Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# File : test_prroi_pooling2d.py | |
# Author : Jiayuan Mao | |
# Email : maojiayuan@gmail.com | |
# Date : 18/02/2018 | |
# | |
# This file is part of Jacinle. | |
import unittest | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from jactorch.utils.unittest import TorchTestCase | |
from prroi_pool import PrRoIPool2D | |
class TestPrRoIPool2D(TorchTestCase): | |
def test_forward(self): | |
pool = PrRoIPool2D(7, 7, spatial_scale=0.5) | |
features = torch.rand((4, 16, 24, 32)).cuda() | |
rois = torch.tensor([ | |
[0, 0, 0, 14, 14], | |
[1, 14, 14, 28, 28], | |
]).float().cuda() | |
out = pool(features, rois) | |
out_gold = F.avg_pool2d(features, kernel_size=2, stride=1) | |
self.assertTensorClose(out, torch.stack(( | |
out_gold[0, :, :7, :7], | |
out_gold[1, :, 7:14, 7:14], | |
), dim=0)) | |
def test_backward_shapeonly(self): | |
pool = PrRoIPool2D(2, 2, spatial_scale=0.5) | |
features = torch.rand((4, 2, 24, 32)).cuda() | |
rois = torch.tensor([ | |
[0, 0, 0, 4, 4], | |
[1, 14, 14, 18, 18], | |
]).float().cuda() | |
features.requires_grad = rois.requires_grad = True | |
out = pool(features, rois) | |
loss = out.sum() | |
loss.backward() | |
self.assertTupleEqual(features.size(), features.grad.size()) | |
self.assertTupleEqual(rois.size(), rois.grad.size()) | |
if __name__ == '__main__': | |
unittest.main() | |