File size: 5,072 Bytes
6632c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from flask import Flask, request, Response
from io import BytesIO
import torch
from av import open as avopen
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
from scipy.io import wavfile
# Flask Init
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "JA":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
with torch.no_grad():
x_tst = phones.to(dev).unsqueeze(0)
tones = tones.to(dev).unsqueeze(0)
lang_ids = lang_ids.to(dev).unsqueeze(0)
bert = bert.to(dev).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev)
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
return audio
def replace_punctuation(text, i=2):
punctuation = ",。?!"
for char in punctuation:
text = text.replace(char, char * i)
return text
def wav2(i, o, format):
inp = avopen(i, "rb")
out = avopen(o, "wb", format=format)
if format == "ogg":
format = "libvorbis"
ostream = out.add_stream(format)
for frame in inp.decode(audio=0):
for p in ostream.encode(frame):
out.mux(p)
for p in ostream.encode(None):
out.mux(p)
out.close()
inp.close()
# Load Generator
hps = utils.get_hparams_from_file("./configs/config.json")
dev = "cuda"
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(dev)
_ = net_g.eval()
_ = utils.load_checkpoint("logs/G_649000.pth", net_g, None, skip_optimizer=True)
@app.route("/")
def main():
try:
speaker = request.args.get("speaker")
text = request.args.get("text").replace("/n", "")
sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
noise = float(request.args.get("noise", 0.5))
noisew = float(request.args.get("noisew", 0.6))
length = float(request.args.get("length", 1.2))
language = request.args.get("language")
if length >= 2:
return "Too big length"
if len(text) >= 250:
return "Too long text"
fmt = request.args.get("format", "wav")
if None in (speaker, text):
return "Missing Parameter"
if fmt not in ("mp3", "wav", "ogg"):
return "Invalid Format"
if language not in ("JA", "ZH"):
return "Invalid language"
except:
return "Invalid Parameter"
with torch.no_grad():
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=speaker,
language=language,
)
with BytesIO() as wav:
wavfile.write(wav, hps.data.sampling_rate, audio)
torch.cuda.empty_cache()
if fmt == "wav":
return Response(wav.getvalue(), mimetype="audio/wav")
wav.seek(0, 0)
with BytesIO() as ofp:
wav2(wav, ofp, fmt)
return Response(
ofp.getvalue(), mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg"
)
|