omkarenator commited on
Commit
fac35b0
·
1 Parent(s): b46a18f

fix hrefs on the navbar, should not #inner-text

Browse files
Files changed (1) hide show
  1. main.py +462 -315
main.py CHANGED
@@ -137,30 +137,37 @@ def main():
137
  ),
138
  ),
139
  ),
140
- # Div(
141
- # A("Overview", href="#inner-text"),
142
- # hx_get="/overview",
143
- # hx_target="#inner-text",
144
- # ),
145
  Div(
146
- A("Global Processing Steps", href="#inner-text"),
147
- hx_get="/common",
148
- hx_target="#inner-text",
 
 
 
149
  ),
150
  Div(
151
- A("Web Data Processing", href="#inner-text"),
152
- hx_get="/webdata",
153
- hx_target="#inner-text",
 
 
 
154
  ),
155
  Div(
156
- A("Curated Sources Processing", href="#inner-text"),
157
- hx_get="/curated",
158
- hx_target="#inner-text",
 
 
 
159
  ),
160
  Div(
161
- A("TxT360 Results", href="#inner-text"),
162
- hx_get="/results",
163
- hx_target="#inner-text",
 
 
 
164
  ),
165
  role="navigation",
166
  cls="l-text figcaption",
@@ -212,88 +219,101 @@ intro_list1 = Ol(
212
 
213
 
214
  dataset_comparison1 = pd.DataFrame(
215
- {
216
- "Dataset": [
217
- "TxT360",
218
- "FineWeb",
219
- "RefinedWeb",
220
- "RedPajama-v2",
221
- "C4",
222
- "Dolma",
223
- "RedPajama-v1",
224
- "The Pile",
225
- ],
226
- "CommonCrawl": [
227
- "99 Snapshots",
228
- "96 Snapshots",
229
- "90 Snapshots",
230
- "84 Snapshots",
231
- "1 Snapshots",
232
- "24 Snapshots",
233
- "5 Snapshots",
234
- "0.6% of 74 Snapshots",
235
- ],
236
- "Papers": [
237
- "5 Sources",
238
- "-",
239
- "-",
240
- "-",
241
- "-",
242
- "1 Source",
243
- "1 Source",
244
- "4 Sources",
245
- ],
246
- "Wikipedia": [
247
- "310+ Languages",
248
- "-",
249
- "-",
250
- "-",
251
- "-",
252
- "what does a check mark mean?",
253
- "what does a check mark mean?",
254
- "English Only",
255
- ],
256
- "FreeLaw": [
257
- "Included",
258
- "-",
259
- "-",
260
- "-",
261
- "-",
262
- "-",
263
- "-",
264
- "Included",
265
- ],
266
- "DM Math": [
267
- "Included",
268
- "-",
269
- "-",
270
- "-",
271
- "-",
272
- "-",
273
- "-",
274
- "Included",
275
- ],
276
- "USPTO": [
277
- "Included",
278
- "-",
279
- "-",
280
- "-",
281
- "-",
282
- "-",
283
- "-",
284
- "Included",
285
- ],
286
-
287
- }
288
- )
289
 
290
  # Apply table styling: Light green for the header, alternating white and light grey for rows
291
- styled_table = dataset_comparison1.style.set_properties(
292
- **{'background-color': '#E1EEDB'}, subset=pd.IndexSlice[0,:] # Row 0 with a light green background
293
- ).apply(
294
- lambda x: ['background-color: #E1EEDB' if i == 0 else ('background-color: rgb(237, 242, 251)' if i % 2 == 0 else 'background-color: white') for i in range(len(x))],
295
- axis=0
296
- ).hide(axis="index") # Hide the row index
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
 
298
  # Use _repr_html_() method to get the HTML representation of the styled DataFrame
299
  table_html = styled_table._repr_html_()
@@ -301,87 +321,100 @@ table_html = styled_table._repr_html_()
301
  table_div_1 = Div(NotStr(table_html), style="margin: 40px;")
302
 
