgYbgb78BMRDWG7y3dp1UIVXhQRz4R6trdEFI08yWBvnARRNCLpwMmct5YkymimZHnXu2QZ33OBcMPSumUlWSVQPdsMhpdivisDaNefE4ZypsrhWak2cAxzTPqGsE16hz4MTBWZm4fHSH7WpD6ztrWYeAc9a6LMXmvdMU6KPn0IQoK5j3mA2KcHx8TJlnLtPMnExit5ZlY4LpJjiTjR26Ra+8VUpKxKHD+xUZZb05xjsFe22oA8mKo5DnA8F3tJopy9ywLRvmpI3UdEnd7ehvvWKyt4utbPQBX4UDplB1mBMhRibNrDVSxpFCoxt6hug5TDOHlBY5WKE9NUKB5V14+hgIaiIXNc+INPrNZgF/RVbrI6DhJBgoy5vwhXMrSk74EMnzDNEsUkvKrL1S0548XjB0a9zV20jXo521hX3wtCK0JsxaEC9mflPX+Dzia4Fc2BxtaTmxm2amlBY/cEsEnv7qvCe4QN9FlIZrjTklQoh0caA2GIYtPnZI02W2a+/M1x4WdoBDSFnsohNB/Y4rknFlJu2ecHT1NnQRtz0y/Xzv8aKkam3jy3HCD5HLUllroxwuUcATOQ7HzPPMbk6UYpS6Jta+pLUFU+HpQqALtqdqScy10q83ZhktSrc9MXSyOFOMcw4ZK52uKNNE7Drq4gug3lNqowuOo7Jn3O0YSkNCT3EewgKiCxEtMBeBtrhWBs+sjp6MLGOP1XqF9pHdsqccsDgX254S21NeLb7dAqQqycCX/WpLBUJcMQymGOjFrHxFG65k1JslbVjiWzoTYXHjxLFvPC7jX4r49iJMeSLcft3O2s3WnrPrcZI5SKPoin8at2xuOaZp4liVOl1yEKHkwmm3Yj9P7JNdimZ0Kc8STOdMxr3vwpL8QsuZ2pR+s14Mgjr6zdZa0WLMIecM+xKdkucJH6O9C6mEILQysfWOWkZazeiwxd1+A+k7Yt/jY8CFAMVUOn/ieu4ev0wTMwrr8ww1cVYb664w5MzlbPG9OEsY7mC5RNUHfAisYljiG0pKBB/xnaM221s+RuvqiEedoK3gKBSnz+Is52T1j5jw1RXJ+DJyfnafzeqXqMFBXC3xHQhSuagOJ54DI10XuSyNtTbytFtM1uDkxDHPE7vZNB9UhVKfWjLXJb7DEt/ODK6K6Sr065WN1cSz3h7bnSnma+G8uTR6baRpJMbeRg+YTUBp5qx5nPd/ofv9LyZNtCy58zYdptJUF+nDaRqJreAWdPY+C146dho5l46ddOYhUBttcZEKbjEWQs2uUh3BB4LzdNHALKVBTgmtlWG9QXyEMBBXR9aeigMudjjvqdNoSMxciAsK10fjEzdZXJ/mgpeKf/Rj1tPeskGsz5JyIs+Jribz7VZlqsZeOBQouGcGSq1hM0uMetWauUe1xVAp+Ih3jj6GZw6MZZqIPtAPawOt9Rs0dMucqMeHYBTAcY/UvGxyE+4U3+GWtpOqp4wHgiT8Zz8yq1D1NIOXMU8TvhbCIsc5NuOUl6bMxRzcSppp2eh9KkYbUnHGwBWD+XvvDUzjjWKWF+lOcmYYTLSluY643lrl7Dtc7JEQ7OLPJt+pPpIX3ey2WPw2EWqpaM2sw0T47B28CE/tfkspTNNMV7Jd6k45ZOhEGYtQsUus5tkOKZzR/LxVWPYchsAOPuCXhKbWRgVymk2pcFgtmIIVrlsZTTJGXAyIc+TDDqVQSybEztrzPqCht+9OHWma6KKjv/iAuHtscYEi4pjnGUohtvysGqhVUJbnWEZpLWVaEwT7zM6ZcFAVu0j8giQOzhG9aeDX5fLpOgPdVRfxqyNYPBVcjGiItJKo84FWsnUFMAQ9PqIu8lT2t84TIZ/TPfyIKJibqARojWmc6Ippeogqu9yI4pirUqodtiVNFt9P34Uz8FRFl/hTgrN38Qy/QaMs8b1abRDfge8Jqw1NvQFUY0SWEZPUTJpnXOhIKdt54DsauowEM07KX4r43mw65N4PiGkyR0A1Suw8j/ia8ZZhMRZBiYyu44zApfYmIZ6rjYnEE9QKrMZTJ80lvn0gBo9XJddKKYX2LL57cB3d+oiqHo0drutwPtDSbODVnC25rAUXTOcCtffeCoRWWHUZ+fQdgrLIfFsXaJ5HumajCVVlnxWvkXMCF9pxIFBT+fxdiCO4YGwZzBNA1ayTg38a32aPnOcZL2rsDRfRuML3pofi4oCGgFOljAdca8Y0itFGcyGgoTMfEA2UaSb6iv/sHVbVnED/fHy3UoylpMb8qUsxcahCxVFyoi5qlCLm7uidt26TmFy44TZsT3V+ce2tlZoSfewJ3UDTSHwW35EQu4WtkqlptPh21hkVVcMm+PgMeFrm8aefDEz376DzSGzZpBv7Ae8joRWOmQgt0ZGYc8I3OM+FS4K1oEsmTROSMl2zCk1R06tu2GFSYJ4L05ip40yZEuJ7Uq6MY8JJJM2JVhqlGH8+7y5oeTKpWx8XjMDipqXBNiewT8XQnucPaZePCGRCy3jnCF2PU2FNYSgzaynkPBnAqBbOijIuTZQ6jpRxIuRCxCT5HWrUDrObolZTpStzJe92dgm4yH5M5GRVdJkztSg5A/NE3p0b6rNB1/Wmae6jjT1Erb2LsE/FKDT3PkBLIlJwNRsDI3T41jiRjKuJrRSmnAg0znPlnEBG0VrJ4wRzoquYjkCzazU0e45WGiU3axFPmXKYEI00HPtDQgiUZGCiWpWcMvPhkjrt7QwWu6Cf4kKcWuJXEcbaGEtGpDLd+cA8tzEao+97nFc6Cts20beE1JlaM60VHufGHvOVZ06UccLnQteevgtHEPdsT9Xc2I+JNGfq7kBJDec6xjmznwqivf1ZhVSEPCfyxWOTVS4V35k1ttHCFoCk2KFwOWVQIe3PaI/uE1vGVUtEfbROxBGZWEa2khjzjG+FXc6cVc+MM4T8ONOmma5UIkZf8jgCDi32LmqxPdXmQtntaZit7+4wkcpyMadKqULOhm6v+wsDh9ZKiIFWzAnNqQlSVVFSU/ZzIuWRw/2PcTUTW7Gksl9Zkk7luCVCLfRkUjbU8pPcuMRkYCVn8jihKdNVwbe2+JcovhlFquVGWuK7HSbKnFHXkQscDgmnHXkqtILFxpyZd2fUPIG05bPrUrWaWE0V69TsUzaa11+C+FbnmB8/oF0+Mfe8mnGdgaAdjRNmQk2sNTPmmdAaFzlziSeJiTGlcYI0E1u177/ZWeufVlrFtCL2h5k2F/JhNH0RhP1hQgjkVGm5Uorhr8phR10SLRVLjKgQnDd6pKhR60pjSqa7MN35EF8ToWXr4HYGXHwW32Sos41iauUsN/ZiktotJaPR5UzH4vaIjQGe3Rm5MY4zaa6Uw8GUOUNnuhhTwblImjK1QMnGXMi7c7P8rRDjsFj92mXt1NGW59hN1rk5PPgEmS6JZHzNuBjw0d7FEZmuzGw1M6YZ3yqHXDivngl7F+UwUceZmAtxGdF4bFwp1VRBW4XLw0idC3m/B8xZdX+YaVWhCjUVanGUVKnjnnK4NP2XBl3XmQiZj9YJE12Iq8LBHLr+f65/rTFB3T3mcPaE7vjUxFfETIVisNlRlzJNelKtrFuiFygaQAfwHk2JOh3I80iHEvqOVT9Q02QIZRcozoReRI0OoRIM/NIFmrPqdW7ga6akEU0HoipmIe9J+wv7gsaRmCbaOHKg8ullJo+ZOs3sPv2Ao5e/ZHMiCiLRON7dCocwJTNeoRZOWmJWQV2PqpBDos2JMu1IJbPyjtCvjWOaRoI6WrCgMu343pwXfaDmjO86Y1GIo9ZKIDMdzgnSqMLiR10hHVDv0HnCzXtcKeyBjx5fMKeJfO9DpsPEan1MoyyWpUa38tox5ErDMZZKTyZKJalDdGPZcUrUaSJPB+OydpFVvzIQTskmEOQ7A3AtgLYqnkxDY29e7CLMDVzNaJlo48UifSm4EMn7C2vzTjNxnmlpxwg8HBtxPzKXQrn7gRknqbMZtPQgja4ziuI4F7IKuRSOmEmqRqdTIMyUlCjTnpxnBnWs+p4+BPI8EdRm4mWh8jh68xbwgZQyvuuNRfHUHKlM1PES12ZLVL2n0kj7M5wL6LzHzXtSmplF+PjJxFQreT6w//QDhq/8NZM0pdIk4Fyzqqw1snh2xSRoT5iZXUD92joBacalmTwZ+2MdPH2/Ma5zSni/7KlmhjUqAwWhigPn0K6nAbMIvlabFe7P6JwiKC5G8jQiJaHFEdOITJe4ArviqOc7SpmYPv6xmfA4D9jhXUUJz+K7UKUn18qmJQbBRgq6RcKEzok2HUhpQhBC3zP0PXU5JPGB4sIzmqBRJ8ydzbozdhBPFTzJ5JTTSFgYBOqFtDsz+uZ4jp8nJI1M0rhzmZkP01+K+C6lQTqwu/sp/YuvIhS8mGug+SR0pGzvYiyVvmXTXhGPxMH+3WTKimU8GOe+C6yGNeSF1ugCNXhoT0dqK2zngsbOrB5VmJvtKS0Tabykd2p/J0Tmww7XCowTXZop455DqzwYG/1+plaYH3xCmhLDSk36WwYqShd7EGWcM00M4HtEWuI7gpjLoKZEHXeUnOhFGdYr+hCo84QXgRAoYgqULCA99dG6Tn2w8Ygqc214yaRxR2yz3V2LTG8+XC4GazNuHonzzIUKHz0ZmaZKOTzk8PA+6ys3QMxdFbExqnNmKpTEsc8VXzPHZGZVNKxwzi17aiaNO6SVJb7X6AJ6987RQkdpGJVaBnJTqlo3V2KkAQmhtkIoibq/IHgxeW4fKPOEFiuc4pzQ+RKpjfPcmM8vfvrJgGWGIz6agExwwR4iz0iDdZpx2rjfPAcdWPvGQOVQbJ7sxZHV42OP847Yme50az1+MYiQp6I2arNPajOgizPgUXTegDiHHSXP1pJsmTxP5DQhKaE1oSWh04FjZrJuOJOeUgspHcjnF8TYWTvVefOFd85kjPPMsZiV8lkNaPCsF4eesUWChyoecY5AwwfjvNZaaaxsvq66yJTaBWpugA1CtyDunWXreSLvd4gzRKmWSpkOhsS3VBY3T3Rlz6k6ZhfYE0xopDxGKvjo7TO4AM6TFipWV3Z4B2NznNeOITRWNKZq0mkRpahDg4lZxNiDLHKvC0NDxeyjVR1NLHCqmhOcifo4XC208ZKcDov/trUb8zTS5tmsZ2siTAc2baZqxwO3+ryVfvmANh3w8RrqzdWrLpbUtWW2MiHieNgcza1Z+4JH2bdI8OYLr86bp733hDjQgFZX5nuvNmd+WkXq8i6aj7CAicyUJZH35+ak5wJSMmne06YDWiulnOPzjE97TqQx65q9GGq/lpnD/Y+Mihki3gVc7MniCFKp88ixFuamXNRIDIEVldKETCCAif14j0ojxAFxYRFqqIuynVqXRZ3Jjy6JuI3Cltk5wLR/JgYEjVpmyjTR5hltlbHM+HlkU0fQyF3fcWieecy4i/t4F/HR2qXBeVrobLQilXUe8c5xv7klviuDwCGbZFUXHdk5XOnN3CYazuep+ZKKAXtZLndRexdmduXAiVVnJVEOF+Qy47xJKZc00dIByZlWE7XMxOnAkWSyrHiiA7nVn/n4PhBs9DDuybsLfAi4PxffonaR9WWH08ahes5bzyrAispUDZ/RoyS1EZ53QuhMoKbVsoj/GKLe7PFMWltqMwC399TlrNVaKNPO8AHeAIYlH0xMKM1LIZBw08imjTQduO9WSIN5nsj5DGqxStpHgg9U52nVsAxbmRDXeJit07X2lpLsW7TvX2xM0lq28UYcLH5XA94ZkI5aAKWp2ZS32mhHkbbEfxQHZSIddjQM4ErNpOmSMo9W/NSES4mQdpwu8b1rkbEkyjzRDpN1Zp7uqdjZeJtGmw8W3+q4aB0xBNZUEo3cIkGgqFFWVcSE2Zyxk5BFwvpZfKvtKTDckO+obulctEabDpR5jwYzjKZU8ryjzZNpFpSMm0eGOnKigbt+YGz/BoyKVitFLj4jdr9sNMAQQIWx1uVAnTiWjMyJ86JkTLErqGPOjbD8NHXCOkQ0WoadaXbxqzKJe3YBdWJcYKsEDQxBmsnJ2oYhmDd3SxnKjGKa5eb22OyCiJHjec/VU+HB9es8PBT84QExBDrn8D5YNp9m5kWkJVK4VjIuVfY4EtD7hePtIuLsIAg0hr4HdZa1YWYgSTxlAbOZEl9GNRjX2C1Sq/sdeZ5xPqAVmyXOe5OmclYhiTh8nvAN8J4bFw+JL9/i8eM7TMUTpx19N+C1oT7ggmeuxfAcbmItlRsUnuTCjKMoRO/Zz4XgOpgXNS3vcE+rS1iMLpRRPA27iIKaHXTwPSKL+lvJ5OlgFVDoaHlGS6HOI6a1rqARV5U4XeCCY1Uqr8Yd6dYtPn54hgTH4A0845zDxQD1qcCs4kPmSstoy1w0JSN4Z1a8pS6gRUxBcd11iOusk9AqbrEjnsVB00VRryBNFqdF8M4961ahShSPlIKmg2kjLJ0OwbTY49KuvrI/o3/hmA/2A33sWAWl73qCs7gIMZBbIYmnlcLg4GYqhFwZm5JViMExjgWNkZYKKkLvrHXZVJkxZ0GvyiSeulRAXheREWedG+dMUz0dLg206YPJ3JZMnQ+GVnb2HagIYd6bA5/AS+0h+urLfHZ2hmijyzNdvGKJVIiIwlSdKRy6iWOpSMucFSHjcAo+CCl7Q8xPpmC5XnALT2nETv98fJsKX9Bqng++s86Ndxbf82QdRx9oJSF5puVkimxOEY04oJMLXPBsp5Erx8K9q9d5cJl/5uP7nR+dM6w73O4OMRpwz/AqnqlVYwikmbVmbpJ5koUZk4OPPrCfDXTKPOOcMCyjkgKkp/GtS3w3UxuMDsh5Eb2BzjkbJ04HWi2E6JFsOBjmGZW2+HMY4Di0S5wPrFtm1V1SX3qJu/v3UVeQ3SNCfG2J7wi1cMiCcw1fE6c1IS1xWe17dottdak2ahMx7NM6msBWFiHXhnNGt00L9sWp0NFsHKMRdRCco46jFYpqo1BKoc0T0oymq+Jp1ajEgYoPkSu7xwwvHvOj3TFT2eMu7y2sKlOIDNF0W5IorWQGhRuSCbkw4kgiRO+ZSkNDRxP7Wb0KsRsMA4LhZ5w6JglUxPwRFCtmvQluBW+jtny4pJSEjxHJM1orzHvDJCzUbhVn5lpe6ER4sT6CV16G7/zpTzcZqDWxf+dP6X7171BcYIxm2lIzIDNtv0f7jjXG032UK4fiOJJkfuIIzQVr2/UdmgvRL+CLrgNxZo2LmAtTA5wgi2ZzmSbKtIM028E+7wm1ULOJeBRMcIiaERrZd2wVgpuNg6kep3Dxk28jD+4Rb9xgqgnxhZSwts08UvNMCN6qjtI4rw7XMuuamNWRmzlINecRJ1ArG69MeCT2eFGimmOUilKqVSctFwIw73fP1KicVPx0ias2b64LGEUW4SURB2HFqmWSN1nPGCKH8Qlnb/8B19/4CqLCYcy4IpQkeC20w0gLngEoUnlYhH1RjnWia5WM2d06CdCbn7eKEEVIvgMXOFLbmHM1Fbsi0eSeW4WUyNPOKmeFMB/wZULTaIqQGMjUxHYq1fUEV4itGPdVla6LpHLB2ff+gGu3XmBKjSlW8jJHk5qohxHfeTZird3HxbpFqzYbD1zUwGSqBmQqlZUIs3g09qDKWqE2UxxrrVjrvlSjQR721GmHlIxTCNMlrtoFVNXZoe8U2owiZNez1oz3DY2GCI6d5/DJ9yif3cHdusl4SFQCKQlBMu1woGojqnIkhVwa++LwdWZomdK80aO0gxhszt+g8zBJxIXIWoTohLnYoZersSRarWj7fJ6rYgesn/fmvtiqzdVVF/BapUoAp2xbZg5QvSPEwOHiYy5//D2uXLtGBsZotqktQ8PeBV1kRSNTeZThUIUtybxCUJoLqHZIF5BS6J1Zj9dol+qwqAnmJibCo7rEN5Rpok6XME84p8Rph2sJnSfKAt5CHZITjkZxA50WvCu0oNap+ksQ304dSOPw3tuEix263nIYq3lnJMFphsMOiYGeypEID0vjkJVjZy6UBUd1Hice6TqkNjqFTpXkAzizyA4qS3wrxUe8LGK5OZPHHXU+WGcqHQjFwMHQqE2oqlAW8x8NOAddmSlemZzHh8B4uGT84dt0X/oGcxKm2EgNWmlQR+r+QNdFtpKpNB4ngaoMLVt8Y4BXVEz0KxfWXpk90A04LL5bM4n0VquJB+VCcEoa99Rxj5Rkidu0w7dKrZZqmzAai+w0FD+wlop3FRcC3gVg5vEP/iW3f/PfI6w6xkOmtkLO4CVTDyNVK51b4jvDrjlCTaxaITXr5jnnIUZU7GdtnDKLAd3XKkRR5mZMsFwNcNuKGaWl8ZI6HhbGxGzxnZOBnEUpYnbeInWJQc/QMslD+TdhYRw7z9F4l184fJfrt28S1udI7Gx2qY7f++7v4KYZ162IEjlWzxwGgndc6oriIrOL5vQ2ZgPnNDv88jyjYcA7Q/9ncUy50nFAmlDSTMnWCnHScCkR04FYk+kTVKgCqWJ+4rmQs+lVDxTO94kyHUwaWQ68ePd3+cbtn2N9esXEH0KkaOD8yRl/9P/8Z1zZbBjDQN8c1/xgdMUwkPzAvjkDwsQBLVZtSK10LUEq4IPp7eOZEWrOBNmTqjCPO0RM2U6dw487Yp6ILVE0oLWQnfFkNU/MeeHRk/DO8+jBI2uLO+Ho7B2+fvGH3HrxBfrNGS32pvTmAn/60Xe4+PgOq9WGqJEj8YxhTfSNS7eh+p598/TDgCyeDupM57pNMy6uFtMdYxscasWVg2ETUqFMe1SquUSWRpj3dGWyGbw4pGUm8Wg29HHKVpWs60QqMJ49QX1Hy3uunL/Dr9bvs712Fd89ocWOIoGaK7/zD/4R2y5S40DEc0UjJXRIiOzdwCyB5nvTOmgBKmhz9ECbE8SO4ByIgavGXOi4pDTPPO+RUnDFHPzcuKdLE7FM5KVNn0XMHyFlcspM1dregzQePb6g1oaoR9MFXzr/E77y6pdZHZ9C7GnO07Tjk/c/4Mff+g7H2y2XvmONY3Jrgoe931BDz2V1JmPbetMlV8FVoaszmguoeaCreMbUoEx42ZuZ03SJEwh5MoOh6ZJYJlwrZA1oy0wSkFyoOTHnytwaaxJeAo8fPsT5SMwHrt7/I35xOub0xg3i6pwWe+oysvsX/+S3CeOE7y2+TzUwhxXeyxLfPZMGuqFHR6McazDP+zwltBsWrXSPiGcshdgurcszz7Q8oS2bv8OUiWmkq5PNTpvR4+aGyWVn21OFRt8ST3YTZRx/9uP74SOzs+0Drl3y1tmf8MqNV+m3Z8gS3815/uyD73L+yWf0qzUXrmODZwwrOgeXbk0LPTs8wzAgFLQJzi/jpXHCxcEos870WqZScHXEyWIXPB+W+M4ojTDv6KqpFxaU1goziqQZcmYuUKTQt0QqyuHskTFhusrV8x/zK+X7HF+9ihueoKEjq6Pkwm//P/4RR7Gnxp6OyKkLFB8R3zG6nkkCLT6N74xUUDxda9Q5Q+iIzj3r3kwp080G6kzzgVbzs/jWeaTLI6EmiloH2auQc0Gy2YIbWyfRO+Xx43OkNboYcfMD3nj4e3zhyqusjk8R35sSqUY+/slPeP+PvsPRZsvO9xbffk1wsPdrahi4rEo3rNDW48TGNK4ooc64XMFZMivimWpd4ntHLjCPO1Tbs/j20yXdEt9VA64VJlUoCUkTY4LsYN1m0MDl40c//WQgzYndxSNee/EU73dMTx6hkhmGgSunx9w/fJ8n3/oX+M3ALQfHzlGc4yARF3u4+gL11a+x8ae4LvKD734PKvh+RQ09fuh58Ytf5P33P+PRk3M64PT4CNf1z1oorZrGtSuzUYUWW8rSlFmVOSstJ9q4Q6YL3IM7PPzwXVblgjJeMs4ZlcaN7cAXXzzhyaMH1PMJ74XtdsWrG8/7b/8DrsnM2Ee+opj6m/OcV8/ptWucXX2V4cU3WHUbLi4v+OBH7xO6Dt9vSaJcvX2LuNryo3c/4nKccf3A6fFA0c5kd9XZbF4En0fCUkFIseo7Z2Us1Sqi/RldPXD+znco84F+esg8HSg08v6CX/7Gm4z7M/bnHyM10/Wek5Mjqv+Et//g/8D2aMWJd1z3SlMlaWSUwOr6C+xf/CpHmxvE1cB7P3iX/W5P7Fe0uKJ5x8tf+hJ37z7hs7sP8aWwPT6mG3qr0MRU4RoOVxOxTrhFp7w1IYlnrouPxHgJ+zP68Zz7736HTjIu7UgpmdxqGnnztZs8efKAsruDd8J6PXByvOXHd36H/v5H5NXAa9pYe3Pou8Sz2R6xv/Iy4ZWvsA5HZIEffu/7eOfxq43J2p6ecOXWbd794Yec7/YMPnD1eEMLw7KnWNQXHT4fiK3YnipWwRUcYxFaGmmHc0LaM3/yIx4/vkd/eEBNI6UWQohc23S8eKXj4vxTOJuJMXB8vOHq9jH3//j/yLVNZBsDN5zR27KPXBbl5MZNzm++yWb9Ev2w4e4nd7h/9x6x65HFjfH2F19jf1H58IM7+JToN1uO1gNZDVykYhgEVyuxjvYuFjZ2Fk+qypwrzDvq7gmrcuDBO9/GkYnzOfM80gBfJn7x66/z8P495icPUQrDKnJ6esy9w/c5/9bv4jcDN1U58Y7ilFGiya1eu0195Wts3CmuC7zz3e/RKoRhTfHdEt+v8/77d3j4+IwowpWTI2TBedjs3bTbfZ4M6LWo5dU/t6dKnmmHC3S8RB/f4eHH79KXHXXaMc3mX/EzG9/jI6YpMU0zMp9z47Tnxqawv/gIaqLrIqcnx7TwCd/7g/+Uo6MVV7xwzZv4TnIdM57V9VscXvoqm/V1Yr/mvXfeZdzt8d0A3YrmPS+/8QZ3753x2d2HjKVwdHRENwxGewNM+1JwtdCVGbU0gNaESZ2xWHKhTTvq/pzV4Yx7P/gOvcwwXjBNhZxn9pePeOPlq+z3T0iP7uJc43i95vR4w48//V26+x9TVj2vaWN4Gt8tsN0esb/6IuGVt1iFIwqNH37/+3gfcP2G4p7G9wv86N2POL88sPKeK8cbK4yqUe3qovjn80xsT+8MyM0xizJngTxRDxeEfCB98C6PHt9htb/HPO6YU8G1C954+Qa3rkQuzz6j5ZkYlaOjLVc3j3j4R39viW/PTSegSnGRi+qW+H6DzfoV+mHNZ598yoO79wndgPZri+8vvMZhX/ngwzvsZ4vv7aaniDd9CBVTjmyNWA74Vg2cXZQskdSEORd0Gin7x/TlwIPv/zFeCm66/OknAzF2dMOKG7df4aVXbpGmkcePH/Dg7l0+/uwh+egKj669RFhHjlJiKpngBOcDU2mc3n6NzfGa46PAxf6SdbkgCOi0oyZHbAOnh5533/sDbm83nFw9xetoWe0ihWmgKDv8WFptLM5trRnaMpWJuY7MFO5+8j3yxz9gJ4WkJpTkfY8PG9748tdJOTEfdjx4cI+HD+7y8MlDePFV7o17YhAep4S2ive2hfZhxcntFzk98sRB2N19wKnu8XmEw57SCtdmx3j5Ce7OD3nz1gus12u0npnTozNhH/PRbqb1vcy5DM9jLZ1SEinPHBgZpwP3Pvk+83hJ8OYrFnxAUE6uvsDVr3yZNI9cnD/m/t3PuPvoMTt1XN54mWnVsamFuyUTVAjeM6XM+vptrl894uRISUzE+TGdZGTaIdmD81ybjvj4J9/hSmlcvXGd6Ge0CN5bMoBAzc3Y/bJsVqxasyZwZc4Tqc4cZOLxg/eY7/yAVAujM8BiLoVxKrz02hu8Ft8kjXsePnjAw/uf8cGde8gLt3lQIXQOcmJXrb0vznOJ5/jFVzk66livHffu3+eIS2JTOOyoAsfDyOZspH34J7x2/RpH22McO1wzIJiomCzzs3cBskiELjcUpSXmMjO1kdQSH3/0Z+wf3SU7IZXONB3GGRcG3vrGN5nnkcPlOffv3+fR4/vsLnfMt1/jflB6qdzLmfD/bu/cfiMprjj89XV6bp6rZ2yvF7xAQoAkEonynkj5Z+EtgiVSAiEKiZSAkIBdWBLvLmt8WXvsWdtz6e6q6qrKQ816IQqCSHlI2PqkeZp+mFad03Wm+pzfD+fWWAUG1R4wGK3TW4sJEsNp7mIqUkswMwywLpvsHezTfDRlZ2NMPVOExjVxrtrBnTvkSkraWKdVbldd+zYAZQSVUeRBQTGbIg8/dRtrHDup4ND96xpt7XBt5zmUKLg4P+N0cszByRTd6XI+2CZupLS1oqwMaRQQJzFSQ2/rWdrdOu12yCJf0NAzkiCAcgFhREqDXpHxjy/eZ6vVptvvkQQloXHviZ1ngRul/GpMBfBYc87NqVcCaQQiUBw/vIM43EVjUbjG5P/3/LY2JU1SoqROd7jJK6/+HCUEs9k5pycnnEzPWQYJ8/F1RLNGy1ScqIokdM6yQioawy2G/Q69ToKykpo8px5UBHIJ2r0mGqo1Dr/4mIGxDEYDkkQSWafm6ZTgLKZaqXeEwUrozel1uGN5TaUVwpSIQHE5uYs+vMXSKsq4QRi6k8es0WL7xg+p1xOkKJienTKdnPDl0YRgY5szC3Hm+sEWWjtlvShmEUR0ru2wtpbRasecnExYY0lqQoIyR1/lt8A8+JCd0ZD21/I7gtDlgDXO8wPjBu4er4qxuFOOqqTEFfb7B58gzw6xERjbcqPCcUZW7/HST15FCkGRzzmdnHB+fko+z5FbzzCJQxqh5VQ5V1Pni2BQ7T6D0egqv8+K6Sq/C6yZYzCsK5ffjemUnfGYek26/F5NdTzOb3gSU+4Ju4opC5UWKK3Ig5LlbIo8ukOpJSaO/nvFgF25lS2XOVl9zts33+JXv/4lg/Uhg8E6WdYmTWJanQH9nRfJH024/ebrJBjWGk1smtF4/mUEEZkssQomh8cobd24oFYoXSBmF1wUOZ1+14nCGIM2ymkKhNVKqXDleaMNxq0kFvcw18YJmSghyIsCo2F37wFVqajV6uRByDJfsNaO+dtf/sDPfvESzVaTzc0R4/EW/cEG2kgqaliluPfBn9n/6H06jTqNeh3Z7JNs7CCkolIFuip5NJ2iCam0k7ddFgXz3V2SWsZ4c5M0TdDazblaE1ypsVnDypRiFazWuI9xZjuyLFCyoigFF2dn7E3PnRNjPaFUEikUjdaMv773Hj/+6Yu02m36gz5p2iBOYk42tknbY6wo+OiN1zCLGb1mk7BWI9y6gcjaxLKEynJ6ekkhFEkUYrRCVxV5UZLfuk2aptQbTfeeV6mV9fCTd1DWWPf7tbsfJ4avqUyArtxaFIVAG7j/xQMWc0EtTZBBgCgFcRqh1ZLPb31Kr99hY3Od0XiDtc6AMA4IkybFIud49zPu/vEtWmmNtUYdmbVYu/EDhDbOTTHSTB6eUOE6va3RCCm5zAtq00esb4yp1WorDXPtegPD1X3Y1Rpo6zYja1enHpZKW5QsUVKRL0tkKbj3cEJoDbV6SqkNRSlYW+vy5f1d7v99l0azzni0ThxnbF57hvn8Ah22iIzl1u9/w9nDfXrNJmmWofsb1LtjYikxKmI5mzFfLAmDAKkrrDYs84Lizh3CKGY4HhFF4dVamMcxBU57wRgXa9Y+DjI3Vq41UhSIUiFlxeHelxxf5iRJTBDFlGVOFIZMTvb46IMPGW/06Q8HDIcj6g3nWtjqDBk++xKL6YTbN1+nhqXTaKLTjPrzLyOChJosQRmOj45Rxj2njFYoLRCzSy7zgm6vR1ZvgDWoShFqMNG/xJSxVzkCLje0AaUklZDkeYnWlnt7++i8opYlLANY5sX3IL8Fi2VJr5vxzm9vMl5fo9Pt0hv0SZM68Y0XmGxsE3fWsWXBx2+8hl5c0Gm2iGo14q3nEFmLVAioQs4ml5SFcgWPVhilWJaC5Se3SWouv91mo9w8flg9ianH97Gy6QV3L1pbjK5QpaAoS4yB3fv3mC9LalmGCmKK0jWvXpwe8Kd33uWVV37EaHPE+mhMu9136rFpk+Vizsndz7n77k0aaUq72aCqtejceAFRGSpZUhWr/LYuv9GCUgoulktqZ1OX35nLb4xx/xGDlaKqXeX16vO1PUMbKimRUpLnBbIU3D06IgosaeRGNxeLgl4v493fvcV41KLeqrMxWifeTNm89gyL+SVV2CQymltvv8nZ8T7dZoM0q2MGW2TdMZEQmCpgMZPMZgvCMEBWFVZrFnlO/tlnRHHMcDQiTpy5UmCc8dHX1sKaq2etXa2FMc57QooCWSqk0hw82OPockGaJK4v5Sv7+DcR2G+7Ajg4OOD69evfdpnH4/F4PJ7/Qfb399ne3v7G779TMWCM4ejoiHa7fVWleDwej8fj+d/GWst8Pmdra+vJaei/4TsVAx6Px+PxeL6//EfeBB6Px+PxeL5/+GLA4/F4PJ6nHF8MeDwej8fzlOOLAY/H4/F4nnJ8MeDxeDwez1OOLwY8Ho/H43nK8cWAx+PxeDxPOf8EPne9FGOV9YcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_4/1720425300_tango_video2audio_clip4clip_4_best_steps_300_guidance_3.0_sampleRate_16000_augment/1.wav\"\n", + "show_mel(file, save_name=\"ood_2_wav.pdf\")\n", + "show_video_frames(\"../data/foleycrafter/1.mp4\", save_name=\"ood_2_video.pdf\", frame_rate=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_2189924/99652230.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAA5CAYAAACrpSi1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACu4klEQVR4nOz9d7Rm6VXei/7Wu+KXw855165dOXVXVeduqVstqZWllpAA+ZINGGzAcPCB48DxgeOE7WsjB4QNGFACSSirW51zqK6c8875y3Hl9z1/fKW2zzjH98Iw954/qOefXWPUrhrrW99a73zmM+d8pqaUUtzGbdzGbdzGbdzGX1uI/6cv4DZu4zZu4zZu4zb+n8VtMnAbt3Ebt3Ebt/HXHLfJwG3cxm3cxm3cxl9z3CYDt3Ebt3Ebt3Ebf81xmwzcxm3cxm3cxm38NcdtMnAbt3Ebt3Ebt/HXHLfJwG3cxm3cxm3cxl9z3CYDt3Ebt3Ebt3Ebf81h/EV+SUrJ2toamUwGTdP+f31Nt3Ebt3Ebt3Ebt/FXAKUUrVaL0dFRhPjv5/9/ITKwtrbGxMTEX9nF3cZt3MZt3MZt3Mb//7C8vMz4+Ph/9+//QmQgk8kAMD69h1ajjtAN+voHqdWq5DJpup6LbSVRhkYxn+OdH/woRx+8l87N6yyUy5w8cZZYd4iUjR+EKBkzMFDk2EvfQAZdtBgUIJXETji4LRddN0gMFrjvPZ9mIF9EIonjmP/tJx/G0BW9fwFBGPH6+TUWtpqYjsO1S9f5uQ/dxbnLc/zpV59nYXmVYjbBpZUt8vkig8NTzC8skCsW6d89RexkePfh3fTbNp9+ZCf/6c8v8tkvPYXuNvj5H3uQX//VX/y/vSe6bqAbBo6dwLQdUtkCQRSgKcXg0BBjo2OMjo0hnAzScfCimHQixbbJKSKvzeLqGvcfOcR//t0/QgoLPZEBYSAMnVjTGRsbQggNDY1cNsUjd07z0OEJVCRBAzTB7379GIMZjavrLncf2sGJM4u0lxfIGwFjXp1n17t0Wm3+8+/8Op/+qX/EYqnG+OQE9UYby3EYmRhnZXGNgUffx24/5vQbb9IOXESmj7Xz36bbbPLcS8/w6U//JJ//B2k+970OL51TeL7G8MgIuf5Bivkcr778LO1WhSDwkSpC1w1i30fYFmYiiWmZ2JZNrCSaoWMlEyg/olNrYNkOTiqJH0doaOjoJDNp/sFv/EM+cv9uvu+W7YWKzz15nMk+k0vLLjtnJ3jquZNsXLmCZQrSA/3sm5nm85//EsPTUwjP5eDMMB/64Lv4+//k9yg1m2zfs5tiUnFjsUOt67P/waPs2jvLzeQ+JnaYfOfff431r/4mpmkRhgGgEMJiYGySWmWLOPQRCMLQBxS6ZRNLieUYYBg4jo7hGCgpSCRThG5As9IklcvQabYIw5BsJkN+dIBk0qHVbqNZBh/64A/yj37mB9GFQilAg3/6X15g32SWMPY4Mefz0XfdyTefeI1TJ87w4NED1EtV6s0ao5NjBEGI2/XoNKtoYYihSQoJm1/+1Z/gN/7h77DZ6hIpjeTQKMOT23j96eeYfPT9FKNh/N195NdLvPrt/8zotu2o2MfUBaHvM9A/yMLN82wuXqPZaiHjGN0wyKTTaEKiUNQbbQSCXLGApguUppjcMcnI5BTXTl9Csyw6jRaFoQHW5hbZdeQOfuATP8kn37mPlKVASZSC59+8yY3NKsNZSSVIkk7ZPPXCebbmFzh89yH0ZJLLJ89TWVlEaJKBwT5Gt8+yVq4x8+HHMDMON+stNn/7XzG1bQzPd9lRhPLGDT70YQcl4TN/rLHZ8ujv72Nlo8Kjn/pRPvcvfgXdsEhn04RIHMchiiOMZILR2e30D4wyd3mde+57gBMXbnL37in8rseB3dupN13OnTtHxkyx49Bu3G5AtpDl2XNzjI4NcGT/di5dXeSxdx6iUmrx4+/bg9BilNJASf7wG8fx45DhrKAeJ8ll83z3uROszi1wz4HtqGI/1xfLPHJ4J2G7xYvPPoOp6+i6ztr6BulskdzoCKko5ocfvERfLsdn/mSV5La7Wbs2R6PZxckkqWysIISGk8pD6DNRzPHKfJndBw+yOneNofFpstk0N65c5+4jdxBJhR22IY4pl8vYQiOIY+rtDrMzM9j1LpqmEQ4WyPYNYJgJnj55A900sEXE7PQwd91/hK994wX+zo99EE3GPHp4DAAlYzQ0fu33XuLO2TyaDJivSB5/ZBd/9I0LvPTSy9x7aCfZiSku31glaQgObBvl5Esvsry2hikE26bHOXHyDDv37qZTq6NpsLR8k2ymgBYHZNIZLFOgoSFljIxjlFIopVirdpgeGaTdauB7HrVGFTQIQp8wCtGUhkJhGDqxUviajQhdpAJNxWSzOYyEAyJFpn8GTzkYmQQf/+RH2FhZYveOSV559TQ//gMPUEgkuHNHDk0ppNJAwZvnV3jh7DJTxZhaJ+LicoupYppuxwUJNc0mb5ncmN9ASUkYxViWSRzFHN09yYvf+yb5bJ5EOsP6RolUIkG7WcPQNRKmjqEbhFFAFAWEYYhSEt93OX/hjbfj+P8QGfh+aUDXDbKZDELT2VhdxDId6rUaum7QjZqYtkO+WKS2tcH8zQUSSnJg714aoWJlYZlOVyPWYnTLorK1SdBuo1SEIQyiKMI0TeIwQkmFpoMQGghIpZI02x104XD8Rol33TmFaQhAcfHmOiuVDmEUsLbuU6512KgpXv/ua3x8JMfTmSTXrs1jmRaJRIpENoXQBYam0VjeYvtkhlbT4/jcOu8cH+Mrz50hCjzu/fC7OR0n/rv3I5fLkUpmGRsbI50tkMzmCKOAkeFRkpbJ4NAguqGBFIRxTK3r4rkduvUayVSSbVPT3FzZIJ1OESidUDMwhcBMJnE9HzuRoFErk0xlsW2L1UZIJpNFxREAy+sNhLCRvkvKMMgmbCzdwDBtfnamwBOnWmCnMF2XZMLBdixs2yabL9Bstekr9lNaLxP6Ie1MP11Vx1Mxuq4hA4ljOfh6lyeffJYwCrmyYPGLj7s4puLrr0re/7EP0dEU7zl8N00/oFrdRIYxq4vXadbLSD1GhjGR8gm7Lq4QaJpA2CZRGOE4CZSmoQtBp9XGNB0M28B3fZJJxUbVI5NJ9w4QpXju2XN0OpJT66vYqTy+HzI40M+Qvo/T588wns2wWqlx+OhhIs/HziTZu3sbttCYHBsmnS1gWUmMQh/66jXSfXnShTzCFRSa65x/6hj99S30iVkiKdlcW0apCA1FZX2VKI7QiJFKoGmA0oiDADQN08ogtZhOx6dgOdRKNWQ2pjA6iOcGGLZFcXSI6tomURzjtbokHJNmqUGykOfchbdIpH4Kx/w+xQWlO8yvtqnVa8QizfJWi9Fingu6gVA2S8urDI8OYlgJqp2YTseD0CNjmTTrdYYyBhfPnmGzUqPpeaBZ9E3aFAYHiPXe4ZJPuAQ3Fzn+8lMYhkmlUmUklyAKY/wgolqv4/sBUQSOkyQMQzRNo1GrIzQNYRnoCIRuEAYhmiEoFAos31wm3zfE1to6Mwf24tgWMgYnkwYJyVQay0mRTYGGREmN03ObtOttrl1qMbtvF91um33bxticWyDQTNZWq9TLZcbHR9nYWMfJ5AgiODApuDGUZ1ToDIYGJV0nDmMMKdkse4TK5/SFIm+caqKLJOmMSRTEpFMZdu4aQzMMFBDECtMycTtdbMfG0nQydpK0brF7epp9szO8/sZZhpIWkQXljXU0oWESMTkzTNCtYwqbRCLB1lqZQqHIpWsrWJZNpdrFcCwymQy6iFASQLHRknTrba5cbLLr0G42FzbIppPMRRG1SLC5VMPSDZJCIzQEbruNp/XOvWwuT6EvR05EtGur5Ow2WrtOva6xcvIMja6HFCbSMOgEkjiMGUpoBCEYuoWOJHTbqDimsraGFg4wNTbKeF+Gzc0y/f1DRJHPq6++Qr/jECodp7+PjGVj9hlIBT6C2qE7sFuS6MmXCKIOjXaFyiXFwtm3SI/tpB1prK93ePzhdI/lyrhHpHWb+aUa9UoFPVdksxYxkLWJYw1NCS7f3MAUBrrQyeXyDA4OsnN2lmIxz825ORKJBLWtMnHkMzk1jGPOkE2kieOQMAyQMkYBUaShbknjUkrq1XXm3BZ+0MHtdhC6QNcNFBLZi/iYhgUCDE0DGREZFpqmo8/cRXf5HKlAkerroxsYhJGHH/hcPHGWHftmqbkxtmnhRYIz8w0ePjIJKu6RfAWNTkSnE3Jhq07H87Ez/bS6IblkCu/KJZK772Rts4WVcCCO0UNJ0raIwgDlNRjqy7K4UiIXArqgL5ukkNBRcUQsI2IpAR2hmeiaRhxHKGX9n+L4/xAZ+D6arSamEORySYaHRpFSopSG53WJZczRO/czNDVDun+QRqMJCZtDfRp/cu0iyXQR1Q5RUiK1mOrGEhoKTWm4rotlWUgpibwI0HpMTkrqlesExX7QNAwhWNmsM7eUZXosja7rLK63GC/a1Oo+y2ttOp2QN559hd987zSfe22Dg/v3Mr+wiVIdEo5NvVzGNgxSSZuOGzG5c4qXnz3Ge979KBeurrF39xg7ZgcZmx7l4uUr3ErD+a/HdC8QKKnI5XIkk0nSSZu+fJKpqV3oRgKBoOu28T3IZvOYtkXCsnDDAOG38VTMyuYWmWyOZCpJzkqxWmkTyJiVK29g6AZavMH6yir5/gFSB44SDuZ56/wKd+0dRCmN10/eoLq0yUq7Rf/EEIvXFzg4O8zpWpnfW3ZZiU2yjmJwdoIoDpkeGyK2U9iWw+zOXUSRREpwuy4zWzeZv3Ed04xBCgzHpCJjEpksv/sfP4uO4ne+0eSLL6e4MV9D101sYVLaKPHHX/gqtUoTw8wQy4Btu+4iCNpkLZ+1jRIba2uMjgyzuLxKf3+RRreNKQwcK4FLm26ni2nZ6HpPZQn9ANtx8PyY5c0W44NplFLcXNjE6HgIX6GnNdzSKnfNDvLmsQpRIMmmUnSCCFOHTALctofQOty4cZZ6vYYfKnLOENt3zrI8v4wKA2S7Qy0oceXkd+l6bRQx7/7gp2g1G5w78TqNWpkgCkilc2xtrKAZGv39o2yuzhOr3nNqGCbvfs/7eOGF5/C9Ls1yEyUVzVIDr+URBgHdVpuhqQlM20ZGEe16kyiKGBwZIdY1gqjLt1+9yicf3o1GTBDEFHSFu1ZibHCQ2DEQjWUObi/w7acDltdWyWYzoAsCw2b0Aw/iXLnO8oUX0IIue7b18b5Hlmg0v4xAR5OKQPrsv2M3Y2N9EEnSQrB68yInj7+ODDqk0xadZoPZybtpNFrUypuYQzaGXcC0VvA9BQrCKAR6WVfohehCR5gCoWnouo7necShZH1hBZSgXa1jpQwqWzXS/RmEZoESfPX5C/zsh/fTOyM19DBkdzaJnxXU61vkUjrDI2meiSWttstkIclWHKHr0Go2cJIO0eYSjx+5yb85Oc2ZS3P0hxHFoQJb1SpZ0yBpazz6rlGOnwiQKoUQOild4IcxTsKhXK5g2Q5KKqIgQGgamqbjWEmSiRT4AQVNcbVe563XX6Uva2BoksgPOH7hMul0mlqtypGBUUQc440P0Bgbw203mb++QDg5TDFr43Y80pkkf/7iVT758HY0DaJY4sQh0zkbN50ljNpkcekbNjkTR7TdiKG0Q+CH3LxyFUNoRPGtREkpdBVhdzXctsTUBa+fT5OyOkRWnqxhkEnnsAwTx7SYyudQcYwmBI/WdLalBnjJu0610kCGEYlcinx/kfLyAu1KAttrELkmlinYu2sH15fWSCdT3HXHneQ2VkheukIXk63f+Reo8Sne+q3PEtSXiOKAKAxJODbLN2+QbbWJ3Pfihz7Vlksxnewdn2jktRAqVZwQ+vIZLp+9QVqP0WJJOdDI2jpRLAk7XeJOC8uyWFxc4NTpMuVyGcvSsU3B+z74Lra2tlgLQzTVy6Sl7L2bAg2haUitF080rfe+NhoVFDFSSWQU/1/iXByFoPXut23bJC0doWlEMkJ98EcJYx954nlMs0BIiInO+VNnGRkdwd3cABnhuQFCSLo+JM2e3Kc0OHZ+DqdWZs/enVxY3WB0MMtYNiY/PMk/O3GZ4XKNlGPSCiWB65K0LXTp019I4McBVxfWEZrO+toyYRSyfSBL0NPNb91ZiYZCyZidO2fYvXs7oyND/I0fe+n/a3z/S5EByzIYHIZtszor800una3RNzCEZTkIoXHuzGVyayWMZJLZHbu5Vm9y5hVJaWONZN4DmSQOIwzh0DcwzMbyZZAK27TQhEDTNEzTRAgDTespAvNXLnHkwIMErYjA7RB2MyyvN5idyqBpOmcvr9JttqnWO4yMD2GOFWnVqvzpnMaLTZ8f3znDy/0X2ep0MS2LdtPHEALLsjFMnSD00JWGvtYmva9Ao1HDyRdYW1mlU67fIgHfZ1QKELfk0Rrj41NYloVj2RhCIDSBjELOXbjIG6+/QavT4uD+O3jk3Y+STqWwIkE6mQDdROXSLKyskknZyFghVMjG6k0qWysIXdAobRD7EZ1yhVa1wujwKOdvbnJ09xBoUG902TGUQY0nuLZawnOSrHc9dFPQijVsxyIRtdHDGusrV9naqkAExcF+SuUqfuCRzqWxEjrLF05w/fx58vl+pNIoFCympqbpui6dTgcVR2ytV9naKBOEMdlcH5aZ4PixE5imRRQphC7I9/XRbTXRhUXT19i9/z5m9wRMT4xx4tR5ctk8lfImKytX8bo+SkIcK+KOjxAGURihmyambVOrtlhaazHen0IiSdoOw4aOHDE4d32NhEoRhlBrNEhnU+zevY3BwgAXT7xKvTRHPYrYM/g0TWnSbmlECg7s3cWumUHmpydZnlsharU5fvFVOo0ahf4BFhfmOK8UQeCRH5rkyP3v4srVK7huEzcMkDLCttIUBifpNCtoQmNmZhZDs9k2McPVdpcw8OFWacOyLGzHQaLwWm0S6STpZIpGo4UmNdqdLqliCiNh8OrJ83zi4Z1oKG7Mb1KwBUIPmRhJc/7GPCk9y+WtBhrQbNZJJwyUpnOob4ErqYcYHR7ixlmb5fkVUjsMum7E7/5RTDKZwZcCXUnuvecgra06maTFzVefxJIRpvAZntlGrbKGCEPmLpwjCD0cw8arl3Fsh/HxnczNXULXdYQQxDJAGALNi4llBIFOwhEEXR9dN8nk8kglyRX7yOeHiGgzvn0Y0zaJwy79fX2cPH8DpQSa1jvA+7NJMrEkk4vpbIQ0m12U7JUdMo5BOu5SzCVYW15ibGgQq1VDk12OX3KpHnuSTtslEgbImIxh0mc7OMkk19YK5L0t9g8pVCGDV65RrrfZEDpXz15keHCCbCGH125Ra3cII0kq249m6OhKp+vrGELRDiLajQroUJTg+l1SuQx33XU3hfUNCCPih+/jzSN3YA6NYaOxPjdPS++SU132HbmLczdL/MA7doCIabZCsiYUHItMSrFSaRN4HpGuoyQkbJPpHHS7iovnrxIHHkknQcKyyNgGutCQcdhT25Tk7/ztHI1Gh9cupTGF/t9ITApNE8RKcfHaNX7/h3+M1M88xsQnTzO/PIeKI3w3YGz7TnKFPCtbFYZzKWq1KtmExbaRIXaM9mFZBp7fpNlfpPuO+4lixdZ6idrkTurlCpaURFGEJgSSnprXbZbRNY16q83vf/My//OnD6OAN84sMJzU8TyNkak8W60SwlSkU2kMoeEYBnsHBEGoKHdTXL18FRW5VMplosgnn82QchzSmQzjo8OcOn4eFUW3PrNE13oJnATErbjSS1wVTjJNwrYob60ilUQIHSHlfxPlFEr0smjTMAlcD2lZKBWT3bxE8NRFEjvuIH3fu+ieOo8MAgIl6R+eYnNtA8sSJBwLXWhEkeTffeUY//OnjwIacSwxfI+UDfm8y4gn8N0KbTuNajSYnp1AaCYPTDtcuF6jbSawDZ1Oq02tHuInEwRhTNKBTC4Deu+6IO6plfQIj6b1VJCPfuKjLC0v8/xrJ/5C8f0vRQY0TePh9w3xwccOcnX+Mv/xn6ZAt9GUhh/06uXljS00TWPv9AwXr10mvlVnTCWyBLKLrhnEoUujvomKJVEYkkqlEIaOlBLLsjAtk67vYZgQe4qjE3mWSy1O3ywhhcZWo4UmBEjos3WGihYpR2I7LuNTWeYsnfOeS75Y4M47d5L6M52xwX4GhododpfQLJ1kNoWmGZw7cRoRazwwOMz2MUU2kWRpcQ2lw/ri0q1PLt8mBBqgaQKlYGNjncnJSTIJm4yThBjWN9Z44/XXWd9YIYxCXnn1Bbpdj49/4nE0AWEcs7ayRrFQYGyoyPkLl0gkc2iRT3l1jiiKsR2HUAWYutXLJJst3njtJT78wfcDio1SmzhWqCCg0J9BLq1Ta0o06dL2Orz16ls8dOAgpunywKF1rl3+EwKZJPB9PvbhB/nzLz/NyLjN/KakXKrTrld4z7sfZSp/jQs3RygOTvHs068SS4mdSBH6IVYyzdDQILVyiXqzwbPPPEMxm2KzXMULIhKxQzGfxXU7mJaNaTj05TMsr6wzN7/M5NgojY7P2OQ22u0SW2srmJaFpmlEQYRjWUS3anVSSd589bt88t13IaViab2GJmNCPyCVsTB0QdeTbJVqjA0PEKuYIbHO+qpga6XM0nKFQsHmwnWTJ44lSCYFXiTZu3uGjKMT+T4yDrl86hhba0sMDg2yvrxAX7Gfy+eOUyzmOTg+hmXcquErnZGRSQq5DOvr66TSOfr6BlFInFSeTtPl8OEjLC7MYxoG3W6n18FbbyB0HdOxsWwbrx2QyucYmBgiaPuUNrZIZFPISFEpL4GQhL6i2XZRcYxSkk67TuD5NBoBlUqTvVOD+N0I3+9Q0FIUwjNs/knE2ZVNpNfCCGLKlZC3ztkknDxK10hYMbbp8OZLx3B9hUCxczTA61rU6rC8eI2hgUEmhlM8+MARXn7tNG7XY2hkgPJWmfGpGYq5HBubyxRzec6ePY3nuWSzWaI4xg8DOu0OhmEwWBxgcXmRbLFAdauCoZvoCY3MgIVtZVhbKPH688/iFCeRGqgYWt0QXSlkFPSIoabhmBaeG7Fvop/pdMDla5uoOOKxRx+g22pS3ioxOhgSWwMM9xcZGxLoSkMFIX83O0Vmqo//sHidR95xH2H1eUQ+y+SHHqLx0lloBfzjyxeprm+STKaxTJvQgmTawm13KaTTjAwPc3NugYSTpz+XY2JqGylT65HYhOCDd+3GTCXwAW8oD2FMLZelHkvivkHUyhxa+TqlbotX1ue5eeM6D7zv46D1CHAQShKWSRS4RCJERbd6oDzJjvE+ZvI6q5stNDSatQoD/X10XBchBIYmAYFuGBBLVAzffKLOzYUQPwgxHB20W7Kw0NHR0HVBIZflO1/+DsVr12k1Oqi4R8JTjiDcvE4UBNRCSSqbR1MR3U6DNB6H9+TYLNeYqyu01CAyjvBijcMn3mKtVKX8P/0S9q/eJKgvgVQEgY8uennq2uIybickyEmg12fy1tlFDBmixZJCNsl6pUu95RHHCTJJi+GsxZXlGo6TYLigMTI2yeze3Xztz75GuVSm0WqQTCfoHyjQ8TSiQGIZOlL2ypyapgO9uXmpaaBpCN3EsCyMtQ2Gh8ao1zaJghBxq6+gd6YrhBBIKd8Oqr3zyUfXdcIwIJGw6e9UKNbqLGsGImoi0CDsUi1tMDwxgg68dewcs3t2slVt93oXUHihYnRwgPZKh04noLzRIJ/J0ZUJjuzewf69u/jSt17htas1gm7MaF5j51Q/tXaOq/Mb7JoZ42w2gy5i0kmbIAiJbpEgDRCahhIaBgJbWfzzf/Kve2UC+X9VP/6HyUAcR5imhdu2aZZN+gazuF2QEqyEg22atFotdL333/YP6GhCsL4aQCQJIp+RYpZ2t03odrFts3cj6TE407TwAg8nk0KEITJQyDDmO88/R6OrMFL9hGGIblhICbVql8ALSDgxrVoVN0jS0RwMXVBbXGXM0bl88nNUa2WiMObo3fspl0tMjYyz2fJIJWzmL6+SsHI0am1On/Pp1uqU5ubIDRb4jb/9YX7q9c8B/7VhUSERmgkoarU67XYbMTSEZRoEfsD8zetMjRRQscvqegUhBPPzN7hw/gL79u9iY22N//gfP8uO2R185BMfo15rMbNtllAJZqZmmbt5Ba/TQrdtjJSO0gSm0FlbXcBzA7rdkC88eYYsYJsRnZZH0jJJOSbzc1u878gqL3xjA39rgEbs4e1K8+VnMiQTCikEy4vLhNJjfs2j0vQIA5eU4/DYoQLvu/8c//Jf9eMGEZpmIETEyOQOVBQyNTuL53UYnNjO+soCvusSRz66JhgZGgDlM9xXoNNsEsYRMoxYWVkhn0xh2w66gI4KSTsZRofHaVQrKCmxLJvA8/H9ACedRClJ5Lv4hiSIIta2mnzz+QuYYYytu1RKHUwkpg5ep03NdcmbiheffZ2bZROt02HaTDAws4vueoZ7D43ilRswmOW57zzLHXffid/uEEUuodvGEBrdRgvHNmnVyhSGBykWBrhx4xqVyhb4MaaQHNq7i3qzThz3o6Sg2/WI44jB/gE67SZuN8edd95DwhIsLS9x/foVlJLouo6m6wSeTxQpKitbZAezpDJpigNFisUCbj1i/PBOPFfy9EuXsUwNYslA3sHthKTTFrYJmpTMDGWpdxXDAzOszs/zytkMVuwx05cjFSb5Wx96L3966gyHh7O8cyxJfvcU6y9dpPDIET735SfwzQwDAwNcnyvjdtrIOAQZ4rdKXFtbRAiF0MA0NTIph5Zlsra4QD6TZqR/GE3XKRYH2dpc5b3veS+bm5tcvXaNVrtFLCW1WhPpx5RXNhG6QXWrxMDIAFkrS6vmEvvwxNe+yod/6CfoujGnL8zT9XVMBIbmUam0UHqKEAmxIp+0UKGP22lRKPYxv7hO7Hk4lk7HTzF3oU0m2ysZJmwbRwiOlev0rXUZKSYZyX+N3K+fww8Fhv4S9scEkTL4zbrF175g8GJJYRo6QoZkbIFX98gmLAja5LMZGqVN6hhIpdFutbhcLnHfwR0c3ZFho9ylKRLM1zo0O4rxYyfZPr9KNWHQqK7jRB6xppAypL61hqkiwljyxqkl0ukEuq5jErK11STUkuiGRJgGY8UEaRsm8gb1dkwylWR8fJRGs0G32UQJhaEbOMkkjm2STqW5vDTL9c0thmaLZNJpgsDH0AXFXIahfJZ0wiaIJOfnF5idGMG++AappI7b9ohCk6F8ik47Zn65xtyVLo7t8Mjd+7CjLkG3Q8HIkNUrnFxYZW9R4pszzC2UeGz3PuJvfYGz0kcpidANpFJYQiedTHDu7AUOHD5CHMYoFBdvlknZBpEvSKctqusVUrZFLmXS9UOOzg4zlZGkI4VlhtQ7ECe6XLt6HWJJKmHzgz/ww/zxF76MZZhcOHsB3aAXuIVGKp0n19ePk0xh2A4YJqZjY+o2ulC88eZrPPzhR0hZEZeuXKfZbCJjhdI0NARKxQhxKyzGt1QGIdB0HV3XUCok5ZhsG+4naDQw/DZBJKkuX2Wg/x4sTWJaUC83cJSG2esbJIwkYaQRxwGGgPZms9db1p+hOD7I7EiRdrvNiNlCJELsfJGby6v053PMLVVptDw2VkpIqRAKnEQK36shgEiGRFEMSMIowNR1DCIyTo8ECe0vFub/UmRACMH6aoWz8zGl1RB0g0zOJAximp2QbD5Do1EnkUzi+z6f+tQ92Mk2f/DZi8gwRJc6h7YnOX3FxTItfNfDMi0C3wcNorDXGGOaFomcoF1tMTw6xauvnuoFxZTFzulRMimDjc0u3335EkG3jdIkumGScizwaoz7Bv56hZHpQZ59foX+Yh9uLLlj/yTPfivG87vUa3XSZpJffszjzNJO+t8xSNq0+c279vGjf/+3+fVf+iiHtw2gCYGS8m0y0CMCvSYypRS1Wu1tZlap1XjrxGlsQ8PtdkkmU8SxxHVdstnePTl27BgyDlmYn+fKpcsMDha5cuUyd+zfx5Ed7+f119PUak2uLS0hwxhlGr2uUj9gs9TkzbNLJBA0m3WCqE7B1kklDNbXKuhxwNmLGe675252bgXYwiYVTfN33ueATGDO9PPEMyfRpcJOOLTbHhnHYmtlGUu/SktkyRkxM4NJXurr79WbdQNdNwgiSb5/ENNKMD67g6un3mKzVEJoJs1WHdPQMcxEr97ViojjGIIILRkT+y5uFGNoGpHrcde+PcxdPUe764EQZDM5NEvHdEyE0KnXmoxmp7m+WGVteR3lh7TaLl7YpDicIZGA6zc2GRvKE0UxyYSGGw0wOaiTCXP8yKF9vFzf4MFPROjZKo0VjfSU4uTZCqnCIrby2T7Sx0BSY2nF6mW5yRS0m2R2HsAyTCqVCrVai1anjZVwOHflGqamE0Vhb9oghkIuQ6ftIqRGyoBcMk0qZdJ2R9lvOZimTmlrg92Tw5SqZZq+RqPdobXZwmv4FPqLGIaO2/LYXFzm+eML1JsuYeBTb3Qwo06v1GAbLK1WMAXUPZ16s4WMAgoD/dS2IvqTeYRUFC2dlblFxtMmd777JYSh0DB4sZ3gPfYJfvZvGpQaW/z+H9gExTx+wkcpRafTYWHhCslkArdZRyFouV2UV6RdK9NXzFKvbNJXyPHO+w5haZLtE6MQxvQV+hkebHHw4EFu3LiB0FP4ThcV6yRSNn7gI0PJ8twWqUQaKRVxHOLVWzx/aolOqU6l2sRvtmiFXVI5B0s3uHijRl/OpBbEpLyIdDJBXzGL29yi2J+hODhKylb0lQcQscDWFdmkg4GBm1e0nAi7FfLm0zZjA/fStSS2neDmtQv0jQzQ8GxasUsYbFJaX2fX7BTlSpPpO/fTqlUx03necdcuLl26jusL1laWyKWTJBM2pmnz+adPMGw59M3u5uKVFUZHt/HKa6d5/NMfZ2RA8EpfDq0bEdbKRL5PZjBBs1zjxVOLrC9ViOKYZqNJrAIyeRszFpy8XmWkmKbUDki7ESKZZ1ivEUwN0qxuYArJcJ9ORkTkpnaTtMFAIgIPr11BZLqMFU0WNpbo0yIECr8h6GzqBJri9dNLWE4CY20EXYsRsWSokMGxLUqrCzz6rgcQ8jQaGtfmNuiGe9F0h//9C08zmU9iGgY7730vr795kR/8gRk+96VnuGOjwsqVCwReDcvslVBT6TRRxyNpOVimTRrJYq1Oox3x4lsLWArCICat+QgnwbbZWS5fn2d9YZEggIYXoffNErXL2LqP5/tcv3id2HexdHji20+QNk2apVUMXZEwPHKWTiuQjG2bJKFrVGolyosVHFOhhT6+76NkzPhgEVPA+PAIhp5gfWWRjuehlETTDdY3N9i9ex9Xr1/t9W4BD95/L0tLK+zcNkEgJcMjk1hazJGDO2gWHKjXWSgpNK+F4YXkkgZJG+prGxCDHyqeefUKY+OjyEiBikhlDMqrTaYmDe6cHeOrT71CFPbi6HrV44OPPsqVa1/C1CJ8t0tfJoUKOziGIA4DpN9ktJhESJeEEdM3OMDa+hJ9eQcV+KzWy2zfNsGOXTt5681jf/VkIOE4NKoWW50BAs8k9F2ctInSBXEcI4SOEj1ZJggDWu02TlqQSyuq3Yi+Yj8HptJcuVGjL59jRYHvemiaoNNsk84UiDxJOmURRnDHwf0kkinWlt7EdhyCdsyZM2dJOPdy8vwioefTbLvkswaFXJKrcyUe2t/HmddvsH18gqEHtqOWN0nGDcbumOLFJ55FCEHHDRju70cIje1Fj8ursK1QwK15rF7f4K6j+8km0vz7r5/j0Q//MG6rTmVjg831ZdrNNmi9soHQBGEYgy7QdR233WH77F5kHLO6Mg+eC0pDExr5QhEhFTdvXCdh20hNoaOTzWYob2wwUjQp1zyGCymOjE/T9UOqrTpBHGMYOkkzAVFEu1pDtkukNIOrmzHZTpVEOk3SVmSzKfx2nUfvGUQr1+nLJRnbv4zBMt12Px15mcffD1/4M4kbmwzkUuSHcszLgC9+p8ufP3MAI5aUrr/Ovj0HuTZ3E9/tYJoJWrUqfruFZTtIoeFYKWZ27MbrevhuC8Mw0WTMQCFHuVzF1gW27OA2Ahptnwd3jTNfqpGxTQZSig8/9gEunDnDjn0HaTfqnL18icCL8LWYfF+OgUSeZrVKsWgQNEs4wuRG2aUVWwiRYLRf0JfPYaiI8f4EA4UJSgsLTI2MsGq0mbF0vJLNtVMVknYCb73N2GCGi1cvkjPT7N0+wupGyNToIK7XJtUO2OPY/KetDSYmp0kkHcaGhphfmMcwddxmjUgILMNiq1yhWMhSTCSpNRvYts2Vyxfpy2XAGmQoabLlOUwMDXBo125OnjrF0NAUe4Ym2Lltgi/++VcII4UMBc2NBoZps3dqiHa9TQqfxUqdAcfgzJJGOuzQ11fEEF2EUOgStg+lyKc1lLB49959vPLGSaYmZxkpGlRqLQa9Dme+Nc25RY/J8WFc1eGPfn+LVL6f3bt3sHN4lZRlUezLUtlYp9vx8TtbTI4O0Wg1yWRy5Ppy5G0JgUtp3SWZTlGuVikt3OTAZD/laovVeo2R/gz9mRRT41MkzARCgpXZz/49d5CwNQwRIWTEqdPXuLy4BKZioH+A/VP9NLaqpOMWQb1KMZdkZU3QNSwsy+LOvTMIXSPy5ggCjWI+j+aVmMwaxEEHr1pi+/Y8o3u20wwNxoay6O0aW6UGnc1FErrJd186S7Xe4tcfnaAaWpwPJG/cyLK4uUi9XqXdqHPnvt0c3tvP3FqvpyMhFJtuyOriOkf2bofQQ1MWo8UsKVNQ7wSUWgHXVppo2wp49YBPfepT+N0W733kKPmcTkHPsngm5MLKBo5lk80NcnjvfkbyaSqVDlk94MZalaym2OhA3I4JI487ds4SRgGdhken7dLnpIg7XWb60nhFGxV6aIQUilMEymdmoMhgIsIPLEpLm2iin3wU8J679+BWywyPTbKwsMygI9lYXUfJgEo9YFvaoy+TAakxNJhns1yhGwQszC8ymLe5Nr/OxMgQ1XqbcugzNtDHwNgYXhDxiY+/n3ZdEccRf/cXP4nvtUkGNfygi2U5aEIhQ490yuHBA3cg+grYcUTkerx8epm0iFjfaqKHMZttHdvz6d5coVrtMJjPMr9ao90OkN11jNCj47kQOOTsiFjEJJIW7U7Ekb0zWIZGJpdGN3V810BqgsH+DEF1iS0j5ron2T85TCZrU6u7XLy2iIxD5m4uUak2CEPFUN8Qw4N9eKECXef1zpv847//azz15BMcOLgHVMzHH/8g3/7Gc7SvvMiehx/nyuVruCEo02TWafHBv/UAX/rsUxwnJi6vM1ncRqVQRPg+MhI8f3yOWsVlefk8rU4bw86wUPLoKyYo1dp85VsvUqk3cRybZjPEMgSvvvoMnVabza0ujqFBdxPXDbhzJk8hlWD7zhnWllbw3Dr5tMnu/Qd4+vkSv/BzP0l5bYHf//w3+RufeJTiwDjrC9f/6slAsdiPkBnCtQpSFjGNEpo0MHRF6Hs0alW8TptUMkmoYuZWbSqdBPvufphW3cPzDVbXVoiCNkGjji4skBFxDDkjgRA2SSvJL/30T/HSG2cIo5jZqUnKS0ssl2rohskDdx8mChT10hatlodjm1xcDknbMDk6jNuKOXzvDIuXljG31tg3bSC2OWDOMTUScPmi4tCuSVZKbaobK/zu8zl8rcxv/ds/YaNUIZOw0IsZ/vSLX6NcDjkxv4IuYzLKZmL7XlQQUimtUqmUMAyDOIrR0YiVpNVscfHCWQzDwvM66JqGZdnopkGr2UHPphgfn0TTdVaWl9m/by/NZo3+ZIIzFxYYGBhix849TCQs/pc9E9TdNt946g2Sjs3RPTvwzZCkZaMlkkxumyA3Nsy20RzVapN0yoYwpr6ygoFP6sg+WpsbVBe2890nnyGZ8XEGd2IVizQ6l7BsC1tTZB3BxNgIaIJctohhGtwZJnnx2lm67QbZXIFUxsZrVOlEAal0llzWYmRqO31DRWLXxe/U8dstmu0WfqvBob070IXG0vk3uOfeGV5/q4qhxRTHxmgHkvOrLaYFPLJ7mrvv3sf62iIPbM+zuVpmpdzATBX46R/4MCuJHLHv4uT72b1rG1xfQPdjYhHxwN13o2s6q8ubfPfbz/KhR4+y88AedowU8JROudHls1+4yrBhEyqPcyWXB++coN7JkU51WF/v4sdJsvk+rt5cZffeXZwbnmRHdYsgjEgnk+imzvDIEMWMYGxoBL/T5PXXT7F/5w7SfX30JXQOFGocv1FhY2uTfdPjOEPDNIMiQ4UufhzRZzkcOnyY/cN9TI/0EblN/uXPPU6jJfniM8dItnzGDhzk3tlxtpodnISD1AVW/zBjEaQLaerVErahccf+3WyVa2hxiCRmdu9uhvst7kv144WK+tYmrm7z9ePn2XXnQV5aO8MH3/MRds7Oorlt5m4s8NzFVSrLJZIJweW5FUxdx8n08akPvIPX3jzLQwdnsWyH+bVNKrU2d+ydZmVli47rkUpk2GwLoriBpTRkt8VIQWcr6MfXHJSe4Mj+WYqOQcqKGMtrZNKKzY7ksmyxc2YG/9I1fvCxdzK9e5ynzsyT7s+SGh3H97oM9ufoHxzgmdeP844j+7m2uknDjxjsy3P07oM4ekwchpx46SUGBwbZIsupS2Uees+7mdMtinbIH/zJv6bbrLGwtIgSNik7wRPVJPMdg2tri6SyKaSt02zVQEZ86Ed+kpGxIT48NMprZy6xY2qM8KtfZ/HcKc7d2CCOQ+otj6xuMrFtO91SiB8Z7N++i4ligpFExD1OhZcXb7IjrdGoF9CrNe7ZOc5WaYOEZXGwmOdDD+zHHJnm2uomSUL68lm2Twyw+exz2NkBipkU48NFvvn8y+TSWdxGg9zBfZy/eZWDdxxgZvsUXqNCtdakubpMOp9npSn4o6+/hB5rTA5mOXhgG0889zKDpYC222JoPaa2OcegpaGHipmhAplsFq3bYGg4SaVWRUhJq+UxkLS5e/8MKwvXOd7wEFqbgvRYWplj92iBTDGLslMMdud4YLLNeE5QMGosxfAjjx7imVNJ5pbXwUxTqdb4wOwI6YFBxPggUbPJYNamtrZO3GlQw2HUr+F1O0SBjZ0MGO/L0Gr67J1Osb5ZZmJqGBoujmZT8zy8QJJCMTw6xplTJ6mUtohkhF3KYaWLdLse6XSerZUFtk2OoEkdR1i8df46Dx7dS6XcROgmnVYTvzLHR+49yltPv0AgBSOtJqc3O9R8RSKb4cVvf4Hla4uoras8tGOQf/+r3+CO+z6AZQeEpRX6Ezqp4SxzV66xtFGitLpFsb8AJQM5vB1/pJ++hosMA7YPD1DZqmMHDVZW6mjSxA/bJFWXrp5lIJGk0myTshyiZpPRXAZ92OLU8bMgfWSnjAo9RosOvheiYzJUSNGfS+BM9XP6zAoinWD+yltYQvG9J79HJp3E0HUuvPk082WD+aX1v3oykM0W8VyLzaUaQiQYG5vp2RsqybHXX6dZTtNoNDEMQb1c4tQxl3y+n8999fMsrlfwOi4nX36OPfumKORXEUrj6vUbJG2LkeFh7n3nQ2xulaltVTm0fw+NWoUjM5PcN/4xzl1ZY3FpmXQQMr17khtXbzA9OcDxczf50U+9A6Ek1xcqfP3PnwIRs312lmPXFjh9TTI7PYUw+glMi75dTeZaIZn+IfaOjzOeThKis1ZrsBK1cVGYnTrKjaiVGsiZfUjPw0k4TGZtspbg5InjJHJFMpbB4OAAtp1AKo1sMc8ddxwCQEdSrtYpFgY4/M77WZ1fhkSSj/zQD3Pg0H4q66tkLIeF+Tne8SM/jAf4QciZMxfYvm2WWNPw59Z49D3vp9tuMTA7zUuvnead77yXqy+c4PjxCzy2c5DnFxIIU+dj772PKPbJDuUprWwwnhJ0B/J87dvHeObsOjsGS+T9PGvXVml7EXHksrY2T72yQeR7KE1gJxMMbdvB7oNHuXj2DfoGB8kndUYGsnRMxWZpC2HrBJrByNQY+/bN0mx36LTaFNIOl86eQfkxBw/didftsHTjCleWFe//gU/Rl8uzI5vtTZ4YOmZ9HTfSqccSbXQXk319bDZeZld+gr7tO7hQ7VDYPsQzrxzj0Ucf5hvffB7f86m3avjNJn7o0u56TAwM8trlq7x85hy/+Pd+kf6RXTi2wfakwSeFw2d//2vMr9epl0qYuSHOXzzN5M6d5Jwso8VJNupN3vuJT/PFz/8xQyPbuHjiTWIZEYUBTrFINp/n5Nk5Uk6KfMpmdHgGqdlsVVrsOXoX1994jR2ajTc6hTW4k9CxGJ8cJJtJEEfQ3dpkImvgdKtcq8VMTu2lLRRR1OAjj3+cxsvHGXroQc5dXcTT4PyZi+w5cgA9Y7PeqJD0QmrVOmF9Bef+OxgwNV49dYFLV25yZ9tn6NOPk0n2kVcSbWaaU2cvs//hDzI2OUiyOEK8skagWwzv2EX/INSbGsMjg0jl88pzz/MDj3+Mvft2cPLXfpnHC0U21urccCPq7RpX2xF9xTxTfQW27d1GMjOMKSLaXpMrFy8xnMtTiocYn+5n/94jKKWwDIGhYrpoXAoC5r/6LKumxbve+yESdoIrgWK51mUkkWd9dZ3pnTM8/6Vv8t73PkRydBg3jDl01134jkXfiEGmUOSrX/wCpvKwCv0E3RaX16q8NbfFex55J2krRenGCtMzU/hBxMPvfj///J/8b/QN9BNLyeydR/jO1SvExKSSSfqGRjhz7DgaGlg2mVSayA159qnn2LlnD91ai8zwJHJli9PzNe6961H6kYxODrNVbXBof4GMo5O4Yz/trQ02t8qc62Z54EM/yJPPfYdYBLhRmnR/ip/52Z+mu7qGfPM088cusPuHd/PGKyd497vfycmnv8tJFPd99AOUKg0apU3kVpvB0W3ISFLdbPDtL38dNJ/v/usX+KW/98t8/MOPEPkdNtbW+eqffgdlppgrhdzz4Lu4tr5O0k3C2F6C/n6uXDjDyOF9WMPbWGs1IILzx86R8R0sO4VTHGJkb5H0yHZ29y8gZcyXX1khrNaJYsFmtcWdj/TRF2zw7NUb7JYdrtU7fLl0hpc36nTdkELGpBYJHEPwkx/9EA90qjTVENVyjZHmBoXqFv0DNs2hIYy1Cltnl5GZHHeMmBT7xpnRI95YaKG5XRaWazzwjoe5sllmNJXh4qVzjA0OMl+rsbpZplktcXD/Xh576AOIwRm67Q5rq6vUmhXM9gq6rrOyscXYcJ4ziw0ibYBuqoBIT/O1k4skrBQykEglOHZplcXVJjnRZaXu8dT1ZTwpwUwwNj3L60tdzl+8SiJh8NaNNBudLj9pCO7eMYLsrNJY3OTAY+9jKDXN17Y6PL2kI7NDtC69zg8c2Mas7XB64QyHHn2AdrWBlBaaEuzeNoxybEb7d9C5dIpzN8tsD/p5z0ce5dLCBnNzy1y5cZVCPsOOHSNcvLFGYniED+UCbjojdDtNNpcWuLi4TtmTbJa3WFqps9FSmELgJCxOXlyk2ugwmM/wxPEq15Y3SDrWXyi+a+r7Fm//H9BsNsnlcvzGb/5LEskU+i0TByEEpi7ZLLX4ylf+jDiIcH2XvYcPE1ZLDI8MsX3/fj728Y+wWm5QrtbZqDTorC8zMzLMn/7ufyI/PcNgHHFgMsvUY4/zxPde5l0PHkEqRSQVrh8ShRLfD+lIieeHHDo4y0svnWDx2jxxt8uPP7yL04FDe3OTQzum+c6ZOfK5PCsr82ysbJFIWowcOMrH3/8AdVeidEXGsrh54RrveOguLEej1fHYbLex0VidX+Hp7zxHJp1iYWwbFhH7hob41N5t2AmD80urnLl+k5unzjA9lGdksMjwcM8xEASmrvONz/5bzmy02T04yI6BLDODHmP2KOLgHobufAcnTl3iwmsnmd6/m8OH9hHEIb4X0Gh30YWJ6wUIzUBqGpppkcylMQzBQCHD2sYWi4tr/PmXvsx9993HtTde5G/cO8Z36nlG04LN9Sp/494xkmP7WA11VjfLtFpdytUaG+vrXL54HqUJ8mMTaMQsX73IxP472LhyEbfTQugO9919H3bKZmhggEQuxWapSjdSPPTAfezaOU0hn6PZ6pLMZBkfLKLRJfAlb75xmlPHT3Pj6kXarQ6G4fAbv/UPSWdSb3fkBmGA7wV4XR/PC/A8n3atSb3t0QkC0tk0qWyG7dsn6foByYTN668cQ+g6n//cn2KpkAP3vpNYSWqr8wShTxBLPvKOoxzZO8uTJ6/SbdfIWgrPlWxVWxy++x78SHDpynncIMbWTYZGJlFK4NgGS4sLFAYn2Vq7xPLNa7Q7LbqRJN3f3xtHSiYYHxll9dx5PvFDP8S5c2f46OOP0+PCstepbJn4XhfbcUBTGKpnEKMAFQWEQUyt2qDjuj1DFUNjX18Rb2yYwXyWtUqdpeVNEskklmNz+cJVFuaWiOOI8pkX6N/3ILVKz+xm5cZNfuI9R6huenzz+hy6UpimyfBQH44X8M4f/ASbG1uEgc+uvXdy8vw6pZpPOhszMlrg+WeeYNfevbz7fY/S9Zq0nn8NpRsE6Qxzy8uYtkUqncY2LKxUglw21zPucgwC1yVbLGBaJoZhoAmF0AS6JpBRz+2t2+nQanfYWF5DmDbFgUFMXSdhmmwfLGKP9qGbghvLFdbWtkhnUiSTCRqtFr4fI0ydhO3w0jPP8sQXP8ePvvMQl60ZprMKv1XntcvLvG8yz5tNwc7dO8kUskRhSBAEzF25RL3VZdvufZw8d4p9R++kWa2RtCyunj1DaXURZK8Z+G/+/K+QTiVQUpItFLAMA9s28T0PS9cYGhxEv+VGZ+gGCcdE6DqL3/ocv/v8ecYmt/OpO6eI8hO4CYfh8UHCMCL0IxqNDrLZwqy1OTI5jrh3P20/4MZKierCKoGSjO+axfU8LFPHMkyk6o3Avfz8i2wtrSBVwNWz53jXwWne+9AD/Mkrl6jX1nFbdbqtFoaR4v33HeB610ZpAs91yRb6OX/uDFNTE0zN7sE0LTTDpFppYtgWyYTFhK2haYJI6KCbaEavk95B4vtd0AWFdJooCvDwMIWJZhkkDQel62hCYt5yvBO6jq0bvWc9hm7HRV67Se3YOdoph0/8ys/z/KkzzJWb3HFwN3/4u3+MijV+4R/+ElfPX6E4kOfp7zzH5vImiclttOsV7tq/g8WVNa7evELasZm/eoEgDDh0+E5+4e//A8ZG+7l4+gIXzl6gvFFmY3WeZCKN0zdO2w1IZ/p65WulE8UhQbdDKp3g9JOfwzINTLM3Wm6aFpZtkXASOOksA8PDDAwMsrGyjCTEEAambZHLOMwO9fPm8WPoQjAzPY2ZKhIqnbyTZNyWnDp7jolTq1gZh9SPf4o7H76X3/utzxBl89z3wBFW51b53re+R5xM8tM/8cO88N3vMVCvcT5RpBNLHrrrIK04pl2v0ShvUavW8H2ftJBEukEsJZ1OB9f1sByHRCKFlD0DLcMQCNNEKkUcxRhCJ4xCXM8lCHzeePmbNBoNstnsfzfO/6WUAdft9hrDNIjjGE3T+KFD1/lH36iyY2oWS3fA0MkXC4zaAdvGM2wfETz1wgn27BynulWDOMCXgpZmcHlzHVUu41gmb64UKFypYSUT7CzNYIjeSJbQTTRb4SSTDGQzmJZANw3e+cg9/Hm5zrGrl/l7/+UGw+PjVFaWOH/qIpNH72FxcYFMQlBaX2XXzp1ohsVrr77OE1/+JjuOHuWX/9aPYu4apxWHmK6iGQQk0xbTmRTvOjjF7I5J/s3nvs3+hImmNJKey+LGFq70ECLJA3ceZNvICP/l332GfQf2MXvwMCpyqZWrtNpdXri6iD26g/vf/16yGYcX3ziHpSnO/Ks/QU9/nZ17DuB3utx88RWGhscwLYgjjVq1RtuNaXVaGJaDkUhxcP8u7tg9RMoRSKWRsCP68hnOnNjOyvIiW2HMb33vAsWBUZZVTL1WZmmzzG//7x8l63bRkmn8ruTs175Kqt4k09dHvVZn/foV4sgjjkIam2WEYYKKkZFHKl9A6dAJY46OJdCrgsRwgZlCgfW1Eik7STqVYGF+nYXrN9DikK4fIsOQF15+iR/6+MdI5Aq89eobXL58g9GJYZRUxLEkjhRRHPU6YDXwXI9kNkMgdPymwnQS9PcVyCQ1LMNgq9Li/gfuQkrJ5sYW3/z613jzpWcYHBxmYtsMb7zwHfQwZmKvz9yzJ4nEHgaLSWRnHVNE5EZHSDTKbDt6LzPbJwnCGKliVBQRBQFhEDGYT9D1XFQ0ws49O7ly4TLDoyN879vf5Bd+85/SaLXpdpqMZNP8h8/8G7bt2M7Y+BBu0CWOQdc0pAJdTwKKMIxoe0GPBMSSbsel0Wrjuj4yht2pBFK3uR5IJjTB868eZ9v0FKZl4YcBfhAxs2Mb23du5/XXXuOZtSapxsscvec+fLfLyvICX/lOle13vIe9974X27EwNQ2/08QpzfPnX/1zUsk8mxvrdEOD8W07MO0Nzp0/Tbc7hud1ePP4myzWNqiUy/z8hz/aI/iaYGCiZx2rG3pvxEoITN3oTUZokM5miWWEaZgYukDTNeJI0ml3aNQbaELghwo/jLAKA2hCoxlEJJMWsWmwpgmMSofJwRyGUJi2QRhGtNpdTMMklUjR7HZot9skE0myg0N84a2bDEwo1oWiurVBs17lv6xEfOyHfhTX69JZbRL6Hoahs3PPTpKZIs88/xK7t82iqk3sUNJpVknbNk0rSRh4SKlx5I69PaVKaGiiZ/UrNAX/jVubkhJdAykjvKA3m/7b33yZ/qFtCDvJH765jPKvY1oR7//ox0CTCN1CGQ5Gn016ZJz0zlFOz6+xbfs4jiXomxhBxTEy9LENg1a7Sxi0QYCp65S3ymjCgDCitLGC3JPn9I0tfDfm8O4J4k6ewK9w+obH0vw87/30zxHGIYEfEkUhu7aN9VwCPY/A62BYJn1JgRt08Zsthh48jNB6jdBC03uTL0J7210TDYTWc4HtJX9aTwXWemZlUsWEQYDnBuiGRtsLCOOIKAwRfsRRlWTrnrvZnSmwpiT77jlMvtSi0Wjxsx/7GOtByGapSf/4OI5j8b5HH6Z54QpLjkUwNcT49ATriytoUUQsDVKZNN7WJmeOv8U//ru/xt/5zd/gjjv2MT01xukTF1haXqA0d4Pg8jl8PyKVSKE0Az+KiKIIIXSkpvEr/+A3MXSBYRigqbe9M3St9/0LIXqf+ejdaNr3J8h6n1tTGg+P7MAwBIZhIhC9BvM4xncDHt5foBKcJ5NOMRknqdQ6PPapj9MQOgP9eSLLQT7lQKyIlE5Ct1juSqQdUMzn2XlgH61Oh0qlRnd4jMD3CcOQwPNptRq0W02E08bsdolDn8DzUVJR6paJw6hnB67oWTArRRz3foaR/xeK738pMrC5VSKZyN66YSB0wT/7sxZbkWTX9nESySS6rnP//UeZnvwhHBSf+cx/ZrNzlee+02ZmdgfdVhspJQuXr/OBD34E13WJ4pjA90knM+i2w4svvUZxcBArmceTGrEOaDr/6OcfI2P1ZkhlBIX/12MYwmdtrYzndRkYHWZqxy667SadZpWVuTI7DxzknvuOoKdzzM/fZGrnblKhz1e+8zy7t43RuHyNi+fOkEmk6EYuxIpCOsH4UD8zGY2DuyfQ6M2udjUdVIrV9TW2Lq8xNruHhx7/QZx0jpaVY2Z6jMhe5frJSygV461e5Xf+wzyGaTA5OYPQTVwpyRk69XodGQZsbKwjdI1Oq00mlearX/0Go9v3sLhwgx379tE3MEigSRzHACSGaTAzXiC/2yFwP8iZ4+dZWbyJJqBR3SSOImZ37Ka8VWKj3OTZZ59m4eZNIqUTBD5xLs3h3UfQLRNDKer1OivzS9QbDQr9A/QX76Ld6vLi098ATWOnafAPRgbIbXbp8/vYdnfMJ/7pi5hJG4VGdmCMKAxxaxVq9RKaJvCDkK/++TfJFvvRNYWZcGi1XKIoJo4hlDFCaAhd8MKTT7O8eBPDSVJtdlHC4ad/6Wd47MFZ8mkLTcD6ZoMr81ucPH+NsdERHnvv+1FazEvPv8DE9DRoGlYmzT/66hXMVBo7s3XLjcwHFSPENQxh8yt33I1UIISOqesoQ0c3dEw7JuXY9Ol5vvK1L9OubvIP/9lnePWN18kV+/mj3/tPyDgi1qBZ3sALIqa27+QLX/gyI8MFHCfB/oMH6bo+nusSBBLL7ElzQdizCu66Hq4XE0toVks005NUq3W25peR5Qr7Duxg+7YBVlbh+nIZO5HC1KHZbLFn927iT/wA7XqDKxcvkynmSQ8Oc2Zzjfr8FZi/im7qdBsNIt/HMAVSaHzg3QfwW11efeEFtm2sks9mMEOfS2dOMTw+zFBfEWGZjDhJNCHQRW/W2tD1t03AegSgFxAMXUfTtd67rwykjHE9l47bpX1L0QrCCD+ShLHs/R/A8twchWI/SwsL1H1wbJsf+sDdTA0OkdDSrCzMUfc1DK3XpLxQqTE8NoouBGdPnKRSLiGjmLmrZ0nYFoHngZIEUci+o0dRmgZBxGd/+5/QbTcJVUwYRqBpLF85i2lo5PJFyqUyiYRD5LYJAxelel75MoLY0NGRPUcRveew2PMU0dB0A5Sk3myiCVhbWaPRbNJun+fKpROYZoJYSXbs2oOuBKYhaEjF0o1lhrZv58Zqi6214xy5fw/7pzLMDk6yWWlx6sIy585cJJVI0nG7DI+MkM3mqNcb3Lx+k9n9+zG6GslcH1994yb7wgka5Q1uLHaIQx/f66JiSb2T4H6h4wYhSujojknGThBGIalcFhXGt6Y4JJrQ0DQNFUvULdKjBLe+51sisXbLrIdbhkWxxA9DwiBCxYpYSaIoJogUqaRDtdTEDWIwTYQGScPhuK5QySRdETB/9ir337WHhw6Osl6qc+JYhY16lf6UgWFYbG0G5OwEI3ccwBAaXgxvvvgMgVQEXhu3WadeKqNJiW3ZzLRryFPPUylt47vPnORi1aXbrCPDFoVMkpqy+IkJiyvT91NrNGm3mnS9AM/rTedomoYweq6ZQhdvP9+63ostvXskbu0qUIRhz+ffD0O8ro9UYJoOmiYwhYGGQgY+eSUoHtqLFXqUkwbLF27iFFLs3TmCUFDWQj74wD1kdYuhbocfvfs+8o+kuFhwmN0zgxCK68ubpNJJmu0ulXKdZrOJbplYyST9wyPohoFuCuIo7l2T69FuNHHdLl6nSxSGRGFIHEnCICBWEZ7b+asnAwknje3Y6KK3zEHXBaWmIpvtY/eevTiOiW6Z9PcXqS2vstVqU+5IItejVq3RbbVIJBN0m22WF+Y48vjHEIBm6iipaDcbvHXiLCtrm+TKbcxkGs20wIB8fz8LK1WySR1bCGzL4sDuYf75b/wEz798jXrTB6P3xX7xC39K85YHwMK1S5TXVzAcC0NBUlr8+s89wGo94Mwr32NltUy96/LC9ZtEUYBSYJkmbrfdmw+18qT6RlAqRlMKISPWrl6n0yojPQUipNOqUzYVRruP//yZf4upW+QL/beyDwnErK3NI6VCSkHOSRK0WgwODnD44EEMKfnSF7/A9vHtVGoVWhfOMD6zg7m5eZLFPF0V8+Sbl9hc2uBv/sj7WVytc/GpYwwP9XHPPUfZOzDAF595joN3HGJoZJggCAn8iDeOvc7TT30H3wtIZLJEYUA4F3D+zFvkcjkMU+8xZqkIpIHQBQmnj6W5Mp/6ib/Fd7/yZSp+k//lK3XCbJEPPvgJ/vAPj7G0PI+8FTSS6+s92Wx2b+8QMUx0y6a/r5+rV84xu203oa8IQheQaJpBFIZcvniW0fFJXn39VcLIJ18YJFYaOw7sZG2zxOXlCgP5DMgYwzRRaLzvHQdZrQXcuH6Vdz7ybm5cusiVsydQMUSxohMGOJ6Ple6ZYEWRQsoIQ/hYmSRBrIjiGCOWtFs+hmlQKlUIQ416rUa2mMdr1vBaHbYqZZYvX6TbrFJZXcA0TRAmmq6RSNi89sKLhKGP4yTx3Da/9U//BYZp9A4JK8L3Azw/xPMDwjAiVgpNCF546ik69TqvCIEXRUSayea99/EnP/U+NBEzOZTm0J4xjp+9wbkLV+hGglarw6HDh3u+C2vLzF+5SNtzieOQhUunsZO9JTcKDbfTIowiPvSRj3HpymVWFufY2lzn0uk3MBMJ5C1L26vHY+I4AHoH/7v/4I9vGa38VwLQ+3PvkNT13u6MMIpoNTu0mm3cTqc3K2/b+IEkIsTzI7jl4KZL+OaXPkd5a51IN9CMBFoiy5EH3tMj2SpmsD/LD3zwfk6fn+Py9UWWVspkcxleeuoZ7n74XTzwrveQLeaplys92/MoRMoYx3KQUtKudxCGznPf+QZbG8sk0tke2bN6AS9WEUEQsbG+ilKqJ4F/3ygeMAyz91M30PXeZzd0AyF6FrZhENJst2i1OnRcHyuVwEjk+dGf+0Vcv3cv0TQs02RyahpD1+nGEcfmugRGH1eulojbbT710w+xfThNt+MTS8imUxzcM8n88hqdtgumwaWLF7jvgYew02n8TpON+TnuOHCISMYEbpeFM2/iRSHJVArfaxP4HnEU47k2gdIx03mEAOKeZbElJX7gE6neWJ1hfD/Waz0yDLcy456Rmq73ylpSgu+7NOtNlNYLPEKYKE0jlhpBHCFlz+Gv7nd6xNDUMYSBZRtsrZd59tg8SlMkDI1f/cVPsHuqiJQxY0Npio8d5fe/9DTXb1xHR5DKZGjHGqWhISKlsE2Ts2+dYnbfAYamd7G1usR4JsfNCycIPZ+l0EO26pw9e5mkZTAyPEr/RJmJQppOt8NybYivnb7IO+8qsnv/HgLfw/V8/CDqqQC63sv+DfG2Q6EuDCAmCiOCMCIMAsIoxtBNYikJfEmz3cF3fcI4xrQ8Ek4CSzewTZ2UadIC3jx1ho16hfLzz/Opn/pR3nP3LKbRs5++5+gsjWaTy9dXub40h2U57DRHCFyNuTfP0d9XYLCYod+2ieIYmc+RTKeJZUwYxbiuR7fRoFGr47keXbeDJjSSqTQj/X3oho1CEfghrucRuG4vBvk+Z08+9VdLBhC9CmgcK6SUBH5I4AdIt8abr71Koa+P/sFBLE1x+vf/gCeWF9i2fR9SxkxNjFHZKtHutnDbHRIJh8APyKRTCFPjz/70y9hmkhsLi3S7HRAW+aSF2/Z4/JPvJ5GwGewvkEiYEMfU6j6f++w32bVjgnQuz82XT6H3ZQhDn6NHD/O9J5/GsW28jsti6TJxGKLFMTY2zz7tMVwcwyZipOghozILxSHKpVVAYloOge8hNY3Nq5dw3TO3PJ/B0BUqlqBJli+fBHoS8fL5s3RdFw0dheKOO++lUCyQsK2euZImQFN8/evfpLRV5uD+/ZiWQ2OrzMvfepJ+I82lC+cww4BizkJVSqS6HksnLzDal0fXDKI45uqNZa5cX+f1518lNzpBu1zj0++8l+27drM8v8iRuw4jhMDteHz7W99gcmo7yyvLvckHGUEsiOOIWqVKLCNkHKBrBugGldUFli+fRENjevIne6xcKV4tuYxn8zx15jonzl7CMIy3t4AZus6hI/fie22aq000QLcsus0GgetTqlRoNJuYtollGhimYnN1lY2VNS5fvUng+8RxyJF7H+DlF16gUa1w6uR59u3dyczUEGiKMJTcWC7x9JOniZx+9u7dw9Wz5/C6bQq5DJHv0aiX0AC328BbrqPQSKUypDN5Slsb/Mzf/iWUkhhRROmJ53ij22VpfR63GzG5fQah25jrDo3KFqbp8O9+8+/3fMkL/T1JUDd6WaMw0Q0T27JoVjdIJlOMb5/FsE2iMMT3faIoRNN0crkMqVhx6dwFzp09RbXZZHVpnijoOToapsXI+AiR1Hjl4gpDxSyRDPC9iHS+n0P74K0Li7zzkQf5vc/8Jx77xCc4fP8D7Ni7j+OvvkJpQxC4LnHYpVpySaZy5HI5KpUSdxy9m29849eQvgdC69nXBkHPA06pt7fHKSWRcdyr/Ws9KdgyTITRy45AEoWKVrdJq9Um8IK391oEsYQYtKi3sEnTFAjB6tI8C9evkLYcFuZu4sc+TrpA0u6Z+/SlNf7tV97kJz98D7GSeGFIdmCA5VfP0yhvogmDTNImLJd4+fnvMT05xf0PP9ojVXFMHMlbik9PyYijmOXlBRSqZwet99xJpYyJbzk5fv95BYVUEpSGlOHbpQ8her71mqbheR6NZp1Ox8UQBnYqTSKXw0hKXM9HajG5vmESUiJ6bjfYpsG5U28ReC6xSHDu9AXam8uMH7yLsFXi0tw2xob3YRoChY6mNHKGjRKC9cVrLGx2+eTH3sv8S6/y5OmTGEKxZ99ezpw6RqdRQSlFo1EmiH3aDYVlOuT6B6iWNnjk0Q9gaRJHxHh+b6ZeUyA1HSkjotgnDCKkunV2SYVpjvSM1jWNKIpw3TZB4BFFMUIz0IROJlskk8uwuFKi47lEUiKVjmGbIG5tBJQSdIGpa7z85BM88t7HeP3UHOuL11CRy8H7H2BmYoBWxC1nQIEyFD/yQx/kuZdP8uoLrzC3ssmuqSGK+hDPPvsMdz/0HsrVMrnyJqZlYzhJNuauYjtp3E6d64Hg//3ESbKFYaqlDQK3gSZDHEvHD2NQyyipmFpcZHB0CMsy0XSdRJJbxFZ/210wDGJ838XzA5QEw+gReqkM4hhq9d6ysMCLUBrYlg1CQ4slCrBtk9WFm1y/eonH7nkHL5y7Qqm0Sm50hj07J6kHEj3Ubm0j1bn/HYfZu3cX3/36t7m53KQ4MIC7VeLKlSvsuOMw1xdWyKVT9BXyZDNptmp1ms0WUdyzTHYyGZx0FiEg8AM67RZuq8XW2gbZdJr+vgEyhSR2agTXD6lWapw/8dpfKLz/pchAt+MilUYqlSKbTqErmJiY5Ftf/yph4DI9PcvaxhoCSafTwLaT1Ouvoesmd955NyfPnEHXYXBkgrxT5MTxk6SzSTQBO3fu5NSbJ8maBkYc0Z/P4XU9Iqnh+zGppI7fDVAqxnFsLl5b4q3jp8kPDfKVb38Td6PC6LYx1pcXQdPxOl2U0JAqon+gn7XVVYQGbtzld568wgd+5AEOvv8Q89cWuHnuIsHGaTRNIJXCdbu9FxYoLS/e8qrm7fqphnhb5taFwDBNdMtg8eoSe/fuJZ3NkUmnSOfyJB2blONgWyaGrjM6Mo7nd3nsox9BoOF3u3QrdZ564klWqz0r57jZgHYXy0mTS+bIjW5jeLSfKA64Vo3RcgUGZvYwN3eD6somX7dNXC9EdxI89eRz2JZNEPqkUym2yqVb/tUK07RveXTHRFL1egSkQqoA7e2FHREKwT/7x79GHIdAz+V77upJ5q6ewDaTKNGzO5VKEkYh9XqNra01ZrZNEUcRW5vrNKtVEnaSpflLfPGPyhSGRtB1nbRj9gJJELC6tIhpOaStDHNzN8in08SdDnYxorVV5sy5GF0T2AmHhaUSbxw7z9D2g9SMTYp+wM/83C9QadSJw5D1hQVqW1s02m38wO9t8NI0dMNh94E7QRioIOLpb3yD06dPUqtuoFQECErLF/j+3gnLtHESSSamtjE3dx0Vxz0/cLO3kU43TIRuEcuYOO7tZMhm8tQqTbq+h0AxMjyIjqDbbmOmMpw8eRwZddlaX6HT6SCl4sBdD3Lj6kXq1Sohc3zpW6/wP/38JzFwsFMKx9L5zJe/ycLSOuubJWJijr/0CiffeI0H3/0ePvljP0mz1qDZaOC6bcIwRMY99SqTzXLt6gK+10FHQ5MCdK33RGs9m1h07e0gCbC2vMLM7HaEriM08AMf1/VpNlpEYYRpmVhOEsOx0FRIFIER97axKSWRSqFpYJkGmxsbDIkub565gBtGxGHEez72ARauXWT+5k1e+N7TTOzYy489fj8KgaFrDGXSJC2LVhxx4eoK7zyyh7Vnn+CBdzzC8vxN0plM756HvWuO45hYKVRvBSC6biIjSaCFpK0MsVAYmkEcx4SBTywVyF5zI+r7PQG99ziOYprNJs1GAykVtpMknUqRKaaRsaTrh/idFrGCMIhwXRfDMLEMo9d0l7RJpzO06nV0oXHp8iUa62tk+oaIOjUCz+eZly+yXgv50Dt29lbSxhFxJGi5MdeuXiczfRdf/vxX6Cfmo5/4JG7gk8r1kUimGBgaoVLeQkqJ77lEUYCh6yQsiz17D9A3OMLG8jKJXI5EMoVpOz3yp2KE1NGTvS2FQtOQqkeGWs0mXdfDDyJAohsOlmUCJl3fZ9v2MZIph42NKl4UI3UTYekIoFLaol6pk85k0E2DZDKBVBGZVIrXX3yR5bl5gsYa/dvvZm1lma7n0+o0iWXPOz+OJUIYeJ02J0+cIjO6h8F0nUR8hf5sHr/TIp00WLtxmaHhMbqtFrM797CxsUm8GRKHAV6rRiaVJpUwsUUe3+sQhAHIntGWjH2GRieoNXrloDAKiUPF4IjE80K6XZcwDBFCx7YdHCd1a3GbT6VWvtUj1CGKJKZjY1tOjwAJaNZq9Pf3Y0cReB2Wb15muL+fp159iTBURJHknkfejaZDtd5GUxLPj7BMnVhGOFaS109doiP6iY4dIyl1CqMDDBR6Y+Kb5TqbpRrZTAY7kSCbydHutmm3XKIoQimBrvcak7O5IsmkTb5YYGNjjdUrF8j392Mn0mCaBN0QOz/wV08GxsbHUZqi1eywNb+E53Zxu1127T1It9tBxhHDI2O3OqzHe0s0hCCRSmElErjtJkqLSSYTHHz3owRBgNt18dwux998g83SOlEUk0ikmb95iVjpJPqGSdgm8yslVOijm72aT22rTCKV4tLZc+gyxJUROjrTMztYWVtHaerWsqM0MzPT1GsNFBHteh3Xb3H2xBvcvHaOasMDqRC6RiJTIAoCVByi672swut0EJbxtmwq9F4zja7r2MLGsR0AquUyntehv7+PdDZPpV7HcHpudbFURKon3X30Y4+TTSe5cf0mx155Ff/Wi93qtsn3D9GoVTCTaSLPB9FbD3v+wgXM3EOEKqbrBYRhjG8YhIHk0MOP8gs//hhf/+0/Zt/D97G8vI6WsPmDP/pDlueuoYRGHIUEQdirrapbqzrpNYGiFIlUnlwmT6NRwXU7KIJbtpw9uVho6pZkbPVk2pheUJExU9M7cLtdOs02XqdMaX2Tob4C77jvMda2yrz02ktMb5/l7vvegZQx3a5LdX2RtfV16pUtpIyJnCRr8zdRUtLutAmMLK+cuUJu9GHiOCJyXcamRzGSWbbWFlio1ZkeH2L+e0+RsGxSuQxSShKZLO3Q5+6770HoRu+eCwPDMpG6geeHnDt3mnajQjqTxeu2CKMAuPWBAM0waTQaDIcRe/bewdXrl0HTKW2t9zzOtV6t0bIsotBn7sYVnFSGV158kWanxfTUNO1mg9D3mJieZvnmDe594AG+8mdfwHc9ZBxi2SlWNtaIpMbW5hoDVga91qTrRkiiXmNSbHL23A0CBFrFR4Zw9cxZfvqXf6VX5wVS6RRDY8PEUfx21ie0Xr375rXrvWcvinre67eWmKD/t0u3egRXKcWfffHz/MKv/AqWbRNHEEQhxq1yl6QXfMNYESmPU2+dZGtjHYRgeGi4l23ZFrl8EV3o7Nu/nwdOvczTfoQhIJnrY3FljbYbUxwYpn9wiA8f3E650iCUEhVLko7D1eUy549fYHDbfr7ypa8wFjTYcyDmwXe9l1jGqFvLZjZWVykUCgjbIopiojhm76E7Wbtxkcj38HUBWs9jXt2yBzVMHQz9bSUkjCKUkly5dBkpFYlkkkw+i22ncYOQlhfitbrEUkOYZk9JQOOz/+J/JQhjCsVBJqe2oWk6Mg4JY4nlJFlZuE6j7ZJMZSn2j0C+gFkwyOVswm6DL37rFUb7skg0wkjDbbXohjqdq2cRGth9Kd548UW6voedSKCiGA0IOy30VJZ7Hn4Mt9NBhQFC6/U3mGaCasfHlE3MZgeh6ximiWkYmIaNrguEZvbW9NILlk7o9X5HdwjjCD+UtOotIikxTJvrCxu9vQZCA9O4VYoLkQg+/7ufQYUB+w4dQelWLzFCosuQm4vr1EprCGHR2bhJ4cDdvHV1hVTSwut66IaJpkEYKUS+j9HpWZbmb/LSynW2jQ+gmUmWVleYnNlNu1Gj2azTLJfYMTPL5tYmURigKUnsdykv3MCPAzShEwchsQx75FCDo0fvIYx68rqhgSE0dFOwvlbCsCwcJ0E2kSaIIlzfp1prUG91CPwQ3/fQdAPTNHEsE83QUbeW6DkJhy/+3r9leGSa7cMDWLpBSgjKc/Ocm5+n1axiOGme/tPPkbRjDh3aRcI2OTtXYt9UgSBQBLJB3+QOLn7vSdoj44wUkmy1W1S3avixxBSSzbUVihMz7L3jMEHgI3SNfC6D54e9PrswQqIIOl2+8sU/IvQ9KuU1QN7aRaDQNL2XuL79zv8VkoHL125gW3ZPngMM0yaR0pmYTvYewFtMuSe1mIhbtX3bsjFME9fz0FTI3fc+gIwl165eoVWpEXc7NLstpGYhzBg7ncHz3N5WJt0iNzLE8SuLHLnnEEoqgjBksJAns7DE/I1FWp7Hxx7/CKeOnSDRjpguDjD4yCN4ns/LTz/Jia01gkASBs1egPdarFw6zWw2R6Pr0fC6xEqRLQ6TTid7tX2jd/A3m3WS2SyGYWDbNtlclkym10TZ7bSpVcq4nQ7VagnP77C1tUG5ViedyZFI2CQSDobVG79RQsO0LFzX41tf/QpC6OimjTB0DCeJYZo46TSGnSaVSZPO5ekfnmT77CS6DIhkBGGI7/pU2i4/9ys/i2ZY+JHgA/cfYUMEHMgk+cazz3Hf0XvQpGRqzz6unTvL5uoCUewCt8YV3w4JMUNj2zBNAz/w6bptQNySP8GybEDgex2UDFBKvb0uUykoVzYZHhxHD7ukTYOHPvIhCgNjrFXqjDkpPjn2NygOjrGwMMeF0yfwwoikY1OrlNEE6ErgJBK3VAgNGUVIBMJJ4wkTiU478nD6h3sOgHaSu+++i8n+AmtLayTCgIKZIDM2wLWlJZ5+9klGp7ex78BBpNKQWs8iVSpFEHpUKlukkxkGRiZYmb9KbwnV94PjrWsJI5aWFnnfhz/GufOnKQ4MMLV9O51ul1alSqdZBmkwPjbF6LYdjI5M8Pnf/zckkxmWbt4kky/2SEwcEgc+URxTr1ZRMiaZyOKk08SuTzaXY3hsmJGhYVJ9WU6+dQZfuzWmh+COB+5n/spNNN9FBRG6YfD6cy8yMrkNwxK3atuClZVlprdtI1co9L7RMGZkYujtrF8TvW87jMOexbTWGw3+b6eKr12+yKWLV9h38FAvXBgWsYI4lgRBQBDcIqGx5E//8LMIXWA5CQ4evgcZ+beUiV6NPYoD/qjSwQ8klpMgnc2xtXANbp0NjcoGr8ytUH35HJYJhmVT3dwil7bIZjPozQ08qeiOzfDSiy/BG2+QtByMpIOMY9ZXl+jUS/zUr/6vvY7pIGBkYoo7H3w3i9cuU69s4PtdlIL/o733DrIsuc47f5l53fNlu6r99PTM9GBmMBiLgXckCBL0BiJoBcrQKLSx4u5SWu1GSMtdirFyuytqJYoKiuTSgeQCBAgQIOFBmAEw3rue9tXV3WXfq2fvvWn2j8z7qnpoESFFKJZ1Inq6pqvqvXfvzTx5zne+8x2pfCBfQeLOhhGvxoA1zMwuoOKYUlt6wwLT26LUBoRAJYmPEQvjj1FrubZ6HiET5g4sc9/b3g5OokvPot++cokXX3iR7tVzxI02zcXDzBx7Nf3BhDd9x7ewsXoV0805duoApXWMC82tt5/iqScf58rlLe5757fxj//ON/KBjzzIlfPnscMdDtx0MweOHuV//4f/DePc8s7v+D5K7bt2dFkShtUhlR/xLivypykxpkRog5YSESYZCuknQRJL8skEbQDnPMKZ1ImUBCmQUYoRjtI6dF5iDFjhiGNJHMc44fjm730PGtjpDsknhmjzIq3XvIkv/+6vYG3CTvcqP/bD38+ho3VqsWB9c0CBZL6VMMxLMu147w9/N//2X/8St7/u7fzId7yRT37yM5TbXWpLB+ksH+Y//Z//Am1zNra7rF0+jy1zEIJBv4ezYK3nvUSh28VazWynw7333U2j00HFHiW1xiCwNDuHyfOSbn/MaLjFYNzHFHY6oEhFEUmtjhAyJIASKZUnHkooipIojnjtG9/MsRM3Uk4mHM81n3zsYU58w7fx1B++H5F2GI37vP5db6eWCJppwtkHz3H//bcRa4PMDT/1Uz/Epz76Id76XX+DWxZjzp9bY6k5w7iRMDfX4Wd/+qc43tvhnte9LnBdckajIVL4UkakFMpZ0p1V1i69QJrWweSBl6aDX5uOrvzPHwzEKiVJajgJ2hikcMQqQgrp68FRTBzHgXQkp4FBJD1h481vfQdKCVYvXeJjf/hRdF74zgSlqLfmaM3W6PU2SJoNz0xVCbWswcWVTRYXD7DWHflWtKJEG0OtM8fbv/UWZmc6HL/xKFevrnHs4BwXnnyGJadwhw9hcOTFhNGojwgz6JWMsNbxwsY6hSk9F8IUbF/xU8IQfgynEIJ77n8TaZLSmZlDSsfOzg7r164xGY+ZTEYMdrrkkwlpLeOmk6dwSI7ecAPt9gy1NCaK1ZSl6hwYrfmj3/otTuaOQliSwRBby+iJgrODa5S6wBhLnNSZOXISLGxeu0Sr3kAlKSJSXD7zHM89+SQ3tQTN2TmSu+7m1rfcxVIa43TJWxZq/Mb/8f/wA3/zb7E9GLJ0+Cirl1Y4/9IzrJ4/TVGMQEQgfMaQpimlLhmNc/ysL4c2hf972pbi8IWEMFhKCGKVMeltMXNokQe+/V005w9TxE0ub4/pj0oipZiZmeXpRx7hK1/5XCBTOj9tzUGS1EjSjPbiEZLMk1+cg8XDS7z1Ta9DlyWldoxGJdvFhKzR5O//9E/SrCUstDIuXtoijQUf/r3fZ/LQORaOH+N1b3wbS8vLvpSBQzpfr7PGgPPbYpKPmZ+ZYy1OwDmKUlBNpvSts4L27Bx33f8GPvrh38Pqgounnycfj5iZm+NVd76WIzfcSLPTIY1rpIGRHEWSt73zXTQ6swx6XdYur7C1tsap207yoQ/9AaPBNjJOqLfbDHrrgGH7muLqhRXK1jIn33AI6bQnxg3HtA8u8dIHf5/ZA0e5trLC6974Jp596gkunD9Pq9VifvkAzWaLC6ef5VMf/n/5mf/157HWYp2hKDWtdoed7W1/8EkQUmGNwaGRzs+QqxCvvCyoNzuUVvhARmufWZWawlqccX5a+nTaq2Np+RDf/N3fh9GajSurnD93nu76GkcOz/OJT1xlPOiiXUlSazIe7Xj9dyS1+hzdUjJ7w0nS2Duq5vIhbju0yEc//AccvvEO7nzrN/COB+7gIx/8Q7Y2rxGNhiweO8yr7rmXf/lP/0dGox4Oh5QRcRwxMzPDHfe+lsXlw2xcu8r2+hU2167S27xKWU7w80QEDoEnzfvMaaPbxzmHtn7CXRynGGuRSmJLixMWZ0V4vhE33noXR46d5PXveBdRHPP0U09z6oG30plr8+zLq9z2fT/B5ktP8Nxn3k/nxJ0MBgN0rhlPcgYTx+p6jxsOddDWMipLNrRgUhp++p/8DLeePEqjkSHTiJvuu4+v/skXePRjH2d+YZZvfc+PcubFF5CRJ1CLJA7jiQGjUYCwLrDjAZTXulAS6ypyoPdB1gm6gzFSRX4vKhUm3kmcUB5WL3KMsxjr2w2jSE1Hc3//3/p7no+lHY89c57nn36G5fvfRLNMuPXeezl++x2snH6Zr/3+b9NpxnRHBaNIst4bMy4tjiZaWyalZm19wM/8T/8Dr7rjRsyk4PHHn4Z8zOvqERcvvMib3/Q21na2uPHWu+gszHHl3MvsbF1DF4UfJu+sD2QiRRRHJHHMbLvNmeeeZGHpKK32DM2ZWbJaA+sk51auMR4OmUwmaG1Jkpgs9X5VWId2YWIhwre3xzFC+j0hrEBKwXf/4N9lfmaelWs9Tm8NObs4R3Hzazh2y0mO3/karr18jguPfYVeP6eIFWVmGRvYGeU4YxmVmi89c41Op8nf/N43Uo8V/Z0x57ZGnL28yYtX13nfT/73iFhSFn7qbwqAD8qt9sFLLOFzn/sMnZl5brr1NTzz9MOMetuI6fH/V0MEKvv6BhUpn2VpY3HWi1RULRlJQAKmfZuhl7M6CK21XpTHOj76+x9C29JDriEKjWTEaNzD6JKs3WR5ZpZOu8PM3AKtok93MkJsXwMpiLXDGsfXPvd5bv3xH+PkLccQSL77e7+FhZkM8643oIsJF16+zMq1d9Pd6vPoVz9Dd3sLowu0KegPtz3sOI2gLFIkAQoGq8f4KMFRFgUXz52hKHN0WTLY6TEc7JBkGcvLR1k+fJSZ2XnanRa1etOThIQvJzgr0E5PnW4kJbWdET90eIeBjej3FGu1OR65tkY5GWHjhFZnjsVDx7HCsXXhDJEr6eHo5paizBkPB5TjIb/8C/+W19z/ZlYubvKV+TlyPaFWy5jkBa0bD/HYgw9y+wOvxYoOSikWl5ZYu+k2zr/wNFdWzpLnI+8QNzdpNxvUWy0m4y5gaTbmAANOIaQgihRK+WCv3qizOD/HoQMLnDh6mKzeYChqDF2MEIq02SbKaj5KFXDusa/SkBFGujAmVCHjmMnY98tua0OcZiTNGRaO30yWxnziD/6YuXaTWqOGcXDh+Ud5/LOf4uW3PUBzpsU5kVA4h3Sam199O+VowtMPPcpb3/FORKQonYdXrfWHqzGWcVHw+rd+I488+EVePnsaKROEKMLB4NvHRn0vWzoYDvjqlx/CFGNG3S7zy0c4fOQYi4eO05mdwziD0ZrmbA2M5d3f9V6WDx5EJXW+8ief48Xnn6DUBUla5+rGCnkxQaoInMNpg7V+ylg1QrXVaDPUFgIpayIVOs64euUq737f3+VVJw9RDCeoegezdo3VjRXy/g6vvucePveJP2Q8GQVn7wMqGSe89q3fxIvPPEVv4xqD3jV/KDqHlLGHgJ2YBg9CKpqdNlvb2x4ByAuckP7Zx/7gcWH++7e/98dYXJzj4NEbKPKcP/rQBzl/+nmMs2RZi9MvPesFehpttLMMd7o44WvWQjisMxw/coxxUVIaMNagreULz5zh0OHj/NhP/ShHluZYnq2z3X0LNsn48ue+yONPPMVzTz/F9/7g+3jmycf8YQi+0yEWtNptcNCZm2fn0GF2trfZuLrCxupFeltrAd3yxC+EL4Ft9wYAxLUaUexJtsaB1b62LpRAqYgk8qS5v/HjPz1939//zV+jX8bow3dzLK4jTtzNzKEDHDl1E6e/9GFEmjCfCmQtIx0PODqT0F1PSPQIV2rUxNDvjbly6TyzjRRTjri6NuEHv/OtXFgfcPz4IdbWt3nkkUfZfPFlvu09P8RkMgmDgAVKCSIhUcpLwiur0davAWsdBoF1ckqelAIUgJJewyT2B78WEisc0jl//Qa01f71A6nSAZFQgKW9MIewgo996IP0xQyNxUXma5b64kHOPf0EiTOIPMeWBU989Pdp1uskaUZ/a53eYEirFZPWZun1d/jipz/BO97+Frrdu7myss67v+d7ePb5l4hOnuLm+xtcO3+JU0kN4oh2/XX0bjpFd3OTUb+HHvcBSBVkiaLVjIikIMlaNGo1j+xYgZ700ZMBQsUMmQEEWebRbO+jDbo0ITiWYYJujJTCI14hgZFCYIzXQbnw5GM89NIKMzffws7CDPUDBxlu9Sk3r5CvX2G0cYmP/cdfIUlqjHurXFrf4Xce/yRZa57JeMLZ089ybeU8v/aLv8pCe4b73/Em2lmNO248wNJ8nae+tMnBhSXKUOZzzk2TbGsskzxnokvOnrvE4qEjWATtzhzDfs+PEXbXlwP/swcDxhmvdKYiRCSm7OOqHUkpEQIBMWX6OuemcIu1lmJrk2+dn/CJK5JEacpRwbJ03Ddb8ntnLtIzlu7GZbK0TtKe49jxk5x//gXG44LnG01UgEief/oxdrob/Md/3uWmO25DypjjN5+iM9+h2cqQzqKcYfjUC9z5Xd/O8tFjPPPE41x8+TnGg15gwprAti0RRNOI0Frn5yYA/Z0uutQMBl12etsIJ5mZXeC2O+5mcfkw7c4MSZqSBAU6pRRCenIdKMqyxEiJX3eC4XCM7LR5fmPMWjliu4z49kPnWFjo8OQTCa3OAstHT3HDq19De6ZJJ60TK0skHddGoeZ+9Rqjfo/B+iXy8ZhLLzzPoxcv8sO3Sbb6Ix5ca/CP7u3y331Cc/sDDxBHilazSZrExLGv7S6vnuTcC0+xduUsh5aWWFu/5qN/NAAnT70GJSxKJMjEi2w00pS5Tp0Ds348aCFTBi6hb3w9VQoHpgBVQWxw+umn+PUfiPj5X4uoHy7p6ZjVLpjxgAvFhFIobLFFltQp8hJbTNiOPHkzSjPiOCFOFGeefZpiPOTf/LN/wYFDh2m0Z7nxjrs9XJ0kaF1Ca47LFy9y+MYbwDlfJrAuBAOGST6hvXiIeqPBaDRAWDDW4jAIJ7BosDA/v0hjZoaHv/xJTr3qXpYPHqW1OE+tVmN+6TDNLMEBGxvr9Ha6xFKxfOgYUsLXvvQnPPv0I/g2SkE+HnI1H/tWJpVinSCeX6ajBJGKyWKJjDIOHT5IJxUYLdEaTGlY3+xhneOB+2+jkUhm6xn3vfokz5xd4Qt//Fm2H3mK0b/+d/zU3/97PPr8c96xBcZ8pGJuOnUb9WaHtaurdNdW2dq4Rn9znfFkiNEjfLbsg/d73vBNvHj6HI16gyhNUSohTj2qZ41GqZgo8qIm97zuDTg01sBv/eIvsLlxJTxvRZEPUCpCRjFpFJNFEdmBG1CRIs0ysiwjTWvUZtucmE39c7KOwXjMlx5/gcH2NQ4uzpLGEf1en296+wNc3hiwsLDAxhvfwKMPPcLDX/0aP/K3/zZl6Aio1locx9RbTZIsJc5S6o0G9WaT1swcO5vrDLpbbFxbYTzawVjts2QUSRz5NuJSUwTEJJJ+WicGnHCUuiSMKkUIwSc++FusXb5AvX2Alz7xe5xv1nDOcWE8YNzfwBUFp//4V0jSlPbhk3zKbtJu1tjoTVh7VmCNZjwc8uiXv8DmlZf5Zz/zj0kSyQ233MOp+++h1A7jwBlLrTXDaGaGrdXLtA8sURS+BVpbH1gpGeEE1JOERuTAeL6T1gbtCoxz6FJ6Qq1UCAyOmNw6hHUYYcE5jAVr/IEoIj863YbrVUJitAYT2jJHExrr59neGDDG8sTDf0xjbon+aIedzcuopMagt84f/NY1as0Z2klC2d/C17Sh1ppjU48YbF7lA7/9fr70+Qd54PVv4PLaECFiLp0+w8u6JB332C5y7n7r26hFMFNPOTg/S1GUQSvCEqFJIkdNObIoKNbaCKi6TRxOKHC+LVXJKJBQNdbhy0bOl9PiOEEpjwQURehYQeC0CcCII1aKZ778GdqFZbB6GvvcEmVrhq2tq2xfOYNUivGwz+a1NdK4xjyOehSxfQFMnNG1mqHNyeotPvBb72cx7XD29BWOKji3s8WVQc7y8Bz69d/J4vEjaK2n/C7n3DQpH+Y5rSM30ttZI2u0yfPCJ0B7Wme/Hvu6ggGlIpI0QQWlpop8JGXVrypCIOCjEh+helxROE9Y29m4wrceH5IPI7bzklOLKZ++POLMeQ9NJlkDqRJuefW9uCTCaUPDaJopICesrO3Q7/eRKibJapx78VG211ZYPnaKCy+dpVWvcajTJm406G5uoLe6rF+7ysLiMve/4Y0cueEE61dW2dpYR+c5ZZlTFmNKbRHBQYBX2BICzp99HqsN9UaDw8dOsrx0lNn5eRqNRiCiZAgZBCykRGCx1jO1S+fCYnJYBzjHY489xpdfepjHRMYBlTBTS/lPL9ZYdUNkFNOozdCenaNez2i3O6T1mpeaFJKFtiXPc+qdJpur15idnaccdXnz9ucplhyffTzCqJK3nlB87ExCVI8pS79A4kghRTp1/jKOqLfadM4scOb0c8RRzE5/Mywix8LyIWLpiJIazUyy0IhpNVJslFHgh+kY7dCFP0AtDiu8KqWwdro2nn/6KT683uedr3I829f89Lsa/Ks/hLm5lO4qZMvHSRoNjtx0G83ZGQCOSEerHCOwPFoIhr0dbr1vDlOWbF25wK13vJq0OcPZp57irYcdqhjztZ0Zjq1c4GN6wvt+8qeQUYSznitgLWhnUULRaLRIs5pXZiuHGJ1PN45AkWWJZ/zGNU7ceYq5A4fImg2MhUgpikmOjiWbm5so4UIvOzjjI/czzz9OrOS0xVQISRQlIAXjQRcVZ+xcPusRrloD11lg/ugyj3ztYRhvomTkteFXL/HFT/0hRX+Tpx78CnNzM8x2Ohw7tMzSzAzf/N3fwtPHj5N/8gsUH/8TXvO972Y8Hk/Z9ZFSNJtNDh0+TKPVZGtmjtbsAXbmNxjsbNPvbjIZdMnzMcbkyEgxnpTUmhEyilBxhMGhgChKgnqkuW5fP/vY1+iuX/EdC97N++DfCcrJAJ1PSOst1k8/SqQkKqqTthaZOXwTLzzxJJvnz5EkXpvk7DNP89iDnwSr+cX/7edQUcSNt93NsZMncDLGKl/uedXd91DrzPGJ3/5N3v7eHyJg/tPERFWQt3NIEbL6LKPRajPqL9HszNLb3mKnt87O9hoGQ64tTnuUUgiFVALrLFZ7tjk4pJXTBAfn6GyeZmwVg+4Go+1rDOMU1cjoXrtIqbVvgyxKTNagLF7gi6vnyZIEazwSWeKJk6UxzMwdpLezwxvf+nZue9UpHvyTr1EbDYl1lzN9g9Ulb24onr6wwlt+8D349kgDzq894yzGSQojiCN8wib9WOe6BCn09Plp61Hd0kkwvixmrFdZRHklxihSOOHR3Cj2JVVjdahFA0Lw8Kc/w8++aYN/+Dsj7j0RsTC/zO+e7dNbu0SRD1mcPYIj4sY7HqA+1yGJIhaFxAkLMmLbWBZyT55ev3KO9XMvwGjAy8++yPcvjdga9vjSRsKPNrr8QfMOIqGRsUJJPwtBZzHGpF4J15YIp4mVRWFopAVCSiaFwdrgf4mwTmF7Pvh0lMiw66UURHGFYjvyosRYiwpaDNpYfLzk/20ympAOhnznwTF9Jfj8xW2W5jPy4YhrkyH11iIzBxZYOnqC1twhOs0GB9KYNI1ZU4pjsurYmXD6oS/xqmwCT36Wb3kDfPpMj9vVPGlU8gePPsLbjhxEGy/yJPE6KS6cqdZaDt14ime+tsL25jrD4QBrNH86EPgvwRmIY5LA5q9MSomQhI0k/Y0OAYIQAYa0nnyjjeGjn/oMnxkpjs8Ynhyk3HhA8403ljx4KSGPMzozCxy5+Q5uuec+ms0mSipqsaSeJCAdJ4cFozynv7XJ9vom8Xid5597AXpr6MLw5oOahx/bIWovoooxTdXk85/6LN//oz9Cp9OiVjvB4oEDDIcDJuMJRVFgrMEa37YzHk385neWOKtz9umvsbR8lPmlZZqdGbKanwgVxzFxULPa/YNn6gvH3nqNDyglxhp6vS4OR98ZdvSIjqwhZcyk9O1Za+sX6Q23uPzSQyRZizjNiGs10rSGir0egLGOUlvGvR5Hjh3hty/P4lSETh26LHjpbMF42GU8HLLT7dLodEIvtWeWZlmKCIpyWa3O4sEjrJx9nrwYUUwsxmqarQZxlDJTj2nVIwpitp1C6AQjDLYovaKZkN7RYKcBYmXWGNY3LvMfNqEtBXmU8aVfH/PAIctKkdFuzZAuHOTY7bczt7hIrdkgiiOkgJHw6MCtzqKNZTQe0d/qcc+b3swXf/93eEdnyOtUxEk55LNnLd918kaSuYSHX8547NFHufuB+wExRQWc9oHKzEybB976Tl5+9mmuXb7AeNilyMc+UwTufe3baLY7xGmdtJb5a9KOSAqsNug8J48lzUaDOLSaOueDjs987CP8yzd2+I9fKdkQJWOnKZ0gn4xxWJSKyMdjdDEhihL0cEAxGFFTgjiJefzLK1OkY2tjg8HmFZwu+bV/8ws0mi3mDh3nplc/4Et1wvp59SdP8NL6ZWaefooTN90COISE0vjSVJb5bpdIRSRJSqPVpre9Tas9z6jfZdDfZjzss3TsBM1OG6li34anPWGx1CV5kYeWVIcxJU6DwfKVj3+EO0TMJeeQ1npFwlgwnHTBeWfV3d4gjmOsSnB6xK1qQrZyntntKzgVo4WgLw0X+5tgCnRZ8twzz/DOb3onm5dXuHZ1m2I0oihLCmPIJ2Puamzx4pkLvGE08fC2EFN/FykVav/xdB0KJYmThFqjRZpm1NvztAaLNDdnyYcTRCSQKiaSCkRJZBO00D6QkxaMxEUKbb1w1MrLL/Hazg5P9DQH5yKeWIEeDXbWt5mMRjTaC8wuztGZP8jC0Zuot1vUs4TDzSaxtKhIcKkEqzXD4YgsTTG25Csf/yBbzz6O7g/4idvH/PyDA77xxgZHFtu89MKY/uGT4Cwqkjjtkw6cDXohPgDSOvL8EOf/XwlJIhWxdChnSIBIWt/hZMqpaFIcxVMCuAvor3MOXeoQYIrQkSkQOM6eP80/fGbM3csTHl9xZJcK3nk4Z9hK+dC5We795veQ1hO/hyLvayKppu3Yi1N/aTiweQPbR29k6eKnuUmN6HUlH7oQ8d23pHxNH+XClWs8/cij3Pna1+LQuCpgs16szhkBNiYSJcIZSiFJRUkjU4wLizECgUEKGUiXQWZY4JHm2B/6pfGlPwLSba3FOK+rUwWbAE997SusCMtntwQDYbgUZyyxxR1txbmeoNmeZ2b5GI2ZedJanXRhgaJRhyxjLpJBDllSFJqZ+QV2Pv1BjrQt/+QLgp46SBvHlf6YoX0O+A6MsVhj0c6fozb4G6l8aa+zeIj1S+fJh5s49gYD8us53r9OzkBw9jZkfl6W2L+hDRCKr0l6ko4JQYCvS/o6xtX1y0gkl/OYJJH8xqUE5SyjfIJKMuqNWToLB0izjHanRb1eI04FkgiH42DbMCpKWu06cVZjvJHyIz/xVtTHfxFRaq5ow1lb41sOpKS1Rb6y5hhvXqEsvcBIHMe0Wk1qtcy3F1mHwXkJSgf5pPB1GudQIqKmBPVGi6xeIw5lgDiOw6HnD/2p+ImxCOEQXldxuoFcqEsZY2i2Gn4h+lya4WRIUmthcZR5QZImHH7Hj/BD6pdZXNjhsw8lnLyh4PmzMfnAw3lHD+3w6w+mlM5x4aUnp+9f5CNMOQ4EEr+Bx+MxtVZr+pyU8hsoUpI0TRFCEMcR9VaL5eO3sL66wvbaqg8+VESOwpYRQsoAP+XTzNAKEM5O321X2CVkj8YwKXYQxIwRCDGGmQN8bB3GRU6aTjhoCsbb6wyERU8aJGnmP1fkyUBCSiLhqKUpulHjwoWLfMN73svmp99PL7f88eMHiLKIJ5/cYOgsZd7H6JLX3HuPb8FzDhcCIYwnQs0uLHDTHXfSmVtka2ON7uZVxoMdJuMdFg4dpdloeO2I8KylrByB8MRE51v4jHO+DGQMAsmFC+c4fI/jjvkJd94SI0XKP/9yicYxKUvqjRb19hKN1hyLR46T1OsI4TiZpZhiTCrhhUFJb1gymBhuvON+8vEQM+rzAz/yPla7Q1589GmOqZya7fLEhs+E390c8VtPPcGJW04FKBuiGKzxB3gURdRqNew8ZI0aWaPBsN9h1O2Q9RqMBgMarRZCSkqdY13k0RTt+Quee+GzQ/BBntYWPRxx31EBXcM4t9zVVnxoIJDWMSly6q1ZECUHjtxAq71I0qgT1xocm2vTSRNsWXJeS0rnWO73OHLrvYAh3+l5gqCY5eLpF7hztM4z3SGz2RBVW+QnvnPCxx6XPPXoQ9x2z71YL5/k96TfcFPftEu+8o5fSEmc+XuQ1eqA9X3p2lIKi5DOE4ilQxiHlbFHCz21BCUlj3zl83x2xfCWI/DUWsFlGnz/0W0K4HdeqLN8/BbqnWWv+ieg0W4xMz8HjTo28aXIQ0Hw2AiwRrO1ucWdb/4mbjr7R9Qbhl99KWKrscSXNw1NPc9luUm5tsq1y1eYW1rwQ6HwB4OznnvigNJqpK2SE0lpLNpJbGExVmLLEoejiL2Ijg8SI6RQgAksejyEbjXO7ZZGvDyzRDnB2uoZLhcTntr0HQpRbHjytEQIy/JNt5MXQxAFVhfEkcKoiFLt1t5ddSA7Q2RL0naDT3RniUSbQV4wsTv88lNXyScjJpMdDi0vcNcDryWSChM6f5CAASuS3Tq50zgEpXXEUlNPFXluGRuHc8IHP8orayZRDMJhqoTBMUUHwHfSVP9eiXJZ5zj30lPs9Nf5PD44qtcTPrOVYo1FqIh+b52iHJNcTX0id77m0WMpkUHrQwhHUeSUeU5vc53Hle/uGPW3Q/kitHY7Me2CMcbzGirEU0URjVaLW159LzNzB1lfPcfW1QuMhtuhO8v5G/RfAhmoDoG92XBlNpBqPIwmQkTppocCQhBJAI0lptAluZ4we+AIxliwvgd2fe0S/a90OffMw7TaM2T1BkktIUszkiQhjiOEiCmNYTCZMOj1aaSOZ3sH0MZhKFDNMX+0MqCYbDAe7xAndazW08PQM2uV5wdaR+wEGkckfVZWliXWetnOycwsURwFqdl4tzxC0C4htCkRjv8AW+52EIQHYv19OHL0GATgCkA6hy5yTFlQy2ocOHwDt73qZk5MEu65bUh3p8ldN09YrJUMJjU6meVb3r7Fp1++jbNnn0fGURB+cZhyEgDbCplwpFlGqUsiFYXPKBBBijNyEiF8q2gcxdRqDVqdWfrLhz3JT0q08/VrJex0SYXubUQgq1kc0nm5ouk7O68M552t/3frDE5JtLY451XPTj/zVVbOzTDfSYlsHyljShNPCV5CRZ7UKR2DCRS64MzDdba3N4iilLIoGA83cSHTAUOzPYcJUJoLGZK1NsSqvnTTaLWwhyDKMuqtDoNel2F3/bqpXpU6m5R+A1skyCBpisI6i67exxqMzvnxDwpun9N85ssRB6Kcv/sazU6h+NXnmrTmj3LitjtpzMzS6MyQZnXizE98S4Iy2u3GUlrLZDhiPJpgigmZKPnlf/8L3NzMyLThR77T8r/8zoRvu7XDbFbn6dN9oqQ9JQ9WEPne4CyOYxrCZ86RisiyjCSKiZKEtD4giRKs9b9nLdggOOWcRxqcrZjoBqMNV8+dZRQpnrGCGw9oPrrS4Advy2l2S3La/PrzXjQraygvaWsNUZLSWjyIO7SEa7eIpOQGghCOcOiiZKfbo92s84nf/hXeszDgJIJbb7J8/uEWtzd6LMx2+KcfiTmwfJCHvvJlTr3mLkTIWBFVkWuXpxRJnylHkUeuaPiaq0pi4izD4MsBzgmkirzTtflUX8MQsjAJCIGVEZurl8gnff7oTAJSEkcTfvV5SSojSFOcdfQ2L1OrtzEmpxyPGO8ohNHIiBC6hNp+SBLK4QApLB++lpFGKXkxYrizznYxJj//UjhoBM88+SRveec3hqQj1PJDecaGQMhVHT8hAcDooC0SNAO0L4FG0jPwcS4gVyocOj5JckGBUuC7h8KCwDrHZDzY4wmg1m77coM2rJx5ktWzT6KSjDipMZNOiJVCG4cTAuEckQIVaUoLVzbKUF6COIl9OXnrKlL4eSzWGVQcIVU4BEUVBXg+R5WoGCQQeWBWgnOSyGiSxIGGYW5QMkXFfp6ANoE3Yv3BG8f+vaWUlIVGG+MDDOmvFGvBGLT2AZXzYiuUpkCkqT8DnWA03Cau1bj3rg5H7WnGeUS7qTl/JcZaSasBb757wk//+wnGFKg4JVcKYzSlzqfnqrGlb2kN99zsQdlt2NdRFNGZmQE80bfRnGVn4xq97ir5eIDWOdZVgcFfbF+fHPErbG8WuEsYtGgdopgQOBAWU1WPl8JdhyTo0NerJwVGljQWb+B9r19lMlxhVMSsbxvWVsFEEhVrihJqtZyvPuHbXZ59SExlQa3VFKOt6YYQQhAlDU+QMWYPodG3jtiqz9zu1h6TUNszxhBFGVHk24qqa60eRJV5isr5CoGzICVo51DOdymAJwJprUniKk8Jr+EsxaQfhsQo1lfP8Llf+jm2bj5I7SHD3NwsF08LEmmJ6zlDZ/ngVyRZ1mDpwCHW1ldJkoiimITXlOGVPTIQJwnWWrTTYerYrqOIpALl5Udlda+imCzNqFTerAjOq3q+QYnRGhvIX/76Kv3C3TVh0WWoMftwAYCiGGNL/+nKIqfZmuPwq9/MT75Lckr8MYkSfPprCYOdMYsH6iwsCEY7Y25/9RW+95+0KPIhw8DsLooJZT5Bl5OAxvj3LvLJ9Fnv7aWvnn1lXjeig5KSOElJshrgA7lKctlai5CRf7bsBjoWNxVvstZy+cIFxqMNchGxOUmRqqBHwr97BNIEolqNxSPHmT98lKzZIM1SsiwjinwrrowjJIKW8u9jZ9sMB2O2r65x7PhJtjbezF3dB9G55Gc/VudKUuMTl0DUM7rSsdNdo7u5RXOm4z9zgI294ltY9wHFipKY2BoaM22IFHGUTHkvzjENnP3v4w+LwIPxB4XlyUe+wnjc5U8upUgVIcWEf/plaEea0o2RAVERwuesUjhPXpNeLVCmNeJEEstqPSpQgs5sh7XLV7n3bd/K449+GmdKPvAkmCTik5vLmPUR5aTPePgUM0s3YYxBSTnlM4Th6pjA+fFuQRAphQmwcJKGMlkUMRyOkE4RJwqndeiz96Qx/7UN1+8zTyMhHw/wqosFWIuUDdLmDEVZoHXOxXPPeKg9qdG9EpOkGegJDhlal0ufITpNs645c1VgyhJntR8EFbpOhr1NlPRCSQ6BNQX9QQ8duAxS+HZIpVRQpvNZY+WbrLMhINrNLgkomScS+qBPhWE7ptSeKxGkdgXOZ7EhqBDCr3mrNQ6NEGrqxvJJTpTWcBi0zhHOcd+7fxB18528z/wcxxcd7/9UhIwL5mczbj4RcWxhwuVJgx//uU2KYdcrJxoZtCAqMN+vn+5OP5Q9wDjfGeF8lILwLEBwYJAe6XECFfyxsb40Uo8dMvKRra0SVWunSG8VCOR5vot+KxHupQ+YnDaBG1YFnoJiMiAJZalSG2q1Fu35Y3zT227hLbWzPH2+QSMzbN1cY6sXszzreO1ta5y8681cePZr5MUYBJRF6fUOfD3Gl5bDl9btnrV7gwKE8OWCVhMhIK3VyepN0maLQW+T8Y5PiEs94C+zrzsY2BsA+E0sr3M4JjBZK6taDZ1zlBXxwZmwbQXOGLQuMEVBrCKWjpzk2H1v4T1v+g0ajQG9cYeLqw2++nBBVot53b0Rl1dL7r6zzyM/e4LVyxe9jKYIveKuilbDBCpAF/m0TAFVm6OcOssqk5q2UOPbKH0GzfRnrQtHWkBBfERdqbj5KFUF8QqsxVSfCQ+tFkXBJJ+Ez2YBSV76h2ScYjjyh1pa5JzPJL2tTZS8iJUxNy4lXNr09atJPkKXT4FwKCHQxQRb7grKOAzOSRC+zqmCYwC8tLLzB6eU0td6hfAKbQKkrvqRg1StEJ6gFJ6vFWF72l0p22o9XFcisMYjPuzeAwijfm3pxUHmDnDTna+FmQPU5UXmFyKUTLjzVJ2tLcWh5TrLy5ZeN+bk0YRjN9/OhRefoihy3/kgBbrMvbpa6GF3aD+JznmilAtz650TgQxecVpC2SSOqDUagCBWMUmSBCb2ntphFfRJhQh679aFrMJZjIbtrW0qYpfVE9AjovQAhUyZWIObjFg5+wzbGxdJa75MVW+0iVIfhMRJiogEaZL57ElKrC3JdyZ88YUnWVqa43cei1FxQpmPyUd9tosxZfkyuigQynH+zDnuuPeu655Hda3VnvSZZBhCFMoHKuhqaG2pksndvQEIf0BY652hcZbRqA8YjJlgjH/GzdnDDKzXJxDWMhoPkFL50kMYJbuzdY31S2dI65nnH0mJc57PoUtNqQvGwwHrV66ws71GEqXkxZjxoIsQFqPLUAnQSKenSce0cwmBROKmbZOWSpXOD+NRu/cF4Yf6KOlDyUCag4rvBAIPfZvAone6wAWhmwqBK4sRmZrDlc7zOEYDoiRl4e5388/f9TVGG5sszTh+4zMxb3tNhoprfPUZww2HLN/5tjW+8+dv4+LpJxHSlyYRJqCO3sdMTzogzeqUWhOp6/1yFeTu8rScRw+ExRq/npR3vuF+2VD28GhIUfns3beafl2Fz9b60dy6qK7f728h/OhsEcVYrZFOcOKutzGzfJTF2Qa3z6XEMubkTQ2SpKDTEhxeVmRpQidr8d1/5wd58I8+wurZ572fsRYh46kPEghUVvcIJQIpPIrsy7BeXdNrDviPboOjs1Z5n+z8z0mVh9dkethX+x2pkA7fuvlnoN/OBp9WFrRn5ul3V6bXLoVEFzk4jy5Hccq4u8EHPlLwxbhJVptFxYJRrhjs9JhMxvz6ZwTjcZd3fsff4BMffj/WGuIkwRTGB4VCECnfJVW18fs9HJA765+lc75oIqSk0WwilSLOEpJanazeYlRvs7N9jc2N0/xl9nWXCaaqZtVN2hMATMmCbndO9HSxOhfqGFUG57PY4bDvD2cgimO0LhmsnuaXP7fIYmeWej2mkcHcEUk9LuiOSlQmObeaMn/gEEVRsLlxlTRNPBFv1IfAb3YBPkP4+meUqOla37vpq+uw024CL2binaENULNEuFCJD3q8ImS8Toa54M4PcKkCDBeQAf+1DOUHx8mbX8PKxZco8klAMPYcpPjRu6urKxSFDw7uOXgD3d5ltrYVkRLkQVHLOo3PySVSRFinEc7XvByGZmNuN7sNTgIbYMTdBJnpzAVlifBBwWQ0pKqeVZB7dZ+qTXK947TT73sik79WQYKjwMONitFwZ9qqNuxv8dzDnydJMv6vFxdJxCJZllJLU7IsIj6rqaUKW/bIPzHLeDDgvje9gxeefoLu5tWgUxGFTEJOeRLzBw5ijN19dtaDelUmX1lFEiKOsbUMgfRBAAIpFU4JL1RsAenFW5zV02dlnCcVGmOptZp7dwogKPMclWUhKHFsr12mu3aZ+de8i7cceILuxojMGq6sxGRNybVtKLQfKrS8OOHstYSzKzkOx7PT1/bIm853/PAr53BIrCnJy3x6//cekDZkhFXspkJZyM9iDeiG9iNtrd0bElcLxAcDIpS6KjIw7AkY8Fm3NeC0BmeYjEYoGdF+3ffwLc2P0x9uksSalWsRhyLL6qrCkqCU49SxAa4W8asfH2GNRkQRAijyYeAvjAOzP3wkFOPhAKM98XNvK3MklHecgcy8e6C5aSJQQeLWhZYxBwRY2rndkqfABia+r5+XhZ4igtUnkYE4raRiNB6RxDVufeAbqZ28nVPHH2f2RoslYvbROU7dLLAu4lpfccNhQ7s95PCpV7Nw7BgvPPRF8mEPgtKmngzQOnz+ECDMLCwzmRSkyW5A66YXwO5zr6Dkaa1fYPd0gAljEUr6w2aPX5dKhvfbQ4AOa6gsS8qyZDKZhHvl94pzjihOKccDhHWoKGPr8mke+6OrtDttnpbzCGuJEoWxivFggLEl2uTkxYja7Me47bZbWFs5i9E5Svm2Tq2L6We44867MGWJDVwtX093PvkzdioqZt3uGSSwWCTKOYSzKEQQ3ao4AIEsGccURcm4KEMAJa47F5zzpWBjDPkk59ANJ1k5/xi7nDCw+dCjK4Du5gy6V3lZHuf5smSpucqFjZxM+VZWqWK2u5sYvcbFFx7y6ohCktWaOBWB0RCSG13q6/2V8W3QWOGHF1VnUliLcZxM13eSJqT1JiJK/ssEA9VmqqzKoqoHANdHqf73LEZrv4iuA1igzHuAwKLolyP6/Q3WV19mdOJGitwy0xhzrWeJophmTVHoOtoWbKxqCvewv2nWUI5HtBcOMRn2A8Gk+mOJ4wzjQNrAihV/GjIGnzWV1eaQ12+268oDIWAQ4LPz6mf2HOy7rx8mwwXhiKIsOXDoKFprNq5eZFLkOKsDWuIDJGM1rpiQ1RoYrbmsx6xvaz80pyhB2D3cAM9JqIIYhw6QeYD3ncU5DzXutWqKohBu6swlAiv9iKbSePGVV0Lt1XN95bPee/hUfAFnKs1/Px7U1+B9K590gkk+QZc5xWRAv55SFAXveVub3/3URZyM+J7XxXzgyzlGa8b5BCG6DHpXGPR30DpH2RilIiz6OgGp+1//Rqq39uQ+0NZ65/GK9VkRYaMowsTGb1ZAI4mcAOFLWc6B0WUoR1XBHhgrMNYx05nZu1MAQZHveG1z52V6hYOlgyc48YZ381P3v0ymd4iiiP/5Px3gH/2A5lc/arjx5iZLTccbXn2B3/yTJf71b15l0N8kzepTHRGrq5IQVIRBgEMHD+1h/e+2AVbw8XUcgnDYVgHRdP2EA6RqX5LSo3fOBn5EEByLkiRcaoX8+OwwSmpEUjEZDZFIlg/fwGvf+/d5n/40c60JUsb8g19a5B+8d8J/+F247/5FBkPNe99ynm2X8JGHFli7eg5XlL57JlyDFMq/1/T9CEqJBiHFFB53LrTtOV/iEJYppOpFk+Seg09R5BMUCid9fbyi/laEPBfIktYZdOkYj0akaYvJZIuqfVTKBD0egnMkcUK90abWblBee55/9ZFlUmZZOHiA+LDgA48Pubp6le1uj/FXx/zfH7SsmWc4fPwYD7zlHTz4qT/Eak0pJnh0L6CdDpRMyFotLl9d59ihA57YKuRucOJ2/e11ezLE/lJIj3iGyNCGgHkvIdzZvX7Rr+Nq8mOeF5RFiclzRJSA9sx1KZWvpZdFOMDG5Jf7PphbOsiWinntq+b43FdfQEWKH37XMr/3hSGTYZ/hoI89d46Xn3qEovT7K603UEpRlpVHFTQ7bSaTgiTyrYJKulAi2AUyquSvSkq9nxMB0RVYIj+ZMImoRPCUUn76bln8qTNhd+9YTBUI5TlKZVTnmA8ovPxvxZ+QoZyytXmVMi8Z7QhOzS/z9OplLNJLvDuHwIRWU4+WF/mI3YqHIErTkJzsCc6EQkoTkCq/E6zW08TVB6eKLKsRKc+LQQLP85fa1xUMVIvmlWhA5XAdTGeh+5vpF6YUPqrc2Nig2eowGgx8RL5HF37v18aUXLt6lcFoQLIAg52URCm+/Rsa/M4XQeuSYaERGJwtpwfpuL9Fvdmm39vafaBAe24BYy1Ce3hXRGoKF74yuJnW3+z1dSUhBFQRpxTXZSnGmD8VTe49MG1wSNXEMCEEjVYbXS75GQwOxqM+xhQUhUYI78iL3EuGbu9sE0cpuZn4++RcWHg+eKiQAElGY2YJa0o6sx1uu+Ou6bMSYm+0bzHXBQf+taSU/gAPZZ+9mfT1aMf1iMp1f1vr77X1Ew1PnrqTK5cvMhl1MUF1zzsYf3ALCXk55sqVVYy1/N4nt0jjWQ7WU55f2WYwyNG68M/F5Gyu96mmMHoGuYfthfBZAiiyRgMToLa9jsHs5bDseeYVkhXFUaBL7bkvjlCjI2x8f40aC9brLPjvV8fI7u8qGftasPOktVZzls7iQZQdcmGjTScxZA3JO97UxLU0d9+pqDcssoTC1YjTlOO33cfls08z2F5HKN+a5ZxFiDjccwl4st/84sK0nFNdV3Xt1cGwN2irzPMj/LoSwvMDPKnKK/EZaz1Jj0Aem+QszC/TW3t56gAFwiNm1hOskrTG/NxBau0Z0uEaO6pBZgUCxVvvTomaNV77Okm7YZDCspWn9PKUUw+8hSPbpzjzzOPsbF1FJTHSGayQGOumYa5Dk9b9VEEZ5k9UCBDhrlTrVwrh53G43eez1+lPvzYWsUcx1bmgN1D6CYlFUaDLnNnFI1y5tBXyQEEUp0xGPqmJVUx3comHP/5+kjSje+gwZaFpJi/R7WusTDk8Y7i07UiilF5vhzx/nHPPPISUXq5cSElKHalirJ1MD3sbSLLWCra2d+i060RR7Pe/szgrQ1mEPb6nGk4U8uSgl4BwGEoEew8/pjwL5zwXyhGy7TB/Qec5RVmQpBlFOa7uIMb62SK+vi1IIkmpNVsb10BIHsy3AMeRVocPfvYcW9u+bOSH6VgfvIf1VYzHXh1QhENRKT+pcOJwaYSUAmt8kBNJ5ccyV9e6Z50LITDO89OkEyihiCLl5d5jj/xWssTe/1XB1a5fsNaG7hlNWRSUEz9yfW7+GNvb10IgsFv29oTH0LExcQgVMykcVx2+JTJSjCd9IlH57erkFGiTk2azZO1ZDh89we133U9ZapTyZa8q4BMCpHQo60tsu/u8aoP0z0RFEVmtTuu6ROXPt687GLDWThWR9maCSngSn9yzyYzxpLXSGNbX1yiKnFtuv4eNq6usXjyHExrnvDPfa9oUdHtbSJXw0jXDDUcWGO30+aWPXsG5xDt/6etiVVQGMB51aXWWgtMupqWCW151h3fI1rNZK4KUlBICBOg3iH//6/URPInIE4b8c5MVJC08M1ZKD9dWyEEVGLwSskVI0iSl0agDc7RaLcqy8MiKNmxuXvVEnEgRRSl5PkIXBcZokIJ2bYadbheHJY5SX/qIFaYsEVIRxxlZvUGz2eS219zNzOwsTttpGaPqdBBBB8Fveo9eBExj9xloHYY4Xx8IvDLQ2et0mP5MhYRYZg8sk9bqrJw/w3jU83MRpkGMV0nzizinVm8zyB2pK3i5LBitTrDGTAVPpBQhEAgBhc2Joyx8Yr+5oiilKEtU6J+eIhXWK3hNdQFeEQRWZ6O11XO1aCuoQnWhAjQnnA8KrZ+WZ4wPdPNyF9KsTMUpZT4AAVIm7PTWGD7XZfXCc/zjA/NIUfMqeY0mH/hqxKjfwxQjLxtsU3rjLbLFJt/3wz/Kh9//mwy6m1hjSNMG+XgYXEiVwce+b8OYkFrslqxeWVe/7plV611rxB4nKIXD6ep5BwKTc+iypJgUdGbmqZwfYZ9JFTMe7XhCWiTZ3r5Kb2eDtX/13/JIO0HKji8bzNX4wrk5Bjs79LY2GI0GaKNBQOvAC9z+qpsR5g6ee3THl8o8CxClvE8hIECHjp3w/y88ylFNKZRSeGZ74CIQVtyUN7Nn7Uqx64wFntsjqXgFgtJqhHWU2teLrTHEcTJdb+DIJwMqCq02Hp1TMkYXY66urmAtLJ2a5aXza9w0d4Dt3hab65ZOZwZd5OhygnWGNKmj9cSLAhUCKb08crU3ZdC6QCg2trZJ04jU7fE3gSvDK5BP34q2Wyr0bYI5fuyhnPpJj7J6fyCnqKJDa4fRJWWee92JPOd17/gOzj7zOFdXXqYsxuwivt6KaoiSdYhYMBho0jRlpd9nUlQt6W4a2O/lFRmrUXHMzMJRZmYWuPX2OyjzgiJo16hYBo6Aw6CDONBuEFBdozZmui5wTPUoPInbTUW6KvXMyi/uRVasMZ7vUpR+XkPuJelnDxxlnI+ZDHvs4hfhv877I89L8S2Avd42Ko6mokBWeHLj7j3zxNFGZ5aFg8c5ceudqFqdoiiJIz8fgbAmp6hX6Ibbu6Z9/uKu29txmvwp3/Rn2dcXDBhDnudT6GIKt4Vw8pXZVrUYNzY2/NhFrREyotWZ58Bhw6C3zSQvsKZE65FnbYfxiw5HmiRIFbOxtYlzglrWYjiZYF0ORoaHtxfCtowHPR8ty8Q/DOlYWl4Cayid9S12zmFLjSXApMJPepOBlVNBZtOOCPbyC7yTrQIAx65T3VtW+LOcr1KKOEloNJrEcUJZFGEksC+jtNttrLVT8Q9rDNoajHW86vZX0R/s8OhDDzMe9qejapEJ1uRobVCxotnIaLZa/vqM8bmL8+15VvhOh91nI6fQkj8Nd+9lVRb5s2Cz6l5f17YHKKrN6KaORAiJkhGd2TmPEoWe/XyS+1Yu4zAho5uMB0RRjK1mJEuBKS3VgePfRrAL5PqPvXT8NrQ2zLRa3PLqV4dOBzsNBvxhZ732uggsXOvZ01TZpPOqgdPfA4z2mYKS0rOSjcFKDxs6u+t4PLHOoxJ7nVqRDwkkjcC78NBsLU0Y9ocURZc3vHqZj376ORAJh9qaK8OU1swiV1Yuk+djxKWLrL74GINBD6+AlobAEoTzPAyLpdaYpyxLhPKto1XN+5Vcnr3PcW9w5xXtfIYtw7quSgXTgpuxPiNzFhkn7CIhDilihsMeUOCIKQpPjBXEzCiY5G0mkwlvuXuGLz/8DFo1qMsJo0KR1Bt0e2PGoz5qdY3nHv1cQOXw3IYwStvogkgqP70TQb3T8UFKFdyHz1m1e/p7UKGZobQWEBA/ilqGuLS6wqrk5eFbi/A1dW3Q1mddzlmWDh9n49pFxqMeOIMLyIy/E36tal14Mqm1KJXw+LPX/D5vtrl4fh2pFN3tDf+5FWAFZVlMP4c2OYlQ1FpLePGoBsdvfRXaaKLAcL98ZY1jh5cCsrMrRW1Nlal6k0JQltaXHESYKVOVFVxVI8cHuVKAVSBCR5gx/iDUGqMNuiyxWhNFMQeO3sRg0GXY26DIJ2Ft7cLcDq9NIQqLiFPGE18iFM6Ga/XmSc/sZrQqIslqJGnEkRtuYGZ2lrLQ5EohhCZy0scxQoSuLeul0N31ZUtTJWMmDJvCerEvY8jzMRXK60miuzoVLgS+NqCcrkp8jd0l7QlBkmToYozRRUBVdv2ocD44MFoH8rgvkctAOMS5MFEzJGpSkmYNkjhB4piMxzRaLYz0SZOUcdBn8MWsqtG76hCqENlq39pAdnplifcvsq8rGChLjQlOUPqn6Bnpe0aiinAzHJ5V39/pMxh4ok9ZlkihQkvXHK3OLOV4NK0dj/IJw50dVHgwZZljJpPrMlkbHIFncSrfZiLd9ByzTrN0+CZq7VlwcMOx49Tbs/4hShGgqV2FKSH8oeMEYEyoHVaL1MORgt3Og92sf5e2Uf3s3r+vd7i+xcfXqCJk6gOHqq/VaOPvm6iOuj3ZW4Dv737tfaxcWuHChRWMOeBf0whcaJvysLQizerUmk2yem33wTmDcyLUVvGZjwiHfXXvXrFwhLHh+3K6CJ1zSGdCP+9uMFBlVxVz+5UHjUpi2q056lndO3JrGU/GTEZD8tASmYT+bFMUGGd9BO0giiO0DlMSY68BoaIotNVI6q02Ck1WSzh4+Citzgza+BkaFQoQbgI6tE0B1x2OBHQqyE95h2CcDw4EgSwHVjioSj5Vbd7poGBpWD54kvW1y1hThEOh4kz49/dZh6Y/2ArEWcFHP9Nlu1vwjttew5dPP0ZuIiaTMePxEOd8KWw0tNgAwxozAeKw/kLm62Ay6u8JylSQYb4+W/qzgoHdoDVkds5irAlDXLzUrcDX5K3xQYKUgkajiZI1jPUHmH9p/xmnURrgMOSTAdfGQ3RpePaM5up2j9efWOChcyuApFZOGPZ3/OtYHfqiAQSl1sRxJdTlpoFAZcaaAIGHu/2K8lWFhlUCTDimrXNShAmGrkLFqvui/VwLJ30QF37Pr39BrdXmtnvewvqVi1w+/xxCECYj7q616vM7LEJAvdbCWs1md5Nao4m1hmE5RgmvuyEgzHuRVMPB4rTGzMEbKPMRy4eOML90BGGs5zMJ3zK3sdllbrblJa8h+MjrybzVvTDaowZGlMgoZJdVqGfx7bMOKh6BtR6xtHaXc4JzvpyCQAnH7NwBnC2RgYPiD3VFmY99rV6IgOj5teVTdM+4d8avszjOcFiUVFgJsUpIaw3anTkEFl0WaJtQlBolwDqFCv7UOue7YIQLujFVEFwFcxWZEnBe9W8S0Cbf9rpnOVk7FU+T1XVOyceeOFq1qdZqGe3OAmlawxlffq7arbXVPllTCuH8LAaEP/yl8tMRC517RcYo9rX9NCVOMpKsQWtmznddaY1Tnk/nAx2Jm3KEwucPA8CMEAgR4Vw55QA544M/zJ9BCv4z7OsLBnSJrMgm1cRBUUFMuz9nhEE6wXA4pL/TAxOcqxA44UjT1E/DkoIiq9MwGikVm1vrpEkdKXw07TDoUiOcI88n4eDxkb8xxreFaEuUejKLNhoZp+SjEaYs6MwtkqQJLjjwKnPYe6hbaxFOsLAwQ6dZZzSeUMsy1ja32RmMglwnU+jNO/QK3pJTjsQra+pVlO6qh1iFzOwGAnEc78JaiCkUZDGhvdl/7+RNNzHbadHfaVOvNUNbmz+sKuZoFFAHFackaeIJYnvrokicNT6TFOGQEoaDCwscO3qYnf4OWZZx7uJlNrZ6u1mhMdiAgkDV7xoi0JBFg0ccratQh916LYBSElHPiGziX89o0qyGbnUwRntmr4yJpMCIkNkExbuyyClLTZlPiLMMJYXPOkKmniQJrXabZqtDrdnwLZ3GgN2t/1ZdIJWamLOGE0eWWViYo7vdo95o8NKLZ1ldX/dwqnN+2BK7jtUKpm1Z0zZLu5s9Wee48dRdtBcOsnbxDMPhptcRdxop1B6CaEBOBDRqHUYTUJHlocsraLymRb+/jQsoloMwThqqw0pJCzIGYhyOOEq58eY7PGTudtEQ55wPgsOBZq3lxJEl5hfm2ent0Go2ePnsBda2fO+6QPp5C85hdHBoBC336jWcH4es4pjb73sbl84+S397A2tLBEnocNldd+AYjQcIJPV6m3OXBigpOTMagUpQSjEaD6ZBt1ISq3cheJ8UDEmiOlltxjtkIVk6eJjjJ272EtGVCuorOCFVGxnAjYcPMDs/S38wAAcrl9fY2unj9UIVVYtWFRhVvAlPDXG78AgyaIlIGs0ZFg4cpdvbBOclcssy94p7xuJMCQ60KdGDLiAYjwZUiY0UEiEVkYyJogSpBImrY4yHltN6nXK0RbPeJk0Tf3A7B8b4CcVC0h+OqWUpWVYNjQttZ/h7cWC2SbNZZzgak8YJV69ts7UzIMn8DBEndks9QoA1bsqVcsZyfQdOEFdz/kBM0oyZuSXq9YbvlDIGiw2k4Nxnu2kNpVRQZwWEQ0UxTmusLv2QOCGRkUQK/5pRnJJkGc1Gg1qziZDSa/NLg3B+9oKk0sXY7ZTxj96hhGLp4DKL8zN0uztktTrnLl1mc2tAnk+86ws+2z/TKpuHKquvymIBy0cIPyHSRcpPPEQQCc8JsrZAW41w+KDIVfqyfv8R9tBUrt1Zf91OgIIkykiyzAcDaY2s1eKWW05ybWPLc2KkCudChW6JKZ9DBN8sQ4vuLScOsTA3S6/bpdNq8dzpC1y+cpW/in1dwYDWmjiWXgFKXP89tweekUiKYsJOtxvkMv0hqlQEAWZNMz9kIk5BWYuSgvm5RfJWB5yP9qt6p1KK7vZ2EAxJUAFmjpPUkyuwSCJy43s9kyil2WxTa3c8hLanjjRd1q8g/e10d6bM46LoMxqOPMmt2hh2V1hp1+GI6173lfV0//p7M45wMDovFDH1VOxmMv4Xr89eT566mSxNadYb1GqN4OTstH2zCi6UUhDFXmUuqCX6zxHILWGx+1KVJxVtbG6RZp61OhiM2On2pgddZZUgkZs6RQNSIoUFocKB8aczz+pue1GaQOSLIqz1I3FT/6n8Ae+EJ8gJr2tQ1RQrjkqlYqmkn8GulG8flbFCqYhGo05aa/okJzg5WT0TmDp6a3zv+crlK1hrmUxy+v0+3e0tnwVYh1BBZERYpgxts6sEVj0bG8oMoiolSUmt1mRmfhmiiPG4j8KTHCeTHYQUoVXIlw4m+YA4rvkZAMXYDwSq+uJhSrKsnqEL0qTWQXv+IFlzniSCm26/g4OHjlIYL0VbCSZBKOFZfw+Eg5XVq15ToCgYDodsd4dY68KSs7iwVGxwhALfdojYLf04fMmrM79Ikt7F2RefQedjhv0usYwRSlEUQ5SMQh3fHzZlWZBmNeI4RmtNrdYEZymLHELrqUduvH67/12fdGT1Fks33cuwt0U9jTh5252eSb2nNvrn8SEALl+9hnaeH1TmJb3+4PqfdS5wmMJ+tP5wEM6ryjkcBLU74bz8b61WY37xMM1mB4FA24IyL8iLEfl4jJCCtNbwxMDSTEugQkUIAZN8ggjXXWs0kCoiSbIpnyVJa9RbHertOeJa6tv+8NNjpRF+BoGAjc1tlpcWrvMHvtQG3f4AFxCWPC8ZTiaVx8G53QDKE6qrtb6rGVPdD2st03hWKaIoplbPUEqii4afWRGQYSf8mOwojoNojx8w5H2mm+4now3a5NN2VSEEcZz6CZdpShSlRPGuUJoOfA5bhsAt+Mmqy8Qnep7PU15epzSe67E1KtjYGu6Wj6bngKMqatiQvftgy+0J3v0fKQRWeVJehYpHUeR9kzPT+62Ckqjdw5tywe9K5FT23uBLSFJJYpWikiwM7fKTWo/fcAyVxFy+uo7ag+JNZdErpAo8OTag9Jcvb2CdoJyMGY5ytrZ71/nyv8j+SsFAtWmK3M9D90o8u/2rceRr0lOVOufY3NzEGEtRFmB9L2dZltPo1TuckFmGCC+KFIjE17dtUKCOY5SUvoaUJaRJilKKRrODigMxQkIs1G7EpxS1rEmcxERSBka3nUoE7z2wVYjWinzCYDCcBgkOh3ZeP1oEcqEn3uzqnhO+1nv6dwGvFa6qbgMPOdkAyF1f7dlrVbbOFJIEOHzoMLESTMYjhPX1c38dKiy+oIcAHuI2XkWsDLXSqpRTjZD2gKiYbrAihxdePDN9zpaqp7gIMKLYVRfEsdvSWL1EJVvrv78XlsbtYXiHUkWV7VWvCCIEFoFQJPwz2Q28QtYX7ncUJdehISqOgmKcROsCgUNavRuF71m/1ecyxjByjs1uz69B6/kwRmtMkWMRWLn7EafXFNABL4GuvaqksZ7kWSFTQpBkNebUIlIeCLXukkk+pN/vMRkOieLED7nCd4yUxiJdRXAUQTPCEKU1IimZjMdk9Rqm8EFOVm+QRAJpR7SbS8RRwmQyJjYxQjjKcO3SghO7EK/DkTvHiy+e9c/GXw7GWnThM7SqXOWEZ2A76zBut0PBGN89YQInxVrH4sEjjHZ6NJttlJIYbRiNdijLgslojJCe2CmVZDQegbUMR8NQ71ThtT1kmsYRxlqSWh1bakqtSRLfLz3avEisYrJaAz0ZU4xTdkmxocBWrfvdVBGcY4xjq3dmeo+9JLbb9Wnh56vyZuXHjPEDizw5rzoovaKnUBFZo0lWy8Dha8f49mFrLWmaEqdJ8A2EYABcQFV9q3BOWeTIOCKSGWktRQWfJ4RCJTFRnAYOk/alKhP462FPaGu4cvkKC4tzryhlOiZAb2dINcPAWh8QT8ajsBf90Bw/OrtSMQzJiNklSVcBuTYaa3x5TCpFlIRatvMzHCS+M8fGypPK8aVMJSp/WWkLBs0KGr68GKSBBSGAjUKJTjuE0+QAQlJGGqnBVW2dld9jN+AHGOc5mztdpIioCHXGGopchiAqCG8JN0UWPPLl/cHecqfVJdVsgKqMpryUJrHybduVR1NSgfLBjnV7VFCr5xL8aBTey6NDEVEUew4BPuh+8vGneeD1d3Lm9Blc3QuD+RbR3VbSV5b7tDZMrKX74o4n5Ibkx+hdafG/yIT7KzAMVlZWOHr06F/2Y/u2b/u2b/u2b/v2X6FdunSJI0eO/Lnf/ysFA9ZaVldXabVa10Ht+7Zv+7Zv+7Zv+/Zfrznn6Pf7HDp06LqOv1faXykY2Ld927d927d927f//9qfHybs277t277t277t218L2w8G9m3f9m3f9m3f/prbfjCwb/u2b/u2b/v219z2g4F927d927d927e/5rYfDOzbvu3bvu3bvv01t/1gYN/2bd/2bd/27a+57QcD+7Zv+7Zv+7Zvf83t/wPX7tXNdSBmqgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_4/1720425300_tango_video2audio_clip4clip_4_best_steps_300_guidance_3.0_sampleRate_16000_augment/case1.wav\"\n", + "show_mel(file, save_name=\"ood_3_wav.pdf\")\n", + "show_video_frames(\"../data/foleycrafter/case1.mp4\", save_name=\"ood_3_video.pdf\", frame_rate=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_2189924/99652230.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAzCAYAAAAKPgvTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACS1ElEQVR4nOz92a9t2ZXeif1ms/q1+336c/u40QcZEWSQzGRmMhtJVkollWUXBFtVcMH1YPh/qHcDZRh+MAoGjDIMFaQqqaSCpWwkSqlUZjJ7kkEygow+bn/v6c/u9+rXnNMP+zDkAlyACqJcD3k/4Dzdg3v3vGvtMb4xxje+KZxzjud4jud4jud4juf4Cwv5P/cHeI7neI7neI7neI7/efGcDDzHczzHczzHc/wFx3My8BzP8RzP8RzP8Rccz8nAczzHczzHczzHX3A8JwPP8RzP8RzP8Rx/wfGcDDzHczzHczzHc/wFx3My8BzP8RzP8RzP8Rccz8nAczzHczzHczzHX3Dof5tfstZyfHxMp9NBCPHv+zM9x3M8x3M8x3M8x88AzjlWqxX7+/tI+T9e//9bkYHj42OuXbv2M/twz/Ecz/Ecz/Ecz/H/Pzx9+pTDw8P/0T//tyIDnU4HgL/0t+8yGHYJhwm1gPF4l2t7+3i6YXpxSZnXmLZksVqxe3iNl2+/wCs33+Tzx5/xD//+f8PyvCIedFms1uwcpmzvdbn//pxHPym5ea1HsqP5/L0VzmiMc3ie/oLJBEHIeLSFFJbj46dMV2uss3Q6XfIsw9Qlng6wbsOEwiBCe4r1eg2AABACIQTGWgSb31Oe5PobhqQDSZKQjBNqYDDY4tr+NaIAppNzslUBtmW2nLO9s8+dW7d58+7XeHZxxD/4e3+Xs0dL0nGX5TqnPw7Zv97l6WdrPv1+xuFOys4rXT7/+BFN1RB2PbpbEbdfusGrr9zGVx6+l5Cvl5xfHPHo6WO68RDluvzR755SFJbtVDI5P0FLjfICVllNoCS/9I1X6CQx33/vU56dXtCNI15+8Sa9bgcnBEfV51hvTRTGdLc61MKSdodc279GN/GYTS9ZLjIEDbPFnOFoh9s3b/LWS19nupjx3/63f5enn56T9HvkVUXUUVy/PeD8Sc6P/2TFbj/h4M0eD+4/pVwVBJ2AdORz/e4hr792m9gLUTKkLgsWi0s+f3if2OsQen3++A/OWUwr9nsBF+dHKCDwI9ZZiwC++dUXGQ57/OSTh3z+6Ig0DHnphRuMBl2cVJxUD2j1nMAP6G73aCQknS7X9g4ZdFMW80vm0yVCGBaLGUm3x42bt/jKy1+nqg3/3T/6u3z6o0ekvT6VbZCe5dbdEfOLhh/9/pJBEnHrzR6Pj45ZTdcEiU888jm4s8eXv3SXTpjg65CizFktLrn/4CFS+HTiId/9oxlnJzn7g5jJxTHKWUI/Zp03WOt450u32N0Z8fDRMR989pDQ19y9eYOd7QFWSi7qZxTqAl979HcGtArCOOFw7xrjYZflYsJsskBiWSznBFHMtVvXefvld9Cqxz/5jf+aH/7RR8RpSislxpXcfnFEU8D3f3dGTMidt7scXZ4xPVsRxj7h0GPv1hZf/tKL9NMOvhdR1RXZfMKDhw+xVtBNR7z3vRWPH6zYHyYspqe4piEMQorSUDeWN1865OaNPY5OLvjhTz7D04rb1w853N/CCsGsOWcpj/GVT3+nh/UFyg+5tneNna0R6/WU6fkEnCPLlwjtcf3GTd565S2SeId/9u1/yB/9q3cJgxjp+5RNxq2XRkin+N6/mqIKj7tv9rgop1w8nRBEPsHQZ+v6iC9/6SW2+j18HdG2DflyyoOHj8jylvf/MKdeWpSSWAs/NWoXCF548TWiwPDqdYfE0en0eHaS8S9+93scHo65dX0XpGJlFkx5jKck/XEfIgXa42DvgL3tbcpyxeTsEqylKFY0Fq7fvMWXX36DUf8Wv/+df8rv/NZ30AT4acgqX3P9xQGRH/Duv55QzwUvfanPkozjh5cEviYYegyu9/ny6y+wPx7jqRBjHfl6xpPHD1msMwa9bR7fM7z37oRxJ6QtLqmznDAIaFooKsPNvRFvvnGH5TLjT773E5xzHOxscefmNYQnKazPJyeO1fKE/qDLeDdCRQ07ex2uXx8g9Zr5dIppGup6TVm3HNy4yRt3X+Zw51X+7N1/xW/+9/8CKkXUS5ivVhzc6dHrxvzoO1OWJ5aXXutTxxVP7p2itSbsefQOO7zx+l1u7O/iyQBrIc9mHB894WK6YNAdc/IUvv/nl/STEF3PyVZLQt/HWkFWGnZHXb7+9ksURc0ff/d96qZldzzkxds30YHGakPeOSaOE3qDPsIXKE+ytbVFvz+gbSouz87I85ymLmidZTjeYdztsDW8ydHZfd790x9AHTIajVnlDf2thG4n5NlnGcuzluGWxsYt50dL4ighTDxcYBhtjXjh9jUiP0DrgLqqmE0uWa1XdDp91kvJpx8sEbZBu4pstSSOYrT2ydc5cehz9/Y+QggeP37G6cUEcOzvbuNpRdXU/N/+q//6izz+70QGfjoaqIWhEYZ6sUD4gmLtsVxqrl8/IAwPGPdHfPrB+5w9O+JMPCLQLVujLTojyd/8T36JoyfnNGXNRx88QweapNPF93KkqDm4vsNXvnWHRx/+Hq1zCARhGGKto2kacCCExtMGXIu0DcI5qmyFMw6HoGlrnHMgHHnRENoALR1CSqyxWNticbQWpBRI6xBO0AgoBQTSMp8twbcEvmCx0PRvXmcn2GNrMOLpg884O3rMma2QsmBrPEYn8Ff/9s/z5PEprjZ8/tkpeVmSdPpEfoOiYrw95D/4W9/gN2zBYt1gsOT5mrOTCw52hvzqL3yLawevc3L2iB+99y7PHl3iak03TQj8gLJqSGOftVbM1xlpV6OURCuJ72l830d7GgNYpdC+zzQvmaxK2k6NUg5fOOaLBU47PA3LuWI8vM14d4uXXnqZy5MnXD57ymVdImTO7nibIPX5K/+rr/P0ySlVVvP44QWXkwVxp0PgG7TMSHoRf+1v/QL/+tt/zNHpDCcERZFzcXrJ5XaX/8W3foVb197icnrMjz/4AQ8fnmIqSb/TIY7WLKUljkLSwONyniFUgFAKBXieJgh8tNJYZzFCIH2fWdVyMV/TxhUyMigJy+USp0FLe3W2Fxhtb3H7zh2y6QV//sdPmRYFUpXsj7foDgf88l9/mzuv71KsC05Pljx5ck7c7VEt12i1xg89/vLf/Hm+/933+PTzxygvYL1eMT2bcXF2yZu/+CovvfAOs/k5H378Ax4/vqDKWnq9lCQokbIhCn26kcfp5RQrNEJqpAOtNHEYoj1NbQye8JG+x7JpOZ0VtGEJsUEFHqvVCqMd0LKca8bDiNHWFtdv3MAWGX/6nT9gtloidM3uYMj27iHf+JXXOLzTZzlbM5vmfPrJEVGni3I1vlZoofjVX/95Pntwj3ff/ZAgilktV8zOl5wen/HGL97lS6/9Astswccfv8vx0ZT5ZEm3n9AJDVKWBL5HL/Y4Op1jhUTIACUNSmmiKMT3fWprkUIjtEduLUeTjMYrcIlB+pYsy2hLQxRXLBea4SCkPxqyt7eH5wx/9p0/YDGdcSQbxr2Ua9fhzZ+7y+gwZH65Ils3fPiTR8RpDxqLrxZYLfi5X/0qs/ySP/iD7xMlCevFmuXFirPjU16/fYu3v/Qtyrrh03s/4ux8wez8nIAQq2qElDgHQtgvipG2KUhHQzpd0EoRhglx12EkCOXTAM8uVzQS/MEhVpXkhcHUGX4kWC80dS+kPxwwHo9JPcWf//F3mE7nPNM1g45PEAW8/OUDku1f4vJkRlW2/PhHj4mTlMjz8PWcRsBbP/c6Xs/x7d/6Y/wkIltmZBcZx89OefHadX7uK7+KFZrPH/2Y2Tzn7OwRST9kEAu0XqA8TVfHPJkvaazADxKkBKUkYRBQhy0GgRUCpzVWCZ5N1syWOUfHEzwvoFpXTE40fhLy5KOS98MZaQe2djq88voBi/pTLmcXHOmWbiRJOl1uvDjkf/2ffYvTowltbfjRDx4RxQlJkhB6C9YCXn3rRfZe7PJP/vHv4cUB+bogn5acPDvl7uEBv/D1b6G8lAePf0ye1zx7tibsBow7Ab63QCnJsJuSzRes8pogSpHKoeTmbCCxQtIisdLDasmT6QojLIc724SdEJTPOpvj+4KyylmuLXEY0h12uXb9gEf3PuXi8oLFDKTN6PcGjHcSfu5X3qBYWBLd48njC8Ikod9NWaWSZtZy6/YeB68M+d6ffUCapqyXGUhLUxQo2/LlV75GlIy4mDzlk6bk8mJKJ6yJVIxSAoci8Tzq3JEVGUrWlHmBMDVNscLzQ6xtcUIADj/wWBclWVH9D/L4vxMZ+CmKyrBY5QSRJsAnWyy4EAapBZ72sJXFtoadrRGLLOPTT+9TS4833/wKWzs3qZcNH7z/CVVVcXBzl73DXe69P8Eaw3qdc3pyQVNbnBUIAba1OEAphZACpRRhIPFEBaYAFM4IlPTQOsY5gzENTliwjqoukIBswTpLazd/H4CzghaHawVBHFGWBThHEPoEwidfZEw4RfsKz/NwtaHIcna2d5iv1jx8+IxSf5d33nqHre071KuW+588ZLVcsXO4xf71HU4eZlg3o8hKnj15ivMa7ry+i5GSx58ecf5sycfqMTfGnyNyn+Nnx3z2/Qccf7Ckyc9x7WPmRQcjA6rSgAUnNQgFGJwTCOtQAnCCqnUUVc18XWCEpmwhSTzWxRqbrQginwiffJkxAXTgEwQBtjLkixW7W9tMlyuePjmh4k/56tvvMN66TZMZ7p3eYzabM9oesHd9j9l5Q2vPqcuGZ4+eUdqMG69v44UhTz45ZnY854E+5v72Q8Iq4ez0nM9/8IiTH88pliX33TGXRYx1IVVlMO3mbFYqkA5nHVhQQiKEpDGCsmlYFwVOhxTGEocpRduwzmoCKwhDn2KVMxEW7fkkSUpTNlTLBdvjMdPFmtNnF/yB+RPe+eo32N25TVNaHk4fcHk2YTjucnB9l3J5inWnNE3L8dMT1uWMw1e2SHsdjj4/4/zxhAcfPOP++B59NWByMeHRj484+fGM5WTNU3fOZRHjXEhVtdjGoISPExKrBcIYhDUI4UBA4yRFZcjKmgpB0Vri2CO3LcssI7I+YRRQrQtm4pInWtHtDSnjGFNkDIcDxDxjcjrhO82f885Xv8GNazdpS0c5vcfZ8SW9UcL+jT0mJwusOKG1LUdH50wXl+y/OKK3PeD04YTTe5c8/OiUe8N7jIMtlvMV9997wtP3L5mdrzh6d8q0DMHFNLWlqQ1C+hgkSgtc48AaBA4QtE5S1JaibhCrkrIFL9hH65tUVY4xBUJnSFsxl1OeaU1/MCIJQ5Rp6fU6WCuZTxb88Y9+wNtCcvf2XfYbRz2/z/2nz0i6EXvXdyiWFUY8xRrL+eklC3PO3p0+o4Ntzp/OOPr0jEcfn3Kvf4+dZI+2bHn0/iMe/+ic82czTOlhnUI6AQ4cgrY1gKMsc9oqARsRRjECSQsUTUPVNMyWJUXjMDagdQOmszMCTzDY7pJ0aiZ1BWbCdmWJA00hJZ04oa0dy/maP3vvR+RC8cqLr7K3LalnFT/5/D5B7LF3bRuJxKhnGGu5PJ8jyoLRtZTtm9tMz1Y8++iMZ59d8HnnHgfdfZTzePrpYx7/4ISzhwsuf7Qgq31cm2AaaBqDlB4GBUqBaLDWAg6QtAjqpqVuDNNlTlFb6sbQlivaYoljU2SJmUMKjfZCfD/g9GHKgw/O6Y5XvPR6n/Uq490PPqDUmtdf+TI725pqXvPhg/soT7B7bUyapljvBGMrppdLbLqmtxuye2eX5TTn6YdnPPv8ks/S+1wbHJD4Kc8+e8KDHxxz/vmSy/fm5I1H3aY0LVRNDUJtOjta4OqN7o2rItMAZWOo25bZMiOvLVJ5uHybovYQnRhP9/CpKJaWfDUlCjRSCZqywLYtSRCyXK6YzGcUSO7cfJEk3ULVS9bnc5qyYDDuoX1N1TQURcl0MkedNCjfkgw0VisWpyVtVXN5POFy75i2PuLZsyM+/vBzzo6mHLlTLAHrJkEqiWnXBN6GbBsEVVkAFoGlKjKeHp+yymvi0ONyMiEzjtVq/W+V3/8nkYEvv3mDOE157ZXXeHL/Po+fHZGvMx4+eMTu7h6hjAiihOGOoj6Gdp2zvlzy7NFjlGxZXkzZ6napRy1ttuT46VMaU2OtY3qx5uH9MzwdYYzDWoMxBmMNYRgiEGitSUPJ/+E//Vt89sk9bt55kX/wT3+XWWFxyuNga4AUFiNqOp2ETz98gDSWt197AaU1P/nsPpPZiiAICKOI2liEhl/+1peYLp9hneD1V7/E+fERn99/RFk2PHzwmK3tbUIvQQUxwx1N3VraFZSzNSePH+EFmvnZBb0w5mDcw9QZx48fU5QF1hqW84J7nxwT+l1Eo6jzEjUFbxZwulzw93/ybVz1zza/bwTOaawzOKlxCJyEIOmwf/0mI9EyHA745IMHmLLBmk3QRVz9IFkXNZU1VMbxK199k6w5paxKXn/1S6xmUz76+DOa2vDowWPG21uEXgwqYLC7TWUdzVJQzTJOnzwlmydcHp3QCQMOxj1qU3Hy+AlZnuGcJV/XfPbhUzyVoFpNNa0QM/DmARerJf/dR/8CUf9zyqKktRKcwrQWq3yslDgJOkrYuXaDIYbeoMvDz55SLLMvgpMQm8DsnCArGmpnKFtwswOcuMnKztl6KWFvV3B5cUpbtzx5csRwNETrAIemv7tDjaCdOtplxfmzI6o84+L4GYHS7G/1yKuCk8ePWa0brDNUZc3nHz0FP8AnoJ43MHN4i4D5OuOf3v99ftP8AUVW0Bpwzt8kDylohcRKifJjRnvXGR1Ykk7Ms2cXzM9n2C8SJj+dYVHWLXVlqazjoH+N3d428+mEt9++y7Af8eP336e2lmdHp/SyisPDQ5STDLZ3MExop9Cuay6Oj6CtuTw9QqHYG/dY5hlnz56yWloa20ItuffxI2QKYRTRzmqYtARLTbGs+BdP/ox/+ff+jKooadvNO9kaC0LTyE11JbTPePuQwY4lTAKm0yVnT8//zdnE5mwOqFtLPs+onGRdSMwlZKsVSdJhOL5GqUrWsxmLWc7WjuDajW0CqeiOd7ByRnsJRdYwOT3FV5LZ+TGuteyNe0yXKy6Pn1HWAoulbR0PPntKtCWJgxSzNLi5xV/51POW3z/+Ad/5xz+kziuqxuGc3sQcFAK9KT6uHkzTVFhraJuG9WqNMyG+DqnqmrppcIBxjotFTmUlq8WExewj/DCh0AHrab4pYqKIIHaE8ZzBlmZ3z+Pg2g5d6dFcGNaFYX5+wZPwIavZGU1ZszfqoeSC2dkJBg/jLMYYHj84oXfNIwm62JXFTlu8lYeZWr57+jHf/62PqcuSpnFYq7AWrJM0yschQCo6412S8RipwaG4/8lDnHUIHEJsijHnwDi4WGRUTtE0NVIJlNuMce1VQWKcwTYFxjY4LE1T4IRHt79DOz2jqSuWF1OeJo8oshnlumA86GGMZTWZsl6tMBiMtRw9OacOItKoh8scdtbiLTVt0fDev7rHj3/nPm3ZUNXN5mxOYJ2gVh4OcEKRDLe5MRyAMARRxMc/uYe17iqWiC8qZAdMljmVk0BFMZ8Sxn3ydhNLKxVgbEFWOVA547HPeFfhRx2U71M2lqYQFPOMZ4+fIKUlsoog8AlDj+VyStGsKZuc1loWsxXyvMFTHvkyp14WtPMGGsHiScFvfPQvWcxWtMZhrUQKuYkQnkQi0dJDegGdXkwUR6yLgsf3p1RKsJiHG9K8WLLMKwLdZ5mVVBbyvPrZk4H//d/5z4hjnzgY8dmgx2RySVFYFtOM4+oEjU9drRHUBIHH5Nzy8fcfcfz4nOFOTICl2zqirCDw+9hGoLTE0VKuKs7vbVpwYBFi8yOFw5oG0xqc2zD0b3z1Df6Dv/7L5EXFux9/xp9/eEzjFL1tj/X6GciShZFUTU2IotfzCMIU5Skq0xLrmE6vR2kh6aV8852/wc6ew9qK0B/y7PgTTs9OydeG9SrjuDzDUxFtUyJsge97mErw8IfPuHgyYbAb4ztLz0iCVY5KY2Sr8HwJwlDnFacfTqlawXE1o65KXNVizU+THBjrcCogiBLCOCbqxKgwpD2asyodUd+nridIMpZmRt0WSLv5IjbGgtiwXoXEOkVtHFES85Uv/Rq374Y4VxLqAZPZM05PT1jNSvKs4rg4Q6sQYQ2YHO1rXCt49MExl0dzRntdtGjpOUewygjCEG02IwqEo61bzj+Z01ow9ZQ6L2lrgzNs2lU/PZv08aKIIE6JkgQ/jjk+WzFd14QdDyHmtO2SjAllW+DcpptjjMMJrvQeEouiah1BGFDna6rSUrct3z1a4ClJtxPRGUjiXk6VzVHax9eStl7jaQlC8/Szcy5PVgz3OviqpS80/ipDColqFUoZEA7TGM4/nWMAU09oq5q2NLTmKrAgaK3AiQAvDAmiDr00IYhDTic5xbzETxRhWJJVcwpPUNT11dncJkA58QUhsEJRto4gjHh2X1LUAeXaY/lkwZ27KXl5g9qWGLdmPVuh5IwkUTTlEl8JlPQ5enDO4vQnDPY7eD70ncBbZnSsQLcKIRxCCmxrmdyf46TEVjVtVdFWhsY43FUF1ViBkxG+HxFGEd0kJkxjJsuK7CJHhopkUDHPJjQhrMvNmO6nZ3PuKvgicEJSGoEf+uSzSybn5/hBwjybsZqdEEQdAj9EiJSnnuXe1hnXb6f0h2si36Ckz/TROYuTDxjsPyGJBAkCucjpVAbfKCosQm1GgvPHS1anHm1V01QlbWloWotzdvPcDFjhoQMfP0pI45jGWhbTAiUVKIGUEiEMbQM4R9vUtI1FWAVGcnlxCQgskrJ1+KGHH/mYy4YyX2KsRUm56QAhUdrH80LOH3d4EIaMtjxefMOhvYDFswveP/2Yx/vPiFNF6sBf1yRFg2+6lBKUllhbszxaUM4C2qqhqUpM2dK07krkoDAGjPDRvo+fxkRJlzCJKFpYPZsiFHR3FZPZCTJumZ8bnLVX1fNPK+hNbeGEpGpB+ppXv/QyX//a3+CD9z7iwx9/zvnZjLoyWH7aUXBYa2nbhrZOmRxdZ7T9OuXpx3z8/Wc8e3RJ0pWEWKLap1sH6NajUgLtSZy1ZGcZJm9pqpq2rmjLhqbZfDYpFMaCRSG9FD+OSOMuYSehRZI9nSKkoLfjcTk/RQc185XDmvbqbFfdVMQVUZVURoDWRFGAwKOtK4piRVUtMdbQtg1l09AaycWRR/ogZLBTs7Xv4QcR60XDk49OeepfEvUV22nCUHexq5xaWPKOR1blrIuWYJbQmBDTNmTLDI1H6EUkYUKdw2JWYowCKfECnyCMCQIftMfxxYrWWfoDj8rNiQPDenGJaSqsk7jWXAURhzPm6h13WCfxvfBnTwZ2el/GDwS+Vlw/fI0o+j1OT2ess4qmtUzml/iBoJitGfeHHN4+RLZnnB/PMY0l0JbLRUXgBQzvjCF0KLdJ8q5tadeKtpE4IfD9iLZtN7NxramqGuFJVJhgjSOMQpq2IeoZjGixVlG5jExP8TxHsXQ4JJYNc7e2ZTwaEvX6aCHo9XpYKQkS6MZ9dvs3qZs1WgjErqDX+RecH12wXpfosOFick7SCSima4adHns3d5HmgpOTOW1tCfyWybJFI7l+fQuv46HFHGctzlqqWU1lNt9X53yEl+AHPr1BHzwNHnihoDvwGO4GlG3G8dGE9qjBEVKTs9YTlGqpC8FGAqlonKW1hm6vz90XYwIl6XY7DJXGDwxpOGBv8BpNu0TYlmC7w2iQcvJkwnJVIT3BxcUF/UFMPlsziLvsXttHNJqTZxOaxhHHMFnWqMZx/bVDgm6Md75COIt1lnrZUDeOKxqL9CJE4NPt99GBj1MSL3IkPcV4L6R1JcfHl5gLg8OjcSWNnmBVQdts2L5DbZKKM6RJyt0XbhF4Hp00ZqR9dNDyySfHFKsWpQMwFctlxuy8RSuBH/kMdjx8vWDrWkg2z+kFMdt7OwjjcfTojNPKkXZhum6QpeHwxeuk/T6z5SlCbIKHWTdUzZWazHlIneD5mm6vhxcGWCnxI0HcEQz2QtAVxycX2LkFFK2tKeQCE2SYdpOEHOoqaVrCOOLO7VtEgUcShQy8mCAwfPzpA85OZvhByMPZlEf37uP5Hr4fo/0Yz+szfVIz3IZ0WDEeeox2RjirOLp/wmnp6A4U87xBrBv27hzS7w8o60uwBuvA5pa62QRK4RRChXieR9LpECYJrZB4kSROYbgbocKG07MLTFYi8DG2JRdz2mCFtdAYAAXO4ZzF931u3bpOHASEnmYUdfGClqaccmEMZb7GYZEC8uXZpt3shwRBQrFOWJ5URL05b73TZzAeIgh58vkRp48WDEYBk6KBVc3W9V26gzHN4hLpNgnNVpYqK66+fwJkiAo1cZySpgmNUKhIESeO0W6En1ieHZ+w/tCwXihiX6J8i6+uSBQGa1pOLxZI4dO0jnVhefWVFwiURCU9tGe5XBRMLgS0CqUUzpqr/o/DtDU4S2YMgY04fSrYO7jJC69fw/N2efDRPU4frhhsR8yrCrFsGO3epj/cY1EcoZzdvIY15EWJs+7qbBEy8IijDt1ehwYJkSSJHMPtiLgP57ML8of5FYFtKamovRUIR91sYqVzGwLnBBxcOyTwA3zpCDoDhHYcHHT523/nP+I//t9JJpdnnB5f8M+//W1+59vfYb10tK2jNQVaaFqz4sN3P0DqBD+MUPoOO9s36USa5eXnTC5jbr7wDlF/xjz/CMF0U+W3jnyab8ikESAiZKAI/ZhBv0eLRMSaIHQMtwI6Q81sOePo8RrB5vNXYkmlFggtKGsDKIQTXxDVvf09DjwPjSXpDREKnKgxtqSuDEVZkOVTrLEb/ZLWCOmoyorVcs58afHjDv3+gP64T5k1zCYZeS6pI0vhK0It0V0fI2ryasWyrAkrQzvbvJP5ukIKHzWOMYGHDSXD61tIXyKEpdOLGW9tkxdrPv/0PotVgSAkTFtqOyNRisZVWKExDvK6pm1rgjBmNx0QBpIwDHBS0AbmZ08GLmfHbI2HBLpD4Me0DSxXOePtIXESAgaDBKGoTc1gp8vOzRHT6ZLJ0YrBbod4lBJ2UjpbAzrdmE9+fAo46saiPY2UAuPsVSJwOGuRWqO0pikKOqNtyjzHNTUSqNsa0xqEgOW8RAYhadhFVhFRuMCVBeKK6aZpRD5fkK1y2rLCiJYbd4ZcTh8Sd2siP6QbDPBUAFYyW+SMtnvEaYRU0JgGpKZqa0bbXXZujZlMVkyOVnR3YzqDlDAKSMc9RltDjh7PAWgaRxtFRJ2UpJPSHafowGOZzXGipJUZzrPgW8Jdj2iY0GQ1s/WMpo0RCJaLChkFdDu71C4mTRbk9QyxWZ8gSUKWVcVqNcfUFUVTcevWgN/4J9/lwaOSuy90uXtrCyUVQmgu5zn9YY+0FyF8SWsbhPKo2po07bF7Z4vpdMnsJKPeiuj2EwLfIx532d7f4fxkgXPQNC2NiQnSDkmakI5Swjhgla9oyTAyB78FzxCPfeItw7osmd2fkBchEp9sXSMjTX94gKk6dDoZy/x80xmwligOCYuC5WKGbUuWRc7tmwPaasVqvsYLQvyoQ6fbRQqJFoLWtCwnNR98b8ov7d9Be5aibejEir0bW8wvF1yc5TRNQH/cIRgIou0eOwd7zOc5zjnaxlC3Ej/uk3RSOsMOYTdmla1o3BorC5RnwGsIBpp0p0PZ1GSP52SZRoouZdHiCUlvtAdth7xTMF2eY+2meg7DgCTWLGYzaCKm2TF3bg5wtsCYiiKvAYcUUBabqkYqDyk1UZiyuojRSUXyTUV/LNi9scVquuTk6YraBAy3UvxOQu/gdbYOIyoD8BjTOupGoqMecZLQGSbEvYR1kVGbNU4WaN+AbvB7kmS3S2sN6+MZy5VFCJ+6bsmX0BnuIlxK0amZzi+uzmbxfJ808ZlPZ9ggYHp+vtkaSgV+KHCtxlqLde1VS7rB1ZvKxpkWUyqCqI/gYBPkbtSs5xlP7l9yUVuGWz2i3X2S/S2Ge2OEr5Dy2YZ81wI/6hMmCZ1eTDJMyauKslkiVI3vFTjd4HUlyV4LEprLjMrWGOEjA4+wU5MkCYGXUqw0l2fnaFEThSFlY2hMS5YtsEozv5xyuJfyla/d4j/9P/4aH/3oPh//6Cn3Pj9jvsiwxoCQOBxIizOGqjJ8/pM5q8uYzmAbJTWJc4QqRQ0MlbfgdHGDeP4C3d5dbt7YRpZHGJOjfEWYpnR7IekopWwa8nqJUCVatlivRSeQ7ndQvqRaLLicLYExtnUspxVJd0zgJbSppAouNpTFOaRU9Hoxs9l8MwKZz9kahVinOVt8RBIExGmf1964SzRYczJ9j4vzgigNKUuD9GHnoEM1qTl9XHFx7mgMLLKK3vCAfvc28+kl56d/zu7+IS+88pf5pV/4Zd6Xf0g2eYS1NXEQ0+kmdMYpDS1ZsUSqGqEarG7xYke6n+LHHk0153w2wbnxpis0yYniPrHfgY5P01uCq662QwS9XsJkPqduKpbrNZ3U4+D2kC999S5HT885etbibERRlijfJ4piAIqipCwLlB3SLG8ikyGBbxiPQ5rqnHW2xHgSPXqd3vY+Sh/RyDMMF9RNQV4IWi/EDxK6W12iNMZPfKSyOK9FBg4VSHwfon6ASCvKuuCTBw84fbLRQNSVYLyX0LQhWo8IY4Er1yxWGcY4lBY0riYvW/JihecrokT97MnAP/pvPuONt7d447URUay4df01Pvl4SlMa1maNWRuUJwm1h1QRhgajDFJKlJCkg5TBTkSR5ZSm5rVbX+KFu0ve/d1TtKcIxoL1KbhmQwKsc7TWYpsGAaxmU+T+mOV8QbVe4VDcuP0SNy+3kAS8ePs6164d0Bts4/sdLp/e5+/9V/9XpANnDEdPn3E0mRHpgE5Hbzq0VvEP/+EH3L5T8PJLfV5+cU4UJdy68Ro//MExVdli7RqzMkgNobcJcAZDKw1SCSSSpNth6yClyHJWRcaXrr3F6hXHd/xHSKWIdiWyW6PSNel1iZWG9YOnG8V11dI2Bo0kK0OCTKFklzsvvkXsxUiXcvvmPtevH9Id7BB4CdOn9/l//d//TyhAWMPp8TEPTyZoAWLokbcOITy++yff470fPGG0PeKNL++ztdvl6MlLaNXB1AX5akq9nLDUEHqaqJdihaGVDqHlZqsjiRgddmjLkvl6wdsHX6EtJL8fPUI3gnhbIwYtRCvSGwovLDi59wSlNG1jN2dzgqJyrNY+UifcvPUqASnKDLhxuMvNW4d0R3tEfodqccl/+X/5z6/aeo7zizMePDrCGYfe3qco2bBqJbC2piwqsmwBsHnXpEIqSRCGmGJMcfoWW7vb1NWC08f3SboeQcchZxeMR29y++4LGHtJ1TziYPcGHjG/lz6kmdWEI40cGVy8IjywRL2K0/tPkc5tZpVFizKCsAxYrXyUTrhx43U8F0HTY297zJ07N+gPdwmDLrZY81/+n//zTVPVOSbTCQ/uPaZtaoL9Q4rKIghIOj5KG6TzcYC1m7aSYzM2E0BrKrKsJZUdyvltyqQPnkFIS2/QkuxEbB1ozh9rHn2yBdU2O1sv8ws/f5vzJycEfkYVZbigJtyFeGQ5e/AEU7dIpamKFnE1klmvCpQXs7//EqqOqPMu28MhL794m+F4jzDs4QvH3/9//Bc4O8EBy+WCB58/pKpqbuwfUJQGjOaNb9zkK3/lNstTx2cfHPHw8yOqvN6MzHBYNgShrBoWk4IP3y3Y3uujfEVbvcT1W2/hwpzOwDE/3yXyXqKfdNgZz9g9uOTe6TOCTkiwIxBxQbDt6OxJZk+OqLJs02nMGzACXYesshLPj9nZvot92adad+mlHV5/5QVGo13iZIBWHr//W3+fo3vvgrAs1hn37j2iKCqu7+ySlQ2mldRtQe1P+fX/6Kv87f/kr7Fatrz33qf803/82zz89BIctKZBKx9DTtTLWBUXPH32hKa1aOkxzhJ01MeTI9qy4Md//j5pFLIzeIGXf+kbJIHE6ZqJmZCLh/i9ktXJMflsTuj7lFmLqS1aB6zWmiBKGAxvcedlTTbtk4Qxb7xyl63dfZJkiFY+7/3xt3n3j37zahRb8eDeA1ZZweF4m7wxNI2ibiq+98HvcfvwNju9Q8pmTpKkXLu5z+nFh6gwII0FVhhWxZy0r3nz9g75MuCjH02pVjnr5SWrxYTADwiEJJtc8vDPV3SilF985Wts7f01FnbF50c/ZtXep3ct52JySX46IQwCqsJgG4uofdaZxLiUtLvHrZeus+h38WXA66/cYmfvkG53G9+PKKbH/IP/53+xSaZ1w4MHD5gvM8a9jTg78H2C0GNwXfLSm2+iTMSzx0d8/MkTnj45pWkBK5AyoqkL6nLB0cMnHD85RmsPoWA4eon+uIcWjtVSk00vkL5k5/pLvPTCARGPqco5RlRUusTr1Xi7NY01LBYFqUoRjUY0jjD0MDiqRrGuIOntMRht9FbXru3z8suv0hvuEb0SMbv9mN/79j/COEFjWi4nU2rr6KcxSkmEUGjt/+zJwG/8v/97fu/3ely/fsDW1g5ZHpGoX6NcljhxgRddotKc1hjWWY71FFYo4nFCO8sp25ajsxlSOh48fkKn14NQIrUk7gTsvBQym+SURYsRYDf7hBhjsNaSVSWL+YLj40sOD7ZoWsuLd3+V8Y0xYeChr9aApNRYB2mabNp0brNFIORmbieuhHl509IU8NEHP+QHf/oJnX6fO3d26PXGrLOQ2P8V8tWCQlwQd1ZInWMrR5YV2IWHs5p43KFsN3Pxo/MFSEt5dsan9z+ngg05ijx2Xu0gOoIyr5nV080cWkEQxiRJSlVFRH6HWHXxxRZpvMvt/UO++ZURgecjr0RmSAlOEITeVdDcJCWkQnk+0jmQgqq1VCWU6wuOnzzk/qeW974X0+mMSLtbdEe7FPWQbLqNF67RvROsnbHOclj64HyiQco6b3HScXaxQApHVjR88MlHCBmhA0mgA3ZeSREjTVE0zNspstA0UhBHKb00pa5jPC8l8rtosUUn2uXm7i4//9aY0AtQesNchRAbEZPvIX7aAnUOgdyofXEgJY1xlLllOApYriV1aTezS2PBgHEK5yRF3gA13/vObxGHI5QKKcuC8d51dq9/lWu3BI/vPaDNpty6eYedw29yfh/aZsrX3jYcPX7I9os1ZlxRNTUru6TIShoMHT8hCfsUQYj2u8RBHyXGdKJtru/t8c6XB3g6wlMa4QCx0YYIKhztJrljkQiUp3FuM1c3xpGvW1780hY33uzR8bd59NkxD+8ds543OCMQUoIQV6IoS55lfPbBEz7/8RGN2cxXu6MdGrFNNtPkizWueszl46d0w4itKOXtg7ts92IG211ER7CUc57ljzn11rSypBN2yD0P6XWI/S6SEUmww8H2Pl99bZvA/zdn22g5BKFocG7z729m8yCVQukAJxXGOlZ5S2edY7uSX/sPv8n/8u/8Mp9/do8//4Mf8v0/uU+xBJzD2AYhIUgzhJrx6Yen1LVEoRju3iAZDFlNJMuLMyYPzrn3vTG3b93km1/6j3n7zhITnLOOzliU5xTVgna1ILcG7Ud00xGVH6J0B89PwA4I5Zid3T3eeGGPOEjxtbfRV7CZm3tCoJX8wp9EOFBS4invi1XEVd6yXuT84P2Pib0RuzsJhV2yda3l4K7HYu3QWpKmEQhHr98nHbT4nYp86nPyuGJ+3lCUBdJIsJBGEX6g8ZA0qzWrdY5ua7Y1vLozpH/zl5h3Je+WH/DYfIbVDt9TOCKisAf08eQ2o9EOr9/aI416+NpDCoFj8x5J4ZB6QzQ376hDSomng42mxLWs8oZiXfOD9z/BUz2U7lNOT8jXEy4ml8wnGatly+5BFy+UKDRNZcnqjGAoeOnrIccPLyjmlrYcIX0PJQRCKpRzuCInu/cJ0WcV1/Z2eOe1rzLpfoOPsw85n7yL9lbE6YggjHAuIvBToId0W2x1dnjh67v00jG+9tBKXo1RNyt2XuBjrLnSwliEkCgvQEqPxsG6aKgKw4ef3aO40TLsjpHdllfe3iHslTx9OMGagDgO6G+3NC6jrgqKtaLMJU0mKMtnJJ010ihGvUOEMUzPL8jmZ8RacRAO6G8dEHQ7rMmYNaesm1NW+Yoqq/G9Dr4OgJC2DanKMVrfJAg6vHT3DuqGRUhJFAZsbR9ixSZvCiVoTY1zISAQwuHJjUjSoqmsRIp/uzT/P4kMlOtL1oszjh9/hvZ8lPRI0x5pb0ic9qF5BWVLwsFTlKxZTlas1jUygkSHtGKjGNXWcfTsktb8hCZnU/0D3UGHIDIUqxaJAOEhtaCuS6zZbBfMZysml3MmlwsWhUEPbpOEIVJJwNEYQ6gkoRRkpsAZi7Wbzy+kwA8itNu8JFXbsFiVtNWadTZhdn6PR5+CpwM8L6DTH5L0xkTxAbXzUMzxumdovyFfrllMC6SnSHZ9GtnQmgYPyenJmu+37+PLgKZpkbEgSjxkEqGlorUBxiTsj1J68YhOMiKMtkjiDnEY4Hs+is2Kk5Pqf5AslRD4SrCwK4yxGLsZ1QshCIIAYTYVZN00LJYVEoFUiqYqyVY5Tb5gevYIcd8jiDv0R/ubeWt2yHi/R5IWtIVlMV/jfI94JwVPUdkaX2pm05Yfvv8pURBTlg2RFxIkPjqJ8KSmaTXO9dgbJ/SiEb14QBBukUQdkijE0z5KSaRT/2Yed6XuVVKgNNSyoGk3reOrPIofBLjGIJ2hbWtmq5IbXx5z6+sDIt3h3iePWV7mLKYZ62VNU23GS3u3e1x7UVFXE/KZoL0QPH444enjj1AqQCFZHd/j5KPvsdUfs9/fYncw4Fu3XmP8zb9Kf2/I1Bxz7+wTnl4+JG8U/lgQ+yMGV88tijrEYUTgBZuzSYWUCiEkUgjEhsmhpUA2DWVTfyEcRQq07yPYKPBNa5ivCnoiIhkIDg4itq7d5MWv9nj29JQnn86Ynzc4I3GuRigY3dLcuFOxvlCcPSupcsn08pS6lUjpoZVHFERoLdDKx9YtTTXHnj0jeOjYijQvj/t8Jdnnb+zeovYsuZ9QiQATdfG398FPqByUxtG6zRaIYOPXAYJACrq+oCgytPdTUaRA+QGecEjAGsNiXbFVeNhlyYcffYgAymJJ/xD2X/a5fFoQRZq9wx5lWbJzPSIICvazgAcfF8wvBev1dKPkd2yIshJUWc7RR/foCMXIk9zY32J37zXMTsRPLj7g/sUxNhWkukc/3cL3OkTxkDjqEPsh+kowaIxACokxBuc240fP2/gp5NmC9qo746RDehqNRgCmbVlkNWVuaFYlH37yCffvPyLLp2TFgtOLGa21RJHjta+NydclVVvjhYIgcFTRktEtw+CGT5mfUi5GUA03/3+KjSeKBScMftvQFY7g8phkdUHXj9hKhsT7f4MLKXhYW4gGeMMRXpKC2qxBSukjhQLhsGKT9LWSdANBUyw3hNTZTc2hNV60Gds668iKmiJv0VnDp599zsnROavlJVWz5OnxJXUtCJVg77BPawxZWeEHG9IxPZ+QFTXhQKA7Z+TnAlsmNKal8XxqNh4vqinpKEt4eYT83ilbYYetvUN+8db/lk93JzyrWko6hNGYpNMhDmN8TyOlQkmNEB5CbhQaUmyKP18JDBVtYzaFoRBorQjDCK00VW0oqob1qkJNK+6bB1ykU1aLGUIZTk/nZLkhiWHnWkxVJZxOCmRk6PQldemYnDeEHuA22innQHkeIHCNwRowxRx7eYK1MPRDrm1tIcc3WfZynokllQzwgj5RmBIGKWkyJu3sYx1ENmI9v8S2Bqk8tO9j2xaNQ7oKYy0IiZTgeT6t0PhhhFCa1kkswc+eDNirKruuKwJfU1drzrMZF+dP8IKUwWCLJOly+6VXiLopkS8IopYw0aChtBVCO6SRxAd9/MBycXLB3mGXXjckkbvcvVbyweR9nBQYofDDEF9rivUKLTVaaJbzjMdPJjyeSuTWKds3YrTYMHSlFDhLpCVtsUA4s9EeAFIqOh2FyVuwlqauma0qTHvVgrWOtikJPUmVrSmWFzjxAD9MGW7tEKc9rr1wh37HJ1IKp0vC1MeLFWWTY0SNL0PinTHat6wXc3b3I/pRQOiGxLxCIwKcUAx3txgNtvDDkCgIqWuHdSClI1vNOT85RUufg5s3sE5tGLzdiHvCQFFnM8SVencTlCWdTkiVVV+cbbEuyfOMqsyulPktld2sIlqTk2cz5pNTwqRDvz8k8F5Emh1CLyBVIWEnIRiEJN2I3qiDQNJPdzG2YbG4xPvVT5F1xTgReHoHG0Q01tLpjRhu7RCGIaEfYNE0dYMSUGRrnh4/RUuP/evXUFpdiSo31VboS4p6jbUWYzeqdiE31VSV1+AMbV2xzGqy3JIEMFsesy5nJNsh11/bYzpZcPJkQa8bMdwTLIo5cay58+Y2tpJ88v4zmqpA2D7ZCmg0TVtRrKcsigx9+hD/83cJAp90b4vr169xc3eP6O5XYbzFvHUsGklmLUZ4FFVB0zaUZcmjR49R0mP34IAoTjBuIwgSCLQUuHZN27ZX1fNGbR9HAY1sEc7SNg3Loma1liRRy2effMaT++dITzA6iNm+E9C4iiSRdHohlpZ4oIjHjsFYUbEkbRVJEpJnS+q8i1Qh2vOQwuGMwwqHbS2ekESBT+Q5wjJHtTUsJFGkMSzwA43wBe7yPi6MaYI+hU64CFPOe2Nytan2pZAIB76oKIqMRKlNh0cKoiig9TbEwTQN66Jmta5JO4aH9+7z7OE5xlpG12Livoee5MigRUQlSpcs8patZEB3W9OfZejEkHQj1jNBU3SRfoRQm26gQODaBlWsEPkpPPkJ24M+vzLY4ee2v0653WMax5g4wSjNOq8RgNaK05Nj8jyn2+0xGIyvOi+WMPRpmppQOeoqB9h0PcSmO+f5alOFmZa8qlmuGtKh49njpxw9vqAsarZupISdABUWFHXBw0dHGGNRnmYYdNHKZz2bsFyt2Lo+RMUlwrvETt+kaQNsYzfdQKHwoxhhS5xQaC9CCkPgWnS+Rp40HGqfQ+XhFTkuu4CtHcxwRJl0mArBZWsonUOKzfqkxJFoR5ktcFdaD4TADzQq1EgEtm0phGCxrOlWlvPjM95/+iHLRc7WjRQ/9fASSVXXPHl6vungKclglJLqkGK+YDaZs3WjTxBJyvgMY0PaMqaqBZmrSYME0TpaCUIHCAyJySmf3kdfPOWbcYjX67Hsd6i3d1j2uhQCzmYzHj19hlQew9E2YRQTR+FVTDF4UuCq1Rc6FiEEnqfpBB6ydThTU7aW+aLCzypc2/Dk/hGzac5wL0EoWNcFeZHTygXGbvxAcDBIezRFjSMn2QKlaxYnGzKkcWAFTeMQ0uCz0YwI6ZB1gZ6fE1Yrul7AoZWIwOJ0g+4KdD/BJgnEIeeLFU1d4Ac+rbRoL9h0U7QA2+BsjfYjhsNtwHK2yNFqU3BVTcu6MYjFvwfNQFUVm3UbHEVRfFHRWWuoiyXTtqBcxwg15eysQ90YirwmifsEwYAo6XLnldfxvYRUhvT8lMOb8I2DlshYhoFH2l3zVCXc//hPOc8uyGpLBThPI4MeB50OUXzATN+lf6dP3nLV8gLl3EaoowWJsuT5FCM2U0jhHFpK+mnIyuQbg6S6Jc8rsmxN0zRXitqNUhfB5svhKpp1RVUu6aRdbHvJ2dOYpjIUZUOaDgiiHlHc5dXXfx6NRxIk9JIYnUre+d9Y+kLQCRRd7aOVQycRstPBOEmFxXiatTGUZiPADISgrWqMASEUzkr0VTtIKUGqG4p8Y/yB26xfaiXphiFrA8Js1mnyssWKBi9sEUJcCdAUcNViEgolJb5vkGpKZj6AvMPpsma5LPB0ijMRiIgXX/waSdKhk+YMO33iqMfPv/xzDD1NL/Dpej5hpFCBj0g7tCgKU1NbSyE1pe9jhCXQEtNs0dQtWumr6t9dJYuWTiyY1quNk6Qzm50JIUnSEIRCWEdjN2z+7HhBWjq0kNi8ZVkU9Ldi4iQg7UUEkSRb5wRJuJnvN46yXBOkls6oJgwcFyc+y6MA24JXNfjKJ1Bqo4y3Jep4jZo/Qn8MrfLxO316yYi9rW0Y76H379B2hxTJiKd5Tiwtq2WJkgpnxWZuh6M1DZFXk7WrzRqndVedHkkaB5SetwketqGoas5PShLT4CmFKRrypaA7hjAKiTsVQahoXY0fe+AEtoVVneNUQxDmeGGNJxxCD6B4g6reKNGlFYTaQ+mAsrKUQtFKR1tXyLbBC3xoLYHWYAXCaJSpoCyQ5hJbO2LVY/TG25SdIUKozdqXLQlERt1sWpY/fW5hqEF60ApaZ6ibhovzBWsKIt+jzRuy3JKOBEkUEyc1gadZzWv8OMA5Sdtqlm1FbSuCtMGPTojEOe7yNtaGNNZRW0FDi1AewoHWHp4nUFVBNDkluDjmoB+xF3Sp4xSvP6TcuUUxGlMYg12nzK/U9EWeIaSiqRusCUh8SLWH5ym0VEhAS0nkKXQY40qzIdt1zeRyTu5lJGGIKRqyeUMytPQGIVHs4WmP9cLhRxrpS0wrybKSqq7wNDSrjKrZdBqcvo/NBxgXAz7FMqfSMTqK6YsuhU7J6zWuqUkjgbY1SggQFk8aVFliHk5oHjmkcdQyRr3wKifjXZorAwjrGjqBZZ2tsFffQyUkoZL4aUybGRybFeLZbE1xNKOTxLR5TbFoWM8NW7sJYbRZNc1XDh1o/HhztiKvKKsSz4NmvaYxEmMavG6F0RFNo8m04+Op4mKV4sa7pLpLbAq0bYgCAc5iigyvKehentPee5/ucAu9d4PrgyFb+9ucFBapPaTYkBIpBFJAGhuO8hnWbdrDm9GOJOpF5IuNYU/bGBargvCyoA4VVVZRLEoWgWa8GxFFPqJVrFcVTm7Gl6aGRm1MqcJQ4JoclMJLWpwZ4UyMqVrKVUYcBqTSYnyJ9H18bUniTS5o2fjsuGVNWKzolCv0xQmtTpGdfbQXkkQJ63DIqrAEQQgyRCjoJQ3zSUjUGTPc2iPQLR98eo8gCTGto6pbqrplSfGzJwP97Z92BwRte7VDLBW+7yGkQWvB9oGiN7Z4foETFd2BTz+t+PyDPyOrJJ99+gmmGBCoLqnyCKqSQS25oRPaxCNOfF6JPO6+8mUGsSLWJW1bYl2N9GNI+9jRkGU3pky7nAqP1g8ohcQ0Nb5oOQiW7CY16/UMwcZ96qfOg2kaIgys5wWtaSirAi9p0bQ0jUVZcK0GJMpXBL6H9BzKE2ztCoaHDdrLkbIlSDRbg4qHH7/LOrP8+Cf3kGaIL7pEwuFXDf0aXoh69EOBP4jppjF54LPTj0m0RYYpdPYQ/RFtoDFeQNFJWSUBk6ql8gLWjaWpKmJVcRDM2I4dq/VsUwm5TUcB54hiHy0VxaLC2ZaqyhjflPhBTJ0LimqzM61lgOdLfF9TNwUOx2gvIOoppKgZ9Ay7Sch44PP088fM5xXniynurI8vhyRC49WWpLDcCruMQ8nNfodeGtMmPYa9gO3QIMKUNhogx1vgh7Q6IPMCqs5N5nlNpiSLxm06TbJhL56xHdd8tJ4CVy6EV0YhQagJfZ96VSOtoy4LmqYlW1U0mcMikFpSri1+6LO12yNfFeTrFqkMYZCwuKiQHmwdDNkeh5w9PiEIL9h9sU+T+cgqohI180Dw/rllRQeiiDKv6OmKbuSQy3P06hw5u4d86OM8H5v0Uf09Drbv0O/t83jQ58Lz8XwfU1V4ouYgnLHTKfneowlcPTfhLBLwPEHaSalXDQpo64qmhnxd0OSbMZcOJHUGcarY3ulR5CWrVYMTmiiMWF62KM8x3O2zsxUxPbpgOZkSRAJjH+DbW+AEtc15eDnlrBTcHgwp1h5ro+la2FM1XQfIgMZUCCtQxiDsZmxnpaJF07AxVXLOgmsYyzl7nSV5ZWiadkPk2Gg9PC3oDWLK+eZsVV1R1RqZl6wnBaax6FDR5JbQl4y3u1RlzWpRY60liiKyWYvS0B132dlOyC5mLC8vCGINtcZnGyEkZV3QakGDoDSaFo+6zdGixvc1TVXgt4akzvCWZ9gnH9NGHVR/m2vJgLNezBOnmTpH2zQE0jEQC24PWvpBRBgExHG8IeFsiN5olJBNKjwhyOuaohKosqKcV7S1wQs1TQEmUYy2+jR1w2JWYVpJFIcUC0era9J+yng7oV2uefzoBBWESG+KoSWIA1RsOV1l3Pu8ZHn7JZpr2yw8jw4R8brmgIYDT+Dnq83KYRgTaocUAi02s3FrBG49h/E21tT0RMlBPGfoeazX2RfxRIjNSHU0ilm4Ck9KsqIiLyW6arhcLWgrgxdpTAVNKRkMe5ukOiuoa0MUh1RriS0rwk7C/s0xsi55eO8ZUvso0VDnmjiJUHHDfLXm3ZML1lFE9xvfRMmQ1dF99l3BWDZYY6jrFhn4+NIiLk8wF8fQOuLODjdef5sTLWmMQTpHrA174YrDuOaHy+lGj+QsIMFZ+v0EGsF6VVHXBflVd8+sW1zrSLsxwljaAsLQRyBYrWpcK/HDgLIyLBYlKnAMx30C2TC7nCFUiE4f0xY9XFBQ2QsqYZjPFUWny643RFqJVzSkytJNYlQUsHYKoSKU6uAJjWoV7WyFcSXRUNIM9lHRRuvmi5aet2AUVHxWlHhak0QCnKC1Db1IYxpBkde0jQFX/uzJQHfbxxhHf5hQNzVtawljDx0pjNWU6warWlarjKqZMtwOObi1z92b1wkDwdHkFCUW6PmQO3tv4IRPrRSykVRWcZRnnGZz3PISv9LE64q+qEiEZCsaMRCKXg3hakKvKmniHcadEZXe4tMwIfAW9HhCXxpW5xXTyQzYzCq5ClBh5BMFPtKCd2po6hXDWwotNUXW0BkktJWjbhuiWBHEm62DMm9BNGRZTl6UDMY+11855Muvvki/F/Dg2SO0muDN+9zafhkrNY30sVaxFj5ZvmRa59jFAs/NSE5LwmKBspKxF7HV8egkPkknRScjwm6fTjTAjEY8UiHSmzCQR3REzfKs3dyhABj7b8Yg2lP0ugkLl+FJR12uaYxBtJKirOmM0s2+bF0RxhIvcPhWUucbO2jrJHm2oDvy2Lu1x5tffoWd0YgPP/8YP2hgJnhh+w2c8jAqom08KulxVuQs6wyZr/GqKem0pldf4CpDX2nG3YQk8IijmG4UY3tjonCA2RrxJEhBLOi5x3RlRXbRMrmc4nCYq+cmBGglGW33WIoMXzmaOqMuHUIJ8nVDMohRvuDiYoYOHVEYgCeQPmTLAuk8inVB1JPceWWHL3/lNWb713jvgx/jRyFmMuLu1l/B+ZpWe1SFJfFjninNxXpBMjvlpq5JlaOZXhDOzkl1QxDkyNUScfIE+/GHlL0bJL/0V1l1+qTaErCkb57QlSXFpGI6mW7eyf8vkZ1Sgp3dPgtREHmSoi6pSoeqBPmqJe6G+JFmPl2zylqiKNh4NwSCYlXiC48izwgSuPHiiDfefJnq5h3e/dEPkKFPfl7y8ugOXpxQK0XRaLQK8VAUbcu9Mkc2FR+WGeV6RX7pcEqRRhHjfo80CPC0JNQCTwhE3EN1Owy8il7zhL6aY5Y1l/NNRWuvfAYEm2S0td1j6QriQLIoSspC4jWCYt3gRz5R6rNc5KzzJVEcgFB4oaDMS7K5R1XkeIHl4E6f1750F1EpxLvfR/iKfHLMzeh1eskWjVQYHRGpiKIVnLqWvFrQNwVjz+CbnGA5gbIBL8D3wMsmmNUUWSt02GH48ldYeyFKV+zHa653Zui24fI04rPPPifSFmd7V++lZDTu4ZmM5FyTLzKKvCGqBcWqQfmapBeSZxVFuSJKfKTS+JGgWFWsZxuTG6Fadm90ePm1W3RUigy+Tyst1RJ2Rz/HcHCd2lO8fCfAOZ9OkkJrKMuCvC5gMOBhuWa+zBGlo28bdtSavnYEQKw0WkDTVbRKkMSK7fqEoTwlaGom5wmr9WaUuDHn2YhC+6MuylTMp3MW+YoyN8SNoFxvOo2dUUxV1Rw9OyWKPZT28CNJvqpZzzXONBhXs30t4e7L19jqjND+D8makqaAbe8F7h5+jdbTVLcC2ncUOzt7hOmApScpb92mES0n8wvM/fvYyxWjpmTbr4nEZmQqnESUFRQFfm9AJ4wIiyfs+Bf0dUl2abmYTv/N2YQFoej2U5TTFOuci/mUIltS1R7KeQS+T9yJKcqc2XSJ9jajhTAOaZuNL5MAiqYkChS9YcK428W0T2hxxInAlwO2kheY50tUlIAXEYUBrm6YWshNS+wsHaVwdYlRmlhImsySCoPSkoaG3EG5KmksJLEmbCZ0xYRQNFRLw3qd4WmB7wlWqxJrHUHgI3xJlVW4xZKidf8/svm/IxkQQhBEmrqqqeqK1lmkaSnXgnTYYdgNadYVdVVibEVeN5xeHuN5LaJrSAig9Tm/f8LFR/+Som4w0kPEI1Q8RClLx9d0fI/uVkoaaOTI5x/90T3svKJHy66n2Ety9uMFnU4O6QlRGdEd+oSqptePoNUoz2exWOOc+KIzIJVmnVX4UtPrJ7z+5Vs4v2WanWNsS5hs7GQbU9G4FiUUdeFI+10GvZQmr6nyAmtLirrmcnbOw2ceNjGk2wHCBpx+fszZx9+mLC1G+Lh4gIr7KGHpBopO4NNLA0bdLjevv8J3Pspwq5xe3hKvK9LLFbt+RTe4AF8SXksItyICkZF0E1wrCXTIfLHauKK5TVLRnqIoG6STJJ2YV9+4iQosl/k5xjQEqUdTG5qmojHNxnq1qok7Cb2dDm1eU+U51lYUdcvl/IKHT32kL+nuxggRcP54xXc/+j3q2tA4BVEPlQ6RAmJP0Al8hklEpxPyxhtv8Yef5uTrNcO8IZmXpGrFls5IvRnWl3QPOyS7KZ5ekfYChFVoFTCfL650wJtRjRaSrGrIsoooCnjp1evoSDAtLqhNhZ/6WCOoVxV1W+NbQVu3eHFCbyfF5oYyz7HU1C1MVpfcf3KfyA/o7kdIEXL+dM2f/eHv0NYtDQrpd/C6Y5wQRBoSTzFMUjppyFtf3uMPf/cnNKucvnT0Zc1YNfRliazPqKdnCNEQ2SckzEg7ARKNVprFfIlj88yccygpqGvLelURBD4vvngNFcG0vKBoC4LEAyT5sqJuKzwjaNsc6Uf0tjuIsqVcFxg25kiLteThk4ekcUJ3P8IIj2ph+OF3v4OrHYUB68V43TFC+UTKEfuafhKTJjFvvXOLT04aHp2XLHzNWWFgvUKqzd0DURCwGxW8sviQnrwkDcH3fHLbkuftxkb7qnZWwtKYzdhEa82tO7vIULGsJmRtjo40QknyZU3dVCgfrC1weuP9kHYs5brCuAbbtqwyePT0Ed1Oj86ujxEeprZ88IM/hVJStpuzqXSE8EMCYUh8RT8O6cQet0cR28sVg6JlFCekscZT3kY4JyUOSVtesiUt29GcnmeIVEhZVzQ2ZLVeo2K92cUXFmM2/h9Kaa7d2OKav03WzFk2K1SokEpdna1EKodzBqt8elsd4tRRrWuMazFNy7p0PD56zLg3IN3xqI1AIrj3/Q9w2ccUTYtRIbqzjQhifGFIfEk3CkiTiDv7A/ZeuMa7Twy5s1wIkKZGOoewBq+pCasVr5gLrs8WhLIgTAPqtsWqDnlRXL2TG32LFYL5okAi2T8csXOzT2mWTMsZypdIpcmXNVVbgnTAxvytN+4x6oTUq3oTR21FXlqeHT+hHufE2wrqkGYtmTw55/v3f4+yaqiEQkV9dDpEAbEP3Sig10kZdANeuJHyO+cVsoLtDPrVnI6CVEuCfs304pLUr+hFSzrM6PohzkiUDpjP5xtnPucQwiGVYr4sUEawvTeguxNiZMG6XCJ8gVAeRVFT1wbPj/A9Qd2WxElApxOyXq4xviOQCuc1nF9eUuUFTm20Wzr0yM8umD17yjrPkXGKivr4yRBPKHytCZUiikOyOOba9QM+OJY42+JZh65KZL25WE9JR4JjqzgnbOdEriCIgs3IT0mqYkHotUgF6zxDeR5l3RIpn8EwJRpoGlfy2Yc/YzKQZQXpMMY6h5cqXGOxwoEWNG7j/JYMNUNfg0hoRUXrVhxfVDjh6CRjYn2H3Z97HZt3mM+m5Ms5R0+e8drbXyGKA77/r3+TrC34cDKh48Por/4iYmsLD00tJZe+z8qTPNE+w47khe0WvDlhrfA6KVrKzedTHovl6sqVSqCx3Lq5x9NZRraquHt7m9TvIL2WR3/6BKcawq6PcAKVSHS7sax0nqShRQlJNNB0R4LASyhthZMFx5fPsFjSuE/q32HnF99AFkMW8wXZcsGTxw947etfQ2vJe7//2zSm4LP5nCQQ7Oz+TdKtbeTu5pY+ncSYQHMpYN1csutPQS4QVYGfhnh6Y8iEhNVy0xnAgnKW6wfbPJmXXF7kvHirS7odo3zD0+8+o2pzwq6/0RZEEuzmvgM8QStaateQ9D3SAURBQtZWSF1xNn2GwREGPXrxTXa/8SayGLOaL1kuFzx5eJ9X3n6HTr/Pn//ObyDW5zz6fIIvLLd2fh2vv0N/tItWAqsVNk2Y4Vg2U/b8CU7MMHVOHERfrE76vsdsNseJjXOks4ad7T7VuuLyLOP24Yjr24eIoOX8vXOWq5ywu9n1VaHAd5v1UqcFSENtW9KeR9Q1pPGAvK4IQsNkcYp1Ft9P6MT7JK+9jLm5S50XlHnGydNHvPD6W+xdv8kf/rN/RFmu+PGjT1G25cbol7EvvQ1WMLeGuW05l+Dqgn7U8po4I57fQ2uDl4ZIaVFAGGom0wkOi3GbbYLhsEMehJyerbi+3efw5j74hsWnU5aXa/yeRiiBDMAP1KbVqSRCbUhr2gkIk5Y06VFUJV5smK7PuVhdqeDTQ7ovvIrbuU6bVWTrNRcnT0kH27z29W/yvd/9barFMZ8/XVAWFSP1Jq73Gv3tDkptRI9p3EXZhlAW7CUlA3WEn1V4abjZY1YRfgAXs/MvrIitdXQ6EdveHmdna/b7CddvXMPohuYo4+jkjKDjobREeBY/UJsVYqUQ2lHbkiSNSGLJftqlKBu8jmGWnTPNLlBa0Q3H6OFdord2Mbkhz3MW03PCqMM7v/brfPTuH7N4/BEPjhas1ium17dw3dtkKPx1Sze37DZrRtYyjDwGL/bwxFPitiawAYqQwNMYa1hMVrSt3Tg3us268OHNA07PVoySkOs3DqlkzeW05cmHRwQ9vTGEURbfV7SmxSqF01CbGi8OSWNNmoSUlUEnhmU5YVlP0FLTTw/oeC+x9a0XMLmkyNbMppcUq4x3fu2v8fjeR5x+8n3OJhmfztesbwx5/ed/nThJkEoQBj5aKzypCWXDll4y9jSRWKMqiY59As/DWliUJVVV4QuFQ+L7ips3r3F8sSJVHtdv7lGKilWuePDuY4KuIkwFTlqCRNG2DVYonBI0pkJHIUmo2Y596iZEhoasnfP4fLmxC053EPoGnS+/gMlj6qIkyzMujp7w5a99kyAOePdf/VPsKufBx3NC37L/H/5VVH8MAiYCZrSoukGailFqea2/oNucEDpH0Ik27o84hNJMppt44gDPU9y6c42jizWegdu3tihkjSHjh+8fE/d8lC8wtkV7AhX4+FGAqSyrfEXZVCjP0U0sQgbUVlDXFXnlIaUiilM68QGdF14kGUtW6wwhBKv5hDuvv4MUkkc/+R5lveLs/BStDL30HZw3QmqwQoAeoZD4zhL6OTvRmih/gNItKvQQtkU5C/hksxO02Fz5rpXgzgvXOZvl2Mawv9Mltx6t+fcgILTOYDAID4JEQSvxI4nwNVIL/Ngj7Wp8v6U1lsjzCHyJcD7SjPHLd0jC1xFeSBEWJEOFH3c4ffCQs/f+lJfe/go7O/u8+faLfPZgwmS25EcXCfF2TCQVnmuJlaAfw509zVaSI+tys38sFdYYirzYrGppaNv2i/1uh6OuDGdnGa7MuexErNoGKRvqqkaEZnPFrIIg0Qgj8QOJCBRSCXSsSXs+frCxFNVCEwYCiUY0Q4LiK3TUW2g/oZU1Az8i7Q05vv8pZ+/9MS986avs7V3na199heNZS1bDse0y2EqxjcXTkn4aEOmKLTUhthNkXdI0AiXBGEOWFyitIRIYe+VFfbV+V9eGs/M15WrFJA0pnMPKirqoaWSDLzRIR5B6SKtQHuhQI+TGcjbq+4TB5k4vxdXZpI9regTFG6TeN/BUiokaOjog6va5fPqIox/+Ia9+9efY2d7ma195mYu1YFFYHouE3ihBWImW0El8Ur9hRy1I3SWuWlPVFqUUpm0pC4n2BTqQNKblp5dtOqA1louLnNVsTi8KaGeSmpIyK6mbCl9IDJuRlRQKoSxepBFy8/eFg83ZpLCkVhFGGxc/V3fw89dI1DdQYUqtG0zaYtuW9eUZT3/4R4xDwWg04u0vv8OsCihbn6eeZnQYodjsaCeBJhYlI3/KTjBHNiuq2iCFwLQNdSWwBnQa4pQDIbFXGxTGOC4ucy4vFnQ9xSJvyNuCbFVSNhUaiaEhjDVIhRMCL9EgJcqXBD2PKBIo6RBGE8Sbqs3VKX71Aon6ebQc06YtJmyIe0OEaXn443e5tTti2Olw/bVvEHW3OF1YFloTRB0GQqIExL4m8WEoSvbCFaKe09QGicOYFtsK8izHi2Lqprmazf5UfOuYTgtOz+bEDorGsqxyiqqgqkq8rqR1DX4skZ7akLNE4ZRCeYqw6xNGAk9bRCsJIoXWHqaOCerryPotErePn5TUXoWMUiSCk4/f5fLjLVJPM3r5FXYP9vn44YymhaTXJ5IKaS0eNbUtqbyC7p4iiiua1n0x5mjtxi9FBR5VW8FVx8NupOrMZjkn5zN0PwFgWhVYU2zEgAha1+KFAhUKpJX4iUIojfYFQdcjSRSeMshW4EWba8hdExG0NwjWXyPybmMiQ+vX+J0uQdLhw9/7Z5z++E/odPqEd1/k9S+9zv3jitYKZiKlO/ARtqETR6ShJmXNbjgnrE8xbUXdGqwLscaSrXN04NFcXQjnlNwI7Zxkvig4OV2wnficHWtmZYmQGVVdoQloXYsKBF4skVbgxxKURnmCoOORph6+16Iahw59tK+gjQg4QC9fQ9s7yDCglCVB2idoGuZPHvDs3d/nxbe+yt7+Ie989XUenpWs8pZ7dcJwN8S1LYGWxIEkNhmHvZqtcIlsV1R1i1IRtjVURYn2NXiSrCgAt3G2tZbVquH4dEHfg4tTn2lV4QXl5nKyukJVAqUFUitql6OFxemNEV5Li/DExuHRh04YY0qLqFK0GxDUL1CvX0CrEB0bhukIYQ3l5RnLhx+we3iT0aDLtduvc7YW1K3ggpCkHyJMi6cVgecRmIy+WpDIOdpVGNOglMAUJbXT+J5CKLm5bVcojHGsF2supxnnlxmJJ+kGAfOywbT/HjQDKpJY2eLHGucZvFAyGsdkVY0FrAIChfMMWEsYRDS1wbY9euvX+LM/+COi3n22928RdftEUUJrLd3DW5j1hA/f+xG5gR9/9JRl0WJlRCESOvEQXEM3dNyMZlwbGmI5h3aTLNI0xNObtktRFQTRhs3VTQ3YL5JKEnv88s+9Sj8UvPb6HocvvcYP/vxP+Hv//DHzYoGVLV6scZ5F+zDcCjftOQdOgfAVBBrTVsRhiK0dbRsRLV7kz77zp3QGR+wc3iLu9onimNY6Ogd3aBbnfPT+e1RO8eH9C6yXgJ/SFIJhEhMFgq3E0a2e0m/P8JtsY/YBpImP1hBGHkVZ0Ql9ZBjQmPaL4AQQBZJvfOUFtjsht292ePGtr/Hj997l7/3WKSeLjZZDRRp8g8AyHMe0xtIYcB44XyIiTdvkhEGEayVFHRKtX+UHv/8jgvSc3cNbpP0BYZLghCTauU47O+Oj99+nBD5+dEErAkTYp8wNwyQk1h77XUVUPGFkzvDb9SagAmkS4GtBHAdUVYP2NEEUUTY/tQ7d3OPj+YK337jJ3vB1dkeSN3/hW3zyyQf8g9+cc+80w6kWQoUILVjDYCvCYTf3JfjgNMjYuzpbAEZR1Joge5kP//BTrHfO3uEdOv0hXpKilEJ1x4RS8dEH71Mawf2nC6wOIeijnE83SdBSMggbhlwwEhcELHE1tAiSJEApRxR7NE2LkIY0Sajt5hIRrgxelILXXz7g8BdepxfXfOMv/yUePPyM//63f5PFwxlCW1wARBuyOxiFKO3IKwu+xGpQsUfTZoTRZhxRVOAXdzl7f8H7k3/C7uEd+uM9dBThBzGFUwwOb3Hv448ojQBPE601LupT1JIk8ojCkK5nGaklA07oiPmmdekgCBVaaZLYB7HxAelvbVO37RcUbnPFLdy9tcWvfP1lElnyi3/tL3N8fsxv/PZvcmnOENpi/RaR+FjT0h34BKEiK1qEF2KUQ8cejcnxAoWSPkUNXnmb9QPJjz77XbYObjEc76GCiMZBhaC3f5OnDx9QGUnQTVnWp1Q2Ai/C6w2w1pEIw8jPOIw2q7EBNc5tdBhaSpLER3keRZmx1d+hMqvN5aBycz6J4/pBn2+89QIhOb/81/8S0/WKb3/7tzmtniF8h/Fa/MTD0pIONglynVUIT+OUQ0eKxpYoX6F1QFlbVHWd9rjP7//wt9k6vMN47zpeEOLFKaZ19A5vMJlc0lxMkXGMundKKRL8Th8TpHQHA3SVMRArBuIpXTFBl8XVVcWCxA+Jws1cPM/XbHVTXLa5DdEprsSfcLjf4ytfegG/XfGtX/9l/j/tvdevrtl93/dZ9Slv2+XUOdM0w2ERJRaRqrbkKtuRJTmJYTiBL3ITB75JkCD+U5KLIDBSESdyk2RShWpmkVhEckgOqeH0duaUfXZ7y9NWzcV6ZxwEECIDEmBE+3d3sM852Ot9n2et3/r+vmVC8LnPfZa7u9fJOhJNwMwNWUbaVrM6sGx3Dowpa6sNQTikBmOLckW6GyzHD/Dl3/4izeGrPPbkBzBVi67LOKs5vkEcLnjx299iQvNHrz6kiwYzP2Q0c45v3CR0W47EjmvqnGv1hkZ0EAVJSGazltpo2tYyThOmMtR1yzBO+9wFEBluHM/40HNP09LxF/7qj6EWK37/i7/F737nhO0wEEVEWYXPHq0Ftk6E3oEwCFVcMqdQVGuNtPiQuDyJtL3mu3/0b9DL73F44zEq2yJ0CzLTrTecnz3krTfe5PDaNagXDKLF1HMmoZk3M6RzHGjPgofM9Dk27yAWOX+lQROpK0PwDmyNVKWBlkIzTSNdN6CV4OMffoyDGj7yg49jj27yvW89z2/8+p9yM2APFXahsLVBaMjJ0U8DQhiqpkbqclsJZGbtkjhlBufozkZmuzW1Nty68yQf+qGPgakBRcyZ1fF1chwhBeIwQfDMtpfsup7+YsMQep64bfjk9Qkbe5QretQQE3VVIVUJzMnJ0u9GrLawCJiZ2M/BQAnBP/xHf49nP/qX+P73v8XXv/kHfOfXn+fF7z0kzwVVY5CVwNQGbSQxT/R+JKOo2vLBK6vIONp2CVHS+R3jhUedbmi04fbjd/jAD/0gwrZIbcgIjm8/To4TyU243Y7kJ3abc/qze7gIYnya23cUt/tTxLQhy4QTghgTbVOVIKoIOUK3m9C2ololmsOK/EbeIwOZf/Cf/iwf/8m/w927r/N7n/81fvO3v8V3v/MO3mTqQ42sBaayKFvYtL3vQRrsrEVIhbGKmB113aKyZTsNDJ2DB2sabbjx2G0+9LEfRtdzkJokFItrj5GDI/ue0O/IztHvNuwuHtJPnrB5go8+c8jN4RzRnxFlwgmIMdE0ppi8pLIB7bqRiKDJgeawpGzlVG5ov/BzP8Vf/Fv/gIvzEz77a7/E737hu3znW2+wTZH62CCtKDPaSkGOBcqTEtMukVKhrSSLgK1qtJyx6XdMQ6a9u6YRML91k498/GPYtgShSG05fuxJkneIOOF2G6IbGXc7Li9eoh88/tZTfOSZazwtHiH6R6ASEwUebysDe+Ma0Gx3PVVTM0+RalXtJaGZLDI//Rc/ys/9/X/EOPb88r/8X/jyV1/mG994jZNdoL2mEVqg6r3mOyfGNKCjRjdztC7PZBIBYw2VmrPutkwjmHc2aDdysDri2Y98lNWNO7gIxtQcP/YUKXqIE6HbEKae0A9c3H+FTT/QLW/y3HNP8nS9oerfRerIlBMpCYwpM0/2Pu/b3UAiE2JCFBO0svECn/jhJ/l7//l/DQj+1S/9E77x7df4xjfe5O3Tiea6QaiM3K8NkZnyBF6j6hnGaLSVIDNaKmZ2xWa3w02J9Paa416zmLU8/cwHuPHks0xRoE1FTJkY9msbdoSxJ04D6fycoXvEOm45vHbAh25GDvMjKp1IU2YQRca7qBVKQyYyDB39MJbkTBVIek9CS5lnnr3Gf/Zf/TcYu+CX/8X/xHdffJdvfOstXrvX094wJJFQtULXBkTxix9dQlQNVVWjrAIpEEIxr1bsuoHJBfw7ax4fNYu24ekf+AC3n/kwUwRlKpIQ3LzzFCI74tDjhx2kSH9+n7OHb7Bplww3bvGJW4mj/C6KiZASxesy0jYGLRM5B0ZXjIGWPhBUQJrieEiGx67P+If/+L+lmd/kNz7zT3n59Yc8/8I9Xnl7S3PdEJDopqxNikAgMEwjwtRUbY0yGqEVZJjVK4beMbnA+O6OO/KCVsOt24/z5Ic+jDQtSE2Wilt3noAwkNyIH3pSnIi7Df2DR2yzIvc/wAdvaJ6q7qH9BqbMBKQETWXQKhGTI0TJtusRWpPmPSFPhfCZBQcLy3/xj/9LDq4/yxd+71/z9r1TXnjpNd54e8vNJ29QbdastxuyLs9xPw2w9ShVYRtbOAG6hBZV8gimJUiPj5EqaurZnMW1GzzxzIeYLY5wIbLbrZktlyQ3oWJgsWyxxhDGDn9+wYhE+cd46jBzzEPkdFG+YyIpCrQuMlSRCipVGh0N2SGMIIyF2C5E5u/+/E9z/dYP8NbdV7i4POPB3fu88rr/E53v/07NADWISuCTI02xkNamjLYaoy22hiQ8/TCymh9Ra1OsWw8DIo4889FP8Km/8re5efsxtrsdAsH52bpkhQ8dyQ9cPzzkcHmA79e89M2v4LanbB++zGpxC318iIuJmCVSpBJ3LCHGXHSV047JBR4+Oue5Z57hEz/5Q7z+yv2inxXQtAfcO3nE//nPf43vvvAWQjdUVkK1t8GtJEFEvJtQWjJOILXBqgrTACqwG3radkFVtYw5oIiYceIDH/s0P/5Xf5HjW7fohhElJX0/sV6v6fvdPtzomHkzY9qc8fLzX2U4O+Xtu9/jg5+6RX7iEB9ScbATae8rDSFGchJMrsO5wKOTM5575ll+5m/+BC9+523iXhvczA45W2/4v/7FZ/jKl78HuqW2GlErUgRZCwKRMI0oI5m8RCmNlRW2AaHL5tDUh8zNiomE1BHbDTz54U/wY3/tF7n5+BNsdwNaSXa7kbOLC7abNWGIHB5fY7WYEfstL379y4zbUx7cf4XnuEl6+ogYEspIYk4l/ngvHfQRLi53OOcZR8/RU5K/9gs/zVe+9Efv4x5Nu2TbO/7Zv/osv/NbL5DVnNooRC1JKSOtIMpMP41oLSBItFTUwmAaibSwG3uWswWz2ZIpB6T21Kue2bMf4ZN/+Re488wHGEeHUoph8Kw3G8aup9t4Do6OWcwaRJj47pe/QOjPuPvNV3ncXSN/4JgYEtlIyBFjNBBJ0RNS5vxixzQGhmHL6rbnb/zCz/Abn/lKWVmGtl3hPfzKZz7Hr372O0TRUhmLqhUxgzaCqDK9G9GyWOPGJKkqi2k0uoJu6mkqSztbMuWI0BP1qsPkO/zwJ/86H/rYjxByYYnHkLnYbJh6R7c+o1ouWbQ3aSvJd//gS8RpzYPvvcz1/hjxsRsECTIrYvBU1iJyGU+FCJfrjslHYghcXK75Cz/7k/xv/8fn9sKdTN3MyNnym7/9W/zyZ7/NlFuM0ajaEDMoI0iqsLK1LGmOJIkxFbqpMLVg8ANaCmbNkpAg6x592GHE03z6Y5/m4z/x0whrcZMnJ7jcbNhtR3YXj9DGcHR4i+W84bVvP8/5vbvcf/lV6vMZzewG2UqC0OQYqaxBqRIiFGLG7SIxZaYpcvLojB/60R9ieTiDPpDJ2Mqi5JzPf+kr/PJnvkk/abSxmMoQRVG5ZA2TnxBiT/B1At1YZFVhahjDWOSTh0sSmqR22KMBednw8Z/6FJ/8mb9O1c6ZpgmJYt11dLuBYbNGVJGj4xWLpsZ+/3u8e/mQh+98n/SuRX76Jnll8LmYQRmtitmNSISQ8D4Sc2YaI/cfnvLUj/4I1+8csb17QU4JayxGr/j6N7/Nv/jVr7LepqIUqDRRFov4bGDyDiEixiiGSaBri7QWU4NLA857bhwukMIT5Zr50Uga4KmP/Ag/9rN/h6PHbrPrOow29LuJi8tzurVn3E0cHh9xsJwxXpzy0re/Tnd6yjtvf48Pf/om6vHZ3sxHIgVoZZACUgzEBM735Xs7Kbb1N5+6zu6sJ6WEVpq6PuLF77/KP/tXX+ThyYA0hnZuaGctnRuI20RyBS1RWpJJ1HOFVQpjQavMrvN02xGvLcIIbj224Ia7xeETH+WZj36C2WJFiAVJ22zWbLdbwjgx7jYsli1Hq0PCbsPDu6+xvTzn0cMXefy5lrS0xJj2sv2MkhopEyF6IhLXeWLIrC823Dg+5PaTN3nje+8yDD2CRNMsOTnf8PtffYX1+YCdzbDyz4AzYCqL0JLkI1IptKlKwhgQYkAnQcqWullgKsvh7Ig+7LBtzQd+4NMsmh8BUXP3rbcJbsKFwHa9oa0sY+iJYUCmlt32DOUnFrVBHqxIbsd2u2W9rZACmqYmS8E4OSZfMsNJxWFvsZzTzmcYU5EIJAExJWKKfPFLX+Pz33yT11+9y7xtmFWaw5ngfixkK2HKvFr9v9bmk0clSUwKWy1Q1nK0OmJMA6rSfOjJn2HV/ghCtZzcP0GIckMchwEjMnF3AW6HaZZM44bkBua1RRwsOX20Y7PrWG8tEkHT1CRRErK8jyULPRd/h8WyoZnNaKoGRCJRYnBzznzjGy/w9V/6Ai9+5zVmjWVRGw5bzVnOaK0L2uETUiqMsaRUYpDDfm0haapqjtY1B4eHjIwEE/ngj/4ER+1PonTD/bv333/htptN4TL0l2S/Q6Hpu4Cc+rK21ZI0dXS7HettXQh0VCgp6CZXPB1U0TWHEJgvZiyXM6qqQcpMes8nPWf+6Huv8atf/O/4xh++SK0Vs1ZxvTXspEBGhbYKH4p3tzYGgSKRiSkQkiIkjbVztKlZrpa47Bhkz3Of+hTX27+ENAtO7j9i76FFPw5IMr67II5b0A19NyLCxKy25OUMP3Vs1pdstsVgZybqsrZuxDmFVoXs531iNm84Wi1pmgY5XL4fFSuA1197l2/+9/8Dn//iNzEIZivNUWvxWiK9RFeaEIsrnDIaITUxJ2IK+AgxSayd76OH50SZuNic89THP8xj7d9C2pI+WeyOwXlPSpE47ojTFlMpos90LjBrDHFeE/2SbnPJppuh9i6CWkmGYWISGTdJMgLvE1VtOT48LEl++r3BVYkcuvfuGf/jP/mf+dxvf5UUIosDzUFr2RiJnMp+EoqzFtIohLKEFFFEXEjYJLG2QStFM2sQRjGc9zzx0Ts82fw8urrDZjsS4wYB+BAYxpE49PTrRxidCTbRd45ZrfGtJV87YOrO6IY5MRrqnDBaMU4eMXmCl5DZp6hKjo4OqaoKbdT7ChDInJ1t+F//93/KZ37zD5j6icXqgIPW4ivNuw5MbUgxEYXAGIPSxR9fkfDJ46OiqWuEENRNTV039A977nzwFk83fxNbP8UwJbrurJiq5cQw9MgY8OMamQMkQd+N1BpWjUIcH7C7PGHbLxEiYLShqjTOZ0IMBK/2AVflID06XGHbCmMNWcT3EZ3L9cAv/fN/yWc/9zXWlxuWqwNWbYWoR96aMrYyhVORQWldUItYVCQuOnQyVKqilhZbVczaJbsHW64/veR2/Sk+UH8UaWecPTwFEkMqUmmlEtuLh2Q3IMWMadxBjixrizpc8OjRIy63Gy7XRWlR1xVCK/qhJ0aFFCWnJYTEcjmnnc2xdUUW7z2VxVb5V//1r/Nrv/NNHp2csViuWDSWw3lmklC1lqq2DMNUxoVKIWTZT3yY9r46DYcHtzlsb3LzxlNcdhc0Vcst+2mseRKhDNEHpBAEPyJyZlEbLnYbRPb02wuGzQVzCTZsaK1n3W/Z7gK1rFFCYoxGakVwI8mUi2GmXFrn8xlWS6q9q6hWinGYiCnz3Rdf5rsv3+f0bMesqVlqQW3/DLIJdKtRtSAbQRKg65oYBUpnfB4w1CgtqeuWqq6p65bDxZPcrv4ax7NP0veOe+++iduck9yArQ3RO9bDjkVb0azmnD98F99vUYCpa2yMxAzrfmQYHPO2IqXErh+LTaitkUIxbytC8CiVUTJjZzOUKkE+7PMJfvM3vsyDXbG9bYzk+sJi8xZtElR7SDYIEqCbmhQVSnkiAyFVCFkzbxvquqKua67NnuaG/itcW3wS5yInpw+YujVhHDAyE/zE0G2YtQ1NZTm9/w6+7wobtG2wKeIzbPqRcXC0jSWnwK7v8T7hQo1WkqYyeO+RskWJjGlbtCq+fTkmQPD5f/Mt3tlEEJnqvbXRI3KgsgppZIE/s0Y1DTJrhAokMeGjRsmapplRzRpMXXE0e4ID8VPcXP440xS4f/cu0+YSN+zQRpGix48dTW1ZLFrOHr6D73tkiui2xqZIErDre4ZhYtYUCLcfBqbJ0bYt5Mxi1uB9wBgBeKpZi5b5fZ9+kQR/+JWXeHPtECisklyfVSzVhMyeqjWFKBQ8JIWualD7G6wKuBhBVLRtQzubYSrD8fwxqvbj3F79DClVbNaX9JeneDeRcyAnx9hvqbVmtVpxeXafcbdBpICpK+rYgIRN17Pb9SxnDSlmhnFgGEdm8znRTyzmDSF4jFkQoqOaLVBTCXyKqfBqvvudN3n9omQVaC24PqtZGs+jOGJbXSyBYySmvbujrCEHhIm4GMlYmqambcvaVvk6S/kpnjj82xi1ZL3t2J0/Iroe7yeUygz9DhFHrl2/yfryjIvtGsKEUJJqNsfsdqy3A9uu42A+J8XI6ANd3zOfz1h3A8t5S4yBua5xrqOZP85WFbvVuHdYfP21h7z+h+/g0RghOG4th1WiDwO2NWXcGMUe3TEo3ZBiAJNwcQRaqqqiaVpUZZibOXfCUzx1+HdozU023cDFyQN8v8a5ASVht9uSfM+1a9fZbTe8++Z9ZPJYo1FtjR57LoaR3TBQ20JeFRl2u466rbjceBbzdr/JarzvOVockU0h4MYUySnx7r1Lfv+F32PKCiEyRzPLcZM58TtsbTBNOfxlKNHsqmqQIaFsZgo9DXOsNdRNg6kkVi54bPUjPH3wiyzrp+gnz/nJI8KwxY0DtlIM/RY/7jg+OsJNIw/ffJvkHUoK7HyBdZ7Re3bdwKzWKJmKbLEfUEqx25YYd6UzkkQIE6tmiTK6NOA5kVPkbN3z/K/8LkNUKCE4aAzXWsHa7zC1xNalIRURhNaoqiaGiDLg4kCNQhtLVbcYq2mrOTcWz/H4/Gc5mH2CECWnp4/oLk6Zug3KwDh0RD+ymM+oVi3n998gjD2khK4rqpwInLDe9UxjQ1NbcopstyXHZDIWJRXNzOzJdhkpoW5mSFnGjSlGdqPnl3/ld9hMxStgUSluzBSkSwYZmR/MGePE9PAUpCyOnEIijSDkRKMXzOa3mbeHrGZL2noJzDmqP0mjbxOTYLvdMWzXJDdirSBFh0gjh7PMLsH28pLt5pJeC1atRqdiltT3jqmRVLZCp8zQDeQYcbo0BlVtyDmCiIUcbSxSRqSEaXKEBN98/mV2XkIqOS5zA+rPgkBoKo2sM1IYnBPoaonOEqk8MTmkrtC6ISNJUVPzFE83HyN0DS++/l025yc4P6BiII8dKY4IKVDKsKhvcLicsT15F6RHao1SqehYVXEiU6qEvuQMEk2lBfOmRqnigjhMPZMPzLVE1+UAFlmQcpEbspfNhHGiVdDkkZPTC5YfPGLDloDDNhbvBNrOkRhQEylNKGMxtimgfKqo87Osmk+ShobXXvo+u/V5cUr0I9l1iFygfqsVzbLl+HDFeH5SvjytkEKyW09IlWmqCi0lUhWWuZAGaxOzpkJriTWGcRqZXGS+0kjTlLl0Tu/P3DMCayzBe2oJDRNn5xfMnzogmQ0hTei6xnuJsjO0qMjKkbNDGYUy1X5tGiue4Kj5FL5b8NpLL3F5+hA39cgUiFNPCg5lNNZqDubXuLZa4i7P0DoXi2Ol6JMrEidbY5RCSoq9sCiujk1dsiSq2jAMmXEI1G2FrGbU1gKCmCGQ8IAxFSFGjIgstOP8/Bx7e8ZsFnFxpG4s0QmUabBqRhIOREBK0LYmo0hRY/IdjusfJ4/HvPv2fS5PT3Bu2M+Ye3Icy+atBPPDAw5aw3QegQBaopRkt51AJtqmxZqqyJgECKGxtsYaja4sbVvh3MAwDNTtAlU31LYpufYJUsqEDNoYUi4EoaVxbC7PEYeGxcGCKRRCbPACpWqsWRKZkCIU+LmqycKUZiFf47j+cYR4nNOHay4evcw09eT31haG/W1HMp/XtJVENIbztUcoibaGTbcjEKgbizUVQrLndmSMqZBKcrBoaGcNXdfTDQN1vUBWDVVV5FXvSQtDLvCyQaK859AG+s2G0AgWx0sGN2AbTfISIS11tSKkCakKSUabGiEMKSlkXnBkfowbi2fZnXlev/8Ndrsd0Y3E6ZLoysxUCEHbzmitZHa44N72DCETjVX0UwkHspWmMiW8RSlJSqC0QSvF4crStBXOebp+oGkMqqpRVUEoQnbkWBJVldJoJHmcOKhCyTMhsHzsgMF1GKVQ0UBS1PUKHz1SJ3KaMLZGyoqcFCIvWOkf5Wj5EXwnefmNF+i7LTFMpLEnhhFBGYtWlaHSmVW7YLp4iFBgraGPnkAZ3Va2RlFGZSmDUgajBYu5paosKSe6Xcds3qCsoaobrDZ7FYggJYFSCiMU0U2sbCKOG7bTwOGz1+jcFqUkOmlSlFT1khgDUkdEmjC2QsqalCRQM1PPcbD6YZhWvPnKy1ycn+KGDhk9YdwSQo/Wmqqd0dYH3L5xjTc2pyQjENJAhq5zZa+sK6SQKFHWBiV4aNbWZb+tNeMwMLnIbCGx7YLKlveLCMmDRGGsJvQ9qwqE23HaXaCelky+x8cJqSUJjVAtSlXM2wWVqVkuD6lti3ORXkZqDpjlJwjDnHfPX2fsdjg/IWMguqGMZyQIkVnMFxwu54TtBVhFThEpBS5EpJBU2qKQqFxs8UXRCxaZqJRorei8Yxo9lTFkuX9HhWCaJgKglKKRliEENBFcx8W2+9NvBqSyVJV4f8OfzxeAJuaREHoOVse0jaGbdnRnnue/cEElvk5wG3L05OSJMWCURheQGqU1Vme6y0fcCwP97ozsR5ASrSR+6rA6YVTGaJD7WNG6qrBGQvYgi550uVpQWUkzn5GtKQ/QPh0uhYBSmqaq8EByAw9Ptqwnj7ELRHRYI1GiENtmszlS1sQ8ELziYHnAvG3ZjWvWJ47v/MEF8+ZbyDwQvUNLEErCNGFExhiN2fuZd5tHTN0F/e6M6Kb3Mx38tKHSoFRG61yiRKWkqSqMkZCKYkBKzXI1o6o01bwl1YbdriQSFl/6gJCKpqqISpFcx+mjgUe7EWMXSBzGglIaIRVtO8folpAGgu9ZLZYs5jO6fs3uPPDCV3esqj8iuLIhaVkS96IPVFJgGoXWGWPBdRc8fGeg25wR3VgMWSRM4xa9t6hWJWcJKQWVNVhTkXN5EUqU6wpjJPWsRcxqdrtxHxUrSCHuoTmLzYnkNpyfnvJg3VE9vUAIh7EZZQxRSupqSV0t8XHAh45527JcLBj6LWOXeeFra64vXyX5bxP9tP/MiwRQk7BaoWTGWIvrLnnwTs/m4pzoHCkFkDANOyQeqyu0Fu+vzRhN29bkVJqQnBOr1QKlJHXbohYzNm+OlLy4IhdFKCpbNrjUX7K+OOP+2QZzc1Esvk3EWIOSCmtmNM0BPk2E0FFXhuXikHHaESK88FsX3J4/gPg60Y+IVGaeKXlkiNSmzB+NtQg/cHrvLbr1mjgNBO+QRjGNAzm9d7Ms/u5SSrSCurJkAkoJUgrMZy2ZSNVYzOGKzcUZObLn8SQyEmMttdJMvmO3Puf+2Q71zBwpA1rH/Ry6eBXMZgeE6AixLzbGq2O874lZ8MqXNxyxZtz+DjmMhOiLIZXMCAKNlghKKqkSgctH7zD2A3Hq8c4Rx7JJxzAwa/R+ky7vG0KymM8QIqFU8baoqwpjNLY22IMD1pMjhQI3x5RI+7RJIw3D1DFsLji52MLtBikTUgWqSpGiRGCZzVf4GIhpoJY1q9UxOQ34DK8/v+XCjaj8dYgjITi0lgiRyW6iMarc/q1Eqcj69D7nbsKNW1w/oK0pZmLTllmtECLtf4eSKDlrG6QqaEBOAWstarmkqg3VakXvI94V1VWKCakTSmtaWZULVrfmbN0RD2qUTqjgMJUkJw1ZM5uviDES8wDZsFpdL3bDKXB+33P2lqMW3yf5Hu/69xM6cwxUMtPYEoxUVwK3PePd/pKxuyCMw14aHpnGHZVOGAVaA6KMPOu6XJhyKmMwKWC5WmKNplrMcEozjYXnkvaEZG0MLZbBjfh+w3k34KxEdZ7OdfgQUVpTmSOuX3uSys72yZQeomUcJ0JwuLPI5eklld4hciBFVxAlo6jqGlXBNPWILFFaMnWXeAQ5DiTfM00DIhv8NGJUQpL2fisRMlilkUYVhmTOyCyplMEqia4tg4S+n3De45xHGENdN1xbHXP/7ruEqeP0dCT+CY/5f6dmYL44ol6UzQ+hMFpjTckFFxRtq5WJKCA7wVsv/AEzXTGf1aQY0NogZJGBxL0jl1SKWNfF+/lMkKOn0sU4ZooF5tfZoSRoWT4YlyaE0ISQqGqD3ptdWGuYtzVDlvzG77zAN79ygtjHFYucUFKwrCxjGllvO5RW3HriMcZDh3cZqQNKCjIKoyzWWLSdI7Jj3jTUGiIet0u8+q3Ps2qWLGc1MUasLVajUFzlyOWhMFYX3XIqsjejFGI/J485obIrna4qvAe/l2n6kGnqkj4V9mtbzCpGJL/7xe/ypd99B5EU78kNtFDMmwpcYH3eM2rNzTu3yEcQfAJdZDIxFRmT1QZbzSB55nVNYxUpeaJTvPatL7GwC5azprgXVqbo8nPCaIFAICXYypTc8FjWppQs2vlQSFYKh2KGkpJMxk8OpCKETGUttTbEENFWM5tXRGX40tde4rd//RWIew/CnNCiyN1MdpxuBk6j4drNG9jrFT5FspxhtCRmgVY11iiMPSbnJbOqYl7pkl7pFG+/+HXOxEusFg0xBmxtUVKX72vPYVCqoBdJZKIPpBQxyuzjkz0JEGlCy7qELYmMn8bCGveeymhMbQghYq1mNmvAaL767df59c/8EdG9p8WPaARtball5uHlyMlasrp2nfmtBV5BwmCtJqY9MqA1ppoDS2qrWNQVSkay0Jy+9RIXm7scrNryXRmD0SXFUynJljIrLrGvEh/i/tkpN2TnXXHdDx5tNZU2lP52QiBxbsJaTVtVpBDRVjGfNWhreOHVe/zWv/k+U59ZzCU5JYSEpjbMtOTBuePhZaBeHnB855BYQ5MstpJlbdKitaSqDpFiidWKRVsxjJkkNQ/u3eXBmycsF3VppQTYusTfaiHwstgDe6vRSnEZEzklVM4Fzek8kNGixOVWujT9IYT92hyV1dRVRYoBozXNzGIrw2sPL/jiH95jc+6Z6WIljSw38lllcevAyYVHNXNuPnGDe/OHVFFjK0FKIFWF1oqlnSPFCqNh2dRMXuCAy4sL3v3Wv+ZoMSspiFJQ1TUil3X2e8RDG4W2GjcFICFSwijJsCnPJDGhCVhVUEYfyt4yTYX/MGsr3uNztI2mrgwPLke+8tXneXR/RAqx5yAFamupK4PbRB5dbJF2xuNPXef+4gRdif3aBFJVKCWo7BKlVkiZWbVNSUWNnvFs4NUvf46j2YxZ25Jied9l6fYLuRGBNLLsJwnIiRQTRgpiDKWxTKCyQwtZJHUkQvAgBCEKmkrvx5eloZ+1hj7AFz77Hd58pRi0pZxIOVBpy7yqyH3m7HKHMDW3n7jOw3wXq1uauqZXDnKDVXb/fgiQikZJhEwILfB+x8NXvsaisdS2KVHrtnweTpVzaRy7gk4avR/rllCw5B2u75DJlos2HiNnZT9JqTQkUkGIaCVQRuF9MfazRuGy4uXvPeDeOz2T86QEJoMxktXMcKEiZ5cd3lpWR82ffjNwdHgd7ESIQ4GsbE3KHms1lW6xMqKVZjk7wiwrPvhzmu989iXuvz4i+be57lVtaCtFW1us1rjRUFnDzFZEHzFaI6Th9HxHP/Q0WjENc2JMxCSJqWjlQwxYK8hJI4UihoiLiddfW/PtN8/ZrYtePYZC/KmNRFeC7qxjCoLHbl/j+o05l4uEyBYXN4RYXoq6asjZYa3C6tn+lquZz26gF4b0Vw0v/tZrvHvXF7RCCiSZqra0lWFWVygjsFWBcmbGELwvFqzScnK5ZRh7aq0YxwU+zvEBcipGSTGmvUNY2eRCBBcyr72y5YV31qzP+nJYxbx3XIS6hrNNxxgkt64fcevWiu0ikYRkjGtyDCASVVVu5sZErGnRImOUZDm7jlxWfPhvWl749Re5dz8iSSgRyVJiraWtNbPKYo18/5bf1hVhciX/XDfc33bsuo5aK4ZpVmbIQRN8AFlY2kZrQvBlVhkyKVS8/s7AN956m7OHHSRROuKU0Cpz0Gg2F5dMQbA6XvH4nWO6Wea4us3kNwV1yp66rop7mAZrZxhR/v28vYZcVfzgzzd8+zPf4/6rEzJRxhciY62lNopFU2GNxlhdSHlNjZt8kZxqzbofuFhvqLRmWNSE6EGa0ujsf2WrVeF4qIwPmRgr7t4f+Nobb/DwnfMimUwZEgiVOaglw25dRlyrQx5/4hpuJrk2u8Xo15A9Pk7UtSXniFA9dTUrCJRMzJsjkrZ85BcO+M6vfJuXXr0Lib36oDQFbWVoa0tlC1pV2YpZVeG9R1uDlYZ+cjw4v8QoTS0aJj+hqoaxH0pDlwVKgPcFGfQh4IOm30a+8vy73H3zbJ+5UJoBKQWrShH247t6tuTJJ6+TZ5rjg5uMbkPKDh8GZnWRzgnZFyKrzCgZaJoVSVZ88GcPeeFXv8vrL70LIaGlIouMMorWWGa13j+PiqqqqG1FiIWkWiuDD5F7p5cYJciNZZom6rql7we0KsFkpYEq5K0YEzEmhgm+/rX7vPnqKdFDluVLVklwUGtyHBndhJkvePqJm5h5xdHxfm2MTK6nqc0eBeupqhlaCpQM1NUSIw3P/dR1Xty9wuvPv0Z2qURdC4FSmrbSzBpNZTXG6MKh2I84pEjYypKT4MHJOZHI3BjGcSItK6bBo2Qhn6WYqKs9KS1EhMy4UPHN50945a1L/JSw5cSEHJlVCoXDTyOirnnmyWu0i4qDgxtUriYx4PxAbTVSWTIDtiqHmZYBoVqksOjnFMOPZV79wuukuyWYSwgBUlAbQ1Nr2ro8k3VdY40pELibMHWFQnPvcsPkJhqjmaaBmOdEXxADISCHcouOuqBWIUCM8PqbO156uccN4X2zKJEjbSXRyuOnDpTmqceOWa4sp7KCLLAWYgC3mZh2lySrSmKlMsSQsEqjpcFerzl4LnPyvRNwIJVA7s8Bay1WC5RIKFFGgdYajNbEcUQLQa01224kJk+t5J7cW72/p6scy0hcF6mqlBrnI3WGBw8m7p/vyDEzTSPWGITIGFHQE8hUTcvxtQNmsz8DNYG1Ct00uFCibwUKKRI5O1JWxCRJeUIaQ8KxfG7Bx/6TD/PmF97lwYuXuG6EnBh9ZLvLtJUusyejUUpTa40S5QM8XC04PliSc2Sz3fLwdM0HnriJViCVIqcCRRZZVyYSUdoyucSjdabreqZxIOWIj4GcMjIHNpcXrHc9T9y5xRNP3iRRSFW1lFhR44Lev2i6+KxnT8qanDTOT6A1SXqufeyIjx9VvPp7b/Po5Ut8N6IE9C6yEQPzpkIqgdLFk742ukDSInJ8eMC1wyUnZ4HNruPR+ZpnHr+GVgKhJDkV3XaMaZ/LLQDF6BKP1rAbBrqxJ6dACGGfHZ/oNmvO1jtuXj/kmadvEYVHyExlNJp2L3UJSGVJ0ZOIxOTQssL5iSxrsgysPjznY6sf5PXP3+PhH53T9SNCgHKRXSdoK4tVZc6qlKI2qsDJInJwsOJwuSJFX9Z2ekF46jpCl/z2GBMhhBIehSpjI2MYJs/p2tJ1I123A4qmO2WQOTN1G04vthwdzHnumccQKiBkorLFfzwmS4gerez7zOGYRpSqmYIjCYGUhvnTDR//+x/lrS/d591vneC6odiUTomtgL53GC1Q2iCkotpDtIrEYtGyWh0SQ+Bys+X+o1M+8uzN95n+MUZCCHjvsZUsiIKpmZznZGPZ9Y5d15W15fLCy1wCpR6erZnPZzz37BPIKjOJWBwwtSUli4wGrWtiLPGsZW0NLjgiGSUs5hg++h9/hHf/8AFvffkhu21HShGtIrvdRGUVTWVRsrgUNka/L2VtG8vR8TWOl3NOLy55cNrTD48VS1triSEQYsQHAFMQFGFxk+Myzdh0E5tuV5wHC6qJypnoOk4eXWLriueeexzTGHrhsVaCqkjZoLxCmf14RQhSGsmywYdIJGN0DYvEh3/xg9x//iGvf+keu/Pdfm2aXno2qmjNlRIoXZVnXkk0mbpSHF+7zvWDBY8uznlwtmPX3aZtLMaa8pzFvVJgr9wRArz39FlysXVsug0xBnIucladgTBw8ugSpSzPfeBx2kVNnz3WCpCWTMkn0Loip4CQkphGpGxxKZJzRGtLqj3P/OwTLO60vPb5e2wfbAg+Fu7NINhsxfsNhTYVlVZoLVGUJv7atWOuH614cHbO2WbNettxeNgW+DwnUpL7tFn2fy58lX6SnG4D6922rG1PIiSDCI7Tiy0RybPP3GF5NGPYry3LYjdf9rbCQZAocp7INPiUyXlAVpYkHLd/4gbNzZrXfvcdzt64IPjiMDpox2YraOtiS21Mv+dFaFQuY5zjg0OuHx5wcnbGxXbLwzPNU48foaUuY5QsCTGQcyRnRQgJazWDC5xcStbdDh8CIuf3M2pE9JxdbBhD5iPP3Ob41gF96osjkQApNVXVIGaRcdwxTaJwt6xlUhrFeyoKTX1LcKwWPPrems2jEolc7rwSJTOVlUjEnpMi0EogcxmRzNqWg+WKbd/RjyOX2x3HB/VeTliaFx8iTdIlyn6Pbo9T4LKzDKPDB880eWZtg7WWHAsvJyO58/hNjq8tGcfdn34zIAgk0t5yVBLSVGRqOTB6j5cGmNApUOua4BWzGzM+9h9+kOXtE97+wzPWD08ZRlesFTNFNkMEHDInKquwWrHtHbNZT84ZrS0hQxaKECNaCGIo0b0+JBa6wOVSQERx3gc2/a40AZSgohgTPgy8++CcTed47tnHSGnCx0ROxZY44il9ncLH6X3Ye3KOKBUCT46XtKYmBM3ssYYf+bsf4rXfv887z5+zfXROHB1KFcgaIckEJCCBykqskeyGRyzaHSFltKkIqRz2IQS0kYQQ9w9CYK6bMocnE7Lgonfshg7vi5FEyomYymzx3sNLzjY9T945IguP84EYA5hCFMwliZ0QHEIKRC6+2llZXPYgRmoaYjQ01xs+8R99kDdvP+Ttr5+xOXnIOEwoaYjBI6Ugi/0si0xtC4y57j3LWdH0KqmLBz8FjtVavb/p+hCQskLIAosJpTnvRrphV36nnAkpF81tDpw8OuPkbMfxwQwlA+PkiuQuezJu/3mX7w0yQhQFRkoNExEh1jQ4UrZUq4of+rlnOby94I0vn3Jx/4xhnJBSFuhTFtOZjETkSGUERisuu4nLbUG5pFRkqUkogg8YoxDFS6gkRYoiV00pI5TibOvoxoFxHEgpE1MipIwSiUdnpzx4dMHTT97GGuhHR0gZkiPjSYg9OuTJOaJEg/cdpJZAJIuJSkQyBmrBB/7SkxzdXvLKF044feuEaewRUuEz+1GAJOOROWONwFiB3So2uwmtJCJnlK1Lgx/KfFcIUW7asTxzta32We4152eebhroh+795zGkhEiCR+envHtyzs0b17EWpnEkRgrXh0DKRRLq9yoObWZ435NSQxSZJDqSiAgsSQme/Ik7HNxe8erv3ef0jVPGfotAELTGRbH3PoyInLGqpLlVWrPpHJXRZWOuW3zckzhJSCkZ/XtjtEhb1SWkRtc86ov/Rt9tySkSI4SU0DlzfnbO/QenLFZL6krixonYZHJ2COGJOSKE3CfmOayeEeNQOEwil9s0AalqAnDrYzc4vHXIS7/3NicvXdBv17gAXml8lMUvZe8MJFWi0hKrNdve0daWnDK2avBJlMsSBRlxPoAoo8m2rfEuoHXF5RjZ9iPddluahEzZS4D15Zq790+xdU1TC9w4kbQgpQkhSiCVpGSlxDhSmRkxltS8pDIpDxgCRpXL4/IHlnzq73+UV7/4Dne/fcbu/BI/Tkil96JXQRaxnMcyURuJ0ZpN51m1O3yKWFvhkypnT0goVS6EISV8cMz0vCQKCkESirPdVNQlOSGT4L3w2t1ux937jwhC0TQSP01lzKLKWDIET4bi2KoywZUzwLlYeDS5EDWtrshCYRaKOz96yMPvKy7f6un73f6dgWGSe1S8IqUIOWC1RGvNtvdMPhRDO20ISZJyGbsKuc9myZkUI0oaEGVUnoRimALOTTgXi8dGTsQQ6KaJrpvY9gPLg4Z+6PHvO4P+KTYDhIEYMoU0mHCuKyQsOSubvwoYA1pESJKUJQoJsueJT1csbj3JO79/wKO3H3J5ecowOQrDv8YYi5aCKWYmHxhdwsXiLDiFMqvthpF5Y0Bktn3PrCkkQqU0yERtFKc7T7eDYRzIex1+yIXMFGNgComQJSFnnPdoZfDOAR2RiZg1GYNzJd/b6BUxJqR0GJMw5P3tvcz2hJ146i/MOLiz4u0/OODknYds12f0oycLgbUVla1QIiMi+7U5nE+EmJhCRsREPzpmVXHt2nUDi0WLMaB0kS5VRnG6C/RdYuh6oNzA3osvjjkzxkjIEBFlbcIQw0gOO1J2hKwQwjK5rlgamhU+gFMOozNWg0iKlCRSCbJ2PP5jNavbT/L2lw94+OZ9NhfnjNNIfG9tpkYKcDEzec+kEj6WZmDyET9Fun5i3ugy/xwnjDFYW1jtUkFtDethYreT9H2/J9dlQjF7Q+RcEi5zcVPrvUMKUzZWvyVnR0wgVINzRRGQ7AHBZ5SaMDoVpUMS5FSMqpJ03PiYpbnxBO98+YiHrz3k4uyEwU0gFEprjK0wQhMi+OAZfSTs40sn59n1I9vdwMHcQhaMrvBAqlqj97c3rQz96Ok7Rdd3RFFuZbmo7yAnJjeRRIGGe++KI1v0RZUiHD5FpGjwfiwM8ygJQeLViFYZbTIyQswGIRJJRBbPwEcPHuPdrx1w//uPODs5YdiVpkDsR3xaKUjgx8BILIe9FAzeo6Xmct3RVsXpMKZMN0wcHxygpETtZ5cpJi63jq7r9tyY/D46EEXGOb9nlUtGH0Do8nPXI8REiB4pG5wbiK4j79cmlEeriDEgIoBFiBJBu7iT+MGfv8m9bx5w77uPOHtYbGRFkT5grMUoi0yC7FJ538LeHMc5EIqzyx03Dlqqulwktl3PE7ePECKjtKDVGkist46u7wmpROamzL9dm3fsKb6MwZfGFlnWxoSPDiEbvHN4vyNHAUmR5ISSicrk/QFk3s8YMccjH/oPrnH4+CF3v3HB6b37dGPPbhxBKirboLXGRIFP7P9vzzB5hlD2y9tHK568uaKqDUIILrcdd24eoCQYLdHSoqTgcuvY9UO5NOVMToIYCs/Be49PBbmaYkJJhUAS3YAUE2N0ZFmR/IR3HTkkoCLhkAqsBiszOZv9hTtD0/MDf3nF6vEV73zlkpO3H7DrLhndREZhbY02BpUUwUu890zO4UNBpHymXGCmSFVphIBdNzKf2T1hW0MuoVdnO8fldmLy7v3jK6dU1ugdLhZ1kEsZkRJCSwpxLzD2DiENWRQelTKGmDXTUDI5hIjYnEmpcMRSzmgJ1z5QMTuccfbqnO7iknHYFn4JAm3BGAtJMU2BYXQlX0CrcrFCIGPm6VuHVEZBznTdyGLWIJUs6KMoMfW7fXOSU9k7fMx4n8g5FmWCUsRUWkcXIm5PDv1TaQbe86sedjvwUDfPFniz36KVpK1v4MZzssokl0gmMbKGrJFSowgIlZhdTwziHlpb5osDtuszgvfkFElhImpToD+t8EHgvSDEiEsJkQXrXU9KZb4kVTnwzi4D665nuWrohea0t1xuHOM4EoMnhoBzjm6cGKaAj4nFrGGcItMUCUYy9Y4w7XDZY+qnkKLC9dsCF7XXcdOaJCLJZZIJ+P6SnAvxTIqIkpH2VqbPD7FVTbs8YHt5QQyOkD3s2cFTLgYRzkNwxVhlSgktM+vtDh801lqEFIzTiPcjm2FkOa9RUvJwV2Rg/dAT97f+0Tm60eF8ZHKB5axlcpFhjCgjmLoJ53aE7BH2DtasCMMbpRcX18huIOBJMhbP8eGSkIsPvCCV2eaNiLcnaG2YrQ5YX5yRQiCkRPYBZSRjzoUcGSI+eELMTDFAhMtNR6bC+EKmDDFwvum43HYcHDQYrbgYNOdr6PsB5x0xFWSj3yMA/eSYzRtCTLgxI3XE9Z4xdvjsQF+jrm4zDG+QkqQWN8A7vBuIKmFVZjvu8Hncf28ZJT32MBHbRyQBi6ND1o9OCcGRoiOHAFYxpUJCEwG8D+QMQ/CMLnC+3aHVDBsiad/Rrzc9l5cdx8fz4tY4Cs42kq7rcG4iJscULP3kyER240TTFl36OHmkhmnwDKLHM5Dkgll9h2F8ixgGKnmAjALvtiSViC6Sxx0pDyAVg5BoEREtVDd3DN8eWR0dcXF6gnMOgkOmkqLnRJkpa1k4AILMEBJKOO6fXXKwsriYELk0pJe7gUena27cWqGVYPKSk7Vh13X4qazNBUk/eUSA3eioWksi/dtncvD0m44oBjyWRXuHcXgHN4EVK1S2TNOarDPJRRg7AlPxYBcSiUdUkvmTI903urK2sxOmYdjr3wNoR5SFiKz2a5OirC0D907PeeqxFS6WEVdlDdtu4OIyEHLEaElIkvsXVXk3nSPG8lz3o8flyHYYi9JDS4YhoiuJGxPDtifSMyXJcvYcbnqAGzeYpkXJA9xwhtaCPGWSGffiWc0oNQqHlJLlk57Nl05ZHB6SLiJ9tyN5j0wl2TEqzZATZr+fDGNg3I9V7j+6oH/2JlMIaC2oa8O2H1hv874pKoZjDy4r1rstzg0FLSTTT46kApthROoi2e6GQC0kYYwM254sesaYWMx+gNGfM/VbZN1Q6et04ylaCyaZwTnI52RRzgGZS6MwezwzyIfU8zmJxG5T9sqcAilotNa4BFrJIr3zHS5kfMpokbnYdcyCRRtJUjA6T7xM9IOnaQ2qh4c7w+VuIkwj0Rf2fzcF9NCz6aZCBqwt/RAQ2hByZPQjIQ246LFVC7kYzjWVoapm5DgQpkBwnugjkwiAwGiNlCVQTrRwMZxAmpGlwU0d4j3isa3QWhN8JJPwsRhFa6VKM5ATu25gNAVljRTvEucUw+BoWo2UIxtfcdmVUKVhnHAxEkJCVxJlC8F/VteFu5ML6vL/PMf/uBL5/+tvAHfv3uWJJ574k/QNV3VVV3VVV3VVV/XvWb3zzjs8/vjjf+zP/0TNQEqJe/fusVgs3tfIX9VVXdVVXdVVXdW/35VzZrvd8thjjxVfjT+m/kTNwFVd1VVd1VVd1VX9/7f++Dbhqq7qqq7qqq7qqv5c1FUzcFVXdVVXdVVX9ee8rpqBq7qqq7qqq7qqP+d11Qxc1VVd1VVd1VX9Oa+rZuCqruqqruqqrurPeV01A1d1VVd1VVd1VX/O66oZuKqruqqruqqr+nNe/ze2acznAPod1AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_4/1720425300_tango_video2audio_clip4clip_4_best_steps_300_guidance_3.0_sampleRate_16000_augment/2.wav\"\n", + "show_mel(file, save_name=\"ood_4_wav.pdf\")\n", + "show_video_frames(\"../data/foleycrafter/2.mp4\", save_name=\"ood_4_video.pdf\", frame_rate=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_2189924/99652230.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAAvCAYAAAB+KskzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWq0lEQVR4nO29d7yl11nf+11rvW3302fmTNFo1EbNsi0LyxVjm2KMQzPEQEhI+5ALCQ4koeRehxsIpiZceic3BUIKxY4pTowNtiVXybItSxqV0fRy+jn77PKWtdb9Y71tnxlJM4kv5BPv5yPN2fvd77veVZ/nt562hLXWMqUpTWlKU5rSlL5gSf5lV2BKU5rSlKY0pSn95dIUDExpSlOa0pSm9AVOUzAwpSlNaUpTmtIXOE3BwJSmNKUpTWlKX+A0BQNTmtKUpjSlKX2B0xQMTGlKU5rSlKb0BU5TMDClKU1pSlOa0hc4eddykzGGCxcu0Ol0EEL8/12nKU1pSlOa0pSm9Hkgay39fp/l5WWkfO79/zWBgQsXLnD48OHPW+WmNKUpTWlKU5rSXxydPXuWQ4cOPefv1wQGOp3O561Cf+m0cND9tSDcn2ski6g9Y/MPQoi8LIkUEiukuxeBNQYwGAwu0WPxNlH858oBhHXXrXj+GkkDxhqwFvZqaUT5D8K6sgUOGQohJtu6swl6DDKA7txVmmupKklR0NW6pXjlHrqG3g2aV3+kKM/uuf58NHGPrfrC5mNxRaUdScBc8UKQVlRj/HwvV3WkLbBSln3/nHTVdtnaX3Hlz89LNp9xxfMWW7ShKK+YV89RoJSTrMD1md1zxT3u+myyOWLizqpG9hraJPJbij4r6iysxexuQzIGNEQt7HAX4QXY8SZq9jB21MeMt8tSxcHjMBxiN88ACqI2jHfd8yjE8i3YYR9IYHcA2RDRW3LrM80gCCAeQqODjNrlekaI2pqrKlussYk2WgHxCJsMsf1NIAUhXc9Zs6f3riRx/NX5Oy1YkBb0iQer370Ieet9E/0PYKx1dl8hwFhsOkaOh9jhDlJAtnkhf/9zk3fsizCews1lkbeqPsJ7RjCvY8Eb6nNGKp96glspBcbYUrssrAVtsJ7C5nU3Nm+RyOezkFdMX4HJxyOvwvYq2fknnrddBTVvuZ/Y8yv+UAwntXHMMuzGKmQJIgqre0Q1vgWfFtZihUAgy74yFPb3fCaX/LPqxnyG5z1a9JqbYzZfEMIy8ZAVAmFNbSyKsvauKIsoPQAs1hjMyskXlOPXBAYq04C8UgDV70NghXkeAVHdWdLejrIFu9kjFZ6rvCuer/2deJ37QUp/4kdBPimvGKQru7i8H0A44S+kj1Q+QnpYIfO+yqeEcf8bnWBMijFZ3j5bVbXoz1z4StzkmhDGOMZuhHVDoGt9IyZBQb3pIpdmxZQrJ7sQWD12N5kEmSTQaDn2ba1ruRAIK0GYnAdOChM7MT4Cx+D2DlK9N4s7q34VvmMWxRUlKsFa8BAHmFx/CiTWmqrfbLmErmw7V8ygiRrZUmgWfSTKe00BnvKFjqkYqHt3NTye9Gug7npNaHUBWUNvFWuggJDPX3LBhgqGLFBQCS9rS45krL1KWQKhPEy+zoo+qgNKYcHkn3UNa9UrWmdtE5g2r4OoD8qeRolcoNhSCLhrqjfv2jTYxoxHKD9CzO0nW9VIKUlzICD8phN+wkdvXQDhIZduBBVgB1vY7fOIRgchPQgbEMwiwhRz+YRbQq1ZB4wLNapOkFKhpaKaPRM9Vra93laZpZj+BmZ3A2zq7hQB1ia8EAjIS0Aoj/qMlcMhunZHd9+NDJSHtZTzWAiBKoQJIHSKPfM5dDqC531ztWrCuSOkYQBSlWPixqJY21cZOGwNCBTAIS9ZemXdrLUgheveclpqhBc4npMjAZG3qVRn55NG5ODLPWdyYWexF54iWz//An1a1FuR+j5IxVte+0re86GPuvltLegMoTzHD5SPXFxGn3oMr90t533ZskmWe4Volrh1I/fsCET9g528Vt155fqsr8PabXvW3RUVKZ81xs2eFzLxXxMYKEmGe8DA5MQop0QlMV1Hkwum2qopRUDBIYpyX5Cf7rlBPEevFpOoqFd+mxuovYMkKKpXMbSaAKQqS+SLVXohyosQgWMgSnigFLLYgVs3adEZmUnRaYqNhzkwyMAapCjFc1Vna5HCgpCTwkEUfQhGiVIYWijLIReZewWg+5LXXzix15xbor+xAoAZbiCVQliB8EOs51fPF6Bgj1i6uuAtZsAk86zzf1s+IEBIBNVuZkLxIB0DKN8hcgaFqqbgREPtZNnlT5PiX5RtqsOAuvAVSGFLbYqAkjkW94gaSHOMe/K1xWZJCLcflcU14QSqtFf2XdWOql01jDrx/ueiah9XtOlKGCEBit1FbR0YJStBkj9jRQUOJoW4LIUQE/fKgkXn4KZWa+F2TIgaZ6013jHcShtT9F8hUGRnFtGeA6PRWytgMnR/vSzA5kIPJHghamY/JmojANmeR+9uIGcPYpWHUC13XyCr6oXNgo3ncqOBodC32CvGpqi8zD8Wc9d6ASJqI8a72DTNq6SYkObPQ0L5eUEVXxO1+Qdgo7brfasRQjpQYMEzmkxJV13PQx17MfrCSWx/teroK4BN7fvSDSBrQr/c0tYW2hVSyd1bdk+5CNz9AnAbeVHuF4QoilHlk259FH0qKy5TYwqVCMnnngG6i/jSJ119dk+divvqK8ygn/oEhC1u/sqX4w0HZM2WE5jrqwgBcuEgVoDd2YQ0xgiBkbIqcWITMrGnn5giori3bEbFb6iV4bqkGGu32JzmrZp7puxJW5YjxORLRV5WyZfyhWSEnQBoz0fXBwaCECFFrdW2hkzERGfUxX7x795KTcKIyacm77L5f7YUChVdHfNOTP1CVSwq3FXMc0s1v+vzuBJ55BNYIqWP9CNk1ER5PtIL8fwAqXx8L0AohfIUWIeEsyxD64QsjcmSMToIyJIYkYyx6ahkqHX+YoWYeC9QTgvIGaSpGLkQFQMlF1JXH3oJWcr3fdff58d//lfZ9dvMLUg21i65XuyvlvepuWW0F5RlCws2/+Dkg8DsEfnVkqhGUjI5DwrNXnGvEgIhVKV9FfWy6iVSyJPaSqu9PF8dNleBFu+ZVMNVC7pecE0XMfnWiZutaz9Ukp6cwQmJ2SOhba3SBassGF0xz+qP2KKs2oVCGE5qYCgF9t5xdtVynVS0vQTgk6gQGWfo3Q3E3P6c+YMU3hWCLkdOYE3OwEV5ub7Ln6iHcCy+vm7zarOnieWbJvadtvYCS1WSzKtjJLI7D3YOs3aOvSVa30ceuAWjvHxOWGyoEPtvxoShq79w68dogQhnEEEbKz0qWFjVT4pKU1TfHAhjEVkGWGwSo3zfjbPyEI02Zkvg9w6Q9jfZMwB5EQqsrvqpeK+O8253nWWFIL14duLRcbPjampxoDYeI9IU0+5MDLfxAsSR44jRIUQ8Qp9/bG8lJkZCWUOKx+To7B3gqn8ExfSqVPlViVUZ1ta/u/6v77PqmwCRm9nqb7nC5FYscAnCWNLVU1wbWUyaQJrwUz/xU4TLt2KbTRjsoGbmsZuriLXzMLcP0e6hV8BK5eZRvZRCBgoQSGfa2DO3C84jcpllrEbIAirXpIspFkjOH6StNJNF/5UwQpaaE1v2gy3n+URLy3Gq3vdCdJ2aAeFsaLWyZQGNmbhcw2bOImtq6n83xfLJXmGaicV4tQUkc/RYsRoLKGS9P2vvn5hwBQOWNSDwPH3kEHdeVykdCAiaKD/ECxsEUYvAjwibLaJGgzBq4IcRQRBihUSnGXE8YjzaZTwcMB70ieMR6XiA9kOycYBJd52WgGKK1Dhs1YHVgimEg/Im1rHF5iCttuBcIyZGw26e5xd/6l8gRBPR6DCK5mHt8p6+NuiNC6jZZWdbnV/C1Be5rbCwEIUNNAcl1uRAIS+ptNfbybpYV1+346lmwtUnbbW0rhCMV44alHOo/lztDjsJ+vbeMFl6bcfzXG+TCiVEjsBFzbpTAZG9or/QOhQaij2jRg2ylpWr70JKa6Cp92s1b8Se+93PDsjJLAegUuKNBuh2zzETT1Foj6ytynHMRlGimMnlX7OPVityoo/EJEOSe0CXpRoxZ0qomQgnwEleulRIL0AksQN/wsPaDBDIoAlKIZSq94h7e9SowE3+r/R82H8M/FwTlv8uauuoAGVOIFSzQWIgSbDpGL15Hi3I66MQUiGjJml/DYzBMin0RdDGJiNAoLr70DuXau2cnHHCghmuTHbqaIBKU0whBIIQ3e7mjC1/R+HzgoVG2/lOnN8LQSdGCq01wvdqwrvYDBRCx5aMtJx1BW68Cg8uBVRd62urfqaoX32N2NpnJj/WkaXQBtvfIDv72J62iMl7i/5QvuNpja7TvkhF1my7daIt5tJZvJkFTH8Lc+pxvLl9kI5zAVfjy4AUsmxwBX7r3KZeaZn3oczXu6COioWqobdyjZg9snBPv+WA2fEbky/NChBMzqIX9kMr6DrBgARRLf36v5PDUf9W7OQt9UlUVRXq7KRARcXVanrvXSb5e3NbVHG/rs2xq1mxRW0goQAGIt/pVJ0p8mtCeEg/QjVaKL+B32jSaHRot2Zo93r05heYXVpgeXGBhZkOnVYDawz9ccLa5g4XVlbZXN1ge2OF/uYmO7ubxINdpArIYo8sHmGyQb5vLSo/KQSKvpMIrJVY5VUgod4fhSAQV1vqAtueY7t/Gcw2YneDpD2HUAFWx3vuNujNcwSLx8iEl++IKpW+LSdmAfCKAZJlfeXVhG7+ROkaIOqgxpatnVh7OQAUtf6wpS0cJhBf/SFgUjdRddikCt1OCAl3Zw3E5GtVJGMUoIOofJ21DgwYIav+FpUfghNuCkqHp7yNtfeZPe/Or9bqUrgiTfYhgPW4YqDrPTCxWxB5v29fJhtsIRHImQVSlQMyIUtHSilw/il7Ci3MNo75VL/r8qMs/y3gvcRW6ssakCxaKIQttQZiYsFeDX5Z0BqrMxjsYAq/l/xNoj2LZ0zVpnJO2T3F1TiUH0zM07r2EKr2CrcAyzlnjcCmY4ROnBlACEQ6xpJiNeh0yFWFlAjw2oukm+fBCsxoZ7J9ZUXqj2WTvWAFWbPlPhdrw5radC8EQKVRlKvn0FdwheolYXeBLGxcscPE5gprQa0P3Rwv13gxhmXFixlQQLHCeCnyvqvxAHB9Rw1sle2vAJEjg9jawPTXyAZbNdNQWdDejiu/+zfdhw5DMNap4PNNrcViO11kGJJtXIbddUwyIBltABopVS5oa6UVWtk9bytV/vmaLqezcGtRCeFgoa3GpRirOnCVzvujKtHiFmUhn0QhFy02l6+lRm1PHevy8YXo+sCA7+fIvdaQ4uUF16Sq0CR6dFdMiVz3gIhSBWlL4GRz5m1FzeFuYpAnndMc6yxs9naCxzukbGr1n+QAIleF1usvhYcMWsgowgubRM0OrV6PmZlF5pb2c+zYjdz/opu548g+5tohDU8ipEVbS5waUgujUcqjz17mgc8+zcmTp1i7dI7t9XUG/S0STyI8Dz0Ek8Vl+02++Ep0L8oedqpaKScQdOmgU0PzRcdXnqkCuvPIVg+7dgab7KK3Lj73WAMmHSKiBqKYxFRiqtTG1FVaJWKl+l4bn5KfFIJRqUrQ1J+bQDl2YlwqKVwX/tVCqRh7UcHCLpw7J+2VCzVyxdaAR3GjzjVEyRDlhxjPd2OjwAqJkfkyru2azMRb6kBvT1uommIBZZ32zVic7VSYvKxJLUX5ufZsyQwmGHPtbUJgRkNIE7erTBIUHjpqlCtH7u5g2t1yDEoTMpNNqLOz0mOqVreKSwiUqPqmKKG2RajMIaUvwt6uqkoVNsPGI0w8mGifxaJ31vFEiJxfcmxU1NaJqJVTvJRqPhT9J8rf7MSby9qKQqwZrBSY4S42K8B04RiQgyqviclivNllss3cpGFT0o3TlIw+HXJVyqsstZkwhHpRDxMFObYqnDKlczEqHxUInaHSBLO9gk0GpDurV7yiIkuyu4GsFm5VjQnZOnm95Di2tt6gbBsi92rP+9SZeStgUReIVc1tuZb3rhextY5ZO5sDqL3Ahj3XijUsIWhjg9Cty3weCOl4psgyp30Z7IBOMMmuq39ZB1UC33JG1ITuxOak+DkHSSoHTfXNmUC4AAlrMbIaNFW2OzclCJHzrlqbSsGYm1ytK2vi/XtIiCKq7YXpusCAkE4FtlcZWK+GLZyQavaMgp/UUefeYav5VFwxzKL+t+xzMbGALTZf9/UFX3vA5hNTeNTVzQWbNWLSa1gK5cwCYQMVhoTNDt3eHPP7llm+8Sivf/lLePWdh+lEisxAYjJs5hyopBBoawmkoNEJeeOLj/Ly4wf580eP8b4HH+HsqWdYu+yxu+1UUEZYxFCg02SiT5xGqaZKrjm0VeMvCh5VoUthEOxxOsonDlIh9t2MPvco2Mkdx17Kti4hkxi5eAglnOA2ApQQuYq66mpwAMEUwK3ksoUwr1zLXCCOcX1eH9z6wJdotliC7rsR9ViPyuRUgwVAGXtA4fRgbeEz4hiXyJ+uY/KaZCJHZgB4wx30zjoYjWzMoKVHsQMQQua7W+fUKSlEQrHXETXZUlyptblEQ8XY5c+WDESWpRXdUQAnB36ruVyARZtzI1m+ON/JaYOY20984XGEFWS727A85+6zBrtxGU95aK3Rnlfv0BJMFRevcJwS1e2V5aLG5EXR/j1ghhp4kbYmc6rQqMmRBasN6GKEi5IMZCOEF7hyBaUDZOnUVvZ7TQzlO64SPOXzrnjGeYXXBmw0gvHAbWp2t7HjEcLzsVkC0sefPUi6fhYZNDDJyNVLZ3iNHtlop6aJK3phb92CfNzyemSTWrvWwWMMhXLgTZiqE4tmGYMcbGHWzpLEfWyW7H3DVcnzQ7e2anw4nxYgZP65YDTV2ijX31VeIoRywq8Upnmb6v2f/1Oy6mLXbAyMhxCP8mgeQXr+cZyfxRVvYs+MKn+R0Qzi2N2lxkfmoMRaC6MYshTheS5yZHcb4Tew6W75vCnQcN08VuNTxXq1xRdRn/ZVjJKT7ZXfUuFM64LBcqFvqnggIDdX2XJ+mqoH3YrOQxzFVUe4xj+trFf5Oen6wIBQjvntfWe5K60PtLii9/aGNhQ7Mef4JPOlXYSXvBCaKSFG/qpih1rfCRT1EJWfQB4XXne0cbGilNcBpB8gwxAVRISNNt1uj4V9Bzh2/Db+yhtezp2HZvn5H30n//gd70AKF0OLtYSeT2KyvC2CTGsU0A49XnP3IY7s6/Ef3hsilVOlmdyBJDVushqdUaLsnJnbPXYmJSS6nFhVQ2SuzhIoh3xralebC2QhXXnhwduJz332BfoYzHATLiWoG+7A2txb3BrHIWsMoTAdCHCM2oLsb2LbPczexQ8YFGqv+krY2nQvxJhbULJg7vk4ytr4158oVXACyl1JvpiLXUwuIUomb6xTeZrCPJh3WPEG099yjN1oPCnxrcUoCrRWQhJpDHLjAmZmH9bzcyBQLcqCGZVDexVQWokIUf47IXiLKS+cNsuKKxd65SzrPkssGgG+RGY+SgVYQC0eQe9sImYWUJkm2dnCttugJFLW9npFvgJRQJwKnBRq6uJeO1mR2khWF+sqTay4oi+qTqiEIvkujmRMNtrGxju1UitBYOI+Imtjw6AqJt8F2twnoS6CRd6G8lvxuok78vcbA1ED22oihYKZBeRgF6sTkBLZ6gIKlYyxsQMCKmhixrtYq91I6gThRdhshJAB1lQbAJj0wQIwUWPi9zTsgDUIqxE6wwx3wGhElmLjAWa4Q5ZMmiheWBAIgvnDjCnAXOXPjqhp5iY7rZybkzbpAlDYyTlSwxFcUVxNgwnYwTb63AlsMuSF8iI8dwtd7aLlm4iLUMnil2JTFYVYEWHJI7Jml5wmBSD3hyrWb+WkzaQZVkx2S6lxcmi0ck6XeVi+KFqcm1lyq7UV5P5shXugxRr3WebiVRQ6QlHJqasBgb1r8FqzBl8XGChC2vYWbaVAmmr5FEK+qJhTY2sqm6kAoRBegPJCt7ByIW2tQacpZDGYhELYVcu9Vm7R2qrdV8VIE7cJHzCl9rh0Xq7dKBCooIHnBXhhk3ary+zCEoduPMZf+dL7OTDrHE9+6Wf/JbffeSdf8pavBul2rdJoQqUQyoX8jI0p69/xPY4vz/C33/Jqfs1asixFZxptDNa6eP5kPMwno6kJMjvBkK0fuJ3cczSzhGay1kd1lGoha7Sfq6cmyF86Ct1FrBfmmM+UM9iaOo6tV0LiDcaY4S4iHSMWDpaxusXqcbvYKkFToWhAp1jl5/4axdjkqwbnbVvTNVG4mZezQhQwrFrElb9BHYzYvF+V29lPLCub95cFA7I3T3ZhFVBkm6uI/YcgzylhZbWw5WiEkgqRJegwqCw5uWBzjBaq2taMXkVzykpU89x9sGUZ+TbEeTpPCNbaENSGo7DYSmNRZEjpYZSPiQeIOZdwJ127iNUj9MCgZvejlVf2s5U1tb8tdnquf4ys5lQp/K0tQY/BMbhCEhQyvuQRwuaOd6IG0AtwnrdXa+xggM1ifM8j0ynW6qIGzi/DggwayHYPHUYTTNoCNk2xWiOUhwj8Wt/s6a/c5FbwuRLkCOHmlqjKFH4As3MgBDJJMFvr6I3zrtaeQsoG+A1E1MaOB0gVgLWYeBeQ+DNLJFurOZ/L2yucX1YVLVDZ3gGSc4+h892y1SmYq2n3ro35FySVhwlbiD1Szg1BZfCRwrnKOV8ZckBguZr9TUzY/YrJ7T7anBcVDto55sAO++jLz2LKkNHra4ejahE0ZpdJmp1csBfS05aO6HX+aMMQOxwi/AhhNf6+m0jOPVoJ36IZZd9UEql8s5P/yDwfj5Buo2CkoPCmKuSLENKtkXwDZ/NwZqfVdbLASkvhU+PWjnDaAwHSViCsPk/FnnGYWAgvQNcFBiR71B6QIxZyBwfK38qqiOKv25pJ6SOCJp4X4UUtgijC8wKkr5yQylLSUUycjdCjAWncR+is9r5qsCdQUp3Z1Opcfc9dM5Ss7bQLFW4dtgqkkijfQwQhUSOk0+uxcOAQb37jK5nvNQFRuvR817f/Lf7d0ns4/qJ7CJoRVjoHmYaUJMagjWEXiw80fY9ACG5caPG2N7ycXx+MSIYj4izB5kmJlA4w2k2IekPK7FcC0JpMqWqW2qKtha0u751yPIpBKMZKOUHmtzDp4HnHXG9dxtt/CwIwJs372C1+JxQ0ogAFllywKsz2Kp6ALI4dY637GRazSAqKLbvMPRPt2jpebw4dheXcsiUycI11Jg+3wIUUOWcylHHiOTMt9xT1sEhrc7+VotP2AIGCYRXTTFqU8pFegDEW1V2A8Rjd7iCMe6cVFqkN9C8zHvYJZvdNLlBRiykohqUGlmW+NoSYvD45lkUJ+Y4t32lWfTS57srm5OXKNEOMR6Q7a1idYYVCSIkdD2A0xCQDrMnwuwfRfkgFIGtllXxFlMJaFvcU6wmcgM+Fu0Q4jYuVCKEnAVfxRImAJhOWibyzhPKQnS7FnkklMWa0g5Qe2li8sI2Oh86xEB9pDFbJ2u4epOdhVWE6y/u4lhCiztqFkPl8zRm3FRTejRI3j4zAaQpGY2x/C21SGOw6YW9SpNdGdGbRw21kkqFuOE52+nH8A8dgZ8VFBM0t40sPMx5ikxiyMSLq5b0jUCYjO/t4bSZBtrN25SBfOerXcE9Fyg/RrZm8A/K5WvqAXAk2K55eXHN+LhWfdT+IfMdliwmqM7dJEoU/nJszWIs587hLFjVR9+trR16r8jl74FYQqpyfxS+FFqKuubNba5hshLd4FK/VIls9O1FmpbmY1IwV+REEtVwZ0ssBjtNouuy0AiVccjopXcSLKCMVXG2sMRijMUajTYzRBotxoKDk8drVQBbg2VJA2sJMPmmyuXZQdd1mgkJBa4tPovLgLx0Z9rxb5p0n/BCv0SSIujTbHdoz88zMzNHsdWg0GqRaM9gdsL2xQX9rg93+JmrQJBvsoNNxxd4FpcqP2mStOycW3WAFKGsx8QATtlB74lgLM4Wz6eQMTCqECgn8Bq1Gh+7cIi+79x72LzTxlEJISHSlvvqNn/lpfvQ3/x3KuMGPTUaaChIKRm8Ifd95k1pLID1efHSeF99xC1tra+wO+mRxgs5SPD8jJaZIJ3kl/gR76RRi+RbKgRZFawov1ILZFQu3CGVTZXioEJLmsZeye+JDzzvmJhkRDrcQs4fJbIbVGq1jrNWYXJtRGhdzz2OJRWcx2sQgFF6WkARNCoknALm9iddoO6Gf11+OxmTDbUTURERR1a5c8AicU6eV7p2FXsEWac2oMHt9CYjaF7cbycV/ni6aIslQgcbzEDqsxUs1wqQIFH4Y4DUiUt9Hag27u4iZWRACM9pF72y4GsRjtN8p5Ti582pd31o4sgpEuWYqkCDKvqoGvegLkasNcyaqTNGwvN3Vrr2YCtZYGA1I1y5g0l2UVPh+QLZyGn/uACJsIMK2A6BBiE0TbNSggpeVf46pJIDzkSicHWv1tnmbJqNJHMco52UBwqwpv1NG+hRalDrDc+vWYPFnFpHJGJ2NEIMtsngASKxOMZ0uWljkeIxsNMkKBi7VhCnQ5kyaGgCrZll+2ebOYyI3tuQPGpvB1gY2SZCews4uIj0fu72JtBoRRuD54Pmo7W3Xb0GAPHIrJmwiW51ynLywhWg0ybbWSZNd9GgLzwIbF0hXT2OS5wfrnw+y0TxWqRwA23wuFry0Bk7r/ZTv6guAWIx8bdVRCNEiR4l5+hMEh45jOrPUJZY5/Sh6+xKfL/KiDmrmIJkfTPLNon1UArzM0upH6PYMeuM8ZtOgB5uARWpLFhTBg+XTeQuF89Ep5mcZ1VYwNIknFEqFKOWj/ACpPKSnkFK6nAq5P4a21mWrNQadZpgsRScJWo9JTYYVuWa9yIiZt8VWHye0VtTHT1yLqeW6wYBfZsOqbCi28vWajNoDKu9NGQT4YZdGt8fc/D6WD9/AfS+5h5fdeSPLSzOEnmI3SVnb3OXRZ87xiU8/zulnn2Hj8kUGKiAebLlkPRiKLFDC1pgeuZM9k3WQgB1sIZIYL2jlAl/kw5fvJgs1fL6zVZ6H8AP8MKTV6bF48BD333MMT0oaHphCjZfTzNwco8GIRuR2VArBOFeVJlY7FTKQaoPGkBjBrjZ84xffxaNPnWZr7RKj0ZAsibFeQpY5tWF9adW7NR2s4W/2kDMLZLIm+K1ApRlCKVKV17EwDyiVT16FFBIpPaxJr2nc+09/AhWdIJo7gH/0HoyJ0GmSC/wM0GByEWtAYGjsO8zgzKO0lm4ky3fwzgnGqbhUow3FDhQ3aGbjItIkSCWxSHQpG/KsZEJgpKoh/NqOLs/97pz48hBYa6nMGQWCtsVmpHJStG4H5BaTKfYMyHEMyYjxymmktRgD6eaKS6EaNrG9XikcZRBhBFgkIoioQpcqwVP8LdSIFdgRE4DFzWpV9ksxW4vKWmEqOywijzyom42qwspoj3YXOdhChgEkMdpoVKNLOtiCdIRC4rd6pM0O1nNgx0qZOyRSlleCFwsqh1UyF6gVaKsMM4WTk/Mkr9hoVU/lgGRuFqvbNwuzWJGdQFgDaUK6tY4Z76CTYe4nk1GEYMrtNaTwsY0mWkoHnIrNQzFXZNnR+QDZcu4UrSycD4tBLPJCWHA8sDuHkFXCKYuF2fkSipZyZ3a2elWjWbbf4rCo3t3B9i/mKWMtnoyw556oog/+AkgcOe6s0fXYzrxvbBHSVpOqhdnnChFTCKaCcjW5smCTGJsMiE8+THjn61xSqLzQzw8QqCoY3HwvqQonTG4Wi4rHzmFQx5jOPKydx3gKoXyysycAi8km/S20p8oNDOQb3vybEYWscYK9rh1TwsPzGigvRAU+XhjgeR6+5/4qpVCehxLScSVrsEaTaU2SJmRpShon6DRCpWPSdIzWGdaafM65eSZqS8ka3KYDcPE6jk9cES76HHR9PgN+MJEas0LaRQfl9o0CX+dzSIY+Qdik1ZljcfkQL3rpS/iWN7+Wmw/MYTFuJ46hYwIOL3S579aDfOnLb+d3/+wRPvrAxzh79lm2PUna75NlI6eKdrFDZQKniXpWNUSYDD3cxmiDP+vjJRnJ1ipy8WBus3bM2KWJFa4uwkd5HkEjojkzy+233IjG0PJD2r7HUOuJ7KJ/8Hv/mU9+4uP84m/+W268/Q6CwGOMCy0sRNDIGrTRLAUBQ5sxNpaFQHH40H4unplhZ2uL2A+x6bg0udgC3FCAnNq+pb+B8Hxko4sNvRzlgl05jWjPYWfnKezaxXkJCIGSPspvooIQvznD4Klqp/d8pMc7DC70mUES3fYy4iBCjmNEOsKYMaaW1UGkFrQLRszGu8j2DAAqHrm88EKgw8CpqXPnLoV091qDkQqdq2mtcJoaCkGbt0Xm7ZEopFJI6Tl7sPJyx0TlgKMVCKPRVmO1xpgUqzN32JPQTpsioPDBUNZFxltcYp5k4zzCZAjpoaKIbHcTrz2HaAdoIZDbaxB1Xcibtfiz+9FBWIbO6hIp5yp1kasGa4zKAQG3nzAXnkTOLqOaMwjlU2QutNatdmMN4HYJVjhVrBCGIkNiuY+zhW0xF01S4jU76CxFYUnHQwwSf3Yfpt3DrF1kPNhCxCne3H6sH5I1AieARW4HLeYhomJCRRIyW2SiyDUatlpbFZawufB2IE3ku0ZpBM7cYibbUM9hYTRmdxd0imh3MWvPuv4AfD9EazAmQW+v4y0dJYucY1i9nkUsR6HlcPZ4x8iLazafWxMQLAduIveXMEK5iJ6iaJv7/KSJS09e6heqqJViF+3ud/VQ0iB6CyT9FVRrFjPYxOgMUwKBq20FPt8kndC2gskcMlA6cdRsfGU7yl2XKNdOBa4FYDDCJcLQgBoXUREWuXIae+AmrFSYU49/HtpQdKwkOHCcxG84uVO/ZRxjt1bQm5fcRjK6iN5ZhSuCpif7upwbBW8TTFKuHUMU/nQKX/p4fgMvjPCCED8IaEQRURDihyFeEBIEIb7no5R7VhuNTjPSJCFOxi5h3XhMkoyJxwF+HJIkI5JkDCJPZGVlDpPdVsANkyy1BMLKcr1eywy6Pp8BValCqHUQUKneSidBQINUAj9s0uj0mFte5r77X863fs3rONCJUALGBoTRNJWHEBqJU6Ufme/wd97yChZmOrznv30A87Rl1wAjjdba5e9nz4DnNLEEjcGkY7Cgt9fcE+kIycE8HIzKBohAKYXwfDwvoBE0aHY6vPSuG92OU8Ewy1DSLe4wbBDHLvHFubOn+bo3vZFbb7+DpaX9/N23fzd3vuyLSnDUjzM8CYPM0PJ9VDrGCMGr7jjMo4/28MMIMRzgIjZUnW1R4s3aTtgKQTbqQ2++HHDZ3yQZbtLozjq1rSyyfOcOKypEhS2CqEEYRkSNiA2heKEQw3rPbl14nNkwoHXzS4mVB4mHiRU6HaGtxtMpDHfJRttu15o6nwK1s4UNmxQ5EYQQiNEAwgjSFBk1CJpdktEuFumcSqF0wilWoXNy8lDKQ+YOqMpTLjW0l6NtBS6DpHuXMRqtszw9dIZJE3SaobMRxmZuYyryMwlMvksETBQRLhxCAOn6RYSURHPLGJO5nZxU0J13GrPRjhP0OkMMtlFWYXu9cn6VAKBuBnCpf9y5ENLDkz47a6dJ187gNbp07vtqSj8JY7HGzX1MhtFpfvhV7kiXO3HVg/5KgZSraeP+Fqa/gvRcNIGUEtVsY4QljNqYsIEd7rg8BO1eZVqqbQ5L8SQKdluAmWJ8nAZKSunMiqIau8rfxAlPjHFaA2mqehYzPNfS5YU6QNLtQZq668JH+WCNJcsSVx4C0VtC+g1UZjF+TWAXfVLisFwrIcHaulagGKvCfdLVqQiDtThzWKl9TGNEGkN/jWzlFMGxl2CbvUpoCptvuC3FyQ1IF5kgLp0nGawR7r+J8dpZLBlSNcDESKlybcFe6VO05vMBEATB0XsxKIrEYvVssABGGIqzSQr9WtVFRU/WwpjLBDoq58O5g28tRHK0epJWo0k2e4R06/TnoR0WoQIaN7+ctDlTG19RAkAxHqJ31lGdeUhGZLtreK0ZsoFzVlRBG61Td5KrSy/mmnP5LF53AdvuFFvvUhsk3SJy9wmJQOF5IUHQxIsigpzHtqI2jXaTVqtNu92h3e3S7XXoNhoEgYe2mnGS0t8dsbOzy2B3l8Fun8Fun9FwwMAfEvsjGPsgPZJ0hNHO9Oi0sfl5NoXpLZ/jpmQ18pqOyLo+zYBQ1aE4e3TYpUpGFk6GAuGD8j2CRpPe7AK33HY7X/tVX0ykBFtbm/idnlPLS8muzuh5HqmxpEYjraLnB3zT617M6kafwfYOSTzC6gQzruJAJxd7/XO+C1MS5YdgwGvOkKyeIVw8nC9sStWmBESWIvKzBjzPxw9Dur0ZpHTHzYx0SigDFJbIU/zML/4qf+9vf2v53ixLeeyzn+YxPs2H//z9fO78CiNtyAxo4xzfdkiw+MwEPoGEl954kFangx8EKF85m5JSaJ2VC/KK44ex+N05bG+eVMlykao0RmAwMgDplbtoISTSaxA0mgRBi6jVoNVs0Z2bYaO3yM4LJB/aS5vPfpr5dEB06yvwopC4yEyZjYCUbO2M03BgsVmMXjmD11ski8LyWFSswK6ew1qLN7MESNJ4TNCdRURNGA+xYSPP/5D3gRBIfLwgQvo5yvZD/MAn8AOCIFfB+T4qX6SZMdgsI0tTkiwhTVOSJCFNErI4IEvGZFmMNRqR+w84ZOvSpOkkwWxdQCDIdocYbZGHbqp2kJ6PHI+h1aMxu5/MCsygj1w67MxJhcdv3V8AAcJDKg/Pi8Dz8KTH6IkH3Ng2eizc8zr8Xq8ED9YYjDZkOkVnGTrNyNIxJhujdYo1WW4+y2MHSk9jJ8VFmqGaPTKdorwAozN0OmR87km8hcPEa+fw2rOI1gK2082ZXBWpUWVJc7bzKplMvivCzVuhPHeKp5BuLssql0QR3meMyyJodOrs/Fpj0FBP25ulMNhEhhFW+ZClmI2LZNurzrxlMvRkVB4gUL15Mt8vmWKdTVF8tgWzzANXRbHGnEZDCIHSCTJolOAco9E7K+jNC9gsQScDl80uGUCu4gdB+sxDhHd9iTvcpmAwojQcUJ4EmmVkO5cwyS6xTlx7KTIXCrz5oySrJ59jBX5+wED32EsZzSxX+0YL1AR7rr+oNt7PVZDY87G8v1QhYGf3Q83yMTjzORrRLEgPrtFcOfmWSmcqlE90/NUu7LJGhXOrthZmFvA8HzPYQfXmkCYlG24jGzOY8QCdDms76CJbiCDbPI+vY8RulIeWdrBzi5V2qTQNKHy/QRC08BsNGs0m7UaDdrtDpzfDzMIcB5f3c/uNB7hl/yzL3YjAd+trrA2ZsaSp5eLGLo+dXeXJcyusX15ja2uDYHOTwcBDKJX7eymSZIA2aa6RsaUss7VW7B2PF6LrAgPKGoRVaKGo1HzUNj05EyptoALlN2g2WywdWObr3vJ6ug2PP/xP/4lf+Ikf5lu+7e/w17/r7VhPIJRgoDOGmWuIF0AgBYEVfPtXv4YTT59iZ3uLLIlR6YjU6nwnke+KqNxXCltqYTdWjQ4ijpF+BMIj21ohaM9ggurEOdIMdtaxYROkc/Lwowa92TkwoDyVq2ItDd