knnExample / app.py
fireedman's picture
Update app.py
6507d0c verified
raw
history blame
1.06 kB
import gradio as gr
import os
from joblib import load
from skimage.transform import resize
from skimage.color import rgb2gray
import numpy as np
classifier = load('knn_classifier.joblib')
def predict_image(image):
if len(image.shape) == 3:
image = rgb2gray(image)
image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento
image = (image * 255).astype(np.uint8)
#image = np.array(image, dtype = np.float64)
image = np.invert(image)
image = image.reshape(1,-1)
prediction = classifier.predict(image)
return prediction[0]
imagenes_muestra =[
[os.path.join(os.path.abspath(''), "0.png")],
[os.path.join(os.path.abspath(''), "5.png")],
[os.path.join(os.path.abspath(''), "7.png")],
]
iface = gr.Interface(
fn = predict_image,
inputs = gr.Image(label = "Sube una imagen de un numero o Selecciona una de los ejemplos"),#"image",
outputs = gr.Textbox(label = "El resultado es:"),#"text",
examples = imagenes_muestra,
label = "esta es una prueba de titulo"
)
iface.launch(debug=True)