303
  dataset_comparison2 = pd.DataFrame(
304
- {
305
- "Dataset": [
306
- "TxT360",
307
- "FineWeb",
308
- "RefinedWeb",
309
- "RedPajama-v2",
310
- "C4",
311
- "Dolma",
312
- "RedPajama-v1",
313
- "The Pile",
314
- ],
315
-
316
- "PG-19": [
317
- "Included",
318
- "-",
319
- "-",
320
- "-",
321
- "-",
322
- "Included",
323
- "Included",
324
- "Included",
325
- ],
326
- "HackerNews": [
327
- "Included",
328
- "-",
329
- "-",
330
- "-",
331
- "-",
332
- "-",
333
- "-",
334
- "Included",
335
- ],
336
- "Ubuntu IRC": [
337
- "Included",
338
- "-",
339
- "-",
340
- "-",
341
- "-",
342
- "-",
343
- "-",
344
- "Included",
345
- ],
346
- "EuroParl": [
347
- "Included",
348
- "-",
349
- "-",
350
- "-",
351
- "-",
352
- "-",
353
- "-",
354
- "Included",
355
- ],
356
- "StackExchange": [
357
- "Included",
358
- "-",
359
- "-",
360
- "-",
361
- "-",
362
- "-",
363
- "Included",
364
- "Included",
365
- ],
366
- "Code": [
367
- "- what is this?",
368
- "-",
369
- "-",
370
- "-",
371
- "-",
372
- "Included",
373
- "Included",
374
- "Included",
375
- ],
376
- }
377
- )
378
  # Apply table styling: Light green for the header, alternating white and light grey for rows
379
- styled_table = dataset_comparison2.style.set_properties(
380
- **{'background-color': '#E1EEDB'}, subset=pd.IndexSlice[0,:] # Row 0 with a light green background
381
- ).apply(
382
- lambda x: ['background-color: #E1EEDB' if i == 0 else ('background-color: rgb(237, 242, 251)' if i % 2 == 0 else 'background-color: white') for i in range(len(x))],
383
- axis=0
384
- ).hide(axis="index") # Hide the row index
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385
 
386
  # Use _repr_html_() method to get the HTML representation of the styled DataFrame
387
  table_html2 = styled_table._repr_html_()
@@ -389,65 +422,70 @@ table_html2 = styled_table._repr_html_()
389
  table_div_2 = Div(NotStr(table_html2), style="margin: 40px;")
390
 
391
  dataset_sources = pd.DataFrame(
392
- {
393
- "Data Source": [
394
- "CommonCrawl",
395
- "Papers",
396
- "Wikipedia",
397
- "Freelaw",
398
- "DM Math",
399
- "USPTO",
400
- "PG-19",
401
- "HackerNews",
402
- "Ubuntu IRC",
403
- "Europarl",
404
- "StackExchange",
405
- ],
406
- "Raw Data Size": [
407
- "11 TB",
408
- "712 GB",
409
- "210 GB",
410
- "23 GB",
411
- "22 GB",
412
- "45 GB",
413
- "11 GB",
414
- "4.1 GB",
415
- "4.7 GB",
416
- "6.1 GB",
417
- "45 GB",
418
- ],
419
- "Token Count": [
420
- "5.71T",
421
- "154.96B",
422
- "4.75B",
423
- "7.34B",
424
- "5.23B",
425
- "4.95B",
426
- "2.94B",
427
- "1.08B",
428
- "1.54B",
429
- "1.96B",
430
- "8.37B",
431
- ],
432
- "Cut-Off Date": [
433
- "2024-30",
434
- "Q4 2023",
435
- "-",
436
- "Q1 2024",
437
- "-",
438
- "Q4 2023",
439
- "-",
440
- "Q4 2023",
441
- "Q4 2023",
442
- "-",
443
- "Q4 2023",
444
- ],
445
- }
446
- )
447
  # Apply table styling: Light green for the header, alternating white and light grey for rows
448
  styled_table = dataset_sources.style.apply(
449
- lambda x: ['background-color: white' if i % 2 == 0 else 'background-color: rgb(237, 242, 251)' for i in range(len(x))],
450
- axis=0
 
 
 
 
 
451
  ).hide(axis="index") # Hide the row index
452
 
453
  table_html_data = styled_table._repr_html_()
@@ -456,109 +494,218 @@ table_div_data = Div(NotStr(table_html_data), style="margin: 40px;")
456
 
457
 
458
  def get_curated_chart():
459
- # Dataset
460
  data = {
461
- 'Source': ['ArXiv', 'PubMed Central', 'PubMed Abstract', 'S2ORC Full Text', 'S2ORC Abstract', 'PhilPapers', 'Wikipedia', 'StackExchange', 'EuroParl', 'Ubuntu IRC', 'Freelaw', 'PG19', 'USPTO', 'HackerNews', 'DM Maths'],
462
- 'Category': ['Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Internet', 'Conversational', 'Legal/Formal', 'Conversational', 'Legal/Formal', 'Books', 'Legal/Formal', 'Conversational', 'Reasoning'],
463
- 'Count': [100, 200, 150, 120, 80, 90, 300, 250, 180, 150, 150, 250, 180, 120, 90],
464
- 'Details': [
465
- 'A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.',
466
- 'A database of biomedical and life sciences research articles.',
467
- 'Abstracts of biomedical literature from various sources.',
468
- 'Full-text articles from the Semantic Scholar Open Research Corpus.',
469
- 'Abstracts of articles from the Semantic Scholar Open Research Corpus.',
470
- 'Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.',
471
- 'A collaborative online encyclopedia that covers a wide range of topics.',
472
- 'A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.',
473
- 'A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.',
474
- 'Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.',
475
- 'Legal documents and court cases from various jurisdictions.',
476
- 'A collection of books from Project Gutenberg, a digital library of public domain works.',
477
- 'Patent documents from the United States Patent and Trademark Office.',
478
- 'User-generated news and discussion platform focused on technology and startups.',
479
- 'Deep Mind Maths dataset with generated questions.'
480
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481
  }
482
  # Calculate percentage for each data source
483
- total_count = sum(data['Count'])
484
- data['Percentage'] = [count / total_count * 100 for count in data['Count']]
485
-
486
  # Create treemap
487
- fig = px.treemap(data, path=['Category', 'Source'], values='Count', hover_data=['Details', 'Percentage'], hover_name='Source')
488
-
 
