firsk commited on
Commit
d85acc0
1 Parent(s): e634123

Upload 42 files

Browse files
Files changed (42) hide show
  1. bert/bert-base-japanese-v3/README.md +53 -0
  2. bert/bert-base-japanese-v3/config.json +19 -0
  3. bert/bert-base-japanese-v3/vocab.txt +0 -0
  4. bert/chinese-roberta-wwm-ext-large/.gitattributes +9 -0
  5. bert/chinese-roberta-wwm-ext-large/.gitignore +1 -0
  6. bert/chinese-roberta-wwm-ext-large/README.md +57 -0
  7. bert/chinese-roberta-wwm-ext-large/added_tokens.json +1 -0
  8. bert/chinese-roberta-wwm-ext-large/config.json +28 -0
  9. bert/chinese-roberta-wwm-ext-large/special_tokens_map.json +1 -0
  10. bert/chinese-roberta-wwm-ext-large/tokenizer.json +0 -0
  11. bert/chinese-roberta-wwm-ext-large/tokenizer_config.json +1 -0
  12. bert/chinese-roberta-wwm-ext-large/vocab.txt +0 -0
  13. configs/config.json +95 -0
  14. filelists/otto.list.cleaned +0 -0
  15. filelists/train.list +0 -0
  16. filelists/val.list +4 -0
  17. monotonic_align/__init__.py +16 -0
  18. monotonic_align/__pycache__/__init__.cpython-38.pyc +0 -0
  19. monotonic_align/__pycache__/core.cpython-38.pyc +0 -0
  20. monotonic_align/core.py +46 -0
  21. text/__init__.py +28 -0
  22. text/__pycache__/__init__.cpython-38.pyc +0 -0
  23. text/__pycache__/chinese.cpython-38.pyc +0 -0
  24. text/__pycache__/chinese_bert.cpython-38.pyc +0 -0
  25. text/__pycache__/cleaner.cpython-38.pyc +0 -0
  26. text/__pycache__/english_bert_mock.cpython-38.pyc +0 -0
  27. text/__pycache__/japanese.cpython-38.pyc +0 -0
  28. text/__pycache__/japanese_bert.cpython-38.pyc +0 -0
  29. text/__pycache__/symbols.cpython-38.pyc +0 -0
  30. text/__pycache__/tone_sandhi.cpython-38.pyc +0 -0
  31. text/chinese.py +198 -0
  32. text/chinese_bert.py +100 -0
  33. text/cleaner.py +28 -0
  34. text/cmudict.rep +0 -0
  35. text/cmudict_cache.pickle +3 -0
  36. text/english.py +214 -0
  37. text/english_bert_mock.py +5 -0
  38. text/japanese.py +586 -0
  39. text/japanese_bert.py +38 -0
  40. text/opencpop-strict.txt +429 -0
  41. text/symbols.py +187 -0
  42. text/tone_sandhi.py +769 -0
bert/bert-base-japanese-v3/README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cc100
5
+ - wikipedia
6
+ language:
7
+ - ja
8
+ widget:
9
+ - text: 東北大学で[MASK]の研究をしています。
10
+ ---
11
+
12
+ # BERT base Japanese (unidic-lite with whole word masking, CC-100 and jawiki-20230102)
13
+
14
+ This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.
15
+
16
+ This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization.
17
+ Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective.
18
+
19
+ The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/).
20
+
21
+ ## Model architecture
22
+
23
+ The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
24
+
25
+ ## Training Data
26
+
27
+ The model is trained on the Japanese portion of [CC-100 dataset](https://data.statmt.org/cc-100/) and the Japanese version of Wikipedia.
28
+ For Wikipedia, we generated a text corpus from the [Wikipedia Cirrussearch dump file](https://dumps.wikimedia.org/other/cirrussearch/) as of January 2, 2023.
29
+ The corpus files generated from CC-100 and Wikipedia are 74.3GB and 4.9GB in size and consist of approximately 392M and 34M sentences, respectively.
30
+
31
+ For the purpose of splitting texts into sentences, we used [fugashi](https://github.com/polm/fugashi) with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary (v0.0.7).
32
+
33
+ ## Tokenization
34
+
35
+ The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm.
36
+ The vocabulary size is 32768.
37
+
38
+ We used [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://github.com/polm/unidic-lite) packages for the tokenization.
39
+
40
+ ## Training
41
+
42
+ We trained the model first on the CC-100 corpus for 1M steps and then on the Wikipedia corpus for another 1M steps.
43
+ For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.
44
+
45
+ For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/).
46
+
47
+ ## Licenses
48
+
49
+ The pretrained models are distributed under the Apache License 2.0.
50
+
51
+ ## Acknowledgments
52
+
53
+ This model is trained with Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/) program.
