File size: 17,532 Bytes
6064c9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * File   : prroi_pooling_gpu_impl.cu
 * Author : Tete Xiao, Jiayuan Mao
 * Email  : jasonhsiao97@gmail.com
 *
 * Distributed under terms of the MIT license.
 * Copyright (c) 2017 Megvii Technology Limited.
 */

#include "prroi_pooling_gpu_impl.cuh"

#include <cstdio>
#include <cfloat>

#define CUDA_KERNEL_LOOP(i, n) \
    for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
        i < (n); \
        i += blockDim.x * gridDim.x)

#define CUDA_POST_KERNEL_CHECK \
    do { \
        cudaError_t err = cudaGetLastError(); \
        if (cudaSuccess != err) { \
            fprintf(stderr, "cudaCheckError() failed : %s\n", cudaGetErrorString(err)); \
            exit(-1); \
        } \
    } while(0)

#define CUDA_NUM_THREADS 512

namespace {

static int CUDA_NUM_BLOCKS(const int N) {
  return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}

__device__ static float PrRoIPoolingGetData(F_DEVPTR_IN data, const int h, const int w, const int height, const int width)
{
    bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
    float retVal = overflow ? 0.0f : data[h * width + w];
    return retVal;
}

__device__ static float PrRoIPoolingGetCoeff(float dh, float dw){
    dw = dw > 0 ? dw : -dw;
    dh = dh > 0 ? dh : -dh;
    return (1.0f - dh) * (1.0f - dw);
}

__device__ static float PrRoIPoolingSingleCoorIntegral(float s, float t, float c1, float c2) {
    return 0.5 * (t * t - s * s) * c2 + (t - 0.5 * t * t - s + 0.5 * s * s) * c1;
}

__device__ static float PrRoIPoolingInterpolation(F_DEVPTR_IN data, const float h, const float w, const int height, const int width){
    float retVal = 0.0f;
    int h1 = floorf(h);
    int w1 = floorf(w);
    retVal += PrRoIPoolingGetData(data, h1, w1, height, width) * PrRoIPoolingGetCoeff(h - float(h1), w - float(w1));
    h1 = floorf(h)+1;
    w1 = floorf(w);
    retVal += PrRoIPoolingGetData(data, h1, w1, height, width) * PrRoIPoolingGetCoeff(h - float(h1), w - float(w1));
    h1 = floorf(h);
    w1 = floorf(w)+1;
    retVal += PrRoIPoolingGetData(data, h1, w1, height, width) * PrRoIPoolingGetCoeff(h - float(h1), w - float(w1));
    h1 = floorf(h)+1;
    w1 = floorf(w)+1;
    retVal += PrRoIPoolingGetData(data, h1, w1, height, width) * PrRoIPoolingGetCoeff(h - float(h1), w - float(w1));
    return retVal;
}

__device__ static float PrRoIPoolingMatCalculation(F_DEVPTR_IN this_data, const int s_h, const int s_w, const int e_h, const int e_w,
        const float y0, const float x0, const float y1, const float x1, const int h0, const int w0)
{
    float alpha, beta, lim_alpha, lim_beta, tmp;
    float sum_out = 0;

    alpha = x0 - float(s_w);
    beta = y0 - float(s_h);
    lim_alpha = x1 - float(s_w);
    lim_beta = y1 - float(s_h);
    tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha + 0.5f * alpha * alpha)
        * (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    sum_out += PrRoIPoolingGetData(this_data, s_h, s_w, h0, w0) * tmp;

    alpha = float(e_w) - x1;
    lim_alpha = float(e_w) - x0;
    tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha + 0.5f * alpha * alpha)
        * (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    sum_out += PrRoIPoolingGetData(this_data, s_h, e_w, h0, w0) * tmp;

    alpha = x0 - float(s_w);
    beta = float(e_h) - y1;
    lim_alpha = x1 - float(s_w);
    lim_beta = float(e_h) - y0;
    tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha + 0.5f * alpha * alpha)
        * (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    sum_out += PrRoIPoolingGetData(this_data, e_h, s_w, h0, w0) * tmp;

    alpha = float(e_w) - x1;
    lim_alpha = float(e_w) - x0;
    tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha + 0.5f * alpha * alpha)
        * (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    sum_out += PrRoIPoolingGetData(this_data, e_h, e_w, h0, w0) * tmp;

    return sum_out;
}

__device__ static void PrRoIPoolingDistributeDiff(F_DEVPTR_OUT diff, const float top_diff, const int h, const int w, const int height, const int width, const float coeff)
{
    bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
    if (!overflow)
        atomicAdd(diff + h * width + w, top_diff * coeff);
}