 
 
 
 
 
489
  # Set the size of the chart
490
  fig.update_layout(width=800, height=600)
491
-
492
  # Display treemap
493
  st.plotly_chart(fig)
494
 
 
495
  overview_div = Div(
496
- Section(
497
- H2("Overview"),
498
- H3("What This Section Contains"),
499
- Ul(
500
- Li("Motivation Behind TxT360", style = "margin-bottom: 5px"),
501
- Li("The Highlevel Data Process Approach", style = "margin-bottom: 5px"),
502
- Li("Introduction to Global Deduplication", style = "margin-bottom: 5px"),
503
- ),
504
- H2("Motivation Behind Txt360"),
505
- H3("TxT360 is the first dataset to combine both web and curated data sources commonly used in pretraining."),
506
- P("The quality and size of a pre-training dataset play a crucial role in the performance of large language models (LLMs). Data is often referred as low quality if it has not been filtered to review unwanted text. The community has introduced a variety of filtered datasets including purely web-based datasets."),
507
- P("In pretraining, it is common to combine web data and curated sources (cite). Web data is included to provide a vast quantity of long tail and diverse data, while curated datasets are often information rich and provide the 'deep-dive' domain information. Both datasets play critical for effective LLM pre-training."),
508
- H4("The Gap TxT360 Fills"),
509
- P("Despite advancements in filtering and source material for both data types, each type of dataset has its limitations. RefinedWeb is known for its high quality content but and only about 10% of the entire dataset has been disclosed and the processing scripts have not been released. For datasets that have combined curated sources with web data, the web component is relatively small (NEED TO UPDATE - citation needed)."),
510
- P("By integrating the extensive reach of web data with the exceptional quality of curated sources, TxT360 meets and surpasess the rigorous standards required for state-of-the-art LLM pre-training as demostated in the Results section."),
511
-
512
- P("Table 1: The following table shows TxT360 and other well-known datasets on the coverage and size of data sources."),
513
- table_div_1,
514
- table_div_2,
515
- P("Table 2: Basic TxT360 Statistics."),
516
- table_div_data,
517
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518
  Section(
519
- H2("Our Generalizable Approach to Data Processing"),
520
- P("To produce TxT360, a comprehensive and transparent data processing pipeline was designed to account for the nuances of both web and curated datasets. The pipeline presents a unified framework for processing both data types, making it convenient and easily adaptive for users to revise and fine-tune the pipeline for their own use cases."),
521
- P("Web datasets are inherently noisy and varied. Thus, the pipeline includes sophisticated filtering and deduplication techniques to clean the data and remove redundancies or irrelevant information."),
522
- P("Curated datasets are typically already structured and consistently formatted. TxT360 filters these sources with selective steps to maintain their integrity while providing seamless integration into the larger dataset."),
523
- P("We will open-source the scripts for the whole pipeline, allowing the community to review, replicate, and build upon our processes."),
524
- Img(src="images/pipeline.png", height = "300", width = "600" ),
525
- P("Figure 1: Data processing pipeline. All the steps are adopted for processing web data while the yellow blocks are adopted for processing curated sources."),
 
 
526
  ),
 
 
 
 
 
 
 