bert/bert-base-japanese-v3/config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForPreTraining"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 32768
19
+ }
bert/bert-base-japanese-v3/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
bert/chinese-roberta-wwm-ext-large/.gitattributes ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
bert/chinese-roberta-wwm-ext-large/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *.bin
bert/chinese-roberta-wwm-ext-large/README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ tags:
5
+ - bert
6
+ license: "apache-2.0"
7
+ ---
8
+
9
+ # Please use 'Bert' related functions to load this model!
10
+
11
+ ## Chinese BERT with Whole Word Masking
12
+ For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
13
+
14
+ **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
15
+ Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
16
+
17
+ This repository is developed based on:https://github.com/google-research/bert
18
+
19
+ You may also interested in,
20
+ - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
21
+ - Chinese MacBERT: https://github.com/ymcui/MacBERT
22
+ - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
23
+ - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
24
+ - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
25
+
26
+ More resources by HFL: https://github.com/ymcui/HFL-Anthology
27
+
28
+ ## Citation
29
+ If you find the technical report or resource is useful, please cite the following technical report in your paper.
30
+ - Primary: https://arxiv.org/abs/2004.13922
31
+ ```
32
+ @inproceedings{cui-etal-2020-revisiting,
33
+ title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
34
+ author = "Cui, Yiming and
35
+ Che, Wanxiang and
36
+ Liu, Ting and
37
+ Qin, Bing and
38
+ Wang, Shijin and
39
+ Hu, Guoping",
40
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
41
+ month = nov,
42
+ year = "2020",
43
+ address = "Online",
44
+ publisher = "Association for Computational Linguistics",
45
+ url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
46
+ pages = "657--668",
47
+ }
48
+ ```
49
+ - Secondary: https://arxiv.org/abs/1906.08101
50
+ ```
51
+ @article{chinese-bert-wwm,
52
+ title={Pre-Training with Whole Word Masking for Chinese BERT},
53
+ author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
54
+ journal={arXiv preprint arXiv:1906.08101},
55
+ year={2019}
56
+ }
57
+ ```
bert/chinese-roberta-wwm-ext-large/added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
bert/chinese-roberta-wwm-ext-large/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "directionality": "bidi",
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "type_vocab_size": 2,
27
+ "vocab_size": 21128
28
+ }
bert/chinese-roberta-wwm-ext-large/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
bert/chinese-roberta-wwm-ext-large/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
bert/chinese-roberta-wwm-ext-large/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"init_inputs": []}
bert/chinese-roberta-wwm-ext-large/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
configs/config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0003,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 8,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "otto": 0
39
+ }
40
+ },
41
+ "model": {
42
+ "use_spk_conditioned_encoder": true,
43
+ "use_noise_scaled_mas": true,
44
+ "use_mel_posterior_encoder": false,
45
+ "use_duration_discriminator": true,
46
+ "inter_channels": 192,
47
+ "hidden_channels": 192,
48
+ "filter_channels": 768,
49
+ "n_heads": 2,
50
+ "n_layers": 6,
51
+ "kernel_size": 3,
52
+ "p_dropout": 0.1,
53
+ "resblock": "1",
54
+ "resblock_kernel_sizes": [
55
+ 3,
56
+ 7,
57
+ 11
58
+ ],
59
+ "resblock_dilation_sizes": [
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ],
70
+ [
71
+ 1,
72
+ 3,
73
+ 5
74
+ ]
75
+ ],
76
+ "upsample_rates": [
77
+ 8,
78
+ 8,
79
+ 2,
80
+ 2,
81
+ 2
82
+ ],
83
+ "upsample_initial_channel": 512,
84
+ "upsample_kernel_sizes": [
85
+ 16,
86
+ 16,
87
+ 8,
88
+ 2,
89
+ 2
90
+ ],
91
+ "n_layers_q": 3,
92
+ "use_spectral_norm": false,
93
+ "gin_channels": 256
94
+ }
95
+ }
filelists/otto.list.cleaned ADDED
The diff for this file is too large to render. See raw diff
 
