Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,904 Bytes
13531f3 5d0bdbb 13531f3 bda2da7 13531f3 bda2da7 705ee8a 13531f3 3e62d8e d36a220 c266464 3e62d8e 13531f3 3dda4b2 8c965b1 d36a220 8c965b1 e34a196 8c965b1 21a0cd5 8c965b1 3dda4b2 d36a220 21a0cd5 3e62d8e 13531f3 b7c8482 13531f3 b7c8482 13531f3 b7c8482 13531f3 b7c8482 13531f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from pathlib import Path
import gradio as gr
import spaces
import torch
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from PIL import Image
import pillow_heif
from refiners.fluxion.utils import manual_seed
from refiners.foundationals.latent_diffusion import Solver, solvers
from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
TITLE = """
<center>
<h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;">
Image Enhancer Powered By Refiners
</h1>
<div style="display: flex; align-items: center; justify-content: center; gap: 0.5rem; margin-bottom: 0.5rem; font-size: 1.25rem; flex-wrap: wrap;">
<a href="https://blog.finegrain.ai/posts/reproducing-clarity-upscaler/" target="_blank">[Blog Post]</a>
<a href="https://github.com/finegrain-ai/refiners" target="_blank">[Refiners]</a>
<a href="https://finegrain.ai/" target="_blank">[Finegrain]</a>
<a href="https://huggingface.co/spaces/finegrain/finegrain-object-eraser" target="_blank">[Finegrain Object Eraser]</a>
</div>
<p>
Turn low resolution images into high resolution versions with added generated details (your image will be modified).
</p>
<p>
This space is powered by Refiners, our open source micro-framework for simple foundation model adaptation.
If you enjoyed it, please consider starring Refiners on GitHub!
</p>
<a href="https://github.com/finegrain-ai/refiners" target="_blank">
<img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" />
</a>
</center>
"""
CHECKPOINTS = ESRGANUpscalerCheckpoints(
unet=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
filename="model.safetensors",
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
)
),
clip_text_encoder=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
filename="model.safetensors",
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
)
),
lda=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
filename="model.safetensors",
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
)
),
controlnet_tile=Path(
hf_hub_download(
repo_id="refiners/controlnet.sd1_5.tile",
filename="model.safetensors",
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
)
),
esrgan=Path(
hf_hub_download(
repo_id="philz1337x/upscaler",
filename="4x-UltraSharp.pth",
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
)
),
negative_embedding=Path(
hf_hub_download(
repo_id="philz1337x/embeddings",
filename="JuggernautNegative-neg.pt",
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
)
),
negative_embedding_key="string_to_param.*",
loras={
"more_details": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="more_details.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
"sdxl_render": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="SDXLrender_v2.0.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
},
)
LORA_SCALES = {
"more_details": 0.5,
"sdxl_render": 1.0,
}
# initialize the enhancer, on the cpu
DEVICE_CPU = torch.device("cpu")
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE)
# "move" the enhancer to the gpu, this is handled by Zero GPU
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enhancer.to(device=DEVICE, dtype=DTYPE)
@spaces.GPU
def process(
input_image: Image.Image,
prompt: str = "masterpiece, best quality, highres",
negative_prompt: str = "worst quality, low quality, normal quality",
seed: int = 42,
upscale_factor: int = 2,
controlnet_scale: float = 0.6,
controlnet_decay: float = 1.0,
condition_scale: int = 6,
tile_width: int = 112,
tile_height: int = 144,
denoise_strength: float = 0.35,
num_inference_steps: int = 18,
solver: str = "DDIM",
) -> tuple[Image.Image, Image.Image]:
manual_seed(seed)
solver_type: type[Solver] = getattr(solvers, solver)
enhanced_image = enhancer.upscale(
image=input_image,
prompt=prompt,
negative_prompt=negative_prompt,
upscale_factor=upscale_factor,
controlnet_scale=controlnet_scale,
controlnet_scale_decay=controlnet_decay,
condition_scale=condition_scale,
tile_size=(tile_height, tile_width),
denoise_strength=denoise_strength,
num_inference_steps=num_inference_steps,
loras_scale=LORA_SCALES,
solver_type=solver_type,
)
return (input_image, enhanced_image)
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
run_button = gr.ClearButton(components=None, value="Enhance Image")
with gr.Column():
output_slider = ImageSlider(label="Before / After")
run_button.add(output_slider)
with gr.Accordion("Advanced Options", open=False):
prompt = gr.Textbox(
label="Prompt",
placeholder="masterpiece, best quality, highres",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="worst quality, low quality, normal quality",
)
seed = gr.Slider(
minimum=0,
maximum=10_000,
value=42,
step=1,
label="Seed",
)
upscale_factor = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=0.2,
label="Upscale Factor",
)
controlnet_scale = gr.Slider(
minimum=0,
maximum=1.5,
value=0.6,
step=0.1,
label="ControlNet Scale",
)
controlnet_decay = gr.Slider(
minimum=0.5,
maximum=1,
value=1.0,
step=0.025,
label="ControlNet Scale Decay",
)
condition_scale = gr.Slider(
minimum=2,
maximum=20,
value=6,
step=1,
label="Condition Scale",
)
tile_width = gr.Slider(
minimum=64,
maximum=200,
value=112,
step=1,
label="Latent Tile Width",
)
tile_height = gr.Slider(
minimum=64,
maximum=200,
value=144,
step=1,
label="Latent Tile Height",
)
denoise_strength = gr.Slider(
minimum=0,
maximum=1,
value=0.35,
step=0.1,
label="Denoise Strength",
)
num_inference_steps = gr.Slider(
minimum=1,
maximum=30,
value=18,
step=1,
label="Number of Inference Steps",
)
solver = gr.Radio(
choices=["DDIM", "DPMSolver"],
value="DDIM",
label="Solver",
)
run_button.click(
fn=process,
inputs=[
input_image,
prompt,
negative_prompt,
seed,
upscale_factor,
controlnet_scale,
controlnet_decay,
condition_scale,
tile_width,
tile_height,
denoise_strength,
num_inference_steps,
solver,
],
outputs=output_slider,
)
gr.Examples(
examples=[
"examples/kara-eads-L7EwHkq1B2s-unsplash.jpg",
"examples/clarity_bird.webp",
"examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg",
"examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg",
"examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg",
"examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg",
"examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg",
"examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg",
"examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg",
],
inputs=[input_image],
outputs=output_slider,
fn=process,
cache_examples="lazy",
run_on_click=False,
)
demo.launch(share=False)
|