 
527
  Section(
528
- H2("Introducing Global Deduplication"),
529
- P("Deduplication is crucial in language model pre-training for several reasons (NEEDS CITATION). Main hypothesis on why deduplicaiton is necessary and help include:"),
530
- Ul(
531
- Li("reducing data volume reduces training time (and cost)", style = "margin-bottom: 5px"),
532
- Li("removing duplicataive data can lead to better accuracy", style = "margin-bottom: 5px"),
533
- Li("prevent train-test overlap", style = "margin-bottom: 5px"),
534
- Li("minimizes the risk of memorization leading to test loss", style = "margin-bottom: 5px"),
535
- ),
536
- P("Furthermore, by controlling the pretraining data distribution through deduplication and selective upsampling avoida relying on the often inconsistent distribution of internet-sourced data."),
537
- H3("Highlights of the TxT360 Deduplication Process"),
538
- P("Our deduplication process began with 61.8 TB of filtered, and compressed documents, totaling approximately 48.83 billion documents. We first performed exact deduplication using a Bloom filter, reducing the dataset by 17% to 40.21 billion documents. For global near-deduplication, we scaled methodologies from prior works like SlimPajama to handle the entire dataset, including 87 Common Crawl dumps and other curated data. This involved generating document signatures, matching them to identify near-duplicates, and clustering these to retain only one document per cluster. We prioritized retaining documents from curated sources and more recent CommonCrawl dumps. Throughout the deduplication stages, we extensively used Dask for distributed data processing."),
539
- P("After the global near-deduplication of all 87 CommonCrawl dumps and other curated data, we removed around 85% of the total documents. This leaves us with approximately 4.24 trillion deduplicated tokens, which aligns with what FineWeb has reported for their iterative global deduplication. Along with the list of duplicated documents to delete, our deduplication code also saves some metadata about the duplicate clusters that we find. We save statistics about every duplicate cluster we find, with the document ID of the document we retain from the cluster as the key and with a value capturing the distribution of the duplicates within the cluster over the CommonCrawl dumps (identified by the first 2 digits of every document ID). This way, we always have information about the duplicates we have deleted, allowing us to upsample any data distribution we want for training."),
540
- P("During deduplication, it is not feasible to store all the duplicate clusters we form, but we do save some samples at every size. Here are some observations we made by examining these sample duplicate clusters:"),
541
- Ul(
542
- Li("Smaller components tend to have more overlap in their MinHash bands. The smallest components, which are essentially pairs, consist of exact duplicate documents that local exact deduplication missed."),
543
- Li("When clusters contain three or more documents, incremental changes in the text become apparent. For example, there may be a growing list of personnel over the years."),
544
- Li("In sizable clusters comprising 1,000 or more documents, we observe a trend towards templatization. This involves the recurrent use of standardized language to convey general topics such as terms and conditions, warnings, and disclaimers. Such language is prevalent on commercial websites, offering a consistent and efficient way to communicate commonly encountered information."),
545
  ),
546
- P("All Deduplication details can be found in the Global Data Processing Steps section."),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
547
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548
  )
549
 
 
550
  @app.get("/intro")
551
  def intro():
552
  return Div(
553
  Section(
554
  H2("About TxT360"),
555
- P("We introduce Trillion eXtracted Text (TxT360): the highest quality, most comprehensive, and production ready pretraining dataset released to date, an open source pre training textual dataset with the widest coverage to date, including all 99 Common Crawl snapshots released to date and 14 widely used curated sources such as Wikipedia, StackExchange, and ArXiv."),
556
-
557
- P("Building on top of the prior study on pre-training data, (cite C4, chinchilla, fineweb, refinedweb, 2305.16264, ) TxT360 carefully implements data processing steps such as extraction, filtering, deduplication, PII removal and so on. Notably, we design a schema to provide users with full control on the weights of each data point, instead of relying on unknown distribution from the raw dataset. Specifically, we strive to make each data point appear only once, via global deduplication across the whole corpus. Importantly, we store enough metadata to recover the raw distribution, and additionally allow one to have fine-grained control to create data distributions and corpus of desired size. As an example, we present one simple upsampling scheme that takes into account the duplication counts, resulting in a 15~16 trillion token corpus, outperforming FineWeb and our non-upsampling baselines, on diverse evaluations. Unlike DCLM and RedPajama V2, we present the final deduplicated dataset that is ready to go."),
558
-
559
- P("We have carefully implemented a large set of filters by carefully reviewing the input, output from data samples and tailored design for each data source. We learned from and compared our implementation with prior data pipelines, such as Chinchilla, C4, DataTrove, Dolma, and RedPajama Data V2 to make carefully considered decisions."),
560
- P("In light of the 360 open source spirit, we will open source the code and document all the implementation details in this blog post, along with the examples and why each decision is made, hoping to shed some light on this important but tedious step."),
561
-
 
 
 
 
 
562
  id="section1",
563
  ),
564
  overview_div,
@@ -566,7 +713,7 @@ def intro():
566
  )
567
 
568
 
569
- #rt("/overview")(overview.overview)
570
 
571
  rt("/update/{target}")(data_viewer.update)
572
 
 
137
  ),
138
  ),
139
  ),
 
 
 
 
 
140
  Div(
141
+ A(
142
+ "Global Processing Steps",
143
+ href="/common#_self",
144
+ hx_get="/common",
145
+ hx_target="#inner-text",
146
+ )
147
  ),
148
  Div(
149
+ A(
150
+ "Web Data Processing",
151
+ href="/webdata#_self",
152
+ hx_get="/webdata",
153
+ hx_target="#inner-text",
154
+ )
155
  ),
156
  Div(
157
+ A(
158
+ "Curated Sources Processing",
159
+ href="/curated#_self",
160
+ hx_get="/curated",
161
+ hx_target="#inner-text",
162
+ )
163
  ),
164
  Div(
165
+ A(
166
+ "TxT360 Results",
167
+ href="/results#_self",
168
+ hx_get="/results",
169
+ hx_target="#inner-text",
170
+ ),
171
  ),
172
  role="navigation",
173
  cls="l-text figcaption",
 
