Qifan Zhang commited on
Commit
e691ea0
·
1 Parent(s): 8f29b1d

fear: add log

Browse files
Files changed (3) hide show
  1. app.py +11 -0
  2. requirements.txt +2 -0
  3. utils/models.py +4 -4
app.py CHANGED
@@ -7,6 +7,7 @@ import pandas as pd
7
 
8
  from utils import pipeline
9
  from utils.models import list_models
 
10
 
11
 
12
  def read_data(filepath: str) -> Optional[pd.DataFrame]:
@@ -27,6 +28,7 @@ def process(
27
  file=None,
28
  ) -> (None, pd.DataFrame, str):
29
  try:
 
30
  # load file
31
  if file:
32
  df = read_data(file.name)
@@ -51,6 +53,15 @@ def process(
51
  return None, df.iloc[:10], path
52
 
53
  except:
 
 
 
 
 
 
 
 
 
54
  return {'Info': 'Something wrong', 'Error': traceback.format_exc()}, None, None
55
 
56
 
 
7
 
8
  from utils import pipeline
9
  from utils.models import list_models
10
+ from loguru import logger
11
 
12
 
13
  def read_data(filepath: str) -> Optional[pd.DataFrame]:
 
28
  file=None,
29
  ) -> (None, pd.DataFrame, str):
30
  try:
31
+ logger.info(f'Processing {task_name} with {model_name} and {pooling}')
32
  # load file
33
  if file:
34
  df = read_data(file.name)
 
53
  return None, df.iloc[:10], path
54
 
55
  except:
56
+ error = traceback.format_exc()
57
+ logger.warning({
58
+ 'error': error,
59
+ 'task_name': task_name,
60
+ 'model_name': model_name,
61
+ 'pooling': pooling,
62
+ 'text': text,
63
+ 'file': file,
64
+ })
65
  return {'Info': 'Something wrong', 'Error': traceback.format_exc()}, None, None
66
 
67
 
requirements.txt CHANGED
@@ -8,3 +8,5 @@ sentence-transformers
8
  openpyxl
9
  tabulate
10
  gradio
 
 
 
8
  openpyxl
9
  tabulate
10
  gradio
11
+ loguru
12
+
utils/models.py CHANGED
@@ -1,6 +1,7 @@
1
  from functools import lru_cache
2
 
3
  import torch
 
4
  from sentence_transformers import SentenceTransformer
5
  from transformers import AutoTokenizer, AutoModel
6
 
@@ -19,10 +20,8 @@ list_models = [
19
 
20
  class SBert:
21
  def __init__(self, path):
22
- print(f'Loading model from {path} ...')
23
  self.model = SentenceTransformer(path, device=DEVICE)
24
- # from pprint import pprint
25
- # pprint(self.model.__dict__)
26
 
27
  @lru_cache(maxsize=10000)
28
  def __call__(self, x) -> torch.Tensor:
@@ -34,8 +33,9 @@ class ModelWithPooling:
34
  def __init__(self, path):
35
  self.tokenizer = AutoTokenizer.from_pretrained(path)
36
  self.model = AutoModel.from_pretrained(path)
 
37
 
38
- @lru_cache(maxsize=10000)
39
  @torch.no_grad()
40
  def __call__(self, text: str, pooling='mean'):
41
  inputs = self.tokenizer(text, padding=True, truncation=True, return_tensors="pt")
 
1
  from functools import lru_cache
2
 
3
  import torch
4
+ from loguru import logger
5
  from sentence_transformers import SentenceTransformer
6
  from transformers import AutoTokenizer, AutoModel
7
 
 
20
 
21
  class SBert:
22
  def __init__(self, path):
 
23
  self.model = SentenceTransformer(path, device=DEVICE)
24
+ logger.info(f'Load {self.__class__} from {path} ...')
 
25
 
26
  @lru_cache(maxsize=10000)
27
  def __call__(self, x) -> torch.Tensor:
 
33
  def __init__(self, path):
34
  self.tokenizer = AutoTokenizer.from_pretrained(path)
35
  self.model = AutoModel.from_pretrained(path)
36
+ logger.info(f'Load {self.__class__} from {path} ...')
37
 
38
+ @lru_cache(maxsize=100)
39
  @torch.no_grad()
40
  def __call__(self, text: str, pooling='mean'):
41
  inputs = self.tokenizer(text, padding=True, truncation=True, return_tensors="pt")