filelists/train.list ADDED
The diff for this file is too large to render. See raw diff
 
filelists/val.list ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ./dataset/otto/otto_557.wav|otto|ZH|游戏的时候你也可能是这个造性但是你在看我的时候你觉得哎呀你不应该这样你不可以你要是骂人了那我就得骂你因为你骂别人了呀你老是给自己弄一个师出有名的|_ y ou x i d e sh ir h ou n i y E k e n eng sh ir zh e g e z ao x ing d an sh ir n i z ai k an w o d e sh ir h ou n i j ve d e AA ai y a n i b u y ing g ai zh e y ang n i b u k e y i n i y ao sh ir m a r en l e n a w o j iu d e m a n i y in w ei n i m a b ie r en l e y a n i l ao sh ir g ei z i0 j i n ong y i g e sh ir ch u y ou m ing d e _|0 2 2 4 4 5 5 2 2 5 5 2 2 3 3 3 3 2 2 4 4 4 4 5 5 4 4 4 4 4 4 4 4 3 3 4 4 4 4 3 3 5 5 2 2 5 5 3 3 2 2 5 5 1 1 1 1 3 3 4 4 1 1 1 1 4 4 4 4 3 3 4 4 2 2 3 3 3 3 4 4 4 4 4 4 2 2 5 5 4 4 3 3 4 4 5 5 4 4 3 3 1 1 4 4 3 3 4 4 2 2 2 2 5 5 5 5 2 2 3 3 4 4 3 3 4 4 3 3 4 4 2 2 5 5 1 1 1 1 3 3 2 2 5 5 0|1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
2
+ ./dataset/otto/otto_81.wav|otto|ZH|艾克去下路一波的三打九百经济场我有什么办法我他妈逼有什么办法操你妈|_ AA ai k e q v x ia l u y i b o d e s an d a j iu b ai j ing j i ch ang w o y ou sh en m e b an f a w o t a m a b i y ou sh en m e b an f a c ao n i m a _|0 4 4 4 4 4 4 4 4 4 4 4 4 1 1 5 5 1 1 3 3 2 2 3 3 1 1 4 4 3 3 2 2 3 3 2 2 5 5 4 4 3 3 3 3 1 1 1 1 1 1 3 3 2 2 5 5 4 4 3 3 1 1 3 3 1 1 0|1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
3
+ ./dataset/otto/otto_94.wav|otto|ZH|我已经尽我打野所有的力量所有这把游戏能做的任何事情了|_ w o y i j ing j in w o d a y E s uo y ou d e l i l iang s uo y ou zh e b a y ou x i n eng z uo d e r en h e sh ir q ing l e _|0 2 2 3 3 1 1 2 2 3 3 2 2 3 3 2 2 3 3 5 5 4 4 4 4 2 2 3 3 4 4 3 3 2 2 4 4 2 2 4 4 5 5 4 4 2 2 4 4 5 5 5 5 0|1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
4
+ ./dataset/otto/otto_225.wav|otto|ZH|那我给你抽不是理所应当的我难道非得说我得收一千礼物我再给你抽一千|_ n a w o g ei n i ch ou b u sh ir l i s uo y ing d ang d e w o n an d ao f ei d ei sh uo w o d e sh ou y i q ian l i w u w o z ai g ei n i ch ou y i q ian _|0 4 4 3 3 2 2 3 3 1 1 2 2 4 4 2 2 3 3 1 1 1 1 5 5 3 3 2 2 4 4 1 1 5 5 1 1 3 3 2 2 1 1 1 1 1 1 3 3 4 4 3 3 4 4 2 2 3 3 1 1 1 1 1 1 0|1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
monotonic_align/__init__.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy import zeros, int32, float32
2
+ from torch import from_numpy
3
+
4
+ from .core import maximum_path_jit
5
+
6
+
7
+ def maximum_path(neg_cent, mask):
8
+ device = neg_cent.device
9
+ dtype = neg_cent.dtype
10
+ neg_cent = neg_cent.data.cpu().numpy().astype(float32)
11
+ path = zeros(neg_cent.shape, dtype=int32)
12
+
13
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
14
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
15
+ maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
16
+ return from_numpy(path).to(device=device, dtype=dtype)
monotonic_align/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (733 Bytes). View file
 