219
 
220
 
221
  dataset_comparison1 = pd.DataFrame(
222
+ {
223
+ "Dataset": [
224
+ "TxT360",
225
+ "FineWeb",
226
+ "RefinedWeb",
227
+ "RedPajama-v2",
228
+ "C4",
229
+ "Dolma",
230
+ "RedPajama-v1",
231
+ "The Pile",
232
+ ],
233
+ "CommonCrawl": [
234
+ "99 Snapshots",
235
+ "96 Snapshots",
236
+ "90 Snapshots",
237
+ "84 Snapshots",
238
+ "1 Snapshots",
239
+ "24 Snapshots",
240
+ "5 Snapshots",
241
+ "0.6% of 74 Snapshots",
242
+ ],
243
+ "Papers": [
244
+ "5 Sources",
245
+ "-",
246
+ "-",
247
+ "-",
248
+ "-",
249
+ "1 Source",
250
+ "1 Source",
251
+ "4 Sources",
252
+ ],
253
+ "Wikipedia": [
254
+ "310+ Languages",
255
+ "-",
256
+ "-",
257
+ "-",
258
+ "-",
259
+ "what does a check mark mean?",
260
+ "what does a check mark mean?",
261
+ "English Only",
262
+ ],
263
+ "FreeLaw": [
264
+ "Included",
265
+ "-",
266
+ "-",
267
+ "-",
268
+ "-",
269
+ "-",
270
+ "-",
271
+ "Included",
272
+ ],
273
+ "DM Math": [
274
+ "Included",
275
+ "-",
276
+ "-",
277
+ "-",
278
+ "-",
279
+ "-",
280
+ "-",
281
+ "Included",
282
+ ],
283
+ "USPTO": [
284
+ "Included",
285
+ "-",
286
+ "-",
287
+ "-",
288
+ "-",
289
+ "-",
290
+ "-",
291
+ "Included",
292
+ ],
293
+ }
294
+ )
 
295
 
296
  # Apply table styling: Light green for the header, alternating white and light grey for rows
297
+ styled_table = (
298
+ dataset_comparison1.style.set_properties(
299
+ **{"background-color": "#E1EEDB"},
300
+ subset=pd.IndexSlice[0, :], # Row 0 with a light green background
301
+ )
302
+ .apply(
303
+ lambda x: [
304
+ "background-color: #E1EEDB"
305
+ if i == 0
306
+ else (
307
+ "background-color: rgb(237, 242, 251)"
308
+ if i % 2 == 0
309
+ else "background-color: white"
310
+ )
311
+ for i in range(len(x))
312
+ ],
313
+ axis=0,
314
+ )
315
+ .hide(axis="index")
316
+ ) # Hide the row index
317
 
318
  # Use _repr_html_() method to get the HTML representation of the styled DataFrame
319
  table_html = styled_table._repr_html_()
 
321
  table_div_1 = Div(NotStr(table_html), style="margin: 40px;")
322
 
323
  dataset_comparison2 = pd.DataFrame(
324
+ {
325
+ "Dataset": [
326
+ "TxT360",
327
+ "FineWeb",
328
+ "RefinedWeb",
329
+ "RedPajama-v2",
330
+ "C4",
331
+ "Dolma",
332
+ "RedPajama-v1",
333
+ "The Pile",
334
+ ],
335
+ "PG-19": [
336
+ "Included",
337
+ "-",
338
+ "-",
339
+ "-",
340
+ "-",
341
+ "Included",
342
+ "Included",
343
+ "Included",
344
+ ],
345
+ "HackerNews": [
346
+ "Included",
347
+ "-",
348
+ "-",
349
+ "-",
350
+ "-",
351
+ "-",
352
+ "-",
353
+ "Included",
354
+ ],
355
+ "Ubuntu IRC": [
356
+ "Included",
357
+ "-",
358
+ "-",
359
+ "-",
360
+ "-",
361
+ "-",
362
+ "-",
363
+ "Included",
364
+ ],
365
+ "EuroParl": [
366
+ "Included",
367
+ "-",
368
+ "-",
369
+ "-",
370
+ "-",
371
+ "-",
372
+ "-",
373
+ "Included",
374
+ ],
375
+ "StackExchange": [
376
+ "Included",
377
+ "-",
378
+ "-",
379
+ "-",
380
+ "-",
381
+ "-",
382
+ "Included",
383
+ "Included",
384
+ ],
385
+ "Code": [
386
+ "- what is this?",
387
+ "-",
388
+ "-",
389
+ "-",
390
+ "-",
391
+ "Included",
392
+ "Included",
393
+ "Included",
394
+ ],
395
+ }
396
+ )
 