8js5Y3vuWrmJ2dZ3NzndnZeW6+7XY+99lPMxz0ybKUX//pn+Zb3/52rHT53QIBCMnYaowG6XtEviWKGvh+gJCeYz5SYveefpPXVABhY4Z4/Twy3nWHtoRNrPIxUhG0ZjBBRHE6oRASz4vwGy2CRoNWs02726Ez22Pf/v3c8Z3fy7/9ke8pmdW10vq5p5GXzuA1OqjOArLZc34IQhAsHAALowtPo8ImfneOtFCtCgCXVS/oLmLml1x0Q5oipEKPx/ibl7Az+7CeV00uFJ4K8X2XDdIPQ8IwJGw0aEYNwmaDRtQgDEOCKEIFLtrCZLnqbThmlIyIByNG4yFxHDMahSRxiIrHpPEQbRKc7TpP2mQ0otEmXUsJW7PoJCYbbeOtXUQGDWy7i1UhdnsdZVLSYR9//iCmM4dWHrkv/aT6VAik9JB+A9+PEOM+ZucygwtPkeQ56o9/5bdBo4tXnrsOJtOkWYbOMpIsJU0T4jhEpw2yeEyajDA6oXDKowQE0jXpwiniwRpec45ssEGmU6T0CeYWsK02WTJAZSGqsUQWhHkER7Fbr9YVViPiPsgIogbCguc3kH7oTDSeA9LKUy7MUuVmGJEDGmuddkZrTJq58No0RmcpRo8xNvc/WTtPuvJMCQLJnV5tVqQgvlIgCiEhS2A0wszMIqys/IJcLzo+IeqMsyjLMVnl+aB87LnHSbfPE8wdBuURr5wiGzy3J7/ym/hH7kZvr2Ol5wBTzomL3CmQJxhLM7fO/RCSITZNCNoLxP2LRM0e0dJhxn4HnhMMuHarqIse5xnzrpOimQOkc0fKhD5F5s2JHq1/EfUPe4SNndQYFKdyyjJBnUAqQX3HDZb45Mevqa6Nwy9mfPkZbNK/omLSbxAdfzU6bLsNXaGtqOEbp0UOsFETGQ9ITn+OIsxGNToIa9HjTbzOPrJRHzW7TLZ2Opcfmnjrgmua8Nh34CgbOYDMPZlBSHwvwg/bDgg0GnTabXozs8zNzbN86AD3330T9x5boh0qUqMJ8syGQoAyltCXqAD2d+a4+9AsZzcP8+CJ83zu5BkuX2jgr68j5BYgifOtfzIeosnyIbE1Lfmk7LBX1Z9fSddnJhgPodl14RIl5LDINMHoDNtsUaizBaCUh+9HNNpdDt9wI4vzbXqR4uu+5W38x9/8FX7up36Uhz/xUb7vn/1zjt1yK6nv5c4UuKx+1oDVDK3hJfcc5/zpkwx2d0jjBiId1hBoFZcrRaEyFdjxCHbWnJOGgGTtLNbEyOaB3IGlAA1gd3ZINy/hzx9CeDlTCyPanTatyC8QBp6ShJ4ijlOMkvzRBx/gFXcf511/9iE6c4t88D3v5u3/x9/mzW9+Cz/5Yz/Ezcfv4J4veR2e8uiFPnFmGGfaHdxkNfOhIIhCZBC6XZTvI2IPRKW6r/w/3MLK4oFDiEmCNxxihI9tNsDzMEagtEb2d7DdeZQK8KMWYaNFs92i0+0xMz/D8qFDfMnL7uLVty5zvKP5ge//x9czFQAwWULSX4f+enVRSJel0oKwmnS4jpxZwHZna1M0z2g2s+CAgLFkF0+Sjfs0Dx3HYrFBkINKt/NUKsIPG/hRi0bUoNloELWatNodOt0uM7OzzM/3OLAwx/JMi3YzACvYiWO2dgZcXN/h8vo2W5sb9Ps77PYH+P1dxqMhI89DKOkAQRZj85RRauMS2WCLcP4Q6caFMhxPeQGmt+AWc5oh/AATO7OBNRnaD2tCprY9FQJPuYOuRBoz+twHSLYv5wlp3P1+2Gb+2M2EfkgYRUgpscaSZqmzIY7HjIYjxnH+eTwi9nyUF5AmQ3QaO78IcB7fAhf5kYyxOkUP1xBCopTLUZBsreClCaAxaUK6cgo5ewg5s+icl9OEbOVprHZJbdCpM7shUI0eVhsaL/9qpB/gBwGB5+MFPoHno3ynGZA5w3DaDe3MNWlGojOyJCFNYpI0QScBWTJyDO7gTUS9JbKtS6hGB6Im6ZnHamDgSvDaXLoJvbWKXTyCwKsiBqA2HrlWACjyS0ihUMp5eivPR/oB3u330//kHzI8+xmk8pm78W7WnlpDSA9rMjqLN9BfPZv3r6F7z5czFgLV24e29VAvm2tO8322TuD8SfRoO9+NujrG/csAjIcb2PlXIwa7V21jve3RzfejB9tk25exWYyId8nivc9dCZqay7chDt6OLkKtobBGTWhabf2bLfSPNXVw8c0WtzgfDBeMY7FKFpwZlEIt3Yheebqsh8n2nolydZIHbiPadyOjT/7+ZJuEIrrrjRjPHSNf5COxk4dcVPVUASbNUHPLeLP7MPEIvXYuP+HSQy3e6LSahfOxTSdglvR8Rl4ThJ9vhp32zPfDfIMS0Wg26bQ79Ho9Fvcf4NZbjvLl993KkdkQiyU2GdqAVAZlc40xFmMMQkpGOiOUisOzIV957w3cfnCBP/rE45wJfJCFVq5ycyYZoo2uORLmflZUqf+tfK55NEnXZybIUsR47FR3fuVQZNYuoBYPoWuqUGsM0ncq3U53hhe/9A4EljQDTwne9d/ex+1HDvDAn3+Ab3jTgxy7+Rbu/+LX84/+2Q8SW8tWkhIIwVLoEwrL277kpXzwwx9jbX0VOQjciVL1IS9sqw4LOkbgh6SjAcYal9nP990TYatUeRb19YR1JxOGbTxrnUOa9AlDj67vs60zUDDWGWsjd/6AUjCztA+AmcVFWoHPm7/+rfw/P/FOnnrySV527338vb/5Tdx1z0t501/5Wr7ru9+OAEaZRklJLwjwpQNNQilUcRohLoSz9H8uXc1zJZDNUNEMxm9gFw87x87x0IXqZQl6axV18CakivDDJkGj5dRWnS692R77Di7zxvtfxH03LhF58Oav+Tp+4Pv/CZ8XO6Q1Ll1sXpo1hnT9DGrUR80dwgQB1hqkNag0I/MDlHY2fQnorUvIo/dUHvPC2eG8sEkQRjRaLZqtFp1Oh06vy9z8Ajcc2c/Lb72B2/b3aEUekecW8yjLUFLhCUGSGc6sD3jgxFmePHOB9bV1Nje26G9vIz2XsVEISRoLstwubY0h3b5MmidtF9btvOO1c/jxGLVwkPHJh/Fbs9h0iEQxXjlP4LXwZpdIhMK5TznVs688VNjA90I2Pv4HYBKstUQdB5RG/U3e9v0/zg13vIh9c11m2hG+pxjHGdvDhMsbfS6srbOxtU1/e5vd7T7BaMDQHzAe+ciRIpEKk4zRNnOZFVfPokc7GO1OyZPKc8BdZ/hRF2/hCDR76N11sniISAZ4QYhqNDE6Iz71UC33fp0ENh1h0hGNdhs/CIkazkkqbEQEXogfBvhh4KJDLM7MkWakSUyaxsRxQjIaM4pjvHhEEgdIL8hBWQKdBVR73s2li09h4n757iuEFRaDIUvG+EmCjdoUXjc5DpsA1bkuACEFnh+hghAvBzK+7+N7PjNf+i1sX3iWmcUDDC+eAuCWr/zbPPmeX+Gm1/9V1p7+LJtPfIRwZhE5t0SYJGRJgkhjMp1RJOMRIg97FoBowMx+FJqgt8h44wJCBZA4U4PwQqz0kK2e8x2yeQTMhBB2n02zi2128Rac2ZN0jNo4jx5s4TV7YDXjs5NZRoX0sEfuec6VLsp35N9traftlWCg+tepyos7DBalQrfW8/Hyjt4L/U30qLZ5qI2fo8pvofzNV+hnT9SuuXvbd30JJmzlysP6VmNPPol8vEXUQR690/2SZejzT+EvHiK+9Ayy0cMqF2mlrEGjUdEMerzl7lcR0dH7SNszTmrkfk9SeS5BXRARNZs0W21avS5zS0vcdvsxvvK+25hpFMe1C5Sx7OqUzd0+/+oH38Fbv+mb+J3f/m1+6Ed/nHf+ix+i3Wnztd/wNm46diOd0OfeozOEwZ38/kclxuQmNuO4is3Tcsg0nugxF7kjkPEYfB+Dz7V4hV3fQUWZRsoEGs3SEx8sZtyHrRXEviPlAMidFcSBm1BhQKPT45YblhBSEmtNw/MJGw2isME4HtGZmeHxxx7l8cceJR4O+Jbv+E4Wlh242NIpvpT4UtCdncUPAncEZRnHWBOU5fGnbiJY3yeaP+DswuvnUDqfMMMdFyq2sN/daSHeXgObuTz0ygPhI3yPVEOkYDNzp0lZLKMsIRuOaMzOYrAEfkDTC2h4Emkk7//QR7jp8DK/8qu/xgMPPshTTz3B9spFTGoIPUnDl2TWEnoKjXWMw7p4eYkC4SFFQMG0bNnT1VL0/AjjhegC4KxfAjMCq/D2uXjmIIxQUUTQiIhaLVrdNnOLC9x7163csjyD1hbjW2xvhgMHD3Hx/OS56Z8vykY7ZKM+cnfNMTtjyNIxIuoiPGdysVkCQpMMVvEvP0XQ7GDai4ioiRc28KOmMwm023S6HWZmZ9i3fx/3330br73tAO1QklpLbFJEqsgKD2fjrNHKk9yyr82B2Vt56th+PvDpZ3n2zFnndJj7PAjp5Wh7E7NxCbObOxep0C1Cm+A3ZzB+C7lwGNvs4M8cgCQmGWzjtebxoxaq08OqECVd2JzBokbOHKA68yT9VayOuf2N38Lj7/stXvf3f4x2tssDv/UvecWdR/nS191F5HtgjctnIWQJWy9tDXno1BqPnDzHyuVVtjY2CYKQvuq7FNcCUiFdTnprXf6ArRWi7hLJzhrGmDzpkCBNhqjRANXoIaSH31pCeBBvnIeN8y6aoQYEGvtuZnT5GcCycPfrUYuH2f7sh+h0e85RqtWi0WzRardodVrMdjvMddo0QzdHd5OY/mDM5vYug36fncEuo90B4XDEaBQwHo0YeU77ksZjl42yOKK1u4iaOcDoiQ/QWr6FwYWniOZvJNk4S9A7iCEjWTtFdOQehDUYL6xWT+60WkY75KBaSIXyffwg12oE7nOYH0UeRiFRFOEnfdbOPsYdb/yr7LvzpZz/4CLdg4dp7TvA5cc+Rito0Op2GY/HDuiMFCKN3W4vSxHxLjbNwAsQzTZ26Qg2amCloDl/GLG7gUiH7Fx+Fj/qoVSAysYIEWDtXk1Irt2QoYsmKvNT4849WM41tzZ3XNwDBuZvv5+hUrkjbhXZUdjAqafhptiH1EIlSyBWVMcgjMhDXYvNmBPpylMux3cOxITy8F70ZaQXT6DXTqGHm3lJVdva+4+xe6nSHvQO34kREiWrrJEldRbzSLQCjNRKKveltoy0cZ3ktMZC+XgzC8QnH8GOd1Ddg86Bedh3fgxAePAWhs84U0b38F1krVlEEiObncrM4AWoqEHYaBI2mjR7HWbnZjly7AivffGNrFw8jWg3ubi9yb/+tV8hTjOeefIEly6cQyJ47Zu+kv/82/+Opx8/wT/6wR/kb37D1/Crv/Bz3HLbbbzpK9/C93z/93Hb/jZf/4rj/Ifc5JnpPGut0W4d53yu0pS73tCnPkq0/1aS5rVlm70uMBAohW3NoP2gvCYFJDrFn1nEyCCPIkhJ1s8THD6O70eErTbLMw2GWoOwBJ5irDN+74/ey0++84f55z/7S3zHN38jj376YYTO+La3vIkf/flf5tVf/DqGOiMWllklabRa+J6PUD5CeaUHcUVOK0DtlPUMQbp2DncOgAEVoWYOILrzLrWtmxuo9jzJxinStTO02l2XrUwIhklK4Cm6OkMbg5Ieg60+v/Mbv8FNd9zBwmyPl9//cs49/RRPPfEY9973Mg4ePIKQkne84//iwY9/wtmswogxEBlLS0lGmSXOYhJ8kjirlpD085wAPkUMTwFx8rUKgB7toO0OnlJYPyRo9RheXne+Bxg8BCKI8KOIMIpoNpt0ZrocOnSQF9+4hIvZNwwzSCz8Xz/2L/nOb/3G65kO10ku8RNxlUTFxBJiS7bnKNJk5RkSJNIL6NzxerzuvAvzbLVot9t0ZmfYt3yAN7zsDr7opkUaUqCEU6EZA1YImp5XOqzlijgsko6vePGhWQ7OtPmdBz1nhxbuGN5i9yq1IV49i1A+UnogJNaMchWxIWh0QCpnG80ShHVqOq89j9/uka2dJzgyQyqdz4PCooKU8dYlxhdOEHbnUX7E3PGXsu+ph/miL7qH+w+0ecff+Wp+5Zd/idd+8cuxmWPo2hoMxp1/ARyca7LQWeauGxb48OfO8JlnzuCv+sjiPIHxyLU1GYMfYhePECgfKyyNpaOY/ibxymnCpUNk4z5qZtE5zDZmCLpzyLkDhIfuRse76P4G43OfoXPkRfTPfIbGTS9FZCnD9bN4h26j2Wwz/2XfTKvj/FB63R6Li4vcfnQfdxyaZ7kb0olCpIRBlmGtC/hc2Yl5/Nwmnzp1iZXVNXa2ttntb7Pb9yi8/uJTn0FvX0KnMdLzCffdiu0t4LWX8PcdozEakI76WGvIhhtufcsAtXADxosc2Fe1c1REvr4ArEEKhed5eKFP4IeEYUAQOT+UqOX8nGw8RIiY7Sce5Jt++JcIwoj182e49Yd+kZHfZjAYsO/4i7n4uU9w8I3zDIe7jAZDYuVjt2L0cJvRUw9ikiFFDl8v6tC647WY3gKqv4EZbTFaP4OOdwFNsrtK2/eABirwMeO9x/Q6TjHz4jeSen65W687S7q/FrNyZa6C7Wc+Q/Tym/Kb6sZ+8gRBVT4Glb+uyjxZ1UHa2l3VvrC0imEtHtYd6tTpVSYITxHe+CI4dBzWnqX/5EfqA4R3w4ugBgbUsXsRQuLf9BJG5z49UYtICcZKufC6/N2V2K80GhN1txIbDzGjXdLzT+EtHkaoY0g/YHz5DO3bX0m8tYKN+4j2gitLKIYXnyHKDDS7WM9dl0KiQh8/iAgbEc1mm06nw8K+/bz2Jbewc+EM3/41b8IYzXg8IoqajIYDjLW02y1+4ud/maO3HafZaPDII5/kpltu4t/84fv45i97Lc8+8ww/9WPv5B9+7/fhK8mxpTbi4gn0xhrtRpM0bZNpw+7FU+idy3gHjmOVKsPPbX+dZLxLcvkZdzrsNdD1aQaUcur2WCCbbTe4u5uAxMZjZGfBDUM8dGkXs6y0w81GTfrb2xjfY30cIzLN0dtvpzs7x6Gled79R3/CN3zNW/jpn/1ZTp8+y3f9/b/Pm770DWRjjRHgKxeCJf3QHSJU5MovqaZeEgqshvEAz4+QM0uMty4ihedSTjYaGD9C5lnhpLF4S0fQm2dQXoD1IhCSzFgGwyGpheVWi7VxCgJ0EjPa3uQXfuxHuHjmGYw1fNnrXkWSJLRaLb7pm/8aWqdcvnSBb/qGr2dhcZHFfQf4rnf8M8J2G2ugGXhgDA+dvEScJFitXWy+kojivAY7OcOLEDJrLWkyoHnwNtKNFUSzzXg0xCS7ZLaFP9pGLRzACyP8MKDRbNBst+jNzPLKu2/G9yRK4g6vsc7h5xVveIPLWX/VXOefP2p1FxmOBth0mIOAmkpSeFibIVSAv+9mlFRYbQgaEY1mRLPdoN3rMLcwzytfdBvHlh2T8ZRklBmGOkNiSJEYFIEs0vxKxpnzVp8NI4y17O8E/LVX38GvxylJlrH65OdgHCPjBL/VRdx4F2ZnAz8ZYwZbjC+dxJ9ZQngKL2phhUJvr+LNH0YPt2h3emXui+Dm+0AI/NxuJ5XC787SO3gjnh6z8+TDHP+r34HZuMj3/Py/4fUvvZlZAUEk+Kqv/hpWzp3n2aef5ku/9A0YA8ZYPKUYZ25sIk9xuBfytvtvoduMePAxD5tp+qef5vIHf8ft/I1BeAEzt96Pnl1C9tdI+2ukW+cxesDo4gkXUTAc0JzbR7j/Flo+7F5+FnnwOP3HH6F79A68F38F6aVTdF70ZYg0pfOi1zN+4PdoRCFme5XugbvpzHRZmJvn7ltu4DW3H2SxJfmn3/VdPHniMV5y7338s5/4SZI0wRcSPMmMl/Gld+5ncOrTLByY5aQnGF08TUtKNi89y9ZjHy2dtsC5nKXbl2keeRFRb4HREx8mHrtDbJRSZIVjmfAwF05gvJB49RTde78C64X5zlSUyXKEAKU1nrSEeTRKGCiazSaNVgMl4dk//X3Of/bDZElMu9PjH7z5Pj798MOofUf56R//Eb7qm/8mW0ry5xdOIq1h+OyjWAWDZ04wHsUMV07mxxPXFLhWk4222P3s+xFKYuIxxqR5uG0V5y6Fh9m5dJVkMU7ABbMHMTNLuCh+W3Oay9sHyItPs/HEh2uPemAz0vEOXQw6CCdVjuRJt4osspbKrmKrFMNFNQpfAacsyJ0Pa/lmsGBPPYqa3Y/wfCY0ABbwIoabKxPtah2+k7ro9hszWN+fOMWxTr4SZH4lwoS1YDKs8t3BY1cxr7icGy1Us40/u+j8fZKU5PIztI9/Edb3aS4dwt54Z2lG9ryALBk483hrlsAadNhASomvBN7uGmk/pvniV9Gdm+Wu4zfw4T/4LZ745Mf5v//Vz/DxD36I9/7xH/JDP/fzfPz97+fQrTfzq+/8Yb7zb34rfhDgKck3vPWtjITi2O23051d4off+cN89uFHwFoGmeavv/Xr+eiHPoAQikZnhqOv+VoCr4USkt0zj+GtnkH19uEv3oCaX2Z84ml0ltFYOsT43BNX9N3V6Po0A1GTrDXjzATkiTmsxcoQb/4QNmg6FYUFnY3RK2cQh2/Goki0pqFcFMLu2gY7W1t89pMPsX9xnv/0b/41x2+/gztfdA+PPPQwH/vkQ/zCr/8awzSj7floY0lxGfys9PLY8mapCzLW4oVHMfFprAAvPEY6PocwGbfNNnj4/BOAxeoYS0YUhCRKQtgq50m2ddmFQoUtjE5RyscYw3AwZEzIrLKYeESn3cbOzfLRB/6c86efKvsmSZw6dTDY5dd/7ZfL6fexjznk+8pXvJKHP/wh3vDGL6cduhBKLeCRs2sMdrZYeei/M0wzvCN3023tZzjuo0lQBBhhMKI4mMUtKOWF2HGC15rBphkibGHGffy5w9gswQO8yIVH+qEzEywsLLLQ8WgGAU0pyEQBoRwD+Kc/8mP8ix+4fkfCvSSVpNvtsLW5DcDcwiwba5sAjHY36Ry+ExP30XFGOtwkmj3A7qVn6N10L9tPf5zFm+8lXbwF4Xl4UYMgDAmiBlGrRbvX5eYbDzMXJm4nj2ErcfkfBIKHPvBnPPLQJ/gH3/996NwJ1VgQxuILGA52nWkiTmiHITNbp3jmfe/ixIfeTaFSjjoLLL7iG9laOYPYWeOuO2/lY+ceJVs9yfLBG9jtbyDQjE4/yty9X4FcWCb0LOOtTXae+iTeYAc92qCxcAT/yJ0oPyQM/FzYLHHmv/823d4sd9xznE///r/hztm/znqW8eQTnyOM2vzD7/gKxqMRb/4rX82/+Kl/xdOPP0FqMryowfbGBu99938lMxm33XobH/7wh/HmD/HEI49w+eRnakIFbJqx+bkPMD+3xGB3wDgZIoTli15yPx992M3LdLjG9nCVsLVErHzSwTrm8pNYkzI69xjdW1/B1vYlokM3s/XYA8zd/Rra+29g62PvYevyecz6aXwPdubn8R5f4r0/8xT97S0e/oRTrz76mU9z+9138+//9b9GSMH+/fv59Kc+xdEbj/LUE09grMCLmmytXsLzQ9I0YW/eC4Gg2YwYnPkMYHnN617Fh/7sAQDuf9V9PPDBj+YNzhhePOHO0AB2H/oTOofvwIRNzGCLdGuFxsIy480Vkp0VBBbl+yAkJo0JowbKDxjurJOOK6Da39nge7/9b/GHf/huF+FhDR95/5+g8uOejdGceN+/f8F1UYDdGw4d5MzZsxiT4HkBBw8d5fSpJ6v143nsPPanVNK6HFGaN9xDdMt9zkwroH6qQmkGsRB2FqgDkfmXvZn1T7g5PnjkfTRf/tWuRFFpR52ArzwxyoRVefkTwB3pTDhC0PL2s5tdcmadNEGEDQfUunMI5Tmza5FoyoIZ7pBefpZ49Rn3Hr9BY//NRHe8go33/3b5jrlXfg3acyflYsFrLZENKgARJrvEkVOBC2vZ+cQfY0dbBHPLZPEYdILXWsCfW8JbPILxXHI2FHQO3Uz/rNNAzBy5ha2ogRUG5QckxqKsO3cCIE3HSKnon/wkUW+R1q33Y6JZhCeRg20uPPBf8MMIuXkRbruTO77+dcymL+HYDTcw2t3hb7z97dx0261Io/nAe/+Yjd+6zGDXAVg9cnP99//g93j/B/+M226/m3g04Ife8Q5+7Kd/hj/94z+hPTvD0489yszMLHPzyyhpWfvU++nddC+Lx26lubBEfOYzrD/1MPHFJzl0+ysQvSXGa8+we/Khaw42uS4w0JxfZNy7AdIY6QfOoz1qMdID/KiF7Mw5ROj1kVIRzCyiVERqNE+vD3nRQpPdzKnbf/nH38l/++M/zI/aNc5r2sK7/st/pL+7yzNPP8l3/9N3sNDrEniSh85usnnpMnb9LCqcxZ8wEQiEsliv43a6nkHEGQLJysplJ/CExA8j4tiy/exnWHjl17qT2SxIa1j/7FmkFzBaOUlncT96ex2zuMhwOOaBpy7yJQd8/uHf+Vv81W/6Zh544MM8e/Lp5+mpK+nBjzzIw5/6FP/4+36Ab/1r38rs/CKXBhnnL29w8sPv5fKTjxB25+jc/EUkI4vfbuKLJsJKlG2Qyr5L7WoNfXAHG4138Tqz+HOHMTpm/oZbyYZj9MJBZKNN6Pn4QQMvCIlaLQ4uL4KwpWZA5GHdgQBjNa1W67ra9FwkpaC/0y+/R1FYfjYmY+f0Z5Cej+dHtPcfI0lihPAJhWB+8SCrTz2MPPUojd4SnZd+GZ4EMdpFtluIwQ7Pvvd3eeDpx/iKb3grW+urWCtI4xE2Tfm5n/gRrLVcPHuK43e9iM3NLaIo4snHHmd15TK72xv0ej3Onz3HDTce5eMf/Uie3CUnaxnvrOA/++f0n/wcYLnY1FibAZbB7hbDwZBszQHB/mfejx82GOTZAdOkT3LxUQDirYu0tldQjS67gzVGnVk838OYEQ/86g/yZ8mY8XDA7/7Wb2AtJMm4lmwG3vOu3+fBDz/A1uY6xSlwRuuJHOsvRBbLaLhDnMbOfGDh0uqliTsAhB2TDbfQteD9ZLDBxqffi0Ww9cn/CljWPvYHtegHOPOp9wPwDPCx56jDP/2et5efP5dretdWanXYcUAxTYbP2Ybl5YM89bRbc6urVYjfpUurE/eaWsx6OlxnY8/ZG+P1Zye+l8EJQDraeY4WwLvf9XsA6KwCKsZckejgeakAats7m85BEtA6Y7u/MXGfKvTzV6H27a9yLqnCXnFHoSEQQOaFE7/JhUM099/K8NIJxtsXmTEZWRCW99tCvZzvp8tgtFJJUH+bJBQNErsLVjBmEyUsmx99FyYe4PcWMMmY+Zd8GbY771yhizMAjGXjI7+L1Qlec4b2zffiLR1Fhu4sDJs6vjFz+6uwUds5H+YgYuae17P24O+UtRhcPo0/dwjd32LnkT8l3Xb5UrLz1TgmmxfgnDuvoHv8VXgHjmGEwIz6LowUi05HkCSEzdCdAqk87PYquxsrFEcZG5PhIlQkNhnRbHUI0NjxDoiQpSO3cumZR+lE8Kv//P9k5+IZnnjiBEuLC/zYO74fjKXf35nkNTVK05S1y5dZu7wCWOLxgG//G9+CtZZut0eSxGRZRqOxRRzH7O4OGcUfQUjF7PF7UTe/BJnG9FcvceHER1m47RXVuEp5Tannhb2GxMU7Ozv0ej1u//K/TiKbSCsQs/MYY9k9dYJLH/sDDrzkDbRuexnWWrY/+yD9k5/ECsWR13wd++98Kfe9+A6+4miD9/239/LsyZP8l//w73k+hhaFEd/2d/8uX/Xmr2L/8iH+/edW+Z0f/Cfsrpxi8fXfRpokE8l4ikxT4BQGo6cfZnj+BGk8xGiNzoYoFWCMwYt67HvNN9KYc57K2dY6q596H+O1M+70MSS3v/W7aS7sw6yd5+B8m6c/+C6eePyzuFzw1x/XW5CUkuUDh/hH3/v9fGZLs5K1+Mh//n/ZefoTzB66jc7dr8N6AcV5CYV6K19KYA3P/v5PluX5zRlm73gFnjH0Vy/n8e7bjEfbdJcOs/SyL2Nm3wHEYJ23ffPXsfn0p4k31wlbHQZbm3i+x+bKKqeefYb3vufdQK4Wy66P0f0Pk1B5+zTKa6Gz4cTuNog6WKXQ44E7DCZLnTf8hIX0KsWKa8/J/T9Pz12PKU3pesnvLJD21/AbPbp3vIr1h/6o/G3/V/2D6nCcfOdeZUsQyIvPQBihggbn/qzQVgiW3vJ2sJbtB99FvHGKoDnD7Bv+BgVvqU74hOJgG2kt2hbpzPdGNeRkDHpzhe3P/CnZYBLULL/pOzBBWIJXkZ9Keem//ixhbz9zr/56rBe4NliLSGMu/vEv07vhbhr3vNHVPPdrcFWwXPivP0Ox3qTXJFo4wGjlNPYazZud5dtovexNmP6WOwnTujBnsgzpBQyffojWzDzx1irj8YiWL0l3NhhurxN1Fjj45d8CaUqysUq2eorVk48y7G9gShD9Py4b/kdJSo/Fw8cI991M0h9y+cSHabYXGPXXaXfn0c0eg4sn2N7eptvtPmc516cZiCLaB5wtV4QB4+0N1i48gRAGiWZh/zJCZ2SdNrsCkvGAMGqyfeoEv/OuX+ZXVk4zGkwy++eicTzml3/+5/jNX/0VDh2+gWOvfytLR44w3t0i0ENaSwcovVv2kLWW7n1vYLvdRfgBur/N1tnHmV0+xoXHPsLMDcdZPHIDMneEPPvZB+gsHUHqhEYUsXn5HJtPfRa2znPiz36fh/NselBXm/2PkTGGc+fP8D3/8DvxvCZRd5Ys1VijMVZgdlZpH7uTwgmyCo5xf8WexZgOt1h96L1IqdDG4Ps+aeK2O5tnHmP7/FMoPyAdD3nsXb/GzvbmC9bxLwwIgPPtwPVulu5e8XMyrjQMRu9Ft889Fn9xQOD56zGlKV0vpX2n+dj/sq/ALByGGhjwg8AJ6Dy23OYH3SgDYrSN1+my+vhDzN31mvKZsDWD73lYYOE1X8f5d/00yXALf/UUdvnWWr69fCYbW6gLrnAcLMDA+PQT6P4q49WzJNuXuNoa8BsNzGiEabQBU0Z0ACy97m0Y5ZdOjMIaLv3p7yK9gPZLvzx/TR7ZIARkxbkPlO8y2ZDhpWeuq2/7F04wu3YnWrXAD5HGMLp0jsxoVDKksXyU1U/8d0wyRKdjjr7tH/HU7/0Kne4MXqBg7Sx2uMOpj/wJVqdkddXSXxIZk3H59JP4l87hBw2k1yQdD7BWMxr2OXzzXZy8eOIFy7kmMFAw1tnDN+It7sezBiRkUcCz6cglJxGW+fkeyXCIsBrl+Vg74Ik//g10lpZM/3opSRJOPvMUJ5/5UaT0CJs9Or0OYaeDTsZYK/CkJM1iZNh0QMNajNZEd74cts5x8vyTxOM+l058Eosg290iufgs88fvwWrD/qO3cuHxTxIPtxhuxVhrufTp/87FMsb380/WWtJ0QLo+AKEIVICvLLMHDiOFRoWN/EbB+PJpWvsOo22hxNtblkHnsf1pMtnPRqelEL0WIDClKU3pL5eE8LE2JR3uovTkeo6SEcNMM37yEWYOHGScZXgzS6Rrl1j9zAc4fPOdKM9jcKEyYx48fi+JyUoB21q+ndHlpzn30Xdz+Gu+uybiaw5+uQNhcUyPzEMHjXBXNj/1J1TZBK9Oqx95D+3eMv7BI9CedSdx5Ge5CCTSZCU3E1aTDVY58pq3uiyUNcVotrsD66fxj9zxP9GrFZ396LtZuO1+FJqdpz5G69b72fjIH2KsJuoukOysgXUbovN//p+Jhzskow2stayce7o8YfJ/NUrjIWnsTG3FyKTpgAsnHgJeeIN0TWaCc+fOcfjw4f+5mk5pSlOa0pSmNKW/FDp79iyHDh16zt+vCQwYY7hw4QKdTqd24MqUpjSlKU1pSlP6X5mstfT7fZaXl5Hyuc8puCYwMKUpTWlKU5rSlP73pWs7zmhKU5rSlKY0pSn9b0tTMDClKU1pSlOa0hc4TcHAlKY0pSlNaUpf4DQFA1Oa0pSmNKUpfYHTFAxMaUpTmtKUpvQFTlMwMKUpTWlKU5rSFzhNwcCUpjSlKU1pSl/g9P8Bt+kNfpEpqmMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_4/1718173660_tango_video2audio_clip4clip_4_best_steps_300_guidance_3.0_sampleRate_16000_augment/wolf_howling_at_the_moon.wav\"\n", + "show_mel(file, save_name=\"ood_5_wav.pdf\")\n", + "show_video_frames(\"../data/sora_cut_2/wolf_howling_at_the_moon.mp4\", save_name=\"ood_5_video.pdf\", frame_rate=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_2189924/99652230.py:56: FutureWarning: Pass sr=16000 as keyword args. From version 0.10 passing these as positional arguments will result in an error\n", + " ori_wav = librosa.load(audio_file, sr)[0]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAA2CAYAAABa85pgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuJklEQVR4nOz9Z7imWVnnDf9WuOKddw6VU3dXJzpB0wRBQRQQREHBADKIyphm1FHMOOqMPqOOowzmAZUoKEiTY9PQdAPddE7VXbl27XjncMW11vvh3o3zfJj31ePweZ8P1v+oo2pX1a66r3WtcP7PsM6/cM45LuESLuESLuESLuHfLOT/2w9wCZdwCZdwCZdwCf/v4hIZuIRLuIRLuIRL+DeOS2TgEi7hEi7hEi7h3zgukYFLuIRLuIRLuIR/47hEBi7hEi7hEi7hEv6N4xIZuIRLuIRLuIRL+DeOS2TgEi7hEi7hEi7h3zj0P+ebrLVcvHiRWq2GEOL/6We6hEu4hEu4hEu4hH8FOOcYDoesrKwg5f/Z//9nkYGLFy+yd+/ef7WHu4RLuIRLuIRLuIT//+H8+fPs2bPn//j3/ywyUKvVALj5m69FewLPdyRJAtIhhGA4mKCVwDoYjw1Ly3XmlwJOPLxJVGnSmvWoNQX11pWU82+iDOo4BEI4EALHP0UbLBab5dz+Z2/m0N51JuMhk3EJzjGZ5FxxzRzgOPHwFsZqojBE+yClwllY2lNFyYKo7rFw9W9Tzh4EBzgHDhwOt/v7p5ovWsAJwFnAooDlUFBRki+898dIs5RK7JOkCVKCwzLoTfBDH2EN/V7OwsoMjZZk0p/Q60lmFiJqLUe9uYJc+nnKaA4nxfRzhMABCBCAcwKTpHzhf/4IBw8lZKMJk7SgyAvy3HD0slmkEjxw9wae7xFGIa25iCI1aF9SqSqC0LLv8F7ElX+AlbvT6iwgcM7hADsd+PR1sPtOAIWj5UHVg0NVycFZwa/8+muI45C8yClNhhUOZ8GVgrwoKPMCLUMqLU1rRvPI19vsO7pMpQb1piZceiN54xkgJVYAUkzH+o2pFmBK7vyTX2R25jRKFgyHGZNRSlnC/FxEUFWce7JPUVjiSsj+I0tkWYpSkI5T5hZiLrvphSR73ghCYKezi8NOP8FJnLNYBM7ujl2AdOAJmPEFz1j2aVYEc7UQpQRv/PcvolaPGY/HCCwISEYZQRiSpTmjUcLswhxa50gM7W3JnoNNwoqhOXsAsfyTZNHcN9a1QE4/cPeZAE5+6VP0HvgjZuY9Bt0Ug2TUT5AC5hYiup2EfGIpSsdlV68ilSUvDZNBSmPG5+pnvIhi/xuxSuGcmI5XOJ5aVNY5hJhOsnMCJxwSx4ynuHE5pBEIVlqa9ihnZ1DQqire8suvolKVDAdDlCcQKEaDMWEUUOSG4WDC8t55lMrZWO/SrC/RWoiIagWNpZeQz74Co/3pehMghNxdZQ4kJDttHvzb17OwxyOdlJSlYWdrhMNRqymQmnICvf6Qo1fupd4KyZOcQW+MH2iufu53og79IKVSiN01DWCEQDiHEw7hBDiLQyKxzEeK/TWfhapmriZ54MIITwoiLdkZZfRSy+fe/nrCwDIej5BaoJRmPEjwA48iKxiNcpb3zoNNOH+uzerePTRnI6oNiJdeRzJzC05oEALB9DzjqV8dPHHbrfQf/Z/U6x6TJKcswBnotQfMLDQAR5qUaK05cGwBIS3WJaydGXHF0y5n6Tm/R+5XpvOL/cZ8snuOCcTuPodYKeYiwUKsqYWCxzYmKCWQwpFkhn5u6VmLc46N978Oz/MYjwYILaZf91O8QFNkJaNRxsq+eUwx4fzZLgcO76c+49GYqeIt/zhp9TBOqOlwBU/9BALKLOe+t7+JVr1LmhQgYWd7QOgHJElKc64KTrK92eXQkRUacyGlydlcazM7O8Pxl/4+ZfMA7qkstrCwO27ndq2FE/hKUPOgFXrUPMET7QRfgZSCUVqQGkvqpueecRZwbLz/hxBCkCUT0ALf85mMUoQU2NIwSTIWl+YwNuH8qS7HrjpEXPNoLa7iln6cIpqdDlJOBy7E7jEqHZv3f52zX/gNorCkMBalJUVmGXSHVGsVgopHkWWYXLH3cAupBMZOGHQsV9/y3QRPe8N03Qize25Pd5DYHbvAEUqoeorIk2yMsun54iyZNeQGDNP5Ne6pM9CST0bc+h+/5Rt2/P+EfxYZeCo1UJQTjNNsrA/Ze3gBT0kuXtikNdugKHIm4wwoiSpgLdSaEdm4IAh9TOno7TxJVb6PyrGfxqpwd1FP/++nvnbOcOHBh5D5Y1gbM5mUFJnBWYeWgvnlCpsXJ7Rma4CP8gTjUY7yBCYXbG+MacxEWKnId+6hsec41g8R1uDc9KB001Ny1yxO0dRQ1YJGoNhbV8yHls3NHT6TZ0gkjz18nqPH9xH4kq2tLrV6HS8Q9NojtJb4oUUoQViJ0OMcIQxaefTam8z4HyQ+8mOYoD41RoipgZy+XJyznH30YTyxiTUxk4khmZT4vkcl9lneW6W9nTG3WCGqVClLQ1lYsrzA8ytMJiVxLebiWofDlw1QCwdxSJybLqqpMbTfGK8QjkiAL2G5ErBSEazElm6nw6A/xtqANC1IU4MpJfMrNZyzbG10mJ1voFJJJiVZkhHGHo3ZCo25MePBmNZczGSUE/S/RBAvIRaehnsqtST+N0LgYPv0E6TDR6nur7O1PqLISpqNEGU119+whMsV87qGk5pBntLb7pMbS61VoTEXE1Q02+fvZ/FYgAhCDA63+5+7XYo5NZYOKaYmouUrjjQ0NVHgu4LAZsw3Yxq1iMDTFJlh/XyPai2i2QpJ0wljWxCGGudKKsRYkxC3FEuLc/T7Owx6A2qtiGH3HDOVL6Jr34WtNPkG23vKQABlmrL50KdYnquSF1Pioz2H9uDaG1cRGOp1j/62w4s9tja6+IGH1JrF1SphLOhsfJWFy38CF8X/RK52jeM/7SiBBGpacLARUJOWhihphjkzzYhmPWZ1wZCXDiUlRZ6yvlbQmqlQqfoM+yO09gl8D2sdQRRgXUZrJmRuaZmTj2ckE0dUFSQ7XyAKDsHq80HrXaLP/2YkLGe+/AWkJwiCgM7OCCUllYqmMROzvDfAGsXD97RZ2b/AYDCiLHMmk4L9h2bRXk7S+QJzl/8QrjbDlP4YcGCF5CnaJXAEUrBa0bQ8wUpQstJUNGoBtWrEkaU6QkjCULPdzbnYS/lYMiJPBWEUEld8JuMEhERrhcASGB9rM2YXQub37OHM4zl+ZAliien9PVH1CHbuGEKq3YP8qTE7TJ7Tu/AIs/N1nM2xI0EYSQb9hOtuWUUqwalH20il8HwYDROyLKfRCFnaWwPRppGfZLJwCziJ2zUS/5vvhATqnqKq4cqG5PCsZqbuU4l91ncSlLTEoc/aTsr5TsqnL47JLZwc5yhlCKMKUaSZjMcgBFpPCaxfepRlytxSxPyekPNPJvhRgT9JifofJKq+CdvYs2sbxO6P6YPtnHqCyXCHvftqJGkPayxx7CGF4+or58EpTj3UZbZZw5eCMi0ZjnOWVuZQnqMyej/lvv88JVk4hPwGzwWgIiUVLbisprlsQTJT9ahXfE5vTIg80J7mfDvl5HbKVzs5pbEUu0ZyPMqIKwF+GBNEijSZYK0lCDzQjqLwsBTMr8S0WgFbW2Ok5zPpP0kzuhVd+yFcpflP4xVP8XDLcGeDSlVRb/i0d4ZoBZMsZ9/BFpW6x9rZAZNRgecHSAVpkhNVI/xogs3upqm+j6K2PCXTT+1mAUoIAilYCRXXL/rM1ySths+JC2M8rfEVnN5JONMteGSUYZ2ldFMbZ51FKvl/s+P/J/yzyMA3Fp7S+IGm3x0xN66iah55YgDwfMXwfEJ/kHD0sj1sbw4oC/ADixSSMrfkWcbswn1EyeOkraeB0E+5xjgsVjp2Tp7nxMf/iDB2bG0MdjelQ9jpdk/bhqSbYXLDaDQiqoaYwlAIQxx59LoTqrWI0A8Zbd9GZetG/ANPwyGxDiRy16sQu9EBiy8kz1zyWGkolDMkoz6bF3bY3B6SZgWNZkSeWYa9CeFSQJYURFGApzXJOKO9OWJheYZkbOm1J0ShxgskaVKS55Ii+SozyTOYVJ6HVQr5fyNAsHHiCZ74/J8RRLCzMURqidLgWcFMNUKnEp0JQq1IhyklDqkVU6NXsL0+pFqvUWv6DB97G7Ot38TFFXAKu+s52am7hnCSxRBuWQyJPEFVG5LJkI2NNhubfbRUDPySarVKfzBk0E5ozXlIZcjTEt/zmIwT2psjhBOEYczJx9poTyHENLKSZY6tiw9wbKbKhCtxfoR0TEnB1GFi0u7wxGffSxTnrF/oIqXgwOIcx2ZniJ1lSTbxAoF/bJ7CGgaTlE1j+OJjT1KmOSfPDzh65T4QE/JT/0h89feinOYpk2hhd5cKjlQ8liuCeqBZrAhMOubChR22+hMaNY8wcBhTEPketWaF/qltbCGoNTRFYShLQVgJ2dzoM+4XtOZDPFXl8Yfb+KHC8x1lYRkNC9TWx9g7d5Rh45tASIRwWCGQQmDynNNf+TzpzgMMtEealASBYtCeMFevsuhVqEhFtHeZ+FBIL0m52B1wfjCiN5lw6kSbPQcWMNbQPPsZKld+J0bJXSKwS/SAvbHPYiypasXeukCanIvrHTq9MTQ9fN/hTIlWikajSpZlVBsxa+fO4UlFFAmSNEcKn0oj5vy5LmXmaDQC8tRx8cwYpZ4at6DX6bE3/hsqS9eThQsI8VTUb2quds6d58Rn/xdLS5YL59sEkWbjXJcg8Jhf8vCUQpWayw7O06jHbO100ZWA0aDD+lqXer2CMZb62l1Urvh2rJLf2ENSwHygafqSZqg4UFPEMmdzq82kmzGUMYEHuBIpJHEUkKYZq3MBUkC1WeHkwxdYWGoRRYo8M4BHc7bGYw+exznBzGxElhi2LuQIIVBaUOaC9XObrHpvJZj/A4z2EeobRzgYy8aTjzE6+1lqB0L6/RSlJZ2dMdY6ZmarTAYpR/cuEPgxnnJkpeNi2qUoocwy4iTk4unbmV95Bs5XgEYIQaQgVIKapzjUUKzEgslwzGQyJBl7lHGDPHfMVATaCzGm4OieCkrCN1nLA52SWqPCqccuMrfYJAwleeZwaGbmWjzywFmwT43b0u9kCCfQnqLMLRfPPsKq9y7czM9jPI1id507yMdj7v/YO6lWDVsbXZwT7GwPiKKAlZUGR5bmYeK45unLzNSrxFoySTO2JimbdkLfjXny0Qc5fKCPaM3jnCNSklBBKBX764r9NU2ZTEiTPuQBwlWxtmC1pfA8hbOO2VodaQVCCh7ppXSMwDlBrR5z9tQmM7MNoqhCmQNOMzvf5MRDF5AIpHQk45LxwGCMRSlNljq2zt3Bij9PcfQHcFLtxi2m+264ucOZO/6S/YcEOztjpNQM2gm5KdhzsEGWpiwuRVDMgizJuhlFYfC1T63h02nv0Nx6jLC5AkriC9AS5iPFkbqmqgyiyIgpiIMavnRctuQhlUJI2DNXJXpyjPbg9ChnYCzGTaNlpf7n3RP4F5GBdJzi+1X2HJjDDyy1qkApSEYT5pdiDl/e4rGHIU1K0qRkYXGGNM05d7LP0uo84/GI3lYB4i/w5RtwM9chVIATFpAYU3Lf3/0RpI8QViWe9lho1GmiWKlG1Kt1luZqlIslO70+p3ojzo56JDlID2p1n5lln1Yror2V48eO/sk/ZTZ4E96e6yil3HWgpqHj3bwBJYLHxoZmYCnGfdpbW5RlQRwHaF0y7KccO76CMSlRFBAEjiJLMaHj+HUL3HuHwxSO8WRCs1VHSENnJ6NSqSCFoLNhiKJ3EQuNmbsBsRshcEhMlnPve/8bOn+CuOGB8FidmeHyVgudFzRijyAICPYqhnMJncmE06OUU90dvKqm2tDMry4QBoLhMMfrnSE88S5qV70WF1UQu5EH6dSuj2ZJkBTC0sDS3m7TbncxdppqsVjy3DAYjGg2KmSTFM8rqdU9ti4q+p0+i6tVTJHT2y5JJyWuEMwv1knSnM21jNZsnWRS0N1+mEh/FLHyzVCZn7JoIXCl5esf+HNGZz5JY15hSsf1h/exTyt8poRtsN0HAWmW0esPsUIhheBFx4+wmY7oLddJPUuWWjqnP4I/eyXhvutwcho2c+6f0ga1yOfoDEhX0mtv025PGE1yClOQZ5bxSBLHHvVKRL8zYmVvi42LHYIwQmnFZFzQbfc5dsUc999zgTJTjMYWISQzsxWyrKCzbWjO1OnvpLQ234nnz2NnDiO86RpAOJ6448s88uHfZWZOU5aGWiNCO8FzbjjAgdk6Is8RRqCFh5kkxGnGHgF7FufoKcNDFzcII4EpHZ2zf0+0eA3+yjGsFE8t5SkZaARc3hIImzPs99lp9+gNCkxpyBLDaCgJfU29WiFJJ2RZyaA75uDhJXa2+wSxT7UmmYxLBv0hx6+d5e47LpAnLYYDg+/7RHVNWcKg66g1q/TbI/zzf4l/+MdwUQvUlOiPO33u+ItfoVbZRggIwoAyT2nNVGn6MTfuOchcaFChQNU9GnFAvjTPOC9Ya7S49+I6Ugqk0vRPv4do5Rq8hf3YXQ6kheCq+ZhDDYtwhnTQZb0zoN0Zo6RiPBb4vkCpGrWazyQZg1OUxuJMyWQwYc/+OXY2+6zs94lLx2hgGfYGHLl8lnvvXGM4rE3TkEBjJsBawXAAtVpM0t8iWv8YYt934FQ0TY8IOH3/vdz37l8jrjp6vTFxJSTPUrSWHFpY5LJgmdIbEM5rqmFEHPkYZ+kvzLNZ5tzx+EmkCBi176V1/itEx56Dk9M9fHzW53hL4UuHdimbOz22t4c4J6h4Ed2BwtqQerWCMSVZXuIFPrVQslr3eaBvmIwSVvbOsr3ZZXmPploXDHqWXq/P4ctmuO+ui4xGTbSevuf6bIA1gtHQUalqivGjRNtfQSzfgvAUQkhsnnPXu95Kvv4Z4lZJXgpwhrgaEFiP65eXOGAbJOUQKQRuNKJXFHT7QwpnWfQ9Zmfm6WvH5LF30Hzmz+G0Ym8t5Pp5QaQFATn9/g6dzQGFdYTaoJXFmJBGrQrWUZSG2NcsNzUT4/HgsEDtRufSNGN+sUl7c8DiiiaIzHQd9wes7q/x0D0b1GeqKC0p85xG08daSCcQxkB2O37/2ZSzhxBKI3D01i7w5b/6dXw9pNd1aD+gyHcjEllJnpS0ZIWr9u1HZw5BweLsPNbmDMuShzYukgqPrRPvY9/y1UQLqzx/KSD2HTOBoUgSLm73GY4yXDMk8B1loalGFbQWpGlOXAk5vBhjgTNpiSclEoezjlbs/euTgczkDDpj6i2fSkWys50wM9tgOBwz7OXkWUGtHjPsJTRaDaq1CjubY86d7IDTrK/1mWk1SEZ9evf9X8weew3h0VfhhCKdjDl75xco+l+j1dREWvOcyw6wHEWQpGSmwJeOnQsbpEVOUpQcjCOuPH4lj7QvMMhydsYDAuezs5nRmJmh3rJMhhfoPvrHzM38HnpmaZcASIzjG8RAOFi3lvuHgnmrGYYtAgWxnuZtep0Rs3M16i2PXieh2WwwGqZkSUl7w9CardPpjJidj2nNNuhsDzj5yAUOHFrmwtkdLrtmD8koIzv553jtZ9G4+oexfpVsNOL8/XeSDx5ibt5DSclNl+9nxSoCUxA2qkyShM5WlzRNGU4StO+z6isOHD3Cw70NBumYKPJIJoLWbJV6s6R/4SMIIWg848dwSmKd+EYIzzlL6hxf7ViuqThcISiCOlGgafhjJsPhbjhtjKcVC8sVwkjTbWdUKzFZljEe5GjlE1UV6aQkrlXww4jOVsHauR4ml2xsjKk3Klh3K2bzDmaP/yhi6RrKsmT7zAm6J26lNSsxxnFk/xJeP+F8OiH0fGZbTUbDIXmRI4Tixmc/n70HDnDbbbdx4cTjHN6ziB4XXJx1RHEFzx/Rfej3mNO/QHjgeqxQAEgLRhgeTgsaQ82MTeiPSkTgUw8DzE4b58A6gRKOTrdLtz0kDD2W9zZAONLUoT2PMi+YjEtasw2ytKQsSqqNGkor2udHWCMZdDs4I2nMTqjmb8OuHaV+1b/DVWcZrm9y5vZ3U63m5KXh0IEFnDMcCVv4acL2ekYlipikKdrzKbKU1DhmFxY5fe4MjTjk2XtWcLWAE8M+Wk7oPPTbzOpfwN97NRa5G650PDjKaQaaqBgz6E8QStNsevS6QwozzTVrKejsdLBK0GrU6ewMWNkzw+r+OtY6hPBw1lJkhrKQLO+ZJUkyvEpIvVnDOseFszvUGzW2NzapNxpE8SNUyj9Atb6J4MgLSLOStfvvpuw/QrCoqTWraCWZjC3LtTmubjaoOotIBUVhmORjOlsFw2SCcwo/9HjxlZdxQQzZ6mZYO6bz0O+wcP0vo+f346RAOHh4lDMbCEQ2otseIKUgqobkSUZRlkgp8LWk0+7g+yHNWoXSWizQ3RmxvKfF3oP1aWRLSMqinJ5lTY/l/TPYsiTLJdVmDZxk82KfOPLpbnepVCKk/kcq2XnE3PPwVm8gnSTc/w+/h7IbICzzSw2UhHTiuOLQKvu9ANEZEQpJMkrIxilbtqQ7HGKMI/A9vuuGq3hi0EVpn+6T78CrVPAP3IQQgouZ46BxiDJhq90hzXOUVhRFSZaVCBxR4DMaT6N3caVKnjvy0jFT94n9Cd3tEct7W+w90ECqaVKtLAxFZmk2Y5b3z2LLgiyDSrOGQLF+vktcieht9+i1M/YVf01l/BBq4Zth/jLaZ06z88DfM78sCKMIL1Q4k5OlhusX9mK2e5ztjqhWItJkjMFQpDmLe/dz4OhR7rnnayTnNtg7P0dy+utMZj9E7fh3smNKCusRmpStdocky6aWK3fkWYElIAoC0mSCc5Ioipik01D5fM2j4mtiBThHtz1iaXmWPQdqaN8iM02R56i0YHGlyvK+FqUxJElGpVEBAVsXxoSVkG6nz3hYsif5E+KlGxBLz8dW5rnnA39FunUPtaamORsilSRNHEpLVsIZrqgssxgETHpDtJD0hgO2xxlZnpCYksONKkG9xYmyS/Lk+4haP0KKz5JnGfb6dPvTdeFsSZEV5HnBTC1GCEeSZGjPJ80cZWlYqPn4nQycwGIxVnCV988TJv4XkQFPSooi58yTfY5cMTvNymqYXawx6E5obyTkhWFnrc8VN+ynLA2D7og0KRn0xhR5wYUzbfZ5DfJigjj5PvYdewX4Aae+9jD3vP+3iaKcydBy42WHSDc7nJeCOIqYTMZUopDBZIKxUJuZZ3vYY3LfIxxdXeLssGDLCJzviGMFoqTXLihTQ5m2qZy5i2bjRaigwlIgWI0FqXHc3yswCBySUwbWXYwXRpSl49vmFViH9gTnzmyxXzaJKh4giWoBWjounBmQF47u9pBaNSbLC8qyJBnmbG30wDk2L/SIK5Ko7pDjz9A89j14tQZf/dSHOfPZt+H7lvbOkOuuPoLqjDk/TKiEHs2aYzgaM5ok7Du0j2955nOoNet85EP/SP/cBZ62OMuWqnJq1KNS9bDO0u8WTEYJ8Bmql7+CcGGVpVAz5wt6uePMuMQK6DnLV8cQigYudOzxJJc1q+STCqPhmCD0GA8TdrZS/KCFdRBVfSLlMegkdHYmJOOc/s6Ey65dRUrB1sUduu0xQeAz7o9pb4xQnmMy2cDz/prZvX/Ao5//Ao995PfxdcJw4Ni7f5Fye4KtVrn6pmsJfc0Dd32Nskgpc8P3vO61XP+cZ7K9vsnrf/RHefzxJ7nzIx+k097BNhdQWmIK6PZ3UI/8FXsOXstMHFFVMCwt7WJaJ3LPBJZUROIpIi04FEhWfU2STDBWMBiVKCWJYp/2dg+tPcIwxiGJKhLPC9i8OGA0yBn0JpQ5HLqiRhB4nDu1iSd9omqAcILeTg0hcsYbZ6kt3MRweBlf+OOfwSVPYExOHEc0ZquEpaZzdpvI92lEIaPOkLLMybMOtXqdH/3Zn6E1v8BOu83H/uGD5FsXefDRkwTXr6K1obu9jnzwz9h34I+YiXxyY+mWjhy4ewjLMmLsaeraMRdIFrQmzxKKAnqjDGctWktGowQ/0GxcbFOtxSyuBkjtUa07tBJcPDtgNCzotgfskUu05jSecJw7tU2rlVGaApMrZhdi8vxh7OYTLM5exZ3vfxf907fhBSVZKmnOtghC0OtQL+D8hXWiMGCmViNNEobDIUJpLrvmauYXV7j9C7exc9/jXH5kP50Lm8w9c4WN9mn0fX/AoZf8d5xWpEYwQPD1oWIBj8Rv0gwk1bik8AY4a0iygu32EGstFVGSlTlB4FMJJFI5Nte6xBWNF8QgPJqzAc4a1s5MGA8Keu0hKwfmmF0IkVJw5vENmq0aWT71MheW6+T5HXDhPrzuG/j6p/6RwJzBakMQRKzunSdNUybGw3bHnDM9lID5VoPJKMGYEovj4BVXsLrvALff9gUeuucRjuxf5cTpDdR1ITsP/RFLC/8df2aRgXPcP7CsakEhKlRqVaoVQzroY5wlz0u2OwPyrKDZquGEJfAU1VCiPMkrjjR4h7Rsr/fxAvDDGIemNRdgipLzZyYkw4LO9oA9B+eZ2R33qRMbzM02mCQpi8st5hf7pKc/g1y7m53ymZz7+pfwwxxTejRmGszMh6yf22G2XqHX7UKlQi2M2er0KNOMLMt4+jOewSve8EMURcktz38Bd91xB4/d8QXOPXGOsPHX+JUF9BXP52sDwzFfYGVMUI2pYZj0hsA0RdfpDygKQ6tZRyoItaQaKBoVySsOO6JQI6zjfc6yvdnB8yVBFOKcZnbBJ01y1s6OyBPDxoU+ew8uML9QQWC5+8Qp5uYaDIZj9u5bYmbuAsP+SYLzX+bEuRbF+l3owOKwrOxbxJQlZ8+s4ynFgWaTrTMbDH1NNQiZjAd4WjMcpRTOYj2PzfNbRBd3OH7VMc7e9XHieoMH629AofFKiQmqVH2BdcNpsbtzJHlGuz+k2WoSewprHVEAtUrAC4yhFngUpmScFpx5uPuvTwbCUOA1q7Tma/gBdPsj8sRx5Io5wjgknTj2LbYYDxKKoiBPc/Ydmac1V6PTHnL48gW21jusFD6LyyFZmlCdnMRUjqOEIx0PUMJxfP8i3Z0BeaCJAs2oN8AVJf3hiKwo+I+//OssrC6Tl4bbP/tZHvjS7fQ7PUTVY2a+gjUFphyTTnLmFkKstfTPvBOPNeZv+hFWPJ+bFzyiMCB7YsRj2T/dLGg4ybcuwHZ/RGgc9YbG4rGwPIMgx9qSYW/I7GJMa85n0PWpzrSot0LiWsh4mDOz0ODaZ+yn2x6zuNqks9Ols93l6gPz9Hop9fHnyBd/AF97jAcdGk0PjMH2RgR7Vnn6c56HcJbbb/0wSkocjle/8U2EcYXNjTXe8OM/yYNfv497P/8JJms7zF9dxxhLMu4jpWVhucJ4MmbrK/+Vw7f8ey4/fCXX7Y3IDbzzSUvHgHSO3Amuqmgua2jy8ZhYWlzTJx12iGMP7YXUTEQQeQwGQ8o85cgVs3iqIEtD9hxYIBkXTCYZYRyw/7IFGrMx40nGvsOzrJ3boLmwxOy8h+fWidM2tsgYbp2lPuNR5ClmlJMWlu//iddSr9fQnmbPngN88gPvQ2vLFTdcz+2f+xJv/9tbWWhJfumX38yx//SLfPlzH+dzG/eQTXJGSUZzJmTUO0X77r/muS/8fq7dP8e4cPzt6QmZFRjnWHOSm2amG2tfYLFFk2QS0B8McLagcCVxNSCOmhR5Thh5dDpDcIK9V7fIU42QHosrM0it6XfGxPEMl129h0m/wLoCKQXnTq0zu7REtVriZ7cj5DLdC48ShCVxTVPkBTsbffxOwbVXXMnLvvPFeEpy4v4H+dJnP0uaFbzhdT9Ia2mRt//pO6hVPH7wR97Enbd/gcHnPsmazRn2DWGkGfdOYx//CC976XfjeRHvPp0wMI4BlhGK482IGU9wuCKgFdDtdDFliacl/V4fgF63oFoLiaIWeZERx4qLayMEkqNXthgOBF5QpzVXJapE9HZGLK40OHbVMskoxw8iRsMR554suPbmRSbpgMrwDtYe/hJ2tM7cckivO2Rns4OxlpW4jtYh195wHZ4UfPVztxMEHnlh+IHX/TuOXX8tkyTh6c/9Jj79sY/z0FduR/ZG1GmwVrYZtZ9ktfs1br7xuXzkQskA2DCGtgyYj2PmYsG+WKBsle3tDkHgE4Y+STqm2+2RJQlxNQAjqDdiPD8gz3LiimZzLcEYy7Gr5xjdNyKuBlTrIVHk090ZM79YY9+RObJxSbVVZTyacOrxC1x10wJJuk1y6r1sPHgnYUUSRRJrHTubI7I0ozoAMVvh6NGr8XE8eM/X8JUizzJe9qpXcvO3vpA8zXj6c5/PbZ/+NI/d9QXyyQgx1ji5iTt9G/HMy0m9iHVj6aBxqsKRQLPXV6zMVOh2u1gUnh8gpGQ4mpCXBbU4IssTtJ2S4XozRmuPPMuIKx6bF1PK0nDZVfM89sCYIPLYc2iBIPCm416qsv/wHPnEMFurMexPOP34GlfcMEearJGuv5v22W1asxV6nSGzCzmbRYHCx/Zzjl51Ja/47u9ASsWphx/hsx+5FYTgJa98Fd12n//2e3/ETLXKT/zkm7ji6mv54ic/zB2Dxxme/gDx/qvo+PM8UCgcMft8zWoABxoxg34PhEBqH08YBqMxxlh8fxrmN6VgPlaUNsXhqDdDQJNnKVElYLSRkGcFx66a59EHNlC+YmGliVSKbnvE7EKVpdUWRVYyu1BnZ6eLerLkyFV10vGT5Ns7jPsF9ZY3vTnQS0gmKXEUMxNUGewMWDm0H1GWdHc2KbLpe0ZIvv+H38jK/n2Mk5R3/tVf8uiDj3M4atDYfoBzG6e4Wx8iVtNUwGWRZLUSk46GlAbSwiG1z3A0xtmSMPARLseUOUcbEkeJwzIROb3on2ff/0VkoLOTsudAk7jmUWYpW2tjKnFEZyfFDySVhqYoE5CCfjdBSYVQEFcCLpxp05qxHLxsjjAKKXIYjwxi+zN819Ov5sO/+jYWVqpok5MPUhaOHOQ1r/luBI6zTzzJp2+9FVMUXHH8OCsH9/OZT3yGSb/PC1/ybVx+1TXc+ZlPcuuJ+ygLSa87YTzImZ2LiaseZWHo9zpMtj5DwPdz1vocH/SJ43kO1TSnXEmIoJ7nsHaWrz1+ik98/FYO7t/PxYsj4miGKA4ByYUzO4xHCXHdx+4IGvMepiwJI5+LF9rMLzXZ2erRnK2xdraDHwQsrTZozsakCUyGlq3zn+KG/S/gPXe9k4XVGqN+n1otosgMr/6h1yKsI4oD8u6Qe79yO1FcJa41ePfb384X73qA/TMhP/Hzb+bwZZdz6/vezj3ZWQb9lMmoZHlPFS8UVIRg0nmM0Ym3c3Lv73F0PKTVqHOoIhmlhlgqKskYf7tHf5jx0Q//Pa1Wi9PnnuDkyRO0t8fsOVCnXonJ0jGbayPq9SqdnRQv8Kk0wLgCoQTDQYYfJgghaM7VaD8yYnauyr4jc/hBiHUw6A2pnfwYF+76FNWZkDxPqFdDTj5xkWfdeA3pZMz73/339EvNG1/3nWjfw7cFwpa85z0f4ImNMfV4lr/78z/hR3/113nxK3+AD77lNnqDMfOLVSo1hUpKuif/gYeX57hs/juYazQ4WtGcyCyhdIRZzlzSYV+zQWdnh/e8+10YmzAY9tjY3CSMNaN+zkyrSaURMBwM2FobMb/UYGcjpzlboShTrCzJkhIQdDsj6o0IZwztrZKF1QpRXMFahTGSzuZDXNjaxg8dYayZjHJaswHbT+wwFzd4+Su+nScfP0FawLVXX8UDX78H4SwrK/t499+8mw9+6Um+/TlX8tbf+jX+42/+F6698SZ+5c9+E+kb6g2fIjc8ee9f8PixOZ51w7dxdd3j7nGBLyV+WXKg2OHgQgtnLXfc9RUGgzaPn3iUfr/H2vpZqtUKuRuSjEtm5wKqnk+v22drbcjSapOdzYSF1SrdHUdeWJJJivY9et0RC8tNLp5pUxqYX6lSr8eUBpKJZbzzMSJ/B9nUdHZGNFox9aYi2TGMtib81Jt/mMDziOMAheZrt9+O52sOXXkVn/3Ep/nQx77A8f3L/PQv/TxXX389n/jAu7jY3WFuMSKd5HzuM7/LvnnLTXPP40tjgxCCwFiOqzGXz1Txfc1gXHLh3AmyLGVzY42z505RmpSizGk2Y179qjeSjA2tuRilIwa9AdtrQ2ZWanTbCcv76rR3DHleYhCYvGQyzljeO8P25oA8KZlfqVGpTq8W5nnJnn0DvNAigfGoxAugUrd0To4Igwrf/7ofZK7ZREnJwuICt3/6kwRBwA3PeS4Pfv0+/vpvP8jBvXP89M//HNfffDNf/MgHeMhbwwsk6yffhRSbtJ7945TSRwnYI0pumYVKrCmKEF83eeLEE/Q6glMnn6TTaZPlI5S0KE/xLd/8MqKowmRUsLyvQdOrMBqM2LowYHa5SreTsrKvxs62oSimUcQsK5iMc5b3zrCzOSJPSxZWa8RVjRCSLLdcee0cJx9oMxxMqFZCjEkQhaPoSkwGL335i/n6V++mO8547jOfTr1eJ5uMUL7ib//qHdx9esx3f8sx/vh3fpNf+oM/5Hvf+FM8+e43M5yc4uIXf4cj3/pLUJ8nQnJj3TDbiJDOoxJKSlOyfnGDixfOkhcJnU6PvBiQJmPm55d51rO/mcCPpuH7ccn8SpMgrDIZT9hcG9KcixkOUlYP1NnZLDHWoqQgTQuypGTv4Xm2N7oUhWNhtUql5qE9RdEruOHp+/jYmdMMBxnVuo/n5ay3BxzYs8L2yR2e/6ybeOUrvgOM5eypk/zDu9/FZJzy2te/nqtuuIGv3PkVqtUqv/gbv8Xf/917OHv/3cR2zPqdv014878jP/Icrgwd182HaBUwqEqsAWOm9TyjYZfH+316nS2SZISxBQcOHODQoSvR2qOblvTimX99MpDnBe3NIUrFUw+iWkWiSROJUh71lpjew68F9NqKJE0pUkd7q086LtEezC2ETCYlYSUgm1hOP/kl7r9jhvbFx5hf8dg40aXSWuRVr/5u1s6fZWOry003XMeRKy7j3OOPccMzbqTfH/Ff3/Z+jq3UufeuO/i1//4H7PvRN/H1/+vXWOusk45KMIAUpElJlhgm45I9BzTPWqjwqPORgaA9sawVJQciyV5rcEmbv7r1XTz60FfZ2r7I3V+/k8U9ivZWlyByhLFFao1SIXmqUFoShCHaL2nOVpmMMrSGne0Jm+cHTEaGesOwsFphMi6RKiZNLe2tEae+9iek/fMs74+I4gqBDThy2RXc++Uvc9/Dp/HiiJc+81rOP9YAZ8nHXU5eWGf/nnn2Lc3Q3bnA6rGreO1P/gIf/08/RJmXCCExpSOdFEghcU7g+SHVqocVgq2xYSAdhyLNXptRjrs8ceYkb3vvX/LoiUfwfVC+JaoKirykuzVCLAQUZUa1VscCk7GgojzqLVBaYDKBkJLRMMEZQXtzQDIpQBhmF2KytMQPNeOhoH3+07j0BPPLFWyhMIVhaXmW5zzrWfztn/0F3/X6n+Qnf/E3eeE33UCkPKrVOp/9hw/x5jf/GE+evEAr9rn8adfT72xRqc/R76YYa8FBlk17UfiBQwYR1gl6qWGkHStCcMyVDAZthmXJe774ae74/Gf5+r13o0JBEBqqtZDxOGcymtDtDKjP+EwmOZVqBWMlk5FA1CT1lo/nSfq9AkFArzNC4LF5sQ/OEUeKSl1R5pDlDlcWROIJZuYDmnMBg25CoxHy5PkNbrz2Jh76+r185WsP8tn7zvC8m45zpBbS8Od48M4vcuVlRzn20EnmfcPijTeQjvtUanWGvTFhvcQ5H60FFkOSjBkW0LGGxUhyVFjyTodRWbKxbfn4rR/i1ls/Rqe7TmEToorGWoNz0JwJGfQn9LpDas2AZFISxzF5oRgPBZW6plIvafkxF88PiaIq7c0eSvnsbE2Iq4p9BxooX2AKj3Q8ob2Rsu+wBzZiZxOUgtZ8xMYTHfbPH6Z98SIf+cRtlDrmTT/4XTz+9a+SZROiKOTd7/swZzrQ37jIkXf/NS/+gddz4Mhb+Knf+yn2zMeEoWI8GbG+fZbGnGU2kBzUEttpU0xyOlGB72v+4f3/wMc++lH6wx3SskdY8Rj2xniBYu/+Wbb+4kmGvQn9xph6XZNMDDr0KUvBsA9xRVGtO3w/Zn1tTK1WYXuzj+8H7Fwcoj3B4t6IKPTIUpgMobtTcPTqFraQdHcS6k2PelOzsTnkqmdfSZ5M+NP3/gNGV3n9972Er972WfIsR2nJ/3zrn/PQesn29iZ/8z9+nx/62Tfz6jf9LL/xNz+LdQVZljHYuo0l78eZDxT7bUna2aEjAxRVPO3xwH338M53vpN+t027d36aphtN0IHPyr4mp8/fzQ03PJPRYEK/O6bZ8pkkJV4YUBSSYd8RVxSVmsMPKmytj4njmO2NHkEQsbP+1LhjwkCRpYLx0NHvwNU3rnL+zA7CGlYPNOh1Rpx6YIvnPuNm7rvrLr5yz8N89p4nePSRU+wLBbMzc3z545/gu77rhVTrX2G5qbnxxW9iNOjgx3WqXoOJHOHSx6iYhGOxoOx16Wwbqn6DKAioxj5nzqzzp297K0+eeJTCDlCeZTya4IU++w8u8MjJz3Dzjd/GC5//XQx6CUE8pjkTkKUlOtAYI+l1HJWaploH31dsX5wQVStsrncJo4j2xhjlK5aWG3ihRz5RJCNI6x5X3bjMuZPbhJFgYbVCt1PS3x4gVMi3vugFfOQfb6WTWF7x0hdQb7TwtOKqG6/jji98mf/y1ncxV/d4zYufz/f84A+x9pxv4r1f+WtMNqQ89yGuvOxm6HYZRyW1ekQcaKTU3P/oGT77yU/w4H13sbl1Fqcz0nGCH3ocvXw/x44c4OUvfR3r5Qqn9P8DBYTzixXK0mJsshseLjBZjh9rgkBjrcO6kvFwgikUlpKd9RFSSqp1n0pV4yhpzvjMzGnGwwlBlHPb1/+Gpf0KIQxhFHHkiuNsnzvL33/gw9z1+BpHD97Bm17zIuhtce6h+9l/7Bjf/53PYt9snZV9e8myMU54HD90BSfOnSGMfOo1H+0rdk7mZHmJ9CXrZ8Y8cvIhsqPP5GQZspMVHKyFhOTIAh46scnnb/sU+WREtSkoypJmq0IySTHlhCQBYwRbm2OiWowXKKSALJ+GbY11jIc53e1k6kGstDC2IIqnDVjqTVg23jTfm9zLwaMhhXVYXxLpiKuvOMbnP/gBnvttL+We+x/gne/+IKNeRtyKGbbX+Y8//QbKvMQPQgoHG+dPs7DnELa01OoxQTi989t+vCCYlXR3JszMPsZ2kfNEFtE2huONAF3kCKMY0OB9738vDz3wIE4UoCyRjNjanLDvQIUiK3AW0klJUTjGw4IgCghCM70KmpZMhoaiUBhT0tkaIxzUmiGVmo9QhnrLZ3ZBk04mxBXBNTdVOHt6glEC6Xs8/dnP4rLDy6ztWeChOz/LT37PtzDpbvPVU21mw4iy3uQFKyss7znAbZ/+JEJKuptrxI05ZmZqZDYhSw1rDw6pr0RMRimnH/8o55/+HXQGluvrATrPsIVDL87wyPkt/uxP/pxeZ5tq01LmAqWnxh2ZMzMXYV2BtY504hgnBUUm0L6HF0hKYygKy6iXobRlMirotQfElYiiTGnOhFgKmjMCL4xpbyTs2x+SDH36/WkkJWqFHLl8HzffdA1f/ND7qM4ts6cqOba6wP1334NnfU6s38Gv/sZP8J9/6cfZ2t5g78HL2Fo7y+LemAOry2wML3D+kRHVGcV4UnLfI59DXf4dHGn4hGWOyA3J/AxbheWxtfO87U/fwWjYptGakrdBLyMMfYIIag1BvelhTIFzkCbTmynGKrSv8HMoSkNZOPLUMNFjJqOcXqe/mzufMDMfMU5ymrMQ1SLS0YRrb2rx4N1dvFDSbFXodgoW9y/zvJueyXv/+l384E/+J37iF36dV3zzdQgjWZxbZv3Jh/jZn349Tzx5hsuOHmF5/wqDzibVxgKRDrh4aoLUgqKwPHjiDl7ytDewL7aIIiefrdIvYSQFD937EG99218wGrap1B1xJaK9PUAKmF30sS5jp71GY8ajzFOc80hTQ2Yctl+ifYsfaIwxWGMxxkw95FHBxXafuOJTlgULSxFpUtBoScIoJE0Srr5hlofv3UZ6jsZchfWLGZddfYhn3nw97/yLv+Q7Xv1GfuYtv8srX/J8KspjeXGWh+78Ij/6wz/A/Q89zr7FWa65/lqGvR3ieothO6G9NSasB7DguCZ0zIYg0ox0pk6GpJs4bDHk197y26yvnaXScPiBxo4LnBXMzXg4l7CxfYr7Hxswtxhj8gxjLdkESgeDboYf+viBwhhwNseYaWQkGZesn9siinxKk7KwFJJMMpotiR8EFHnKoStCuj2NKwKy3FCUiqNXHuC5z7mJr976foRX4RmH57nu+AE+8cnbiKzHo5s93vLib+EHX/tKHn/kQeJGg+2Ni+w5PEPaFYzHhjB2NNMz7JVL5E2f1AoGmaDAkmUZv/grv8V999xJpW6RenrN0VlHbcYjLbqcPtdD+D2WV69icSWmyDOsmTZ7EkrT7+V4gUcQaox15HmJE2BKQ5qUrJ/bJAx9rM1ZXK0wHqfUZxVSSRw5e494rK/BzGKD9bUxQaRx2uMFz3wWH/2793Nxe8Bn7nkcJSS+zWnM1Om3t7h48QJZ1mc2XuaRB+/m29LvZGnvPtJPaQa9MezrsyxTikaVYekoxgVB4HF6kPG7b38PD3/mH1AiRXoGz5vKBkRVQad3kfsfWSNnnfp1b2a21vrXJwOjkUNgGXQF7U7JeFygUQz6OVopysIwHCV0tzM8z8dYQ5pMmdZkYtnZLlGepJwUFMMSaRX9nQnSlwTVkH4/Z+HIKs+65Wl8+sN/jysKnranydzqLF//6j20tzLwHWUy4ntf+WLKosQLY3Y2N5hb2c/S3DLFSBLkkkpQhdyxv96gWlEU1jHMCoIw5qqqRCFpZ4rHy2nHMs95/Plfvp0sy3FKkKaCuOZz4XyCUopB35HlhjyXGOMxGmZoKTCBpjcoGfQmmFLQbedkiaM0mm6/wJWGQadASMnmyYTSWoIwpSgklVbExmZJEIVcfuVxDu6Z49CPv4Fer8+znn4lfnWGM6fO0ax4RLN7AMl4vMUnP/phvvWlrwBjKExOmUuyrmOmGVGvVVnY28ALLNvFmKRT5caqQvmwnUkezS3WCVZ0SJbscP9D9+OwuNKC8EFKhAsZD6c3D/p9R69rSBKLLR3DQY6vJKYsGUxSOts5nqenmyt1+J5H2i/pbpV4vsBkJVsThyckw06GF/oUrsAPNLVGRGI03U6Xl33vazh37jyPnzzL8v6DvOW3n8Htn/gCL/nOb2V7Z0K96jh2+XHam+vE9RZlWZL1DIEf0YwrzO+pIgNY6/WYdAROCvoOJoUBp9lT8Umzgnd86tN0+wOcgDSVxHWfIi8JQsnMYp2knzMalYCk23GMhgVRINH9FF8qktSQpCU7mxP83Tx3kQmkhnHi6GwXhDXBYGvq7flaMGg7Ko2AnY5mfjVkPLasHjxCq+Hz6h94DZkteM5zn05SGr5l9cWcePhJbrz2CoL6AmlS0u+OGHTvZn5pAaE13tAQr5Vcv/cI49Cw1u9z/nSfw0BiLTjFQuQhbMm6MPyPP38nw8kEISVFKQhjjySxxFXN8mqVosyQMmA0KnAI+j3LeGwQGJSX4wnFJC1JEkt7KyUIC7LMUuSCNBMMho5O2yCVoHsxwQqL52vGA0lUCSkJieo+W+s5lx/dw9XH9rB5eB9PfP1L/OxrX8o/3PpZ1s51OLhP43yfg0eXOHDoIKdPn0HrkH57hyBu4pcxVRsTS83OZMz5x3ZYs4YdAZEOaHgBp/OSihP89lvfwWA4mnaskx7GSbJC0mpqms0IYyXJxIAMSBM7vVbXdYyHBs8TaD/HF5JJZsmygu3NjDAw5JkhyyAINcNhzqA7JdHDdoa1Dj/2SBNLXKugggZJZkhTj5ue/nSOHlrgkWaNR+++jTe96nnc/ZUvcfeZHpfvr1E5cZqXvurlXHHt1Txy//00l1fobK6j4xoMffYEMVootp/IuTjoUsYxq806FxJD7gTSWW5914c4v7YF1uCcxjrJJIFm06c1FyKcZDhwnD3VpygVZWEZ9iy9TsloVCCVYjjIUVJRZIYkzdneSgl9Q5YZshyCUDIYCvqdHJRjuJNhnMOPJVkqaM7WUTpifWOC1iGe9qkElu993ffhrGOr3SczJT/+H36Es09e4OrjhyltgB9GrO49xMlHH2H5wCGUENRLSeEarJ8b88Sph7nyuhfSLgzb1uEBrUJy5r77ufvrD0xvvjgx3aOTnGYrpDkb4iyMeo6zZwb8zT/8LmmmsMYw7Bu6PUsyLjFGMB4V0/qNwpFmBdubE4KgmM53KghCj+Egp98rcAKG2xNKIAwszkpmlpvg+XQHBk9KSuNz1bG9fOmxryDLgpfdfBmHF+t8+eGSVX+W97/n7/mhH3s9Nz3jWoo0Y+/BIwx62/j1WW46dAOjLw84/cgmvKrKWaHwlURbOGAF92zscM8nP47JxsQRBEoxHJU0ZzxaCyHWOPpdyxNPXGR2/Fauuvl1//pkIPBXSIoc58dUag4VlbRij7lWTFVrJuOEtEzwZqEe+pRS4iUZgYDA18zWIuoqYmWmQTOWSCnpjRO2bU4WZLgoJWg1CUTBy1/zvXTbHYSQCF/zxMkNxu2cbloQzS3j+TGd7bM8+vBdHL/uaSg/ZKM75siBy1lsVFhphaROMN+IaVQ9hBRopdGHL0doBzbnmprmwUlJ5hx15Tg/7uGvrFKJNGGo0bbAOokoCnSo0VWNyg3LdVhZrNDUAo2iJzNyM6AWVNCRx2A0oWosfhRSqWi0Dtk332I28NBaMuyPGWtLd84iioTJ2lmUaNBpt1lYmufvPvRpDhw+xlVXzfCMZ99Ce6PL773lD9l7aJlX/cD3cO3TbgDnqDbnKLOSvcdvZn+1wkykiWp1woqiVtHs703wVq6iUvHIbckVVY9H0wycJPLgsWSIv7KECCHSGq0snnK0GiVaCoo0xa9UqJIjapZKqFmsR1Q9xcAo2ise+G2qgSI20C4M2tP41tBsVaj5ir31Go16BYmhM0nZNBlm3pIFPpmnMUHMRntMGCi+eNfd9MaGMxfa7Fuc51te9GK6g4wzjz/Et7/ipVRas4x62yAVWWE4eOgaWtWYmfkGcehR0XDwipzFp72UeiC4QkieyAqkFkjPMjaG9miH6NBBVKQImhGeMKhxQhSHLM3A+fM5ZjDAr8bUfbCThLlWjaVI0gg8zhcw7I2RkUPPVQny6b1mvyyZ8TVhXbFQ8dhXa1KJFKVSjE1JFkzACXqBJj27gedVuLjZZu9clUkJH/ncnayu7uXmG67lJ372P/Dog4/yljf/V771hc/m2d/+AtZPPklUbWDyjAtfP8lc5HHhkSe5+cdew5GsZO7y57Na1ZzPS3whkT70CiiUYWzHBFcfQ5cl9VijY43upyyv1mgsN/CSDv32DkWWQBCj5xXVaspsI2ChFlNVis3hmE4+QS0u4rdiVGEohhN8L2BxQYKImW/FLNZaRAGkk4yRNKiZjKKm6OQGkifBxLQ7XV726lfxsY9/hkZc49/9yA8ySSzrJ55EBE021wdkkwGnHn+CfQcOUanWcc6yevBKZoJp6+jcOLw9V+MHjolzhEpjhcW3jr3KMXR99OF9+MIQxhode9QSw+H5kLnVClmSogPJRneDNM2peBFxw2DDjJlqRDPWVKshbliQuAS56lHzIE9LtFZYJViehzLXrM7VmI+i6RXfJGNiC0y9oG8DVCdBCouNW+y0u7z69a/joYceYZJJDhxcYeXI5fz9/3oXP/5Lb8IL6wgByvOZ9KdheeccV151M/VYE2iYWIWcn6cnYdmTVK2hJjVnkgmff+JB/JU5wsZeIjlNfbncsjTrs7gUkmcloSiI6iHnLkbIcYYOA6JFiWrkNAOfVj0gjgN2+hM6kUAzptKoEjgYG0NsHLUlQAYsNmIWojpBpMgnGakwbMwkdHuGeF5Rxj4yLzm30UHOxzinufUzd7G8soR1Hi952Xdw9syTXFxb48Blx1jadxSERPk+RZExf/Qoez3N5cYQPuOl9DUEClRpmUWxVRR85uJZgr2LBOEKftVHVzVeN+XAaoX5xYAsK/BCTeQLgprC1PZTZgnVSowkQ8WG+ShgtuZTk4p+6RgGBcpmVAIP31o8JIGGPfMgXIXlZsSCH+J5klGSkigPbz5jXEjyhkfq+yz2RvR6bV7+6u+l2xnQaW+j/IDK/gM89Mhj/OTP/DBhrcnexiK3f+7jLO05RK/fZ2V2mUZrjpuf/nQmuoZXDfHKglWlOJUVnDWOSTJE7V9AuRZh4IiaFfzekJWlKnMLAWmS4IeaaqiYn5MMNm7/Z9l34Z4qo///gsFgQKPR4Pvf9U62fEnN89BCUUhBgKARBdSFQOSGB7IJ2g/RUUga+Ni85EBaILRj0Q8YKqAS0BSOioWyNKwJxUnlofsj5oKI+jv/khuOrdJqzfIXb38/h48d4xlPu5KDh49wx+13Mhn22N7e5sd++o1cOHeKemOG1uIyf0CEy0uklqwCPcDT00YdgbNoKTlVmWUgLAtWEQlYMwUTa1DW8ujGGkwyZoTAuYLmpKT0pr3E8TQNzyMtDLkQVOKQqnBIKzihFEWesahD/MjngnDMpAVGSuq+pCIEldAjEAonLGFpsUJwRvuoL3yRu37nd1laPsCLn/c0Ik9y59fuZzzJoMg5sLTEtzz7FsZFxs0v/Cbiap3O5hppkhBXa3Qqs/xVdZ69RYkSOWd9j0IIYuFojjOcHzCK6jgMVScYGsPQWSILG8mIC9vbSF+jTIkucvK8pFGU1KXClBYv8IkcDISlUIID2sMowXYQcr5eJRyNmXGC+dJxLtQIB80kZd7z0BIWtMc4UFSNJcVy1ji2/RgpwWqFcoLgj97GETtke6dNUVhwhmuOHubyY4c5cGQ/syv7sdYy7HXYunCaUod85ZpbeMJYAmHZ98TjTJZXkPU6xkqs9lFBhZG19OyUyQtrSEvL6X4fmaQU/rR/fVgYoizDKsFqOWar9LFFwYxU5ErQtwYRRewTgiqOxwOfPg4rJNSqRKXDOUOYF4TAnHQ0jaXiR4TSMlCK0AlOOsdWEFH7g//BAx//NNf/0q9Qe/g+jjcUT5w8w1anR2+rx6Q35LUvehlHrzzE3Y/cx6t/7IfxAsXOhbNYHA+Gc/zxj/44v/rC41QPHuO9L3stM0aS+D4TpRg7S8tqLJb1Msday3q/SyIssjBERYGwhsAKIg2ZVsynY2Q7pSumRjUJPErjdq+j+cwby46D85MEHfp4zSZaCNw4wbcgpWPeUzhf4aKISAoW05yhhLNWMfYCinf8Desf+ABBEPHKV7yIhYbPJz59JwaPZhywOD/Pvj1HuPU976U+H/Pb/+O/MOh2caYkrDRIjeEvLqwh/vFjHDt4gOSNP8q5KAIvYliWKCC2kDiLtZb7ty4iDARFhnJQCEdsHAeswdOCiStxpqQ9MYyFY9V5NJxgjYKa7zOnNEMPnBX0C9hsVlgtC4KiZD2OsRL2TDIWrSGMfGTgsYRm7EqysuSrvs8witnXT6lOSnoVwQ0ffB97l2f50Ic/ifDrLM43Obx3BS+osjzfZHXvHIurBxgOe2TZGN+LKcOYP5nbR8WVLJUlA+XRrs+gHfgmZ2QtM2hOmpyT3R3CTpe8VqWSZsRCsBFoFvKEGWfRDhqThI4v2R46IusIlaAfaqLcMoMgiUN8JSmKgidqVYJJTiX0KLWiFJL5JCey07RrTUryOKQqBFFWYoTjcSfJHURakWuf1nhC+r6/42leztlzZ9npjhHWcPnhA3zr855Nc3Ge+tzSro6IYe3Moyg/5NzSEW6rVAkElMIhwzpjL8AvCtIyxzlLYQWnJwNsu4unfTLfI/WgMs5YMhmehByBAjIMubVkvQxrLVUtSR3kzhH6ijnlUbWOkVJsSMidYFFKDJJO7FMrLE1T0FACT2tq/tQB0hg2PJ+TToLSdMIApOTQVpf9//gBLl+d4XNfuItRknH1FUd5+o3X83fvej/f9/3fQ1yNmJmdIU0HjEcjdBBSb83x97VltqSjJRT9+hybomTRWPISElfQGUw4O+ljncFDYLRibpIgpSOwBbW8oNAKhSBylslowPte+v30+33q9fq/Dhm48oN/h6zVp8Inuz3BtVCUEpSbCt4gBE4pZByBkDhj8MqSQFic51EKidEa7cCbJqYYex5ID+kMnhXU/+Zd3MiIyWjI6bPr9Hp9+httrt9/lDe+9rW85x1v59t++gc4dtU1rJ87gXCCc/Ul/qA+N31BYvo8zjlKMX0um2YUctr9zgHSWnAWYxy5tUhjMbuiNqoscHYq8qNMjpEatEIqjTAFzjpEGO72I3d4xuGsAd9D1avTbn7jDM9OGyUZ7WGlxCqNMpbIWiaBJkUT3/t19P98Kw7B7C3Ppr51mnFSEAcBs60aL3res6nVGzTmFgmiCqUtOP/kw9giZ1wK3nX8Waz5AUtbF5lbO8uZK69kIhRG+6h0jHEOI+X0+ZxAG4vBYYzEmoxcaqS1yDzFCokFdJZNmxV5GiGmZEqZqWiP9RRSeShrkMrD4pC7RS2lEMiyJDIlQjmM9HFSTqMyZQFSMJEaq3yi9jbEMWifuN0m+tt3onqbNBst4shjeb7FscP7WJhfoDUzx3jU58tf+AgXXMTGt76GswsLWCOIH3+I8Fd+kbnVA5x+6x9RSoEejcjFVB/DGQNCIcsC4wyFU5RyN9pjpkWHhZDgDLKc5syd0qCmbbClsTjpQHsgJZ4xKK2mhYtxiIyrmCRBloaKzUEprFQY5U17vZsCjWCsPAqlmXndDzIpDd78CvKVr+TgXZ8nGY6J4ghPSa4+doTL9u6ludCktbKPoizobK5x712fxlz2TD40hod/6RfZpwVPf+sf8ujRqzDCYYRAJmNyHLactn4W1iJMSekg1VNRI1UU6HJKCHI1vXutymnVuPP83RbKAmUMVgqsr9FSokszbaksHDSbiMDDZjl6khG4EhSU0sMphXDg2xIBDD0f0Mj1iyz91m+RpTnBt7yQ1c3T9Dp9pHC017ZoKJ9/9+0vZ+QmXP7CW4ibM7QvnmPU7+EkfLh5mI/90R/yop2zxPUmX/tvv08mPHACMRlT4MBO86bTXmIlRngUEkpr0UWKzoppUyGlcM6gixIrBNbzgd3zi+nZZrRG4vCEQyiNdSA8jZQSg0AYR+wKpITM0wjlI5xElxlSwUj6IBRRp4urVpHKo/knf8qetEe3159+UlHwTU+/jiuuOMLC3gPEjVmsLdm+eIbxsE9u4RNHruNrQRXPFXhACRRaIazFJZPp/naW6QSWGAslEiMExlm8LEfZclpkqxTKWkRRgLFY30M4MW0fjUUhsd602MyzJWiFdQ4Z+OD5YEGVJaHNQWlKrbDKmxbumhIhLRMRYKWmcf4sMi0pDh5AX7jA8gffTznsoHVAtRoTBx5Pv/YKZmdatGbn8Xyfxx55gHsf/irlM17GV6+8DoPAE1OxHYujCHxUmlDmGcZM2x87a6fdXJ2jRGF3zzo/y5E2xwpFgURahywLSilwykMYi5QgXImQGqM1SkiUM0hlcVZBFIDnY0qLXxT4okRoDyM1Viq0NWhXUirFRE5tmHYWicAvHdEH3s/h3jo7G1vThlDjAXtn53nJy17K3FyT+twcQRQyGY8ZD9oIqxiHNX6zuYJQEonBCCiVQk0mlMaSW4MzUxGiadssNf0eIVFljs4LlHVkSmFwaGNwvT73vfI1/z/JwL8oTaC22jDOUGoqyuEJhxHTcL+wFk8KlBIUTqArMUiBSQuUs3gSSiXQQqOVnB5CtgQpUNrj2IP3sLneYfyCbyN91i088ZEPYjpt4kaF1uIs4ZGDvOSWm3Ez8EO/+TMErSZrZ5/kjjs+y+DojXxJzmGSDhaHLyVQYosSdheHyHI008OiYEoWJA6NoiogK0tyU2CNm3oS1oBzyDJHCYnRCrnbm1MDzsum2tCmJJQCY0pyXxNojU0T5CDFM7utMj0fs/tvZeGQYlrootC4PYdIypKdrTbyqmspbtvGTdaphB5FkXPP1+9meWGWmWad2cX97Gyf5Yuf/xDZ4uWcv/kVbOyMMH5K6z//Br32eW5+2Uv50vNfTuYEXlHgOYeHZGxKLALPlfgIEBrhDImxmNJMN4cQ5NbylLSaUhorp/Or7fT6ltEeQgg8CrScFtwI30OFHtoCaU4gBE45FBK0xuIQxuBJKJTGJjkH/vvvsl2fofvilyNm6vCtL8Xdew/tMydZ2HiCYitk6+RD7FuUXHXtMWTYY6a5xh3+i0nOn0d87R56jz9J+fmP8z03HeZPPnkvy2tr9LwYnSQ4Y3EOjDOARNtyum6doHDT0D62AOuQKKwpp2JWZQZCYbWHVAL9VJtfrTE4fFvia0HhJDbQeI0cM5pAmuOr6fcardHKwzqHMiVKQogE5WG/45U0v/BJ7vjynczXW/iXH8M/c5IyHbNY1WxsnSf2Evq9gPbWeRBDHn38Tr6iryG552F23vdOWtIhlvdzcuEAXneEK1OMA5HneA60cxR2WvPh7SpW+lrhWQdlSV4WUFq0UhTGoIzBOIP1PZAKqRS6tFNCqCVSKrwiRUuPzBrkOCFsNCgmY9woIQScAqU9jFJIJCrLEMrhe9MiWS18njx/keFwyPH/8DQ2ehsI22VxtsHK8hIvfPbTqcYx+1eWQAW0N87yxU/9IxMdcu74M3ikLtBXXcMt/YCZhTm+tj1AOokTEGQpurRY6yjsVN1PCotgSmScsWRFjssLBGCUILMWWVokJUZpUBohBZ61OCGQWk/PNOGQamoU0R4i0GgrkHmBj5mKEymF8wOctahiWhflK8neEycZ//XbaVebyJ9/M5MXfhvnP/ZhpOkw32oQ+z5WS8aTMb3ONllekE26fO5TH6TfWOHi1c/l1DCl7GUoqZCBhskY503bTweTlNIarJn2SbFYfOcQcnrlz5oSWxqMKREWlJCUziBLgzM5UiqQ0/lVcqpKKpUHwqGdQSk5VcD0fVQcggE3SfF2dSeEUlOiBEiTI6UkEApjHEd/77c5MXZMXv5Kwr2rbN7wbNTX7iQ7f5KlsSCYa/Lw3V8i0nDg0DzzKwGDwWOcveGVbM7uI2tPGwpJrYk6O1xz/908+IxnMlIaVZTI0iJwu2TI7TqiEqRCWYMoDXkxLYCWQmKtQViLLFLQU7MnlEbvCktJpZECtCvRSlA4EJ6HimJslqFKQ6ABAbnQKK1RhUEJC1LgS49CaNSugJHAUTzzZs599KMoBzOzLYLFOZ5x7ZVUIkW1WsUPfMajMScfvZdOe53e3DG+sGeOZKdD7Pv0bv0gK+dPUn3ND3A+qKBKi3blVMXQOaQDKSxOSEqhUMbgjMEV5ZQIIMA67HD4z7Lv/7Kagf4Iz0z7ywslCDwfIR1OKrR0aCkRBRjH9CUrgZ3kaAFKOHIEMF18ODPtlS+gsXGOI5//NGKccGrfQYp6k60bn0l+2+ew25scqGkaCzOsjS7iejl6skHYTuj07uPulZtZr6ygk4JmqHFK4iuNtI4yT7HWYUyJLqdkJS+ngiWltdO72EogLGgkngjpmZQkL9BKkhQFea+PFAKhNX7ooZRCKoHKC4RwKDX1pJyd9jpnYxtZFojCTKMnwlKmBUJMhYXkbsRBIIiUh1CStW9+MRf+8Pdp/8pbOPzyl6FKwWYyYencfYxbFZ58wHHl4Yjwpn34asQzn9vkI+YaUr9GJS8pRwNecniO5LKYL8+sUDUQZgWUJcqWWAsV65jqVQhmvABPSkDSKxJwgtw6ktLQEDBKMtxkhNJTD1lpiRICrTVCZdM6DmfRanp7wRUZsvTAOFxp8KXEwXRDyV0NPetwEpTw0GeeoG4z9sz4/PEvvBldiYlnZsmHA4J8xHXP8ZmbC/mzd17kQ+9/MbNzmp/9mc+ydsFRmEdoNOp0NtqUpeDCJKPTeBbLb/xRZOaIkxE2L4ndlDmrXR3QQCl841iOfPLc0rYGazWJMSRFQSAlvTSD4WAaydAeXhiAcNM5LwRINT0Iy2mawJUFKi8RpUOYEi0lFkfpCoTIEEyVMp2cKiYGUiGvvZ5xvUn+tYdY+9hH6H51kahep0wTrpsd0owj7r6t5FUvW2VpeS9pKXjyxGlO3fsossxQOCqBx8Ff/S8UfkQxnhCUgixLEdbgO4EWkqTI0TiEdcR+gCim85AZCGXI0CZkRYmvBIO0JE+GCK0Rapqz1btqdJ6v0FIiXYl0+VQZUhi0KXGTZEoqdgWocjdByGnqx1iHlCBVTimmegvdb38Jnb/8K+79tV/lwMtehmwaNttdDptzfLHYYX52lmbNMbsySxhts7B0lk/Kb6adKnjX/2L4qc/zm0XCN/38zxOVkpa1tJMx0pQoI8idpYnEOEMoFfORx5wXkriMdVMyctOWzWluaEkYJhkmm+BLidJTr18pgVISqadiSFIw3f9CYkkRmYdwDkqDJ6ftykuhQCZIBM440CCE5NozD9G65jCfPnmRnQvrlJWI7Ju+jeKBu+mcX2P5wkMU7dOcfUCzfzXkihsvJ4g7XH75iI/6+1lXNeLEgvIR5TRyVUkmVJXHuMwQhSG0jtJZPATWGCKlaXiCuSCgdIptmzG2BmMhLQo8JRlOUsrxCL27t6WUSDWNfEqVI9R03NpMyYAsDa6cGmBpLFJMBbmNc1NHkGlLbyemhcJqMMJMEp597ZX8t9/6z3j1GvHMHDYvSXe2eckNUAYVzvXhxS87zPFrmqigwYduvUiy/TZmDl5LGNcZjB0DpXlVfp73fvKrvKy9zmdf8N24skTZqdOXWzNtO+4coZLUlMQ4R24soQ7pZzlpWeILwSAtKEbjqRLgbpRH+woh1NRBVQK1e2Y5N3WKVFngjEVYh8yncsgaiZYK+ZQ0PA6lPIwUSGMIjWMSRTghyZ/3Ior772PrkQc4ajs8eG+P9tk6zXrE3oP78eKczbOf5xF1LefjJbLtbaLhmN65c/xo9zHe/6V7eP7SDO3nv4KiNARu2j5fARiDkgKFo+FLjJPk1iFVyDjPGJcFoZR0s/JfnwyEZUloShyOQPp4bioj6vISqeSUvUqJMQZpxtOrF24qweh2IwnOOnDTiMBuUI54p03UbPKS64/whl/+FXStRhRXGO1sY7Oc1nFB3g343McNP/n6gxy/fh+bvQmPPtKjeupdzL/s5xjENUBRi32ObF7k1MzsdJGWJaF1VJ2gkxVUdw2Vc4I6ioqY9q4uioKRMSzGVZ4segzznIZUjMU0R4QTuyI6biqvXWRT6VG7G5LFgSmR5fgbUpsCM2WNbqrmB1P5XuHAdxJb5hjtcfBZz2bjox9jcuokJ/72HSAkcaT4jlfNsLxsecsfPMZ//MXvot6Y43/+8X3cd18Xmz9G5fj1jMYpGyfP8pvdbZ57y3VcfNUNxFaRuYIkn1ZEO2eJjKAsSwKlCBXsCUNiqVi3govJCF8qBIZRkhELiZAOJR3GZAgjCbzpNUpnmHZFNAblaZSUmNKgyql6pRDTKJFD4Atw5n+TzbQCQ4FbXEHfcgsziwvEXz7B6OxJinYbKQW/86vXceUVAY25RT5+2210enWsd4hmY4H7HzyH0oIs6+KcI1xYZP8rvpevPvu5eL6HLkpEkcJutbFC4SvFMEuIpcJ3IFJLJBzzUjMoSxaDiAvlGGMNsZs2MFFoPGsJrKG0BooSrQVSKoQUu4p5Fikc5GY3zLorduGYjhsDwiGdxFhHML2zgdMQHTrM1W/6KR75kz8i7+xQtLfYt1Lle79zmYXlJn/x9se45duPE4YL/OnbPstHP7lOGCgCX+P7Hte96FWsV2PEKEFYiy8ESgiMsQRWktsc5SwK8IC9fkgkFKFUnBsPGOUFy0HI+mTCJEkJEShbInKD0h5SgqcUtigJnQ/SoaTGOYtwDmcy5CTfVeuVgEWI6f7AmG/oJzoLnrFTmWFhOfotL2Djo59gcv48j/3ZnyKkREvHsWf65KMLvOPjPd76x89lfsXnYx97nNs/c5GLW39KFNUYdXrUjGHx2BWs3XALssxxxhAYiy0tVamRKJSzjI2l4iRlmqNRzCuF0AFbxuApSc86SlsSlAaMQTiHllOFN2EFymk8NFJOPavpMKeS0OTFNIXkdp0iKXGunEaPhAMULnP4wvLQwafxsgPbXPjcXZz4xV/Ab7YIaxUGp09T9RxPu0UxOx/xjr9b54Pvezkzc4I//MO7OHUiQahTzN3ycvorR/AWFzG+x+Sv/oR40mH2Z38BY6YeeE0oPKnAwsiWVKVE5QZHTlUKnJBIJ6iFHpvGUBhL4EAXBVqANuAJMQ092xTpNNpqhHQIzG7000FhkLterxNMIyLOgbPTQ83tyrILcGGE/9Lvxpuv0bznFN1HH6YcDFFCcPn+Om98w2Fm5+f42n3bXHvTEbJyHsomH/7kGhXtUTu1g7COzW5CUoL3kuu45fg+hudOossSaSG0MDElsZvuPU8pFr2IWAgqXsyF0ZDCGGajCqeHA8ZZQQRIa6ZOjSlxucXHQwg9dXYChdudV4WD0kJheSp1BICcrnd2nTq3+z4Ck1MKzZWf/gCn1tusHbycSX8I7Q7thx4g73W4/Nk+bhxwz5OC1//wFew5INluO754xyY77Y8Qz95PORpz9tQGo9EE+5238O0vex6bcYPAOAIEsoQSSywVmYWK8qhITV1IYu3RKSaMnWU5rvFEv0ue5YT/PGmCf2FkQEp8u7sJCoNg2mRI7MoBC2VxZtp9S8KuUdh9gW6ac5ZIjLXfUAEDy/jQ1dyzeJDP3/dVjNTkW1sUaipi/SOvPsTTr1Y0WnV+7Ge/xrXfdIwgvpx//MRHee97H6YRe6yu/w7i4HEmy4doPXAHXz19ju/896/n9mPPREqNKaYV9ItC75ISiZNQk4qm8pgJQzatxQcGaUbT8xjmObk1+O4p79JCNg1bCSURzk03h3NTo7CruS2c2V0kDiF3/7CcUjnHVE7Y4b5BGKQBSsPTfu4X+Nov/xK2twPS8pafvoYbrouptRaZ+avzbG57lBxgOAx57OSISCVU+3cwyXK0Eaijx3jiVT+ClwryMgVrCIUmEIKKmHpLnghpKI+lICLJc6KoQk1J5v2QUZ5N0ydAoCRFUSKsw3MCrSWitEhbILRGmmn+GOPAGLT838c19RYQDmPcVMUNwIEV0/CmEB7nr3wWZ4TkGb/4y5y74w7WPvUJyn6X/XumhFLqFocOLrG4EBNUDf/pl1/N+k/8JdvbE6L5JZrHrsX77leTVys44RBpjrSOSCpKV9DwfZRlaiBxXFFtUBQGD6gEmo1JgpOOplYQxZwZ9vCcRUmFRiCtgHTayQ8l0Aaw09yl0h4Oi9o1hI5d79E5rLUgp4qG1pppikTskgem70Rax8qNN5G+7o2ce8/fIPKMN//EVVx+xCduzfHAE/cwGgk6g0W+9/tezkc/fAKpJZWoytXf9X30nvMiXJoShCHCOFyR43KDLiEQltAJEIqsKGj4AbKchhNn4oAsiFFuwrDMiaQiEwpPgCsdSgmkdYjcIKQhEBKKcuopUaDVtFbC1xLrdsetmBJ8OZVp3tX+mq6DqW3gKZsqy4Ibfu6XuOctv4yZDJHO8vM/ciVPv8FjbmGRD9/2STLbYjQ5jnDb3P3gI4SeIAwKELBvaZXaT/w8eZKhnMPkGWHpAIkPU1IjNFIJjtfq1LyQjfEIP/CxxjDnTVuTS21pJyUVPyDPE6QAZR0CgVYSCossS5SeRnrkU3K1YiqMJKZJaqy13zj7npJER5S79lEyiWv8HVUmNz2f8mMfJj9zimQ3v/0bv34Dxw5rWksrfODjn2Z9x8eqI3h6nvsffYA4HDG/8x6KUpMIySAr+f3vez6/8edf5MbNTSZzqxTWEQhBqKaE3wjF8VoTz8GoyJkJQvJsSEN6NGSACATnhwMCJE7raQh9WgGBVlMnSUqHwiB2z3msne5npqkIodTUU/5GRGBaJ2bt7pk35SWsHTrOBaG5/qd+jo07v8zpj9+K6Xb49z94OZWqxg+qfORjX+Y5z72WIq9Qr0fM13zSDAbjHOMk3swqzSuv4pOXXYXfmkF7EAuJMTnLUY1RlmCdw5aGGT9AFQWzlSq+UiwFEZ0sZZROqEjJxDl8uevFWzsNs0uF7ySSaUpNZLsx2/9Pe38etHt61veBn3v5rc/6ruc95z17793qbrV2CUkswoAxIAjGhJExAezgOKkZYhs5MR5PjO1yBnvi2DDBdlgygwnYBgwWCLAkhBYkgVpq9apeTp8++znv+uzPb7m3+eN+WvknqXhqoCo1nKuqq7uql+rneX6/+7ru7/VddPxsq21z/N1l/Kwi+NUSYNXkfDzcJOBDi7nyMn/p276Zv/Lf/jOujZcoIVAIfuC7LvL+b+iwvr3Nf/+TT3Huwfs4HJ8l7zg+9Qf/M3ma0j98heAtwnm2zp/nN3beRO8db8XnXbRpsLXhfH+NWRNjsJWQXCy6BGsppGKYZPjUIduGeV2xpjU3q4r/wATj/y85AzagV4QTXPxipJYopQgrFq8SIj4wNjrDKRnzpYOPuxVkhFkdFiEVzjmEVCyzLuId7+OJc29g73Of4fipL+BmY77xa4YMhzm9tZOI9CWCK3Gux/f94H/Ehz/8Ck3tePW1G/hXrjGuLX/2ax/iH1+/Q3H1Mubk4xRaI53gjRtb1PWSvbqlozQ6BBKhyIOklJIkQKZTMql4YTJGCnDekXkQzqFCbFLKAdYjZCBR4G0EihCCgAehVsOAR+jV0OwEIjgE0bTGG0NaRNnQ6wSYXCoe/+EPcuXX/g2zl17gnnMa70DKASdPDFkfdCnLwH/5I9/Fiy//M/Zuz2idp9vr03n3N9L50+8nqWuGX/wcs/sfB+fpFAXniw4358cInbChczaTDCfioGKMoUAxTFK091StQXhPU1tyoeMOxwekCiji7ygahxer3WJYfW4bUImMu0v8avAJCCQ+2FU0cojZ4FJT2wql0uifrRJ2v+qr2XjszcyuXuGjVy6z41+k6B5Ro/jsszOa9JjFcs57v+2t7B0Fjr/mLzFLc0glYlmjpMQ2hnpZkytBKhTv3TzF1fERo9pxulOwleTMXMV9W1u8drTHZpojfUNTt1TO4SJchF6x41OpCM7gWkPeKfHe44NHCUUIcdW0iglEiNUhI0EiMK1DJ+IrKYIhxOHPBwc4nAu40HL6zW+js7XD4ec+C8mU1njykIPM6XdLFn5M2d3iz33P4+zfWjB+1w9ycP8jmLaJBMB2yfbVL1M//yTyG76bVCju7/W5Oh2RyYS1bhe8ZSPLaK1l3ra0xnAyL0iWcM3MkETTrEzKGMol4m+utY6/JR6daIQQ+BXhUiARAqxxqBX5zju/ui2ygr8ibByI7xEy3r7ysuCxv/o3uPLrv8r81Rd59MGUMk/Q2Rq9bo+TW0N0YXn/d76Xj330aa5ePiZJMy48+BjFt30PB6R0Dg4p25ZmYwNjW/o649HBOldHRwQhON8ZcibPSZRip9xgsqwwecHS20gUdhbTGpx3aBvAxWRKISXKCZx3yEiLintZ5VEoHJ7gPcIDiJW5TRwQpRB4H3uDROD9inCJ4MzXvY+1hx7h+u99jPGzT0NTcWpHkCQarYfsbK9zZndAVlb8p//5t/Hss3vcuHbEaFZTN4aAxAjFq/OG3mOPs6cL/NxQKMGf2t3hxYNjlsJxtjdkN81IlKBfrHP1aMxmljF2EmfiOqx1FuGjskArTSAgHQTv0FohrMAHg1651oXgQcXf0lqLSkJEAYJB6hiQIxB4HyI/y5r/JUZcOASKk1/1HnqPPs7i8mX+8Mqn0F3D5qzllcs1t/cNt6sZfYb89b/5LXz4155icv59tMNtuPchkvUOjXOYAMoa1KKhqzX3lx2OpeS4rtkdDjlYzOgnKRtZgSQwDUtOZCWJkCyqOVpJGtOifVyjCR+JftJ6pBJfeYbVihj/+uDjfDy/EOC9Q6nIt3KrS198EiSOuD7pves9XE66dN/+XoavXcMcHyNMw9e9a41ONyMthnz+mWMEkrWepOj0uHBxi/1bU6wTdDdPc+p934Z845vxeUblHGG+iIiukDzS63BHwHHbslbGKPlCpez2OhjryQmUecm4bbjaNkit8W37Rz8MyBB3v1gfd0wixsSG4L/S2EhSpBBYu9qNy3iDsM6S6IQgIsQSWEn2Anjn4mDtA8PtE5Tf+u1sf82for19i098+TM8tDNnODd0+xmHs8DVW7dY29jmL//w1/MzP/kJ9pcCoyXluS1+f5bwprc8xtOPfzV5EGQe3razy06iuNI0bCYpZ3tdrkynDIoM7TyaaFahleKoikElUkiM92AjZIoQhNbipESr2BhrU6NUgpQRglepIhCw3kUofXUjdMat3KrigORswDRxVWJff5mcp1jf4N7v/yHml1/jI5ee4mJxm+6dGbos+PLlijvuEBFavvm7v4ann3yZ5f3fhD5xhvHGCYRTbPzKT3H7hS/Q+1s/zVa3zztOnKRaLFB5F+/gQq/H3nJJP8voygJHYFQtmTYGiaSrUw58TJfsBIFA0rY1PghkIr+yP7cmNgklNE0dd4xKKAiBEATGWbTSOO+iBj8TuNU0brzBNR6ReZyPEG9AItMMleW8eLPg958esZx9mtEU8o2TvOmNJ/jyzYqh9SyNYn/Zom1Ak9FOFzTeUyYJidIMteaJ7S06wVEIzfagQ6EE+4sFF9fWwLVsl33uzCZspClXTUtjHdZFtUUpYlKlqWukCCilCfb1G3+8LUghcMZGtUyIiI8HRBIPTdfG2xZC4kO0/JVSxsHPe1AB5yEITWd3l+zPvJ+//69/mov5ETI9YhkS/u5PvIDtnKAt9xguNzh1/xleO3OO3DvyNGF6uODk9S8z/tWf4Gg846u+4wd4ZH2To8mEJinopQUni4JbyxnDLKOWAiUkrfGspzmTuqFUmtF8Hp3LnI/Pslg1c+dwzpEmKcL5iIrKQCKjSVNseQLTGJSKaJ/WmuAC1jlkErk0EWWPg4QDECmdE9vc94M/xOL6Nf6nT/8u9/WPSMubGJnwod+9xViBV5q3ff07eWR6xPX19zE6cQa7scEwSSj/3z/GcjTB/9Df50RZ8FWndtHOMM9yznYHDFPF+Y11dJrw7I1bSB/YyTOuzgyHVc3SB8zrkIXzKCnjrtgHRHCoEFZ3P7+6yEQQTBCJz8a1KKURSsCK6S6VipwZH/BS4JwjSAFeE4Kjf/IU9/3HH2D5vm9mdusmv/blq5zyr5B1rtEIxcc+c0jbKVlUS977Z97Opz7xEhO9RVkUpPc9TLK9wyfWt1h/d8mhF5zIC964vUbmoKMkO3nOhk451etxdmudJ6/eIFeR6Foawc3WYpzDiwht50KtCLMBLyDLc4INWNcgkzgkBBG+cvGzzqKURjqJdx7TWpIyYj/Bh+jnv7oQWGMjj0oofHBRvZMV9B94mH/zf/9lfv8PGlJ9i4lb4+/95AuMG825d0rqV45Z27pIeN83RXROKaQOtMuaQdviiy6DNOPrzpxiWS2ZWMe5skOpFHWScbLTRWJprSMRim6ScLiYI1ygqesoKbQBvEUqFVdrxiNDRAKCsYQ0iSiQDxgbnw28w3i/4n2BDS14CFLFgVJprLXoNOGp00/wpJCc+pb/iM3GYFqLrWr+6a//PO94cMFg4JlUOR/7/SMuTT1nL97LB/7Sn+LZJy9xcN93IHfOUq0NaesKTLx0SA9dpfm686fwVU0e4HynS1dJbhjDbrdDKiRoQesc61nOuK3x1sfLnf1j4AwEH+U71nqkBx3EChFY7U1X0HddN4QAaZpivcdaC1JhnI9QcgCpNMbZ+N+SEqk01vrI6k5TVNmlCfC7z6V8+LduUS2vMhq3/OOfvsy5c44XF3usVXPWH3wD3Xd/OyLPSHtD1v/dP+HoynWm6Tpv2dziwa11ugheuL1PN8043UvYW1RslSWP7mxzOJ1SGUtXR5lcbaI00VQG0zQIoG0MSmuE8wQdd2NxwIkkwUB8QUIbVnvEaOdpnQERofK2MbEhBIFQmqZpViE+kfhjg8B4F0k4vQ6ffdrxsUs3qOorTMaO7Hdu8aYnhjx5c8oWDWr9FO7xdzKta7SQbH7ud7j6zOdIVMaj3S6PnTqLVo7hyW3euJL/aCVoAuyNxjTWUTlDqhPStuV2vaAOHicjWaqtW5ROSLM8PlBNTZ4VWBPjVq0luhVGcJG2NStitcYa8DZ+luAc3kUarjGOICKcWFUNQik8Ehc8TsKp5SXO1Z/hfV+VcDxJ+PWPHvGd72robe7xtU9oEqFAp/zIDUE7r2jrBuFh7dYVOq9+ibf/hb/KVqrpaMkXrt/i4Z0dWlvz7MExD6yvs9Up2JvPaY0hkZLjumXRWoIQmMbivaWw8VlWAoTQiCCwrYmNzXjINfPJgjTPkAqci2qFAHjlcW419Bi7WosprPcgVpwBqbCVgSTBe4cJgWR8m9NDx/1bYM2UZ7C89ZEuY1vQuXCS7apmPK9pFzVaKPKiYHfvEvY3/gcm0yXr3ZT3bm1RWYfudtjp99ns9Jgtl2z0O3jbQpYyqhoS6bk1XzBuzAqtiBAzgSjXMiYSyXQkxbZNvSLXKZRQLJYL8jyPKzEELsShQScZxjhcCOhEx1tycEipcM7T+kBAEqTFeovQKUne5dqdwOTKhLre42Dccvl6TXd9xizv46uape1yePFBggj4+YLNz36IG6+8iFSSd25t8vadk9w+3qeVikcGa5zoFaz3+/TLnFf2DkmlpNHxbFFIXBB47+NZY1tKpZABglk1Sh/QSfyspjX4ACqomA3v3Ao6BxdiE7EuDoWt9VHqFohDQBAYY0lSjXcCWzeQpOjBOuVoj6u3Fa9emzCZ3mZ/z/H0ywsu3FtzbSZYb1tOvuF+wmPfQdLvopKMztWX0X/w2+hv+nOc7fR576ldJsspt+uaB7bWOJovuWdznY31AVf2D8lThfeasWkplMbaikRIXB2/f9cYhBYR6vfx1uutR2hFsA4bIpKXFznWe5z1CBFinoUPX3kfVjQZvAsIEaXa3se1qA0OF1YcLTxhccz7nxA8el/J+lqP//ofvMR/8R05JrtI91TG8OtOMhrX/D/mCxKVILUitA0bL36e/Knf4V3f9zfYvfg4y7rmcLHkoe1tJosZLsAjm2tkQjE1NVprjmm5tVwwtYbGuohKvr6dDTIOrSEqxlCs3lmDSnS8oK76lsoyWK2snY+EcW/DqkkLjAf7FW6RwgmJNdGN07hA0u3ilwuu3bYkzRwpFziR8anPH3I4OeK266NuHdKwxeTMPQRvSduGJNWUkzmd6y+y/sR7ee/uSXIBn7uzz8PbO0yrijuLKW/dPUmhEvbnCxLhSUXKqG6Z1hYXAk1taBvzRz8MOOdpmpY0TZFS0rYtSEGSJFHn6cALGyEWord/CGCMJctUPFi9izflBISUWBdvpd6ZFV/DI4PChcAjsy+yvXmN+x7pMK8cv/CrB/zwn+vhioLvPblFH82y8fzf9k7TLGs2pxOOLz9P4+Cv3H+OIu8wWlZ8+sYem70ebz5zktf29jk9GLDTK2iMpZemkeDoPS8dT2ldzAM3Jj70SkqMd1RVQ6o1hYo50ZEvFvCr3Zr3nqAUqVCEEHDe4L1Aa4UJNq5LULTeIokSmFndoFSKQ2CtwwAISWd5nQeKV7jvT5VUJvD/+uUDvv+bFPnahG9+T05Gileav/binFRqTk1vUn36lyhyTT9RvPvMSfaWU86sb7LV61BmKUIqplXNbDJjoyjYny1IZWRMz1rPuG1orEM5SRskCIGzFu8jN0IqSWtjU5RCYm3MYlAy3hCtWSEdNionqnpJXuRonWOsjfSC1X7NugBSUzeWNCuwPmLtN9jm8icOeLLbYdgZstEd8pM/9TLrg0u40JDowLvf+RDZWwqauqUIgrVXvsjkN/4FN+dL3vkj/w1PX7/Dvgs8sbvLoppzdbnkq8+do58ljKol3VSTCMHt5ZKj1lAZw8Ja8FEe5Nw88hxUNO0QIh7qfIVlHCFEYx0KEUmR3oGWeGPRKiGsVgE+BELwpElC2xqC0ljrIhPbekIQuCDIqkN22yssDgSBLl2tOLp2mYffsKDrb1D0LA+fL/ntfY3dO2bt2pdofu/nqeqGE2sluztbpEpxYtCnXxYICYlOMG7AjcNjri1naKFonaGfdbi+GDFrDEtnV7tPFVcbWpJlGcu6jnC5CxRFHpu+87TWUuQZbRu9Fl6HUq0zhNbgVjvjtm3RUsdMkNXwDPEwff2ckAT6s1e5d+0KOxuSJvTZv7LPVz0wYfdcj/6aINMSnSh++JLHGcv60U0Wn/93JAn08oRvvHCOF27cpA6BzVRzcm3AZr9AyZRrh8dxv0/cZ4+ahqM6/jEzDbbxDHSKsxWttSgl0UkKiFVDMwQZm5xLInL3+jtf1w1plqGkwrooFW5bR1EWGGdo2halU1oH3nq8VBgLvo02wecmz7BjX2D3Mcl82ePf/vsR3/TYjK3TR3zDUFPqgNCSD76SYBctwdXIX/lH7O2P+Ad/7ccQEvbGE64djjg1HDBezHl89xS7wz6vHR6tCK0CuzJau7Scc9w2eB/fQxnibxdcbHoQG1iik9VFLtDpdvG2iY1ECoRQmBWJ0DmPVBoXZOROrNakzgcaG9XvMadG4kXA+yhrpg08/fRtXn2loFs4zu8M+Nl/+QoP3XuH4bpm0IcH799E+cBaonGTKb0/+DWOnvwo49ZzQSy4cXzIy+MFbzp9klIGmiTjkZNbjJYVk2qJVppFEy3kD6czJq2htQFvo+zdh0js9iuUByKqWbc1aZrFLIog4rlvA1I55IrvVNU1UuRf+azWNVFauZInNm1ckbQ2qudsELimYW3vKR65Z8yZkwkqS3juCzP+9JuX7J69h3J9Sj/r04aE/+qyp1QK3bb0R2PCr/5T9q5f5r/8P30/L+wf8OLRhIdO7tCTmjtzx7vvuciibthfznFBMG4aBmnGi9MRjbG01uK9IBF/DEFFSmnSJMX7QGtjHoHWCcbE/RFCslzE5DGpFW27mkhEfGmsa6L2OklojcWHKElxIg4MqKhzblcH5kuXR7x2/SbPZDl51mfY6/LPf/oZzp17mTQNdEt47A1nyZTlVFlS/tt/yChVJEqxrhytCGx0St51YZezG+soIdi45yKLuuLWaAQhwv1udWjXztBaR0283SepxMxbtE7wIjbG1liklDRtQ5CCICxJAKkUtrXUAvIyx5pFNLPwgSAElfEI4dBKsWhqEpkjdULVGIKMh22QAiEFi/QUn/r0DT6f5vQ762x2e/zET77I9olXIpNbBR5/5DQnH9U8eHyDGx/+CWSZYLxlc9Dl9nTBmRNb7G70ydKMABwuluyPpmgpmLmaIpUIp+ikCUdVRULCYV3jg+f8cINZW2HNSqOsdZyEhcIFT2MalEyQIkKMtll5MbiAVIKmriJ05gXWtpFsJhXBxS10EHL1vQta63GrSfzGk88ypMvJU+cZlBl7N64RvGTv1hzjPTqRfPmZOeff5Hji9DavfeyXefXjv0TVVHQ7OUfjOcYFHtzeZLvf5XipefjsaabLBusdhU5w3tES0CJB0lDonNv1FCklhRR4IbDO43xAhwj/CiFpTYsQcYAVOnoI1PMFedEhSTOmsyk6SQhphE598LgQiaXLpgEiK7v18Xe2zsbVihDcaYe8/EXL7s46JwZdzm4JPvmpGZ/85BjjWrSEd73tIqceeJHi6d9hdPlp1tf7ZJkmlQlf8xd+hH6ZMShzOp0CHwLTuuXS7T0SpdjIO9xezCmyktuzOQvraZ1nbuPvUby+9/eO+WJOkmRxX67DVwY+YyLMr0xASBVv1j6uipyLPBKlFa2JvBlrLVZIgo0wamtagkqwLg5B1jiWaptLnzgiLzqcGA7ZWR/yMz93g2H/Ns43pDrw7nfeyxu/tk/nype58dv/BDolWtdsr28xm8/Y6nU5f2KLLJF0spRZ3XI4nXFcVRQyQsGzpmFuPIfGUVnH0sffNRWBNgSyLKNpGsChlELJeHYZ58iyIg7ESjKdzynLDmmWx+HGuijPTDQkksq4yBMRKnpVIGg80djKB8RKg//crYQXnp+w3h3QLTucGAT++c9cY61/DedakkTw9V/7Bt7/3l3mbc3ND/1PXJ+MyVLNeiZ47uYBtRK8857zJBL6nV0CguN6Sao0gog0LltLN4nfeW3ic2+FoJukkQznRPR5EZKmibkUJAnBOIyzceAVgFd4b0mSJHKenMcEG+WMIa4QAuBNNGdyxHPBe08QcfD3Afa/8EVUXbJ96jTDTgfp79AsHJ/7wwmmjV4X73lzj6/9C2tsHl3n5Y//PLdffQ6tAiKTrJ27F0eP81tbbPe6eAL3JAmT5ZLDZcWgKBmNZ5Rlh0v7h8RpTjF2DV5qkHGoc96SJgVSa5w3zOcVSsf8mixNMN4znS7oD7pxXWwMNsThvnXxvVZaUdUNWaliH/MRSbTOEZBUNuBdRF5eem3JS88uGHS69AvN+ROb/MzP3mB7+w5pFigywVe/5yLnzuZ804XThDuv8ls/9w+4ce0GRVlQ13NUCDx6cpNzGxt4DzubfZZ1S9MaOmnGjfGMZW0YW8e0NRzXLUsfV5WpVn/0w4BzHuMcQsg4EUtB3RqkivCbtZFt3trIRBci6voTHZu8NfGBc62N01UQ8cD04JB461FZStu0ZEXB9S/fYjsfsHv6FN1Ck4p9qkXDU0/OsM6TaMlkv+Yv/ic9nvv3/5Jb7SGdMqNT5hSdLr2iS5ZknEvix1y0lr3RmKqNe9xUSaamZtpYro5nOCQLG6iDpEgLptZQakVdtyitQMGyqkiSFKlihnnTWoISiFQjkwQfYDxbkCYSJTTGu1VjWKkwtMK4gAgBIX387nwcAiI7WXNw6Rqmytne2mV72GV6vB9tm69W2Naic4myCx5u/zV7z/8B4/mcrY0BKkl533f/ZR596F66eQnSU7WOW/M52EAvTZlWC5rWkqcZs2XNi0dTah/93VWeciFNeXxni4/euhKliFkeb3M2oHTAtHE3JqRkOplR9nroNCF4j7OrPboQeBEh1Ncjhp1xhCCRicI4oj+F0FRVjc5ypBTo669QdjJ0mjBYG0bte2sp84yjoxE6VZR5ytsPnuLKxz/H4SvPkkjFzkaf9bUttgYDdre3SLVGa4nOUg6mM5q6Jk8zltZGtCfRtNYzrw0HdQ1CIZTgODiyqiLNC5IkMtDbxqATjQNSnbBsGpSOn98j8AQaY+J3sIIarYM01zRNTENrrEWpbLVSETjrUUpT1y1JmjL+/Ocpi5zd3VNs9zsc3r5Fr8yZTWbgA3mqGe83qGs/hROBsshp6pY8y3nHN/xZHnnXN5FnCUpKKus4WCwZTRckKkpAtRD0s5Tbs4obsyX7iyWNlFgkRbdHQ6CnNdZYlNZfWYP5ELCtJcsVSqd4GxsEwSGliAeoc5H3IgLOeBoX7X69iLfi1lh0P8M2K2WBUjRti9Sagy89j5IlJ7Z32NkYMDs8wJiW2biiNp4iS/jy80seTX+JL//hxzBtxYmtdeYLzXf8lb/J2d0d0kRF98vgOV4sOF40dLRiq9Oh9o7FdI7zjoOqIvGeKgh8kJwqC8a+IVsNscZ5dKLi/7eIu1etEhBgrAXLV1YhiGhkI2TAW4/RsSkKLE1rycqSZd0Q0jTKrImrprRMsG3L5Nln2Eh6nNg5zXq/ZO/WLbzTTEZL