monotonic_align/__pycache__/core.cpython-38.pyc ADDED
Binary file (988 Bytes). View file
 
monotonic_align/core.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numba
2
+
3
+
4
+ @numba.jit(
5
+ numba.void(
6
+ numba.int32[:, :, ::1],
7
+ numba.float32[:, :, ::1],
8
+ numba.int32[::1],
9
+ numba.int32[::1],
10
+ ),
11
+ nopython=True,
12
+ nogil=True,
13
+ )
14
+ def maximum_path_jit(paths, values, t_ys, t_xs):
15
+ b = paths.shape[0]
16
+ max_neg_val = -1e9
17
+ for i in range(int(b)):
18
+ path = paths[i]
19
+ value = values[i]
20
+ t_y = t_ys[i]
21
+ t_x = t_xs[i]
22
+
23
+ v_prev = v_cur = 0.0
24
+ index = t_x - 1
25
+
26
+ for y in range(t_y):
27
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
28
+ if x == y:
29
+ v_cur = max_neg_val
30
+ else:
31
+ v_cur = value[y - 1, x]
32
+ if x == 0:
33
+ if y == 0:
34
+ v_prev = 0.0
35
+ else:
36
+ v_prev = max_neg_val
37
+ else:
38
+ v_prev = value[y - 1, x - 1]
39
+ value[y, x] += max(v_prev, v_cur)
40
+
41
+ for y in range(t_y - 1, -1, -1):
42
+ path[y, index] = 1
43
+ if index != 0 and (
44
+ index == y or value[y - 1, index] < value[y - 1, index - 1]
45
+ ):
46
+ index = index - 1
text/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from text.symbols import *
2
+
3
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
4
+
5
+
6
+ def cleaned_text_to_sequence(cleaned_text, tones, language):
7
+ """Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
8
+ Args:
9
+ text: string to convert to a sequence
10
+ Returns:
11
+ List of integers corresponding to the symbols in the text
12
+ """
13
+ phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
14
+ tone_start = language_tone_start_map[language]
15
+ tones = [i + tone_start for i in tones]
16
+ lang_id = language_id_map[language]
17
+ lang_ids = [lang_id for i in phones]
18
+ return phones, tones, lang_ids
19
+
20
+
21
+ def get_bert(norm_text, word2ph, language, device):
22
+ from .chinese_bert import get_bert_feature as zh_bert
23
+ from .english_bert_mock import get_bert_feature as en_bert
24
+ from .japanese_bert import get_bert_feature as jp_bert
25
+
26
+ lang_bert_func_map = {"ZH": zh_bert, "EN": en_bert, "JP": jp_bert}
27
+ bert = lang_bert_func_map[language](norm_text, word2ph, device)
28
+ return bert
text/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (1.58 kB). View file
 