397
  # Apply table styling: Light green for the header, alternating white and light grey for rows
398
+ styled_table = (
399
+ dataset_comparison2.style.set_properties(
400
+ **{"background-color": "#E1EEDB"},
401
+ subset=pd.IndexSlice[0, :], # Row 0 with a light green background
402
+ )
403
+ .apply(
404
+ lambda x: [
405
+ "background-color: #E1EEDB"
406
+ if i == 0
407
+ else (
408
+ "background-color: rgb(237, 242, 251)"
409
+ if i % 2 == 0
410
+ else "background-color: white"
411
+ )
412
+ for i in range(len(x))
413
+ ],
414
+ axis=0,
415
+ )
416
+ .hide(axis="index")
417
+ ) # Hide the row index
418
 
419
  # Use _repr_html_() method to get the HTML representation of the styled DataFrame
420
  table_html2 = styled_table._repr_html_()
 
422
  table_div_2 = Div(NotStr(table_html2), style="margin: 40px;")
423
 
424
  dataset_sources = pd.DataFrame(
425
+ {
426
+ "Data Source": [
427
+ "CommonCrawl",
428
+ "Papers",
429
+ "Wikipedia",
430
+ "Freelaw",
431
+ "DM Math",
432
+ "USPTO",
433
+ "PG-19",
434
+ "HackerNews",
435
+ "Ubuntu IRC",
436
+ "Europarl",
437
+ "StackExchange",
438
+ ],
439
+ "Raw Data Size": [
440
+ "11 TB",
441
+ "712 GB",
442
+ "210 GB",
443
+ "23 GB",
444
+ "22 GB",
445
+ "45 GB",
446
+ "11 GB",
447
+ "4.1 GB",
448
+ "4.7 GB",
449
+ "6.1 GB",
450
+ "45 GB",
451
+ ],
452
+ "Token Count": [
453
+ "5.71T",
454
+ "154.96B",
455
+ "4.75B",
456
+ "7.34B",
457
+ "5.23B",
458
+ "4.95B",
459
+ "2.94B",
460
+ "1.08B",
461
+ "1.54B",
462
+ "1.96B",
463
+ "8.37B",
464
+ ],
465
+ "Cut-Off Date": [
466
+ "2024-30",
467
+ "Q4 2023",
468
+ "-",
469
+ "Q1 2024",
470
+ "-",
471
+ "Q4 2023",
472
+ "-",
473
+ "Q4 2023",
474
+ "Q4 2023",
475
+ "-",
476
+ "Q4 2023",
477
+ ],
478
+ }
479
+ )
480
  # Apply table styling: Light green for the header, alternating white and light grey for rows
481
  styled_table = dataset_sources.style.apply(
482
+ lambda x: [
483
+ "background-color: white"
484
+ if i % 2 == 0
485
+ else "background-color: rgb(237, 242, 251)"
486
+ for i in range(len(x))
487
+ ],
488
+ axis=0,
489
  ).hide(axis="index") # Hide the row index
490
 
491
  table_html_data = styled_table._repr_html_()
 
494
 
495
 
496
  def get_curated_chart():
497
+ # Dataset
498
  data = {
499
+ "Source": [
500
+ "ArXiv",
501
+ "PubMed Central",
502
+ "PubMed Abstract",
503
+ "S2ORC Full Text",
504
+ "S2ORC Abstract",
505
+ "PhilPapers",
506
+ "Wikipedia",
507
+ "StackExchange",
508
+ "EuroParl",
509
+ "Ubuntu IRC",
510
+ "Freelaw",
511
+ "PG19",
512
+ "USPTO",
513
+ "HackerNews",
514
+ "DM Maths",
515
+ ],
516
+ "Category": [
517
+ "Papers",
518
+ "Papers",
519
+ "Papers",
520
+ "Papers",
521
+ "Papers",
522
+ "Papers",
523
+ "Internet",
524
+ "Conversational",
525
+ "Legal/Formal",
526
+ "Conversational",
527
+ "Legal/Formal",
528
+ "Books",
529
+ "Legal/Formal",
530
+ "Conversational",
531
+ "Reasoning",
532
+ ],
533
+ "Count": [
534
+ 100,
535
+ 200,
536
+ 150,
537
+ 120,
538
+ 80,
539
+ 90,
540
+ 300,
541
+ 250,
542
+ 180,
543
+ 150,
544
+ 150,
545
+ 250,
546
+ 180,
547
+ 120,
548
+ 90,
549
+ ],
550
+ "Details": [
551
+ "A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.",
552
+ "A database of biomedical and life sciences research articles.",
553
+ "Abstracts of biomedical literature from various sources.",
554
+ "Full-text articles from the Semantic Scholar Open Research Corpus.",
555
+ "Abstracts of articles from the Semantic Scholar Open Research Corpus.",
556
+ "Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.",
557
+ "A collaborative online encyclopedia that covers a wide range of topics.",
558
+ "A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.",
559
+ "A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.",
560
+ "Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.",
561
+ "Legal documents and court cases from various jurisdictions.",
562
+ "A collection of books from Project Gutenberg, a digital library of public domain works.",
563
+ "Patent documents from the United States Patent and Trademark Office.",
564
+ "User-generated news and discussion platform focused on technology and startups.",
565
+ "Deep Mind Maths dataset with generated questions.",
566
+ ],
567
  }
568
  # Calculate percentage for each data source
569
+ total_count = sum(data["Count"])
570
+ data["Percentage"] = [count / total_count * 100 for count in data["Count"]]
571
+
572
  # Create treemap
573
+ fig = px.treemap(
574
+ data,
575
+ path=["Category", "Source"],
576
+ values="Count",
577
+ hover_data=["Details", "Percentage"],
578
+ hover_name="Source",
579
+ )
580
+
581
  # Set the size of the chart
582
  fig.update_layout(width=800, height=600)
583
+
584
  # Display treemap
585
  st.plotly_chart(fig)
586
 