__device__ static void PrRoIPoolingMatDistributeDiff(F_DEVPTR_OUT diff, const float top_diff, const int s_h, const int s_w, const int e_h, const int e_w,
        const float y0, const float x0, const float y1, const float x1, const int h0, const int w0)
{
    float alpha, beta, lim_alpha, lim_beta, tmp;

    alpha = x0 - float(s_w);
    beta = y0 - float(s_h);
    lim_alpha = x1 - float(s_w);
    lim_beta = y1 - float(s_h);
    tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha + 0.5f * alpha * alpha)
        * (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    PrRoIPoolingDistributeDiff(diff, top_diff, s_h, s_w, h0, w0, tmp);

    alpha = float(e_w) - x1;
    lim_alpha = float(e_w) - x0;
    tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha + 0.5f * alpha * alpha)
        * (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    PrRoIPoolingDistributeDiff(diff, top_diff, s_h, e_w, h0, w0, tmp);

    alpha = x0 - float(s_w);
    beta = float(e_h) - y1;
    lim_alpha = x1 - float(s_w);
    lim_beta = float(e_h) - y0;
    tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha + 0.5f * alpha * alpha)
        * (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    PrRoIPoolingDistributeDiff(diff, top_diff, e_h, s_w, h0, w0, tmp);

    alpha = float(e_w) - x1;
    lim_alpha = float(e_w) - x0;
    tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha + 0.5f * alpha * alpha)
        * (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
    PrRoIPoolingDistributeDiff(diff, top_diff, e_h, e_w, h0, w0, tmp);
}

__global__ void PrRoIPoolingForward(
        const int nthreads,
        F_DEVPTR_IN bottom_data,
        F_DEVPTR_IN bottom_rois,
        F_DEVPTR_OUT top_data,
        const int channels,
        const int height,
        const int width,
        const int pooled_height,
        const int pooled_width,
        const float spatial_scale) {

  CUDA_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    bottom_rois += n * 5;
    int roi_batch_ind = bottom_rois[0];

    float roi_start_w = bottom_rois[1] * spatial_scale;
    float roi_start_h = bottom_rois[2] * spatial_scale;
    float roi_end_w = bottom_rois[3] * spatial_scale;
    float roi_end_h = bottom_rois[4] * spatial_scale;

    float roi_width = max(roi_end_w - roi_start_w, ((float)0.0));
    float roi_height = max(roi_end_h - roi_start_h, ((float)0.0));
    float bin_size_h = roi_height / static_cast<float>(pooled_height);
    float bin_size_w = roi_width / static_cast<float>(pooled_width);

    const float *this_data = bottom_data + (roi_batch_ind * channels + c) * height * width;
    float *this_out = top_data + index;

    float win_start_w = roi_start_w + bin_size_w * pw;
    float win_start_h = roi_start_h + bin_size_h * ph;
    float win_end_w = win_start_w + bin_size_w;
    float win_end_h = win_start_h + bin_size_h;

    float win_size = max(float(0.0), bin_size_w * bin_size_h);
    if (win_size == 0) {
        *this_out = 0;
        return;
    }

    float sum_out = 0;

    int s_w, s_h, e_w, e_h;

    s_w = floorf(win_start_w);
    e_w = ceilf(win_end_w);
    s_h = floorf(win_start_h);
    e_h = ceilf(win_end_h);

    for (int w_iter = s_w; w_iter < e_w; ++w_iter)
        for (int h_iter = s_h; h_iter < e_h; ++h_iter)
            sum_out += PrRoIPoolingMatCalculation(this_data, h_iter, w_iter, h_iter + 1, w_iter + 1,
                max(win_start_h, float(h_iter)), max(win_start_w, float(w_iter)),
                min(win_end_h, float(h_iter) + 1.0), min(win_end_w, float(w_iter + 1.0)),
                height, width);
    *this_out = sum_out / win_size;
  }
}

__global__ void PrRoIPoolingBackward(
        const int nthreads,
        F_DEVPTR_IN bottom_rois,
        F_DEVPTR_IN top_diff,
        F_DEVPTR_OUT bottom_diff,
        const int channels,
        const int height,
        const int width,
        const int pooled_height,
        const int pooled_width,
        const float spatial_scale) {