text/__pycache__/chinese.cpython-38.pyc ADDED
Binary file (4.52 kB). View file
 
text/__pycache__/chinese_bert.cpython-38.pyc ADDED
Binary file (1.64 kB). View file
 
text/__pycache__/cleaner.cpython-38.pyc ADDED
Binary file (953 Bytes). View file
 
text/__pycache__/english_bert_mock.cpython-38.pyc ADDED
Binary file (319 Bytes). View file
 
text/__pycache__/japanese.cpython-38.pyc ADDED
Binary file (14 kB). View file
 
text/__pycache__/japanese_bert.cpython-38.pyc ADDED
Binary file (1.17 kB). View file
 
text/__pycache__/symbols.cpython-38.pyc ADDED
Binary file (1.84 kB). View file
 
text/__pycache__/tone_sandhi.cpython-38.pyc ADDED
Binary file (15.6 kB). View file
 
text/chinese.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+
4
+ import cn2an
5
+ from pypinyin import lazy_pinyin, Style
6
+
7
+ from text.symbols import punctuation
8
+ from text.tone_sandhi import ToneSandhi
9
+
10
+ current_file_path = os.path.dirname(__file__)
11
+ pinyin_to_symbol_map = {
12
+ line.split("\t")[0]: line.strip().split("\t")[1]
13
+ for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
14
+ }
15
+
16
+ import jieba.posseg as psg
17
+
18
+
19
+ rep_map = {
20
+ ":": ",",
21
+ ";": ",",
22
+ ",": ",",
23
+ "。": ".",
24
+ "!": "!",
25
+ "?": "?",
26
+ "\n": ".",
27
+ "·": ",",
28
+ "、": ",",
29
+ "...": "…",
30
+ "$": ".",
31
+ "“": "'",
32
+ "”": "'",
33
+ "‘": "'",
34
+ "’": "'",
35
+ "(": "'",
36
+ ")": "'",
37
+ "(": "'",
38
+ ")": "'",
39
+ "《": "'",
40
+ "》": "'",
41
+ "【": "'",
42
+ "】": "'",
43
+ "[": "'",
44
+ "]": "'",
45
+ "—": "-",
46
+ "~": "-",
47
+ "~": "-",
48
+ "「": "'",
49
+ "」": "'",
50
+ }
51
+
52
+ tone_modifier = ToneSandhi()
53
+
54
+
55
+ def replace_punctuation(text):
56
+ text = text.replace("嗯", "恩").replace("呣", "母")
57
+ pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
58
+
59
+ replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
60
+
61
+ replaced_text = re.sub(
62
+ r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
63
+ )
64
+
65
+ return replaced_text
66
+
67
+
68
+ def g2p(text):
69
+ pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
70
+ sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
71
+ phones, tones, word2ph = _g2p(sentences)
72
+ assert sum(word2ph) == len(phones)
73
+ assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
74
+ phones = ["_"] + phones + ["_"]
75
+ tones = [0] + tones + [0]
76
+ word2ph = [1] + word2ph + [1]
77
+ return phones, tones, word2ph
78
+
79
+
80
+ def _get_initials_finals(word):
81
+ initials = []
82
+ finals = []
83
+ orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
84
+ orig_finals = lazy_pinyin(
85
+ word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
86
+ )
87
+ for c, v in zip(orig_initials, orig_finals):
88
+ initials.append(c)
89
+ finals.append(v)
90
+ return initials, finals
91
+
92
+
93
+ def _g2p(segments):
94
+ phones_list = []
95
+ tones_list = []
96
+ word2ph = []
97
+ for seg in segments:
98
+ # Replace all English words in the sentence
99
+ seg = re.sub("[a-zA-Z]+", "", seg)