587
+
588
  overview_div = Div(
589
+ Section(
590
+ H2("Overview"),
591
+ H3("What This Section Contains"),
592
+ Ul(
593
+ Li("Motivation Behind TxT360", style="margin-bottom: 5px"),
594
+ Li("The Highlevel Data Process Approach", style="margin-bottom: 5px"),
595
+ Li("Introduction to Global Deduplication", style="margin-bottom: 5px"),
596
+ ),
597
+ H2("Motivation Behind Txt360"),
598
+ H3(
599
+ "TxT360 is the first dataset to combine both web and curated data sources commonly used in pretraining."
 
 
 
 
 
 
 
 
 
 
600
  ),
601
+ P(
602
+ "The quality and size of a pre-training dataset play a crucial role in the performance of large language models (LLMs). Data is often referred as low quality if it has not been filtered to review unwanted text. The community has introduced a variety of filtered datasets including purely web-based datasets."
603
+ ),
604
+ P(
605
+ "In pretraining, it is common to combine web data and curated sources (cite). Web data is included to provide a vast quantity of long tail and diverse data, while curated datasets are often information rich and provide the 'deep-dive' domain information. Both datasets play critical for effective LLM pre-training."
606
+ ),
607
+ H4("The Gap TxT360 Fills"),
608
+ P(
609
+ "Despite advancements in filtering and source material for both data types, each type of dataset has its limitations. RefinedWeb is known for its high quality content but and only about 10% of the entire dataset has been disclosed and the processing scripts have not been released. For datasets that have combined curated sources with web data, the web component is relatively small (NEED TO UPDATE - citation needed)."
610
+ ),
611
+ P(
612
+ "By integrating the extensive reach of web data with the exceptional quality of curated sources, TxT360 meets and surpasess the rigorous standards required for state-of-the-art LLM pre-training as demostated in the Results section."
613
+ ),
614
+ P(
615
+ "Table 1: The following table shows TxT360 and other well-known datasets on the coverage and size of data sources."
616
+ ),
617
+ table_div_1,
618
+ table_div_2,
619
+ P("Table 2: Basic TxT360 Statistics."),
620
+ table_div_data,
621
+ ),
622
  Section(
623
+ H2("Our Generalizable Approach to Data Processing"),
624
+ P(
625
+ "To produce TxT360, a comprehensive and transparent data processing pipeline was designed to account for the nuances of both web and curated datasets. The pipeline presents a unified framework for processing both data types, making it convenient and easily adaptive for users to revise and fine-tune the pipeline for their own use cases."
626
+ ),
627
+ P(
628
+ "Web datasets are inherently noisy and varied. Thus, the pipeline includes sophisticated filtering and deduplication techniques to clean the data and remove redundancies or irrelevant information."
629
+ ),
630
+ P(
631
+ "Curated datasets are typically already structured and consistently formatted. TxT360 filters these sources with selective steps to maintain their integrity while providing seamless integration into the larger dataset."
632
  ),
633
+ P(
634
+ "We will open-source the scripts for the whole pipeline, allowing the community to review, replicate, and build upon our processes."
635
+ ),
636
+ Img(src="images/pipeline.png", height="300", width="600"),
637
+ P(
638
+ "Figure 1: Data processing pipeline. All the steps are adopted for processing web data while the yellow blocks are adopted for processing curated sources."
639
+ ),
640
+ ),
641
  Section(
642
+ H2("Introducing Global Deduplication"),
643
+ P(
644
+ "Deduplication is crucial in language model pre-training for several reasons (NEEDS CITATION). Main hypothesis on why deduplicaiton is necessary and help include:"
645
+ ),
646
+ Ul(
647
+ Li(
648
+ "reducing data volume reduces training time (and cost)",
649
+ style="margin-bottom: 5px",
 
 
 
 
 
 
 
 
 
