Spaces:
Sleeping
Sleeping
File size: 1,062 Bytes
956bf58 72a1491 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 956bf58 63fd6b3 f779052 7c92a30 f779052 956bf58 63fd6b3 065c8a4 f779052 065c8a4 956bf58 63fd6b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import os
from joblib import load
from skimage.transform import resize
from skimage.color import rgb2gray
import numpy as np
classifier = load('knn_classifier.joblib')
def predict_image(image):
if len(image.shape) == 3:
image = rgb2gray(image)
image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento
image = (image * 255).astype(np.uint8)
#image = np.array(image, dtype = np.float64)
image = np.invert(image)
image = image.reshape(1,-1)
prediction = classifier.predict(image)
return prediction[0]
imagenes_muestra =[
[os.path.join(os.path.abspath(''), "0.png")],
[os.path.join(os.path.abspath(''), "5.png")],
[os.path.join(os.path.abspath(''), "7.png")],
]
iface = gr.Interface(
fn = predict_image,
inputs = gr.Image(label = "Sube una imagen de un numero o Selecciona una de los ejemplos"),#"image",
outputs = gr.Textbox(label = "El resultado es:"),#"text",
examples = imagenes_muestra
label = "esta es una prueba de titulo"
)
iface.launch(debug=True) |