2jaQpJIXnpnwn39gjac/8Zu88PRvkWjFoCgIUvLg2dOURRzYvPcc1S3H01n0BhCCBock0PjA9emCpQctFQsEwzRj6R0pAttYdKriOs9D6x24uBIIdSBJU+q2wVmDShKCiE0/STLqpo5MfgLBS5bLJWWvh9CKpo3ngEDEFWuWgAyY575Ep0hZH65xYqMPbY1rK9o8YTyekWUFtnUkH/kfufTa88znUzY3+0znS9YH65RbZ7k3LUiSaBC03zRMpnM6WcJWkbO/XKIkHC8rZsZxUFtq7/E6yseP7JItPFonOG9wxqHSBOtarHGkeYpxgaaNBmWtXaE+xiFWpnOVsWil/peeFYgDsNY0dYPSK76FDwglaa1j8vTTbGVdTu+eppdrxnsHGGc43GtonUGKQKkavv+retz60of55K/+LPV8xNp6n2Enp1t2efPGJqlWWB+YNoZrozG7ZclGt2DZtpzsdXi2qhjXLU0QtEpiERTdLsezPwbOQN20keiVRAemIKBuGhACnaSoLPvKztF5j9SKujUIpTFtFK4tq5oiL/ABjHMEqSLsHBxKpzStRQiJaQ2lb0h1TrdbsL05xDc11rT0yoLj4zFFnqAIfPqnfxQVKnSakKYpKi0ZrG/FXacQTGrDuKqRPu6wrTW44Lk5n3K8aBg3DccmGtFMhWda11StxShJt4kPtnMBLRW1sVjvyYsySiuThKpuSJXG20gyEwiMA0vcpwolETJqWEfjGXlRYoTAGxfdpIjTtJAS5wztk59jc71Pp1eyubOBdxUiOKQI1LIiUZq1QY/nn/w4nSJlbdhnPF/wyBvexDu/8y8hlKa1jmVtuLVcUroV+zs4UiXZ7g949fCI546mXJnNmbuAV4EnelvsNXN+7fp1ekIitGJZVRR5SWNalI1kqZhwCEWvR9000bxJKhZ1Q1bEFUNjTNSdrao1BpVkeA/GGHSa0baRiBUC1E1NYlu0SqiXVfz9Oz3ILOPFjKxIkUTZ6kd++WcYdDO01vS6BQHJn/+RH6ffLUBpaufZWyzjuO48iVbMmppl09C6wBcP9zheGG57z5EWyCBZmpbaOE44hw0+yo9clMTN5gvSvKA2ESURWkfiXJoxWyxI8xylZWxyIgqNqrYhyXKMMQSVREQggJCaEOLwnGQZzhnkjSusD3soGSi6HQbDPsYaqmpBLlNSIVnr93j54CYbvYKi08V7z5ve8818ww/+1wShcMFxUDXcns/ILAwSTQ0cVnM6RcmyCYzqlr26ppVwjAcdmNuW6bLmfqITqE4SqjaiIG3bkiXxM/iwUhgIqKqGLEvwSkYUJUQlQhDRe8KFgLNRQeCCp2mbuCLyUY0QZakOvvwMG8Mu3W7J2sYG0rR40zAOAdkIMiUY9DL+8OO/Sb9TMOj3GI1mPPLGt/HAV31LvFh4z6xpOa4rbNWQiNiYJ9WSNMtYIDmsW5Iki4ZfmaJaGC7VE2rnOB+iKZlKMqbzGWWvi3eONM9p6jpa+qYJXsTzL0mTiJAJqKqaPM9xIfKpTGtApzgi4Uw58F4glcQ7R9PGZlH4hm7ZI000nUGXteUQY5YkSjKaTEikIE0kv/wP/88c37lGf9gnnbesDQeUnR5SgfWBedsyrmqs8aR4Uh0R16WxVHXDK+MJ49ohE82ZrTXUrObmfEKtYMvEGHLjiLLCEKCN1rzLqqIoi0juFQqZCIRKWFTzeEYFSLOcqq1p2oYs7aCLHvNqSZqXhKAQIUQisU7xwWIbh67m9DZ7tG08C3r9LtZoxqMJSaqQIma+vPD059nsleRZhvOO9cGQ7//Rn6Db60GQzJqa2q48E6SMCE4Se44NghvzioVx2ERxs17iXGB/cogqM7aEwgWJTjSLRbxx53mKM4GqaVEqrk1UXmJf5/4gEMYjlIgDobUEaxFJQmMsdWPRAoJKqNs2cqFWFzxnHImvKPIueZqyvb1FqCpaYxj2u0zGM6RwpInkN//pB/HtAoJjfb1Payzv/76/ytqgjyOwqKMiCOs53elGIr73LFvD9cmCeWNZGMfYBubBUxM4mo1pFss/+mFAqBXs7R1N05IXBYHo1qa0pq6rSDqyka2J9xRll0CIVpt1Q5pneBFJY6gEY6OtrZRRl61k1DDbxYysTMiyhOlsxqDboSg7BJ+zN71NXuQoYoO+fnDMsJeS6YS6tvwnP/JjKJWwMIa6dYyrBaVIkHiKNMH4QFdnjCpDHRTPT6e8NB7h0pTFYhmZ1K0jTdN4syW670mpyLKculqSZtD46MYndTwsjPMIqdArcqRzLSBIZBJJhsHG24d30cZ5pcG3LpLYsJa2aVDNhFY1WBvtkYtuF+k8s+kCj2Rt0KPXKbjuBCUJHrjv4TfxPX/zJ/BCcLBc0laWVEqGKHgdgbASoTSvHo547vYRywAqBHa6JRUtn5sfc9TWULf0glixqAO1aUjShDzLqduWxXxJ2S3xwcfbQ1Xjsxh/HIRA6zRGK6+MiKSQZJ0e09mMJM2RUmGsIfhI2hLB4ZY1Kutg2golYbqc001TvFLkeUHbONJE0+t0uHoj3vS1lBgk3/J9f42tB95M6xyHiwWTumEzy8mTnLmDZeNYtJZL+8fMUNxYtlxeTpgHxXw+BRvQwtMulhTdDvOqxvvoJYEQqCyPJEPnSWVK4xzeOxKhUSoiYSpIhEwiYhQEo8mEfj9FpRm2rqMSeaXT9wSkj81E+IDGsKwb2rphMpuR5DlZyBmnY4yp6A07dMsOQqdkRZfBxibv/dYP8Mav/y5skNRNy2uzGWs6ZVOmhCTuaZWOjO5nb9/hpemSm1XFoWk5mk6QWYFvKkTwKM9qNRIRLGvid50mGVJJFtUSgSAtMhCColvStpa2bqLtqc5e952J3BGIyN8KMTHWxdWKdbRNE6VaxqKpaWqLX9khZ2UJPmW2nOOrwNrGGoNeybVVCIxUkgcffyff/Tf+O4wPtKZlb7ZAI+mkCpslCARfuHqDcW1QacG4rpknkutVxSvTEVJI6mqBbxu8s9hEIXWCQKJUim0NMrplYX1A6ii7UzpBJTFrY15VJDohyTLsyssCEaLNrYLWRH+J4FqkTmnbBp1lcVXiW/IiwTjDdDaj7GUkRYZO4yCgVEIiBVpKXnrlEuu9jOACaab59v/sbxFkYH/ZcmcyY6AUZZJB5qlDwDg4WCy5Nppyfb6gcoJ+kSGylOenRxzNllTWYqs5G4J4izcNddvSLbsIGS1R0iyjbQ1aSBrTIIWi20spyj6Ho0NyD7mQSJGiVOTLSKvwweONi8+BbdFJjnMW1zq89+hU4Jqapq05ODgg05Iy63M8GpNmGZnSJFJS1Za2C1okJGWfD/z1H2fj3jdSmZb9xYxcJqgAhBikNq8rrh6NuTFbMJaCZ5YTrhxNcAKa1uDbFh08y71D2jxDJpG74xAoFXlnSilEVjBfLCnSJPKlVpkPznuUViiZULUrrpSKvB8p41Bvg49cmTSNf04ynIlugWUaEabJ5JiNzTVkltApNcf7xwgpEEKTCMnVm7fZ6HfiWq1teOM7v55Hv/F7qFrHvG6ZNjUdHVVvrTXsjye8cDRlZg17ywUT43lhOmIRAnZF0F4cHqDMHwOBMEiBlSIeYHnO/vEhZVESnMdj48uERacZ08mELM9xLuKDUmvSoqBuGjxiRT5KVpa9sfG0bR3lbHXNWllgXye0+MB8sSBJEkxtKbsdjo6O6Ha7DAZ9Ll02+G6G9ZJ3ff03s/2Gd7O/rJhWDR0hGSYp1rqYP9Aabo/GjKTkV597nr3JDFsWBB9oFxM0AdO0aCHw0yULZynLDgFYmibaUKaaRdugU00AVKppGkvT1JTdDiGRBBd3z1opatOu/LEjXMzq87fW0DQt63nBbq+PSuKQVL/rq3j5cx/De8t0sSTNC4729tFFh+08Z3tzwO6ZU1y/fo3Nk9vc89BDvO97/zpt1mNvuuB4viR1gfVOSZYolrVhUjdcOjhgtKw4mlsWzmFyze1ly/Hxkkk1icTGEEi8oLGRCZ0IwaKq6KcprbE0zoKWtCsliBYKqSQyTRDeMZ1O6Xb60a3PeYSKLoXz6QxPZO/64LHG0sky7GLB2rBPoyWb7/sGnv/Ir1A1Dd1+h6Ux7O/tkSUp/UGX9X7J2YvnefaF56itZX3Q45s/8AHu/drvZGEcB9Mp2sNWElGEq0eHvHBjj5Ao+nnJTWf5zNEd5o2hrSuUF7STEUJEeBhrmQVJnhUgFEEKmqohSSJhUkhN2xjSLGXZRAfKsCKP+uDwIpBIiWsNnU58Zuq6jrrzlUe8VBpBYDGZgbX004Tt++/hxkvP4mW0UhVSMl0u6fQGKCXZWh9y7r57GJ7e4f777+Xex99CsfMgc2t5ajTmnqygNI48AaTC4bg9rfjctetsDYb89tVr7NWWVkIwBoylmR1gmposy1HCI8oSU1XYVQhKYwxJliJ05ImkOmFR1/G2ZiyCgPU+yoqVRaZZtJ2Qisl4TF4UccAXkVXt2wZjWpxzlFLyxgtnufPIw9x8+Xm8g8ViQZ4lHB7OyDpddoqC7fUhp0+f59Ur19g5tcsb3vQW3v7tP0iTFNyZz+h4RRIESRLNccbzhhuzioWT7C1r5sslz48O2avqeOZ4h3QB6Vq8bUmVJHhFEDHYR6QpSgma1weaROO9JAhJU9WoJEUFSZLkkRRnoj9FlmYIJVgsFwQjkKmOgTbGIUSgqxVrecHO5hq5TvhkZ4hZHK/WbYq0TNi7MyMruwi3YK3fYWt7i8uXr2CLFBEE5x54iPXHv5pLx1PSAAO1ii0SHkLAAk/f2OelowNMUJRKMg+GlxZTDvZrXF0hgwDrCIsK0clJkzySzIJDJJrpbBabooi3WqkkrvZ4AYtqgTEBlebINEMoxWw8peiUcZjzLUIXeBkQ3mOMxfsGAnTwPHRik9fuu5+DV55DAGmeIoGD8YSiN8QcHTHsdTh/8QI37twkKwrOnDvP13zXD1Kee4wv7u9xuuiQOEi1QKmEWWWpnOPG0Yin9g/44mTEraaNnLPG4E30Swi2ISAo8oxFtSRXAiGSqMH3HpGmzKczTGPoDHqQaJxx2GARIqFatqxvr0cEyNSYqkWWGf519CxTq7WhZblYrHx2LNJbLvT6vFqWGFOTZAWL+Yyy12c2myCThLYylJmi7JZUdUNbZCgB9z/6Rr7+h36MK9Mli+mCjW7BellibUtrDVePJ+xNRrx0PGF/MmEveA5Mi1tUAPjWorSKIXrmj8FnoDEtRV7gnCNLEjrdAc5b0AnzxZyiKDHW4UNLXkajFqE10+mYrOyQJDHkpm0akBJTx//JIGq0AGkMJ8ucC2e3eM/jj/IrX3gjrz73FItlRa/fYTmrOD46ItUJw+GQkxsDHnrsIRZtw9qwx4OPP8L9b34TtydTglVkOJywoHLG8wXGwy8//wKfuXYN0+lQLyqUkCTWrTQnHmtbVLDoIDDzBWot7sGWdRVZ4HlGkDHwphqNwQkaZGSMz2bIqo6BLXhU2QGtSVLNfDIlTTVVNQexQkSU4L6i4ANf9Ti9LMOphNPDIYcP38PfeukLLBYVcEiqJdPplOPxggunNkB43vred/PG97yb1lrOnN+lmb3Ip24PubfYYZimJBl4bzmczrk9nnF9suCoahg3hqU3PD86YtS0qDSjnk2jHzka6TxmWdFkiraJbOROp0NrLdVyii4KpIoWnonyq4YQGI9GqDwjLwq88CzmU5TUpEJiV5rlalnRzuZc2Nwk7eY8cuY0G2nCxZ0N6rrmwe1v5Ac+/WFGkxnW1Gxtxc96+fodzp9Yo9speOztb2Hr3BmW8xn3P3I/xcY6H7t2ibds7NJRiqyIA+be8Zg7kzkL4Is3r7MnBUfjGdVsStHtwWxG2uuTJwmYNj6TtWGCh/U1dFagVuY5ddNE8lQdZUvG2BhaJQTz2Yy804kksyxCiEppjHMYG59v7z3BhnhwaM2JbpeHd3d4+NQGbzp9koNHz/Hf/Z0f5Xg0IniDDJ7JdEGR5pzod9haG/DGd72d7saQo4NjhKqZ7T3FS+4MV48qNtYGnNk5QVVXtEFw9eCI/emM4AS/+PTT7HuoZjMSHQl9KEG3yKhMi3KGJM+o2ibuhUOIfhtHR3RFD5Vm6CTDeo83kVkfWDm4KQ2EqBapWxAKnaX0BwOqpmYxWyDQEYYPsNbrM+yl/OB73s7ZbpfLw5T//sd+lFm1xB9UpFoymcxZVoaLO5skGp5477t5+J1vwfvAyXOnqCcv88xxjW/hVFnSL3OUVDx3/TrHtWPUGl5dTPnMq5cJnYKmWpKiMMs53fUNqvkEa5voVKghSRWTqkJLHSWRQtHS4mZL0sFazGXQkXAXvQOgNU3U5QugtSzbCpVkCJ2Bd1SLBULFQ72ZLnj8/vPYuuFrHzpP2RrKb/02PvKrv8h0sUCNBN4aRqMJ03nFqbU+G+t9zl44x3PPv0Cn2+PCfffx1d/5fn7r6kskLuMtG1v0Ox0QntlywaXbB1xbtOzPK5wIjLD8/t4+SwG4gKxrlIvrmm6/T2UNzgfmdU1jHN455otlXP06hUxjk3N1DMCK30u03W3bFq00DS1ZnuLD6jz3DuOjkVLTVvTygi6Wb33rO3h8a8C5jQGf3+rwj/72B5nOFmgtCM4ynUzRSc5Gv8PuyQ0ef887ePyr381odMzF++/FMOfTN19j/2jJ8ORJulmOtY7DyYwXbt0mKUo+8vLLfOH4mBA8WZbHC1hVRet4a1CuwcxrpE6QRcGyahDSkCd59EVpYr/CN0ynS4oyosJJGsm4STdnNJ6S5EUMNyokLR5joo5/uVxGAr3XeOuQTc1Gb8D73/w4bz2zzW8ffje/9os/x6Ku6doC6yx7RyOC9awPu2wMch585CFs8HTLhPsfeZgH3/Imbo8nVAY6qaLfKfDOcXs8Zm8858Z4wUQEfv/SZWa+xbtAlqS0sylpXhDms5jG6gM01R/9MOB9oK5q0jxnMo0MbF/VVFdu4ZY1s0VFksTELEHABEtWdqDTwa5ZXJZCgHo0jkTEouAN99zL8viQtz90D28+s8vOoEe/SEmUovzBH+DvfvCHmS8r9vb2ePjBeyjLhM989hnO7qyz1U3onjzNt/35++n3B9EVyde8fOUKG711Lp7YRGnFZDrjhctX+ezeAX9weBDli4sFoWnQaUaoDMa1UeLYtoSmwfoQ/5oBaIVINdODI7p6Pd76xyNmTz5HqFukXE2YwrNMkvjXUqKKHNkp0JtDqrbFTWeIPKM4dZLNrR0eWCv5nne9nRPDLgFPkSTYpqXMJcE07B0fUeQJf+dv/zWMMXzwR/8h128fUghDNuijjGHYySOMn1iW+470/rMMy4IklRyMZ9waz3l1/5gb4ynHpuWF8Yg6WOyyQeUKVy2QzoENCKHxjSURMB2NSYt4Q07TFNs0NHuH2NGMtmlj8qEEnSRoqZjNZuhhn3xzjaRXErKUxXLOZHwjxklrhcGDdYgy48ELF3n/Yw8xzDOU9DjTMppN2b14hue/+CWmmeLv/b0P0jQNf/GHfpQb+4d0ksDCBnbOn6YoCxAeQYU/GjHL+uysrbNsa6aLhnHd8PJszK898wKLukVnCYJA4h2hruj0O7jFHGkayl7J9M4cIXwkM2pNY1qaqokHy+195LLFtw2uMhAEIlekeUYIgSZLKTfWadIZMk1otV4lQTp8VWNdYNDtspmkfOvbHufC1gYXttbophoEbPa6DNaGHOzdBuf4v/wX38eNm3f4Z//iFynvO8dsuSTtFBwfjen2O9R1jU48L1x6jdMbZ9gYxljxyhieunqbIsv44o2bfOrGTZamJg0SERztoo3vY21pmjbGczeGdjqmv7Ed9/xK0lhD1u1TH46Zv3gVM11iqgatI+9F55EYpxKNLDPSbgfXLUg7Jcd7e4TWkpYFidKc2l6joxL6uWZNK77usQe5d3uA8I7ds6dpTc1kMmW9W/DBD/5lZrMF/9f/5p/EXIVQoTs5wSjKMqNuKpLE8cKXn+cd9z3GsIy8kS9fv8mHnn+BuQk8u38bkaR479DeUihJMxsjpaKdLxA+kAuF8Zb6YMJRp0HIBKEFaZETAixuH2LHM/Tlm/Hfq6pVBINAFxkQqLsd9KCL6HXQqWYxGmOXNdY5Tp0/y/kTJ9gpMwoX2F4f8vjpk2x1EpwxDL7xG/j1n/8Z5ss5y/mU7/3A+6mrln/6P/wCyjtK2dDZ/la+6wd/gFOnNsn7HZLEcPK44YGzZ1k0NT5PGc0XvHznkFePRnTyIY+f3uLHP/sZFo3DC4/0njRLEc7gG0OYLXDCkyQpeVbgfGA6nZJneVyfLCuqO4dRLmw9wVqauo5Osqkm3dqks97HtS1141Cr8CYzX9C0DZ1en+3tDTaV4mseuo++d7z1vtNIERViOw/eR7fX4fjoEILl+77327l9a4+f+5f/juLiGaqmJu/3WS5rTp07Q9006KShnFfcv7ZJmaRkWcZiueTS/iEvHB3wB4fH7B0dknVLTNUwPzpCKo1OErxzeC1xbYvCx5TNsqQ1jm43Z1G3ERWTAtta3LxmcXhMmypSmUSjOCmQeUrQCpdlhESj8hxClLv64EmkpK9T1jaGHI4cf/aJN/PoxhZnTqxhmiXf+h3v5zd/5RcYjSaYquKd73ycQbfgwx/9feyJdXodyYkz5zj3yEP0Bj2CBqkNN268xpkTF9nsd8A5Xruzz43phM+9dp1nJjNmzlC3Nd7FICmzqBChRYe4pk6LHGfiWuOPfBhArMgwAZRKMLbFGMv8xi383gHBRckFK2OhJNExPS3JYuymjOEhvjVkecba9glO5H06WcG9TlHfvMn1GxYlWpazMU994YuUWnDp2h12tjd429veinWWD3/0c3SOBZudDI9A5RIrKvJE0JiC2sV87nld0bSOJEv5R7/7cfRwjda2EZ6ZzWjmc/RwGK1zlcLWVTQSNgbbGGhbnHdUdQVIOv1B/B6CxeUZbA6xN/cI1WJl7Rmnbx88TdPQ75ac7/RIRnNq4yjKDomynEwaLvQFj1xcwx+/xp2DBm9rhLfMJguef+4Z/uNveQ+f+cPPMzeS0dGcgOP0qU16QnLq7AWaZUVSSpSsUAruHNQ8cuphTq31mFY1X3z5BtN5w3pvwM3jAz5y7Sbz8QgtBFmnRErB8s4RadFhcXRIuTZAq4TlZApO0N3eoK4qgre41iClwjYt8xu3EK1byT/jbjRRSSR97h1RvXIFpQWdXgnCkVrY6K/hhWdza51TO1s8fs9pzp3sMr38LHViMcua6WTC55/8Ao/uDuiYi+wdzXnhmctYa9hcGzJIJLunL8QQnVwiVYNWnvE4kKqMtW6P1jpuHY548tWrfOrokNeOD2lqE9PF2iUkCYmULGcj2uPocSCsZb63oBz0cFVD3ukxm83ROgURYX5XNcxevYYwbUTCQmTSz1001ZFCstQxDlakkqzs0e/3KFXCwf4B2yd3ubd/gsKD2q8YL/a4cjwi1Z7FYsbo6Cbnd9e5duklErpoVXLuzDlMa7hy9TrDPELQMhWYUJEnnsmk5W3n30WSRafH63t7XLp1xGDQ4d899TSfOzjEVxXl+iAmbyYanaW00wkaiewUBBcdzlSSRBXQcokICWmWYqylWSwZX76CmC0JUq783CMZVUlJVVVkWYZWkqxIsTrKegme7Y1Nil6XJ07ucGFnjU7mKaSH/Zd56fazLI5nXLr0Ih/4M1/D737yk9ROMR0vsK1nY62PxpCWPdpliy4DUtYkWtD6Ll/9yINsDvrMq4bZbMb/+OSTfOnKNeS8oXN6k/HeHZIsQxUF87qOKXdI3LJCeAHBYJcVosholzVFmeCCZz6f0c4rzPGU+sp1/HwZ3ehWvvQxcTVq0BESrQUP3bdJlkuaWYt1nm6/y6lFSrk35R1PPEwpPEUyQe7vc3O+YHw85akvPsW73vIQr924hfeSLCvJ0j5nzp5kkEouPnwf3V6X4XZBkUu0apnNFY9cvJ9Bt0u6lCzqmt97+RK3FobTZcFDpzb48Y//DrP5IhpmOUdS5lQHI6Q3ZN0O5AnLW3cIAca7pxEIesPhKto7EKRkdukKzdGIVCYxoE1FW+3We2YvvMqsSNF5jitScB6tFa5qGGyss7YlGYgx73z4IfSNKdPgebZ6lZC0TGYTmsWYBx44y+/81qv0yoKTO7uc3DnNT/zU/8zNW/ts9TTzeXzOa7ukkylU2uPc+gkGvT4Ez6Xbt2ic46MvfZknRxN8cGgP7fEIoVOEc2AamrlDqQRrDdJH3yBlHd5DWfQQQpHmmmo2o63mLJ99lXA4RQqPkYJ6xReSQuBXBEupFSpNEUWGdRZvWs5fuBelJPdeuEg+XXBvr8/6eMKimfHCjZpqdMTLLz7H2Y0eT335FZZFyRsefgQhBP/2Nz/O6PCYcSdh0bQUaRdHS6Y8h6OWtHsBIR2zqubm3j5JkfOhLz3L0weHkaJS5ATTIByoJMGb+LzWR8foTrEagiS6U/6HtfcQwv/u2DCdThkMBrz5v/q7BKUxTZRE+RCztL0xjL/0LGLZEJY1vq0isU6AEJKTGzlllqCVZH2tx8kTm1w4d5ITGyWDbsFwkFPm8fbinMVZT1Mb7tw5pMxTXrt2naZ1bKyvkeUFe8dHBFMz7GS88a2P0ukIRJAEfQrKe1B5h888+zwbw3XapuUfP/kkV27cIM0KmuWCJM2QWlLtH5F1S5AyEr2cjQxNY3DWIZ2ns7FBmiSRaa0189kSJQJSJdSzGSJYqv0jwuGYajKGlWrBmIb37Hje984ew/UCqSV5XtLvdin7GXnRJckKVJqRZl1U1sdYT115jLV4H4mUAoFKkhiE5A14Q5oqyiIl0R2cT7B6h6npkJZ9bhyNuHJ4hPeKIsuZ2Zb/54f/PXXbYKoF+EDaK6K8brYkOEe51qOaLBAe0k6Jb1vWTu7Qtm18aYocW9csJlPcZIo7nJA0FlMtsVWDWp2YggilbqeG/+zPnWbQ75AUOYlKGAx7dMqCrNNFaxXtXGUCQtM2jqb1NJUBoqEHQqETjVKS1jYQDP0yo9PNoqeD0ajOOWx+giTpcPPgmBv7B5g05+/8yr9Fdku8BDNf0B0MWR4eUPR7MeSmm7O8dYDOMnSW0izrKPW0nuHuKYI1WONic181v2Yyo3r5KqJtcVWNdp7WGKyJLpNSKPr9PtIFzp09TyfvkCjF2rDH1saAExs5W5spGwNBkbQ4YwjBMRvXXL12gwu7m7zw3HOotODUmbO0xvLkF76EbSvuv3CO937Du8lLS6YlR6OKfXGRxx54Cy4EPvviS0ybhutHEz55+zp39o6QeUo1mrB+cofFbEQ9q+gO+pi6Jklz2vlyRe6Lu8Ve1iHNk+iz0bYUnQ71bIqdV1RXb6ICNPM5crZEhMgrsNagpeR737fB/Rd6pFlGmpV0+l0GvR55npPnRWyeKzWNs9A2ltY4qrpdeRg4hIIsLRBSUJkFoW3IMsn25jo6ERij8HKLbPNRjBf884//Hl8+HrNsW26OJhSdkvGVG2RbQ5rJhLTsRBOspiXJUmgNOs+ppkuyboadVxhj2Nw5iRQRDUEEghcoKaj2j3G39vCthfmSejH7yiAkYmwfZ+Ux3/LOnLV+RpbHdWDZzSl6HYq8oCgKkiyjHK5T9DbxKKqlwRiP8xrnAiFIVBojcUNoCMGRpZIsyVA6x1LQ2Jxy6xHyrMPt0RHHswU3j5fcmi2wrWFSLXhhMuHG9JDx0TFpmrAcjUh0QmdtHds2NNMFSb+Dq2t0IgkiI80y8ixbRdLHtNm6qph/6SVEYwiLJfFqF6PJm2oZfRiUpN8b0O0NKIsShWRre5v1Xp9BN+PMdofNNU2qaly7RGJYzGpu3LjJxVPrPPnkF/Eq5YEHHqKuWz72iU9TJoHtrSF//vu/h6Q0dDoZOj1DMnyQtoXxYsHeeMLTt+7wq88/z+FkRjbosTg8Rica21hQDhxIF60gnWkJxuGaZhW2BN3tE0iVIBNN0R+gpGR2dICd1cwuXUHOF9E2vG7QSqxcYyOJ9MRazs7WkG6nYHtjyNqww6nNDdYGGWvDnF4hyVJBcCaq1ryjWRoOD0f0OzmXrlxlsTB0u33KfsbBeISvajbXejz25ocoihD9D5JdbkwzXNrjYDYnEZKj0ZSf/fRnudFUUaIrJLpTYJuG0EbnSG8sQgtCa7BNQ9HtU89m+Lrh6i/8CyaTCf1+/49mGHjigz9GUNEwpqqrr2jQVZZj2pp6MoGqwe4fRltPKdgYH/Kfvq9gbZDQ7RX0B12KsiDJM3RagNYomaCSHIemaT3OEj0IfPSNECLqk4UUKO1IBSjlI+s2PYHKz2FEB10MuXk0JTjPl2/dwgnJP/nN38Z2u1STCUmSUs2nKCHJ+32q0YSsyHHGsDEcUltDPlzDTCfMqzp+6UkWfyAlSNOE8egYWkux1qetWsyiorM1RBYZs/3DSFCqW9StPagnnMs892/3mRzvc3SwD6ZGakueRLOJXqE5uZ3zwBse5PSFEwxObJIWKSLJkCJDimiP6ULAu2gF3docJTfpn3wcKzWt17x87Rp70zkn+mukecJP/Na/Z1a17I2O8UqxmEwQSmCrhrRbYqsGnUi6RcmibZFBILzHVi2qW9Dd3GC5XJJlBUW3RCUpx/sHtIsFeb+Lbw3N4Qi7f4jIE05un2R27QbbwwFDc8TFNYFvlkxHt6nmM1IdyNJAt0gYFJKik7F9qs99j7yBrbO7ZN0SpXOEkDiifTGv+8GHEIdOuUbQQ9LuaWTSY9F69qcTBNHg5W//y1/ilvfYtsZZT5JneGvI85K6WpL3OjTTeUQBrKcaTXB1TTAuPmNJiux06K8NSLMM4yzjOweoNCEtykgKkpJ2MqW+eYfUCerxGOk8vm145L7zPPHgOc7vbrK9WbA+zOgVgjx7PbnPrgamaFvsrMeaqMW3wcfkQyVJ0wyloxdDIi1FJkikYFkF5k2XfOtR1jdOMp4t2BuNOF5U/OzHP8GLBwdkWUpT1XQ31ji8fpPdB+5lPpli53Pyfh+qNuZntC2Z0lTB0t/YoJ7WZFkGOgYwyETTti1tVaG0jnBzqmlv7LPcOyTUTXRwa5eckQdsJJYTyoCZA45OR9MtNd2OplcW9Ne7nLywzemLj5F2C1BJHOBFdKqLC3gf4XjECqIWpJ0TyGyX/WVCWgwQaD7y4kv8s4/+HmmvpJouIFjK9XVmB4cU/V5MTnWO2hnyNMN6R1coxtWcNMnppCnT0RgXAhund5FKsZguEQFkqmNcs/cYa8i6Jc62TF+4HH//ENMnQ2Mwx3c42cu4b3cLMzqimo2YTico0aKEo6MFXQ2bmyn33Huaiw+eZufMCcpeQZKX6CQHGYmXQPRpMJamSSD0WDv7BEm5gUpS6qbl9mjEa4dH1FXg9IltWgF/+1/9ElUImKpBrqzPdaJppjN0ntHrdDDek0hFaBrGx2NMU1Oe3KXoliuzoKhiEgi6m2u0bURG3fGI5ZWbsKjid+MN3Swnl4r777mHrbUO53bX2V7PObGe0O9IyhyE8KxMJ3HeEVbP+7KqMa3H2LhGzYqUJE1xGLxv6GSBXqdDXpxC9u5HJANa43jt5i1a5/nFz3+J33vhebKNIfXhlLSToxKBmdSkvRJnWoTWuLbGTheEEC2F//Tb3sZHPvuH5GsDys0TVPMl3jTobp80iS6si/GUIDW4Fgi420fY0QizrAl1y9me4i9+TcHWdkFZJpSdnLIo0HmJTjUyKRFKoZMcT0pdW6yL0s2wcnwUWqM1MRJceRIFqQ4kAhBdVH6WSp7g1rRifxRVURe3tnnp1nU+/tIlPvfqa9EqW2t81ZAOepjFYmWBLkjyDClgtn9AVnb4M29+gg99+jPYZc2tD/3iH+0w8MAP/XWCkuRFgTFm5TEQD2ytFNa0mPmS7RNbTEbHPLJ7mvfccxq9f5OnPvM5lrNDqmaK90sKZeinkk4W6BaSE5sd7nvoDKfvf4Deeg+VZ0iZxKk0RE9/7wLGOdpG0JiMIE9w7qH3YIkmSIejMePFkst7h/y3v/zrmODRZUEIYNuGcjjA1hXNaEI2HFJNJ2iV4J0nyzOkELEh6JiyZ+oGhI5RtVKubsDxwG7aNurlUaTDLlIrxrf3SHTKA/dc5NsffgDTWE6kJTjPa1du88reLW5Pp+y1S0Yukn2E8AykZEsK+qmjW4IuFDKXDIqcLM3pJDnSwtkTZ3n43vvpD7coiyFVU3H18IjxsqKfZMhej3/9G7/F3rLiC69diSoNY9H9Ls1kSpFn1HVNWqQ0i4qszAlVi8wy0l4X17bM9g8QwbN+8R6Maakmc4puCQGqqiXRgqQoybslaZbjqgrpLOe3dnj81Am+9R1vZTGdsXf7gIODMa9eucnzN2/y2mSP0XJK0zQkStDrZJxMNRtSsjWUDAeSpKvpdhT9To9uZ41CpwyKLufPPwIiZbB9D62LFtdNa3n+tcvoPOVwNOdfPfUFruyPaZoGs1hgljX9rS2yfsl875CgJUVZMDscUQ66dNaGTI9GyOgqg8zSCJUKRdIpMcaRZxmL0YR2scRLQbfXpXUW37S8+cGH2D8+hsWSB3ZOcWaQoi99iHt2FZ1OQlGkFL0unbIgzToRik+iH0FtBUHlqyCjmAURiCl4UoJSgUxLEhFtj+s6p3FryP55+ms7IAWXbt4CBF+6cp1/9anPUPU6TK5cpbs+ZLp/yNq5M7TzJQjorK8x2zuk6HdwjaGeLUmzlOB89GNP4zsgpCZJUlSR4Qh0B33apmW0t09eFIhUUw77tK1hvn+EVprzZ05zftjn8e0t1trASy9f4kuXr/Hc/BbO1EgZyIWgGwwntefCWsb2Vslwu6DbS8k6OWnWIYSEQZqwsApjM9aHu6xtn2dra5fLe3foFT1uT2b8/Z/7BQ6FoKpmbF04z3K6YHl8TJ4XLKs5/c1NjLGkKipEpHNkvS7NaErTtjGWO9E0dR1VS6d20UlKNWswbUXW7aDTHFJBcIF6NkMnKfVkTt4paHFsdrs8cXKbe7e22e4MmB6OmE2WXD464ku3bzCqlwQJZ7sdMqlwwcb8BuXYSBW9TCJLT5IpunmHRGs6WcHmYJ3TJ86ys3mS7a0TaCUxzjBbVFy6dYu9+RIbJA9tb/Pbv/9ZPnLnNkfHx3TW1qlHI+rZjHIwJMtTFqMxQUqyJKFpalKdkOU588kUXxt6587QtoY0zxBaYltDM52ju12KMiMxntl4zBMPPohZVLz8ymUK4Tlt53z7O3s8cO8p+r2EJE1XAT4Sh4wXOCdYLBta47AmeuQLkRBkNPySSiIkKOkp0kCZRU+JpoagT9M58QSTusHYwLIx1N7zsS89w7/64jPM9vYp14e0yxphDL3TO/jWsDw+pru+TbOI72uWZzRVDdaxvTbk5s3bJGlK7+K9KC0J1lK1NnosWI9Skl63h1KB49k8uhVO5pQILvS7/Pn3fTXZbI/rr73MC08/y+HhHq2ZIEJNNw8MMkW/o9haz7h4/2nO3Hsv3Y0BOk9XCa8x7RA83slV2mVGawuC3qG78xCLxvHJp58HnTAsh1w/3ufTl69wuVoyeu06KksIrYnKtNUaSEBEgYoO3ljSIsNUNcI4NvpdjpdLgrVc/ZWf/6MZBiaTCcPhkNPf8b2IJIu+5KvsAdtU+MaQrlzozu7ucnZjC7FYcnFtK5o51C3HdcPL032uzo6pmhqUIMkTEhnoItkEthPBMIOiE+h0EpIiQaWSIDStT1EiYaO/yVsffCPr6xukeUHbNhwdj9ja3ODO/j4/9YnP8+RzzxGUBPd6jChkRYHqdGiqOW6+pOj2qJZzNNHfIKy8x10TWdVpt0szX6DKLvXxFJWn6DLD2cg0Dc7RNm30M88TNMS42zTju972LprbByg088pw0Cw5tAua4DDOMRceK6FIclSIBjF5miITQVCCGk+C5GRR8si5Uzy0u0sny1gf9miaJalOeen6dQ7HEwbDdc7tnOQjv/dJPn044rUbNxDOI7OVVtYGpCK6gHmPXdQ0pqbTG0CWIlpDvVzGQKJEIwC7XCBUjtSC+eExdrpElZFcJbTkgTc8igmO87tb1KMKebDPG++9D1s5tEg4Pp6zbFvu1FNeHB9y5GqMNXggLQq6vQ4bac5mmpMnCa0I1MGxkJZzRY83nj7FxRNbrOWa0zsnSVNN09ZonVLVDZdu30CimSznfPTp5/ncl1+KsrA0RSQK1xjmByO6/R66V8RgpMMjXB0d9lCCvNuBRNNWNYlS0Xu9rTBWoNNsFdUbuTFNtYwphcBgfY1cBB46u8trN+/wV77lW1geT6iXSy69+CqT0RGj6R1uHV5DuzmlsAy0YZhBN1QMhylnd9c5//iDbJ7ephiU0UNfSERI8UYwmrXsTxVpsUln/V76a6coyw4Iwa07B1SuRZLwr//wD/jYHz4JSU65OWR85TpZtyQ4R9rrIUR0fkx7HQ5eeZWiLOltbWGWFbPDY4pBDyEDi6Mp/d1T1FVDcJ5i2FvltIsoqRMxWTRIGf0lnON9Dz3CnZt73LO1DbOWxnjuLBe8ujjmjm+YWYNIJEmm6acdhkqznaTRFEp6Fi5K+7bKEu0tbz13jvc+9hCSGI+dK8XVm7fJuiWdMufLN2/z4x/6bRZ7BySdHsYs6Z86iUozRrduUna7NLMF+aAfEyRXlsNmvkCnGuED1WKJq5u4ohICU7eU6+vRTrYxVG1DsBYtIwSruyXKeGaLOZ1uyc72FhfWN7gvG9KTmqPjOaPZnKuLY67Mx+zPFzQY8ixnrdNnLUtIlSKVGq8llXT00oxSSna6Jae3Nzg5GLC7OWR90Keb59EO1xiWTcN8uWDZthzMW1pjee32Ld528SJ3pnMuT0Z86JlnVxHwkuXRiEQJXOtARsWH9CK6HwqLncyRSY4qEtrxAnp9dJrhVSDVSbRSXywoig7f+LYnuHDmJC++eoUnX75Mmii+/q1v4j33XOSlT36EvVe/SDW5jWZCR1nW1jKG/YLeeklR5pSdgv7OBuX6LmnexxGDy3wQeGJMsBIS4R22bjmctPjsIhsn70cl69hgGc0m9DoDfvmjH+cTL7/G1fERic7iOk8I6qoiQaCKkqybU8/m+CBItKCez8nyEgWY1sTY6VQzv7NHuXse5wxKapSW2NahBeyePsUjF+9F+Jrfff55zp3Y4f2PPsp92wNoLNPjKbfvjLmzP+HaeMqtdsmV2R5125LlGV0EpYTSGvq05LlA5Ja0l9BJZDSYynLypINWXe4/e5Z7LjyI1Bl17Vk0Cw4WMwZZh631Nf7NZz/Px595jutHR3Q21mlmC7SS+CauAJxzFGsDTF1hRnOKtQECcE2LqWs6a8NoeCY8vmm59Ru/zHg8ZjAY/P82DNy4cYMzZ8787/1jd+tu3a27dbfu1t36P2Bdv36d06dP/2/+/f+gYcB7z61bt+j1ejHC827drbt1t+7W3bpb/4evEAKz2YxTp059hUj5v1b/QcPA3bpbd+tu3a27dbf+/7f+t8eEu3W37tbdult36279iai7w8Ddult3627drbv1J7zuDgN3627drbt1t+7Wn/C6Owzcrbt1t+7W3bpbf8Lr7jBwt+7W3bpbd+tu/Qmvu8PA3bpbd+tu3a279Se87g4Dd+tu3a27dbfu1p/w+v8AaISKXlP5++QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file = \"../outputs/tango_video2audio_clip4clip_4/1718173660_tango_video2audio_clip4clip_4_best_steps_300_guidance_3.0_sampleRate_16000_augment/otter_surfboard.wav\"\n", + "show_mel(file, save_name=\"ood_6_wav.pdf\")\n", + "show_video_frames(\"../data/sora_cut_2/otter_surfboard.mp4\", save_name=\"ood_6_video.pdf\", frame_rate=0.4)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "audioedit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tools/torch_tools.py b/tools/torch_tools.py new file mode 100644 index 0000000000000000000000000000000000000000..49e53d7c3c3e6df3e60ddb9503679ee924bd3188 --- /dev/null +++ b/tools/torch_tools.py @@ -0,0 +1,296 @@ +import torch +import torchaudio +import random +import itertools +import numpy as np +from tools.mix import mix +from PIL import Image +import cv2 +from moviepy.editor import VideoFileClip +from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode, RandomResizedCrop + +def normalize_wav(waveform): + waveform = waveform - torch.mean(waveform) + waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8) + return waveform * 0.5 + +def sinusoidal_positional_embedding(token_sequence_size, token_embedding_dim, n=10000.0): + + if token_embedding_dim % 2 != 0: + raise ValueError("Sinusoidal positional embedding cannot apply to odd token embedding dim (got dim={:d})".format(token_embedding_dim)) + + T = token_sequence_size + d = token_embedding_dim #d_model=head_num*d_k, not d_q, d_k, d_v + + positions = torch.arange(0, T).unsqueeze_(1) + embeddings = torch.zeros(T, d) + + denominators = torch.pow(n, 2*torch.arange(0, d//2)/d) # 10000^(2i/d_model), i is the index of embedding + embeddings[:, 0::2] = torch.sin(positions/denominators) # sin(pos/10000^(2i/d_model)) + embeddings[:, 1::2] = torch.cos(positions/denominators) # cos(pos/10000^(2i/d_model)) + + return embeddings + +def pad_wav(waveform, segment_length): + waveform_length = len(waveform) + + if segment_length is None or waveform_length == segment_length: + return waveform + elif waveform_length > segment_length: + return waveform[:segment_length] + else: + pad_wav = torch.zeros(segment_length - waveform_length).to(waveform.device) + waveform = torch.cat([waveform, pad_wav]) + return waveform + + +def _pad_spec(fbank, target_length=1000): + batch, n_frames, channels = fbank.shape + p = target_length - n_frames + if p > 0: + pad = torch.zeros(batch, p, channels).to(fbank.device) + fbank = torch.cat([fbank, pad], 1) + elif p < 0: + fbank = fbank[:, :target_length, :] + + if channels % 2 != 0: + fbank = fbank[:, :, :-1] + + return fbank + + +def read_wav_file(filename, segment_length, tgt_sr=48000): + waveform, sr = torchaudio.load(filename) # Faster!!! + if sr != tgt_sr: + waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=tgt_sr)[0] + else: + waveform = waveform.squeeze() + try: + waveform = normalize_wav(waveform) + except: + print ("Exception normalizing:", filename) + waveform = torch.ones(tgt_sr * 10) + waveform = pad_wav(waveform, segment_length).unsqueeze(0) + waveform = waveform / torch.max(torch.abs(waveform)) + waveform = 0.5 * waveform + return waveform + + +def get_mel_from_wav(audio, _stft): + audio1 = torch.nan_to_num(torch.clip(audio, -1, 1)) + audio2 = torch.autograd.Variable(audio1, requires_grad=False) + melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio2) + return melspec, log_magnitudes_stft, energy + +def wav_to_fbank(paths, target_length=1000, sample_rate=16000, fn_STFT=None): + assert fn_STFT is not None + if sample_rate == 16000: + hop_size = 160 + elif sample_rate == 24000: + hop_size = 240 + elif sample_rate == 32000: + hop_size = 320 + elif sample_rate == 48000: + hop_size = 480 + else: + raise ValueError(f"sample_rate wrong.") + + #print("target_length", target_length, hop_size) + #print("target_length", target_length, sample_rate, fn_STFT) + #for name, param in fn_STFT.named_parameters(): + # print(name, param.data) + waveform = torch.cat([read_wav_file(path, target_length * hop_size, tgt_sr=sample_rate) for path in paths], 0) # hop size is 160 + #print("waveform", waveform.size()) + + #np.set_printoptions(threshold=np.inf) + #print("waveform", waveform) + #f_out = open(paths[0].split("/")[-1]+".scp",'w') + fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT) + #print("fbank", fbank) + fbank = fbank.transpose(1, 2) + log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2) + + fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec( + log_magnitudes_stft, target_length + ) + + #f_out.write(paths[0]+ "\n" + str(waveform.cpu().numpy())+"\n") + #f_out.write("audio1"+ "\n" + str(audio1.cpu().numpy())+"\n") + #f_out.write("audio2"+ "\n" + str(audio2.cpu().numpy())+"\n") + #f_out.write("fbank" + "\n" + str(fbank.cpu().numpy())+"\n") + #print(fbank2) + return fbank, log_magnitudes_stft, waveform + +def get_wav_from_video(video_path, segment_length, tgt_sr=48000): + video = VideoFileClip(video_path) + audio = video.audio + sr = audio.fps + audio_data = audio.to_soundarray() # 441882 * 2 双通道 + waveform = torch.mean(torch.tensor(audio_data, dtype=torch.float), dim=1).unsqueeze(0) # 变成单通道 + if sr != tgt_sr: + waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=tgt_sr)[0] + else: + waveform = waveform.squeeze() + try: + waveform = normalize_wav(waveform) + except: + print ("Exception normalizing:", video_path) + waveform = torch.ones(tgt_sr * 10) + waveform = pad_wav(waveform, segment_length).unsqueeze(0) + waveform = waveform / torch.max(torch.abs(waveform)) + waveform = 0.5 * waveform + return waveform + +def get_wavs_from_videos(video_paths, segment_length, tgt_sr=48000): + wavs = [] + for video_path in video_paths: + waveform = get_wav_from_video(video_path, segment_length, tgt_sr) + wavs.append(waveform) + wavs = torch.cat(wavs, 0) + return wavs + +def wav_in_video_to_fbank(input, target_length=1000, sample_rate=16000, fn_STFT=None, waveform=False): + assert fn_STFT is not None + if sample_rate == 16000: + hop_size = 160 + elif sample_rate == 24000: + hop_size = 240 + elif sample_rate == 32000: + hop_size = 320 + elif sample_rate == 48000: + hop_size = 480 + else: + raise ValueError(f"sample_rate wrong.") + + if not waveform: + paths = input + waveform = get_wavs_from_videos(paths, target_length * hop_size, tgt_sr=sample_rate) # hop size is 160 + else: + waveform = input + fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT) + fbank = fbank.transpose(1, 2) + log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2) + + fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec( + log_magnitudes_stft, target_length + ) + return fbank, log_magnitudes_stft, waveform + + +def uncapitalize(s): + if s: + return s[:1].lower() + s[1:] + else: + return "" + + +def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=1000, sample_rate=16000): + + if sample_rate == 16000: + hop_size = 160 + elif sample_rate == 24000: + hop_size = 240 + elif sample_rate == 32000: + hop_size = 320 + elif sample_rate == 48000: + hop_size = 480 + else: + raise ValueError(f"sample_rate wrong.") + + sound1 = read_wav_file(path1, target_length * hop_size)[0].numpy() + #print("sound1", target_length, sound1.size) + sound2 = read_wav_file(path2, target_length * hop_size)[0].numpy() + mixed_sound = mix(sound1, sound2, 0.5, sample_rate).reshape(1, -1) + #print("mixed_sound", mixed_sound.size) + mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2)) + return mixed_sound, mixed_caption + + +def augment(paths, texts, num_items=4, target_length=1000, sample_rate=16000): + mixed_sounds, mixed_captions = [], [] + combinations = list(itertools.combinations(list(range(len(texts))), 2)) + random.shuffle(combinations) + if len(combinations) < num_items: + selected_combinations = combinations + else: + selected_combinations = combinations[:num_items] + + for (i, j) in selected_combinations: + new_sound, new_caption = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length, sample_rate) + mixed_sounds.append(new_sound) + mixed_captions.append(new_caption) + + waveform = torch.tensor(np.concatenate(mixed_sounds, 0)) + waveform = waveform / torch.max(torch.abs(waveform)) + waveform = 0.5 * waveform + + return waveform, mixed_captions + + +def augment_wav_to_fbank(paths, texts, num_items=4, target_length=1000, sample_rate=16000, fn_STFT=None): + assert fn_STFT is not None + + waveform, captions = augment(paths, texts, target_length = target_length, sample_rate=sample_rate) + fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT) + fbank = fbank.transpose(1, 2) + log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2) + + fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec( + log_magnitudes_stft, target_length + ) + + return fbank, log_magnitudes_stft, waveform, captions + + +def load_image(impaths, crop_size=384): + imgs = [] + RGB_mean = [0.485, 0.456, 0.406] + RGB_std = [0.229, 0.224, 0.225] + image_resize_and_crop = Compose([RandomResizedCrop(crop_size), ToTensor()]) + image_normalize = Normalize(mean=RGB_mean, std=RGB_std) + for impath in impaths: + img = Image.open(impath).convert('RGB') + img = image_resize_and_crop(img) + img = image_normalize(img) + imgs.append(img) + imgs = torch.stack(imgs) + + return imgs + +def load_video(video_path, frame_rate=1.0, size=224): + def preprocess(size, n_px): + return Compose([ + Resize(size, interpolation=InterpolationMode.BICUBIC), + CenterCrop(size), + lambda image: image.convert("RGB"), + ToTensor(), + # Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), + ])(n_px) + videos = [] + # for video_path in video_paths: + # cap = cv2.VideoCapture(video_path) + cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG) + frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) + fps = int(cap.get(cv2.CAP_PROP_FPS)) + if fps < 1: + images = np.zeros([3, size, size], dtype=np.float32) + print("ERROR: problem reading video file: ", video_path) + else: + total_duration = (frameCount + fps - 1) // fps + start_sec, end_sec = 0, total_duration + interval = fps / frame_rate + frames_idx = np.floor(np.arange(start_sec*fps, end_sec*fps, interval)) + ret = True + images = np.zeros([len(frames_idx), 3, size, size], dtype=np.float32) + + for i, idx in enumerate(frames_idx): + cap.set(cv2.CAP_PROP_POS_FRAMES , idx) + ret, frame = cap.read() + if not ret: break + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + last_frame = i + images[i,:,:,:] = preprocess(size, Image.fromarray(frame).convert("RGB")) + + images = images[:last_frame+1] + cap.release() + return torch.tensor(images) \ No newline at end of file