650
  ),
651
+ Li(
652
+ "removing duplicataive data can lead to better accuracy",
653
+ style="margin-bottom: 5px",
654
+ ),
655
+ Li("prevent train-test overlap", style="margin-bottom: 5px"),
656
+ Li(
657
+ "minimizes the risk of memorization leading to test loss",
658
+ style="margin-bottom: 5px",
659
+ ),
660
+ ),
661
+ P(
662
+ "Furthermore, by controlling the pretraining data distribution through deduplication and selective upsampling avoida relying on the often inconsistent distribution of internet-sourced data."
663
+ ),
664
+ H3("Highlights of the TxT360 Deduplication Process"),
665
+ P(
666
+ "Our deduplication process began with 61.8 TB of filtered, and compressed documents, totaling approximately 48.83 billion documents. We first performed exact deduplication using a Bloom filter, reducing the dataset by 17% to 40.21 billion documents. For global near-deduplication, we scaled methodologies from prior works like SlimPajama to handle the entire dataset, including 87 Common Crawl dumps and other curated data. This involved generating document signatures, matching them to identify near-duplicates, and clustering these to retain only one document per cluster. We prioritized retaining documents from curated sources and more recent CommonCrawl dumps. Throughout the deduplication stages, we extensively used Dask for distributed data processing."
667
  ),
668
+ P(
669
+ "After the global near-deduplication of all 87 CommonCrawl dumps and other curated data, we removed around 85% of the total documents. This leaves us with approximately 4.24 trillion deduplicated tokens, which aligns with what FineWeb has reported for their iterative global deduplication. Along with the list of duplicated documents to delete, our deduplication code also saves some metadata about the duplicate clusters that we find. We save statistics about every duplicate cluster we find, with the document ID of the document we retain from the cluster as the key and with a value capturing the distribution of the duplicates within the cluster over the CommonCrawl dumps (identified by the first 2 digits of every document ID). This way, we always have information about the duplicates we have deleted, allowing us to upsample any data distribution we want for training."
670
+ ),
671
+ P(
672
+ "During deduplication, it is not feasible to store all the duplicate clusters we form, but we do save some samples at every size. Here are some observations we made by examining these sample duplicate clusters:"
673
+ ),
674
+ Ul(
675
+ Li(
676
+ "Smaller components tend to have more overlap in their MinHash bands. The smallest components, which are essentially pairs, consist of exact duplicate documents that local exact deduplication missed."
677
+ ),
678
+ Li(
679
+ "When clusters contain three or more documents, incremental changes in the text become apparent. For example, there may be a growing list of personnel over the years."
680
+ ),
681
+ Li(
682
+ "In sizable clusters comprising 1,000 or more documents, we observe a trend towards templatization. This involves the recurrent use of standardized language to convey general topics such as terms and conditions, warnings, and disclaimers. Such language is prevalent on commercial websites, offering a consistent and efficient way to communicate commonly encountered information."
683
+ ),
684
+ ),
685
+ P(
686
+ "All Deduplication details can be found in the Global Data Processing Steps section."
687
+ ),
688
+ ),
689
  )
690
 
691
+
692
  @app.get("/intro")
693
  def intro():
694
  return Div(
695
  Section(
696
  H2("About TxT360"),
697
+ P(
698
+ "We introduce Trillion eXtracted Text (TxT360): the highest quality, most comprehensive, and production ready pretraining dataset released to date, an open source pre training textual dataset with the widest coverage to date, including all 99 Common Crawl snapshots released to date and 14 widely used curated sources such as Wikipedia, StackExchange, and ArXiv."
699
+ ),
700
+ P(
701
+ "Building on top of the prior study on pre-training data, (cite C4, chinchilla, fineweb, refinedweb, 2305.16264, ) TxT360 carefully implements data processing steps such as extraction, filtering, deduplication, PII removal and so on. Notably, we design a schema to provide users with full control on the weights of each data point, instead of relying on unknown distribution from the raw dataset. Specifically, we strive to make each data point appear only once, via global deduplication across the whole corpus. Importantly, we store enough metadata to recover the raw distribution, and additionally allow one to have fine-grained control to create data distributions and corpus of desired size. As an example, we present one simple upsampling scheme that takes into account the duplication counts, resulting in a 15~16 trillion token corpus, outperforming FineWeb and our non-upsampling baselines, on diverse evaluations. Unlike DCLM and RedPajama V2, we present the final deduplicated dataset that is ready to go."
702
+ ),
703
+ P(
704
+ "We have carefully implemented a large set of filters by carefully reviewing the input, output from data samples and tailored design for each data source. We learned from and compared our implementation with prior data pipelines, such as Chinchilla, C4, DataTrove, Dolma, and RedPajama Data V2 to make carefully considered decisions."
705
+ ),
706
+ P(
707
+ "In light of the 360 open source spirit, we will open source the code and document all the implementation details in this blog post, along with the examples and why each decision is made, hoping to shed some light on this important but tedious step."
708
+ ),
709
  id="section1",
710
  ),
711
  overview_div,
 
713
  )
714
 
715
 
716
+ # rt("/overview")(overview.overview)
717
 
718
  rt("/update/{target}")(data_viewer.update)
719