import gradio as gr import os from joblib import load from skimage.transform import resize from skimage.color import rgb2gray import numpy as np classifier = load('knn_classifier.joblib') def predict_image(image): if len(image.shape) == 3: image = rgb2gray(image) image = resize(image, (8,8),anti_aliasing=True, mode='reflect') #Redimensionamiento image = (image * 255).astype(np.uint8) #image = np.array(image, dtype = np.float64) image = np.invert(image) image = image.reshape(1,-1) prediction = classifier.predict(image) return prediction[0] imagenes_muestra =[ [os.path.join(os.path.abspath(''), "0.png")], [os.path.join(os.path.abspath(''), "5.png")], [os.path.join(os.path.abspath(''), "7.png")], ] iface = gr.Interface( fn = predict_image, inputs = gr.Image(label = "Sube una imagen de un numero o Selecciona una de los ejemplos"),#"image", outputs = gr.Textbox(label = "El resultado es:"),#"text", examples = imagenes_muestra, title = "Clasificador de numeros mediante método KNN supervisado", description = "El método K Nearest Neighbors (KNN) es un algoritmo de aprendizaje automático simple y ampliamente utilizado para clasificación y regresión.El método presentado se utiliza para clasificar imágenes de dígitos escritos a mano" ) iface.launch(debug=True)