  CUDA_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;
    bottom_rois += n * 5;

    int roi_batch_ind = bottom_rois[0];
    float roi_start_w = bottom_rois[1] * spatial_scale;
    float roi_start_h = bottom_rois[2] * spatial_scale;
    float roi_end_w = bottom_rois[3] * spatial_scale;
    float roi_end_h = bottom_rois[4] * spatial_scale;

    float roi_width = max(roi_end_w - roi_start_w, (float)0);
    float roi_height = max(roi_end_h - roi_start_h, (float)0);
    float bin_size_h = roi_height / static_cast<float>(pooled_height);
    float bin_size_w = roi_width / static_cast<float>(pooled_width);

    const float *this_out_grad = top_diff + index;
    float *this_data_grad = bottom_diff + (roi_batch_ind * channels + c) * height * width;

    float win_start_w = roi_start_w + bin_size_w * pw;
    float win_start_h = roi_start_h + bin_size_h * ph;
    float win_end_w = win_start_w + bin_size_w;
    float win_end_h = win_start_h + bin_size_h;

    float win_size = max(float(0.0), bin_size_w * bin_size_h);

    float sum_out = win_size == float(0) ? float(0) : *this_out_grad / win_size;

    int s_w, s_h, e_w, e_h;

    s_w = floorf(win_start_w);
    e_w = ceilf(win_end_w);
    s_h = floorf(win_start_h);
    e_h = ceilf(win_end_h);

    for (int w_iter = s_w; w_iter < e_w; ++w_iter)
        for (int h_iter = s_h; h_iter < e_h; ++h_iter)
            PrRoIPoolingMatDistributeDiff(this_data_grad, sum_out, h_iter, w_iter, h_iter + 1, w_iter + 1,
                max(win_start_h, float(h_iter)), max(win_start_w, float(w_iter)),
                min(win_end_h, float(h_iter) + 1.0), min(win_end_w, float(w_iter + 1.0)),
                height, width);

  }
}

__global__ void PrRoIPoolingCoorBackward(
        const int nthreads,
        F_DEVPTR_IN bottom_data,
        F_DEVPTR_IN bottom_rois,
        F_DEVPTR_IN top_data,
        F_DEVPTR_IN top_diff,
        F_DEVPTR_OUT bottom_diff,
        const int channels,
        const int height,
        const int width,
        const int pooled_height,
        const int pooled_width,
        const float spatial_scale) {

  CUDA_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;
    bottom_rois += n * 5;

    int roi_batch_ind = bottom_rois[0];
    float roi_start_w = bottom_rois[1] * spatial_scale;
    float roi_start_h = bottom_rois[2] * spatial_scale;
    float roi_end_w = bottom_rois[3] * spatial_scale;
    float roi_end_h = bottom_rois[4] * spatial_scale;

    float roi_width = max(roi_end_w - roi_start_w, (float)0);
    float roi_height = max(roi_end_h - roi_start_h, (float)0);
    float bin_size_h = roi_height / static_cast<float>(pooled_height);
    float bin_size_w = roi_width / static_cast<float>(pooled_width);

    const float *this_out_grad = top_diff + index;
    const float *this_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height * width;
    const float *this_top_data = top_data + index;
    float *this_data_grad = bottom_diff + n * 5;

    float win_start_w = roi_start_w + bin_size_w * pw;
    float win_start_h = roi_start_h + bin_size_h * ph;
    float win_end_w = win_start_w + bin_size_w;
    float win_end_h = win_start_h + bin_size_h;

    float win_size = max(float(0.0), bin_size_w * bin_size_h);

    float sum_out = win_size == float(0) ? float(0) : *this_out_grad / win_size;

    // WARNING: to be discussed
    if (sum_out == 0)
        return;

    int s_w, s_h, e_w, e_h;

    s_w = floorf(win_start_w);
    e_w = ceilf(win_end_w);
    s_h = floorf(win_start_h);
    e_h = ceilf(win_end_h);

    float g_x1_y = 0, g_x2_y = 0, g_x_y1 = 0, g_x_y2 = 0;
    for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
        g_x1_y += PrRoIPoolingSingleCoorIntegral(max(win_start_h, float(h_iter)) - h_iter,
                min(win_end_h, float(h_iter + 1)) - h_iter,
                PrRoIPoolingInterpolation(this_bottom_data, h_iter, win_start_w, height, width),
                PrRoIPoolingInterpolation(this_bottom_data, h_iter + 1, win_start_w, height, width));

        g_x2_y += PrRoIPoolingSingleCoorIntegral(max(win_start_h, float(h_iter)) - h_iter,
                min(win_end_h, float(h_iter + 1)) - h_iter,
                PrRoIPoolingInterpolation(this_bottom_data, h_iter, win_end_w, height, width),
                PrRoIPoolingInterpolation(this_bottom_data, h_iter + 1, win_end_w, height, width));
    }

    for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
        g_x_y1 += PrRoIPoolingSingleCoorIntegral(max(win_start_w, float(w_iter)) - w_iter,
                min(win_end_w, float(w_iter + 1)) - w_iter,
                PrRoIPoolingInterpolation(this_bottom_data, win_start_h, w_iter, height, width),
                PrRoIPoolingInterpolation(this_bottom_data, win_start_h, w_iter + 1, height, width));

