fhatje commited on
Commit
ae64ae9
·
1 Parent(s): 00f809d

Updated to newest gradio version and version fixed the dependencies.

Browse files
Files changed (3) hide show
  1. .gitignore +3 -1
  2. app.py +3 -18
  3. requirements.txt +3 -3
.gitignore CHANGED
@@ -1 +1,3 @@
1
- .vscode
 
 
 
1
+ .vscode
2
+ app_copy.py
3
+ __pycache__
app.py CHANGED
@@ -1,6 +1,3 @@
1
- # AUTOGENERATED! DO NOT EDIT! File to edit: ../main.ipynb.
2
-
3
- # %% auto 0
4
  __all__ = [
5
  "ORGAN",
6
  "IMAGE_SIZE",
@@ -23,7 +20,6 @@ __all__ = [
23
  "to_oberlay_image",
24
  ]
25
 
26
- # %% ../main.ipynb 1
27
  import numpy as np
28
  import pandas as pd
29
  import skimage
@@ -32,7 +28,6 @@ import segmentation_models_pytorch as smp
32
 
33
  import gradio as gr
34
 
35
- # %% ../main.ipynb 2
36
  ORGAN = "kidney"
37
  IMAGE_SIZE = 512
38
  MODEL_NAME = "unetpp_b4_th60_d9414.pkl"
@@ -40,7 +35,6 @@ THRESHOLD = float(MODEL_NAME.split("_")[2][2:]) / 100.0
40
  CODES = ["Background", "FTU"] # FTU = functional tissue unit
41
 
42
 
43
- # %% ../main.ipynb 3
44
  def x_getter(r):
45
  return r["fnames"]
46
 
@@ -59,11 +53,9 @@ def splitter(model):
59
  return L([enc_params, untrained_params])
60
 
61
 
62
- # %% ../main.ipynb 4
63
  learn = load_learner(MODEL_NAME)
64
 
65
 
66
- # %% ../main.ipynb 5
67
  def make3D(t: np.array) -> np.array:
68
  t = np.expand_dims(t, axis=2)
69
  t = np.concatenate((t, t, t), axis=2)
@@ -126,7 +118,6 @@ def to_oberlay_image(data):
126
  return img
127
 
128
 
129
- # %% ../main.ipynb 6
130
  title = "Glomerulus Segmentation"
131
  description = """
132
  A web app that segments glomeruli in histological kidney slices!
@@ -137,24 +128,18 @@ The provided example images are random subset of kidney slices from the [Human P
137
 
138
  Here is my corresponding [blog post](https://fhatje.github.io/posts/glomseg/train_model.html).
139
  """
140
- # article="<p style='text-align: center'><a href='Blog post URL' target='_blank'>Blog post</a></p>"
141
  examples = [str(p) for p in get_image_files("example_images")]
142
  interpretation = "default"
143
 
144
- # %% ../main.ipynb 7
145
  demo = gr.Interface(
146
  fn=predict,
147
- inputs=gr.components.Image(shape=(IMAGE_SIZE, IMAGE_SIZE)),
148
  outputs=[gr.components.Image(), gr.components.DataFrame()],
149
  title=title,
150
  description=description,
151
  examples=examples,
152
- interpretation=interpretation,
153
- # Fixes error when set to True:
154
- # https://github.com/gradio-app/gradio/pull/1949
155
- # but generated file names are too long
156
- _api_mode=False,
157
  )
158
 
159
- # %% ../main.ipynb 9
160
  demo.launch()
 
 
 
 
1
  __all__ = [
2
  "ORGAN",
3
  "IMAGE_SIZE",
 
20
  "to_oberlay_image",
21
  ]
22
 
 
23
  import numpy as np
24
  import pandas as pd
25
  import skimage
 
28
 
29
  import gradio as gr
30
 
 
31
  ORGAN = "kidney"
32
  IMAGE_SIZE = 512
33
  MODEL_NAME = "unetpp_b4_th60_d9414.pkl"
 
35
  CODES = ["Background", "FTU"] # FTU = functional tissue unit
36
 
37
 
 
38
  def x_getter(r):
39
  return r["fnames"]
40
 
 
53
  return L([enc_params, untrained_params])
54
 
55
 
 
56
  learn = load_learner(MODEL_NAME)
57
 
58
 
 
59
  def make3D(t: np.array) -> np.array:
60
  t = np.expand_dims(t, axis=2)
61
  t = np.concatenate((t, t, t), axis=2)
 
118
  return img
119
 
120
 
 
121
  title = "Glomerulus Segmentation"
122
  description = """
123
  A web app that segments glomeruli in histological kidney slices!
 
128
 
129
  Here is my corresponding [blog post](https://fhatje.github.io/posts/glomseg/train_model.html).
130
  """
131
+
132
  examples = [str(p) for p in get_image_files("example_images")]
133
  interpretation = "default"
134
 
 
135
  demo = gr.Interface(
136
  fn=predict,
137
+ inputs=gr.components.Image(width=IMAGE_SIZE, height=IMAGE_SIZE),
138
  outputs=[gr.components.Image(), gr.components.DataFrame()],
139
  title=title,
140
  description=description,
141
  examples=examples,
142
+ # interpretation=interpretation,
 
 
 
 
143
  )
144
 
 
145
  demo.launch()
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
- fastai
2
- scikit-image
3
- segmentation-models-pytorch
 
1
+ fastai==2.9.7
2
+ scikit-image==0.19.3
3
+ segmentation-models-pytorch==0.3.0