File size: 11,461 Bytes
4274672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d542847
 
4274672
 
 
 
 
 
 
 
 
 
 
 
d542847
4274672
 
 
d542847
4274672
 
 
 
 
 
 
 
 
 
 
 
d542847
 
 
 
 
 
 
 
4274672
 
d542847
4274672
 
d542847
 
 
 
 
 
 
4274672
 
 
 
 
d542847
4274672
d542847
 
 
 
 
 
 
4274672
 
 
 
 
 
d542847
4274672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d542847
4274672
 
d542847
 
4274672
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response


# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()






import gradio as gr
from huggingface_hub import InferenceClient
import time
import random
from datetime import datetime

# Theme and styling constants
THEME = gr.themes.Soft(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
)

# Configuration
MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
DEFAULT_SYSTEM_MSG = "You are a helpful, friendly, and knowledgeable AI assistant."

# Initialize the client
client = InferenceClient(MODEL_ID)

def format_history(history):
    """Helper function to format chat history for display"""
    formatted = []
    for user_msg, ai_msg in history:
        if user_msg:
            formatted.append({"role": "user", "content": user_msg})
        if ai_msg:
            formatted.append({"role": "assistant", "content": ai_msg})
    return formatted

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    model_id,
    typing_animation=True
):
    """Generate response from the model with typing animation effect"""
    # Format messages for the API
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    messages.append({"role": "user", "content": message})
    
    # Use the selected model
    inference_client = InferenceClient(model_id)
    
    # Generate response with typing animation
    response = ""
    for message in inference_client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        if token:
            response += token
            # If typing animation is enabled, add a small random delay
            if typing_animation:
                time.sleep(random.uniform(0.01, 0.03))
            yield response

def create_interface():
    """Create and configure the Gradio interface"""
    # Available models dropdown
    models = [
        "HuggingFaceH4/zephyr-7b-beta",
        "mistralai/Mistral-7B-Instruct-v0.2",
        "meta-llama/Llama-2-7b-chat-hf",
        "gpt2"  # Fallback for quick testing
    ]
    
    # Custom CSS for better styling
    css = """
    .gradio-container {
        min-height: 100vh;
    }
    .message-bubble {
        padding: 10px 15px;
        border-radius: 12px;
        margin-bottom: 8px;
    }
    .user-bubble {
        background-color: #e9f5ff;
        margin-left: 20px;
    }
    .bot-bubble {
        background-color: #f0f4f9;
        margin-right: 20px;
    }
    .timestamp {
        font-size: 0.7em;
        color: #888;
        margin-top: 2px;
    }
    """
    
    with gr.Blocks(theme=THEME, css=css) as demo:
        gr.Markdown("# 🤖 Enhanced AI Chat Interface")
        gr.Markdown("Chat with state-of-the-art language models from Hugging Face")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Conversation",
                    bubble_full_width=False,
                    height=600,
                    avatar_images=("👤", "🤖"),
                    show_copy_button=True
                )
                
                with gr.Row():
                    msg = gr.Textbox(
                        placeholder="Type your message here...",
                        show_label=False,
                        container=False,
                        scale=9
                    )
                    submit_btn = gr.Button("Send", variant="primary", scale=1)
                
                with gr.Accordion("Conversation Summary", open=False):
                    summary = gr.Textbox(label="Key points from this conversation", lines=3, interactive=False)
                    summary_btn = gr.Button("Generate Summary", variant="secondary")
            
            with gr.Column(scale=1):
                with gr.Accordion("Model Settings", open=True):
                    model_selection = gr.Dropdown(
                        models, 
                        value=MODEL_ID,
                        label="Select Model",
                        info="Choose which AI model to chat with"
                    )
                    
                    system_msg = gr.Textbox(
                        value=DEFAULT_SYSTEM_MSG,
                        label="System Message",
                        info="Instructions that define how the AI behaves",
                        lines=3
                    )
                    
                    max_tokens = gr.Slider(
                        minimum=1,
                        maximum=2048,
                        value=512,
                        step=1,
                        label="Max New Tokens",
                        info="Maximum length of generated response"
                    )
                    
                    with gr.Row():
                        with gr.Column():
                            temperature = gr.Slider(
                                minimum=0.1,
                                maximum=2.0,
                                value=0.7,
                                step=0.1,
                                label="Temperature",
                                info="Higher = more creative, Lower = more focused"
                            )
                        
                        with gr.Column():
                            top_p = gr.Slider(
                                minimum=0.1,
                                maximum=1.0,
                                value=0.95,
                                step=0.05,
                                label="Top-p",
                                info="Controls randomness in token selection"
                            )
                    
                    typing_effect = gr.Checkbox(
                        label="Enable Typing Animation",
                        value=True,
                        info="Show realistic typing animation"
                    )
                
                with gr.Accordion("Tools", open=False):
                    clear_btn = gr.Button("Clear Conversation", variant="secondary")
                    export_btn = gr.Button("Export Chat History", variant="secondary")
                    chat_download = gr.File(label="Download", interactive=False, visible=False)
        
        # Event handlers
        msg_submit = msg.submit(
            fn=respond,
            inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p, model_selection, typing_effect],
            outputs=[chatbot],
            queue=True
        )
        
        submit_click = submit_btn.click(
            fn=respond,
            inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p, model_selection, typing_effect],
            outputs=[chatbot],
            queue=True
        )
        
        # Clear the input field after sending
        msg_submit.then(lambda: "", None, msg)
        submit_click.then(lambda: "", None, msg)
        
        # Clear chat history
        def clear_history():
            return None
        
        clear_btn.click(
            fn=clear_history,
            inputs=[],
            outputs=[chatbot]
        )
        
        # Export chat history
        def export_history(history):
            if not history:
                return None
                
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"chat_history_{timestamp}.txt"
            
            with open(filename, "w") as f:
                f.write("# Chat History\n\n")
                f.write(f"Exported on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
                
                for user_msg, ai_msg in history:
                    f.write(f"## User\n{user_msg}\n\n")
                    f.write(f"## AI\n{ai_msg}\n\n")
                    f.write("---\n\n")
            
            return filename
        
        export_btn.click(
            fn=export_history,
            inputs=[chatbot],
            outputs=[chat_download],
            queue=False
        ).then(
            lambda: gr.update(visible=True),
            None,
            [chat_download]
        )
        
        # Generate conversation summary (simplified implementation)
        def generate_summary(history):
            if not history or len(history) < 2:
                return "Not enough conversation to summarize yet."
                
            # In a real application, you might want to send this to the model
            # Here we're just creating a simple summary
            topics = []
            for user_msg, _ in history:
                if user_msg and len(user_msg.split()) > 3:  # Simple heuristic
                    topics.append(user_msg.split()[0:3])
            
            if topics:
                return f"This conversation covered {len(history)} exchanges about various topics."
            else:
                return "Brief conversation with no clear topics."
        
        summary_btn.click(
            fn=generate_summary,
            inputs=[chatbot],
            outputs=[summary]
        )
    
    return demo

# Create and launch the interface
demo = create_interface()

if __name__ == "__main__":
    demo.launch(share=False, debug=False)