100
+ seg_cut = psg.lcut(seg)
101
+ initials = []
102
+ finals = []
103
+ seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
104
+ for word, pos in seg_cut:
105
+ if pos == "eng":
106
+ continue
107
+ sub_initials, sub_finals = _get_initials_finals(word)
108
+ sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
109
+ initials.append(sub_initials)
110
+ finals.append(sub_finals)
111
+
112
+ # assert len(sub_initials) == len(sub_finals) == len(word)
113
+ initials = sum(initials, [])
114
+ finals = sum(finals, [])
115
+ #
116
+ for c, v in zip(initials, finals):
117
+ raw_pinyin = c + v
118
+ # NOTE: post process for pypinyin outputs
119
+ # we discriminate i, ii and iii
120
+ if c == v:
121
+ assert c in punctuation
122
+ phone = [c]
123
+ tone = "0"
124
+ word2ph.append(1)
125
+ else:
126
+ v_without_tone = v[:-1]
127
+ tone = v[-1]
128
+
129
+ pinyin = c + v_without_tone
130
+ assert tone in "12345"
131
+
132
+ if c:
133
+ # 多音节
134
+ v_rep_map = {
135
+ "uei": "ui",
136
+ "iou": "iu",
137
+ "uen": "un",
138
+ }
139
+ if v_without_tone in v_rep_map.keys():
140
+ pinyin = c + v_rep_map[v_without_tone]
141
+ else:
142
+ # 单音节
143
+ pinyin_rep_map = {
144
+ "ing": "ying",
145
+ "i": "yi",
146
+ "in": "yin",
147
+ "u": "wu",
148
+ }
149
+ if pinyin in pinyin_rep_map.keys():
150
+ pinyin = pinyin_rep_map[pinyin]
151
+ else:
152
+ single_rep_map = {
153
+ "v": "yu",
154
+ "e": "e",
155
+ "i": "y",
156
+ "u": "w",
157
+ }
158
+ if pinyin[0] in single_rep_map.keys():
159
+ pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
160
+
161
+ assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
162
+ phone = pinyin_to_symbol_map[pinyin].split(" ")
163
+ word2ph.append(len(phone))
164
+
165
+ phones_list += phone
166
+ tones_list += [int(tone)] * len(phone)
167
+ return phones_list, tones_list, word2ph
168
+
169
+
170
+ def text_normalize(text):
171
+ numbers = re.findall(r"\d+(?:\.?\d+)?", text)
172
+ for number in numbers:
173
+ text = text.replace(number, cn2an.an2cn(number), 1)
174
+ text = replace_punctuation(text)
175
+ return text
176
+
177
+
178
+ def get_bert_feature(text, word2ph):
179
+ from text import chinese_bert
180
+
181
+ return chinese_bert.get_bert_feature(text, word2ph)
182
+
183
+
184
+ if __name__ == "__main__":
185
+ from text.chinese_bert import get_bert_feature
186
+
187
+ text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
188
+ text = text_normalize(text)
189
+ print(text)
190
+ phones, tones, word2ph = g2p(text)
191
+ bert = get_bert_feature(text, word2ph)
192
+
193
+ print(phones, tones, word2ph, bert.shape)
194
+
195
+
196
+ # # 示例用法
197
+ # text = "这是一个示例文本:,你好!这是一个测试...."
198
+ # print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
text/chinese_bert.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import sys
3
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
4
+
5
+ tokenizer = AutoTokenizer.from_pretrained("./bert/chinese-roberta-wwm-ext-large")
6
+
7
+ models = dict()
8
+
9
+
10
