Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from joblib import load | |
from skimage.transform import resize | |
from skimage.color import rgb2gray | |
import numpy as np | |
classifier = load('knn_classifier.joblib') | |
def predict_image(image): | |
if len(image.shape) == 3: | |
image = rgb2gray(image) | |
image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento | |
image = (image * 255).astype(np.uint8) | |
#image = np.array(image, dtype = np.float64) | |
image = np.invert(image) | |
image = image.reshape(1,-1) | |
prediction = classifier.predict(image) | |
return prediction[0] | |
imagenes_muestra =[ | |
[os.path.join(os.path.abspath(''), "0.png")], | |
[os.path.join(os.path.abspath(''), "5.png")], | |
[os.path.join(os.path.abspath(''), "7.png")], | |
] | |
iface = gr.Interface( | |
fn = predict_image, | |
inputs = gr.Image(label = "Sube una imagen de un numero o Selecciona una de los ejemplos"),#"image", | |
outputs = gr.Textbox(label = "El resultado es:"),#"text", | |
examples = imagenes_muestra, | |
title = "Clasificador de numeros mediante método KNN supervisado", | |
description = "El método K Nearest Neighbors (KNN) es un algoritmo de aprendizaje automático simple y ampliamente utilizado para clasificación y regresión.El método presentado se utiliza para clasificar imágenes de dígitos escritos a mano" | |
) | |
iface.launch(debug=True) |