from fastai.vision.all import * import gradio as gr learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img_fnm): img = PILImage.create(img_fnm) pred, pred_idx, probs = learn.predict(img) return {label: float(prob) for label, prob in zip(labels, probs)} title = "Moody-nana Classifier" description = "Classifies an image as either happy, angry, or banana." examples = [ "examples/angry-banana.jpg", "examples/angry.jpg", "examples/happy.jpg", "examples/banana.jpg" ] interpretation = "default" enable_queue = True intf = gr.Interface( fn=predict, inputs=gr.components.Image(shape=(512, 512)), outputs=gr.components.Label(), title=title, description=description, examples=examples, interpretation=interpretation ) intf.launch()