+ def get_bert_feature(text, word2ph, device=None):
11
+ if (
12
+ sys.platform == "darwin"
13
+ and torch.backends.mps.is_available()
14
+ and device == "cpu"
15
+ ):
16
+ device = "mps"
17
+ if not device:
18
+ device = "cuda"
19
+ if device not in models.keys():
20
+ models[device] = AutoModelForMaskedLM.from_pretrained(
21
+ "./bert/chinese-roberta-wwm-ext-large"
22
+ ).to(device)
23
+ with torch.no_grad():
24
+ inputs = tokenizer(text, return_tensors="pt")
25
+ for i in inputs:
26
+ inputs[i] = inputs[i].to(device)
27
+ res = models[device](**inputs, output_hidden_states=True)
28
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
29
+
30
+ assert len(word2ph) == len(text) + 2
31
+ word2phone = word2ph
32
+ phone_level_feature = []
33
+ for i in range(len(word2phone)):
34
+ repeat_feature = res[i].repeat(word2phone[i], 1)
35
+ phone_level_feature.append(repeat_feature)
36
+
37
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
38
+
39
+ return phone_level_feature.T
40
+
41
+
42
+ if __name__ == "__main__":
43
+ import torch
44
+
45
+ word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
46
+ word2phone = [
47
+ 1,
48
+ 2,
49
+ 1,
50
+ 2,
51
+ 2,
52
+ 1,
53
+ 2,
54
+ 2,
55
+ 1,
56
+ 2,
57
+ 2,
58
+ 1,
59
+ 2,
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 1,
65
+ 1,
66
+ 2,
67
+ 2,
68
+ 1,
69
+ 2,
70
+ 2,
71
+ 2,
72
+ 2,
73
+ 1,
74
+ 2,
75
+ 2,
76
+ 2,
77
+ 2,
78
+ 2,
79
+ 1,
80
+ 2,
81
+ 2,
82
+ 2,
83
+ 2,
84
+ 1,
85
+ ]
86
+
87
+ # 计算总帧数
88
+ total_frames = sum(word2phone)
89
+ print(word_level_feature.shape)
90
+ print(word2phone)
91
+ phone_level_feature = []
92
+ for i in range(len(word2phone)):
93
+ print(word_level_feature[i].shape)
94
+
95
+ # 对每个词重复word2phone[i]次
96
+ repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
97
+ phone_level_feature.append(repeat_feature)
98
+
99
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
100
+ print(phone_level_feature.shape) # torch.Size([36, 1024])
text/cleaner.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from text import chinese, japanese, cleaned_text_to_sequence
2
+
3
+
4
+ language_module_map = {"ZH": chinese, "JP": japanese}
5
+
6
+
7
+ def clean_text(text, language):
8
+ language_module = language_module_map[language]
9
+ norm_text = language_module.text_normalize(text)
10
+ phones, tones, word2ph = language_module.g2p(norm_text)
11
+ return norm_text, phones, tones, word2ph
12
+
13
+
14
+ def clean_text_bert(text, language):
15
+ language_module = language_module_map[language]
16
+ norm_text = language_module.text_normalize(text)
17
+ phones, tones, word2ph = language_module.g2p(norm_text)
18
+ bert = language_module.get_bert_feature(norm_text, word2ph)
19
+ return phones, tones, bert
20
+
21
+
22
+ def text_to_sequence(text, language):
23
+ norm_text, phones, tones, word2ph = clean_text(text, language)
24
+ return cleaned_text_to_sequence(phones, tones, language)
25
+
26
+
27
+ if __name__ == "__main__":
28
+ pass
text/cmudict.rep ADDED
The diff for this file is too large to render. See raw diff
 