        g_x_y2 += PrRoIPoolingSingleCoorIntegral(max(win_start_w, float(w_iter)) - w_iter,
                min(win_end_w, float(w_iter + 1)) - w_iter,
                PrRoIPoolingInterpolation(this_bottom_data, win_end_h, w_iter, height, width),
                PrRoIPoolingInterpolation(this_bottom_data, win_end_h, w_iter + 1, height, width));
    }

    float partial_x1 = -g_x1_y + (win_end_h - win_start_h) * (*this_top_data);
    float partial_y1 = -g_x_y1 + (win_end_w - win_start_w) * (*this_top_data);
    float partial_x2 = g_x2_y - (win_end_h - win_start_h) * (*this_top_data);
    float partial_y2 = g_x_y2 - (win_end_w - win_start_w) * (*this_top_data);

    partial_x1 = partial_x1 / win_size * spatial_scale;
    partial_x2 = partial_x2 / win_size * spatial_scale;
    partial_y1 = partial_y1 / win_size * spatial_scale;
    partial_y2 = partial_y2 / win_size * spatial_scale;

    // (b, x1, y1, x2, y2)

    this_data_grad[0] = 0;
    atomicAdd(this_data_grad + 1, (partial_x1 * (1.0 - float(pw) / pooled_width) + partial_x2 * (1.0 - float(pw + 1) / pooled_width))
            * (*this_out_grad));
    atomicAdd(this_data_grad + 2, (partial_y1 * (1.0 - float(ph) / pooled_height) + partial_y2 * (1.0 - float(ph + 1) / pooled_height))
            * (*this_out_grad));
    atomicAdd(this_data_grad + 3, (partial_x2 * float(pw + 1) / pooled_width + partial_x1 * float(pw) / pooled_width)
            * (*this_out_grad));
    atomicAdd(this_data_grad + 4, (partial_y2 * float(ph + 1) / pooled_height + partial_y1 * float(ph) / pooled_height)
            * (*this_out_grad));
  }
}

} /* !anonymous namespace */

#ifdef __cplusplus
extern "C" {
#endif

void PrRoIPoolingForwardGpu(
    cudaStream_t stream,
    F_DEVPTR_IN bottom_data,
    F_DEVPTR_IN bottom_rois,
    F_DEVPTR_OUT top_data,
    const int channels_, const int height_, const int width_,
    const int pooled_height_, const int pooled_width_,
    const float spatial_scale_,
    const int top_count) {

    PrRoIPoolingForward<<<CUDA_NUM_BLOCKS(top_count), CUDA_NUM_THREADS, 0, stream>>>(
        top_count, bottom_data, bottom_rois, top_data,
        channels_, height_, width_, pooled_height_, pooled_width_, spatial_scale_);

    CUDA_POST_KERNEL_CHECK;
}

void PrRoIPoolingBackwardGpu(
    cudaStream_t stream,
    F_DEVPTR_IN bottom_data,
    F_DEVPTR_IN bottom_rois,
    F_DEVPTR_IN top_data,
    F_DEVPTR_IN top_diff,
    F_DEVPTR_OUT bottom_diff,
    const int channels_, const int height_, const int width_,
    const int pooled_height_, const int pooled_width_,
    const float spatial_scale_,
    const int top_count, const int bottom_count) {

    cudaMemsetAsync(bottom_diff, 0, sizeof(float) * bottom_count, stream);
    PrRoIPoolingBackward<<<CUDA_NUM_BLOCKS(top_count), CUDA_NUM_THREADS, 0, stream>>>(
        top_count, bottom_rois, top_diff, bottom_diff,
        channels_, height_, width_, pooled_height_, pooled_width_, spatial_scale_);
    CUDA_POST_KERNEL_CHECK;
}

void PrRoIPoolingCoorBackwardGpu(
    cudaStream_t stream,
    F_DEVPTR_IN bottom_data,
    F_DEVPTR_IN bottom_rois,
    F_DEVPTR_IN top_data,
    F_DEVPTR_IN top_diff,
    F_DEVPTR_OUT bottom_diff,
    const int channels_, const int height_, const int width_,
    const int pooled_height_, const int pooled_width_,
    const float spatial_scale_,
    const int top_count, const int bottom_count) {

    cudaMemsetAsync(bottom_diff, 0, sizeof(float) * bottom_count, stream);
    PrRoIPoolingCoorBackward<<<CUDA_NUM_BLOCKS(top_count), CUDA_NUM_THREADS, 0, stream>>>(
        top_count, bottom_data, bottom_rois, top_data, top_diff, bottom_diff,
        channels_, height_, width_, pooled_height_, pooled_width_, spatial_scale_);
    CUDA_POST_KERNEL_CHECK;
}

} /* !extern "C" */