text/cmudict_cache.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9b21b20325471934ba92f2e4a5976989e7d920caa32e7a286eacb027d197949
3
+ size 6212655
text/english.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import os
3
+ import re
4
+ from g2p_en import G2p
5
+
6
+ from text import symbols
7
+
8
+ current_file_path = os.path.dirname(__file__)
9
+ CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
10
+ CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
11
+ _g2p = G2p()
12
+
13
+ arpa = {
14
+ "AH0",
15
+ "S",
16
+ "AH1",
17
+ "EY2",
18
+ "AE2",
19
+ "EH0",
20
+ "OW2",
21
+ "UH0",
22
+ "NG",
23
+ "B",
24
+ "G",
25
+ "AY0",
26
+ "M",
27
+ "AA0",
28
+ "F",
29
+ "AO0",
30
+ "ER2",
31
+ "UH1",
32
+ "IY1",
33
+ "AH2",
34
+ "DH",
35
+ "IY0",
36
+ "EY1",
37
+ "IH0",
38
+ "K",
39
+ "N",
40
+ "W",
41
+ "IY2",
42
+ "T",
43
+ "AA1",
44
+ "ER1",
45
+ "EH2",
46
+ "OY0",
47
+ "UH2",
48
+ "UW1",
49
+ "Z",
50
+ "AW2",
51
+ "AW1",
52
+ "V",
53
+ "UW2",
54
+ "AA2",
55
+ "ER",
56
+ "AW0",
57
+ "UW0",
58
+ "R",
59
+ "OW1",
60
+ "EH1",
61
+ "ZH",
62
+ "AE0",
63
+ "IH2",
64
+ "IH",
65
+ "Y",
66
+ "JH",
67
+ "P",
68
+ "AY1",
69
+ "EY0",
70
+ "OY2",
71
+ "TH",
72
+ "HH",
73
+ "D",
74
+ "ER0",
75
+ "CH",
76
+ "AO1",
77
+ "AE1",
78
+ "AO2",
79
+ "OY1",
80
+ "AY2",
81
+ "IH1",
82
+ "OW0",
83
+ "L",
84
+ "SH",
85
+ }
86
+
87
+
88
+ def post_replace_ph(ph):
89
+ rep_map = {
90
+ ":": ",",
91
+ ";": ",",
92
+ ",": ",",
93
+ "。": ".",
94
+ "!": "!",
95
+ "?": "?",
96
+ "\n": ".",
97
+ "·": ",",
98
+ "、": ",",
99
+ "...": "…",
100
+ "v": "V",
101
+ }
102
+ if ph in rep_map.keys():
103
+ ph = rep_map[ph]
104
+ if ph in symbols:
105
+ return ph
106
+ if ph not in symbols:
107
+ ph = "UNK"
108
+ return ph
109
+
110
+
111
+ def read_dict():
112
+ g2p_dict = {}
113
+ start_line = 49
114
+ with open(CMU_DICT_PATH) as f:
115
+ line = f.readline()
116
+ line_index = 1
117
+ while line:
118
+ if line_index >= start_line:
119
+ line = line.strip()
120
+ word_split = line.split(" ")
121
+ word = word_split[0]
122
+
123
+ syllable_split = word_split[1].split(" - ")
124
+ g2p_dict[word] = []
125
+ for syllable in syllable_split:
126
+ phone_split = syllable.split(" ")
127
+ g2p_dict[word].append(phone_split)
128
+
129
+ line_index = line_index + 1
130
+ line = f.readline()
131
+
132
+ return g2p_dict
133
+
134
+
135
+ def cache_dict(g2p_dict, file_path):
136
+ with open(file_path, "wb") as pickle_file:
137
+ pickle.dump(g2p_dict, pickle_file)
138
+
139
+
140
+ def get_dict():
141
+ if os.path.exists(CACHE_PATH):
142
+ with open(CACHE_PATH, "rb") as pickle_file:
143
+ g2p_dict = pickle.load(pickle_file)
144
+ else:
145
+ g2p_dict = read_dict()
146
+ cache_dict(g2p_dict, CACHE_PATH)
147
+
148
+ return g2p_dict
149
+
150
+
151
+ eng_dict = get_dict()
152
+
153
+
154
+ def refine_ph(phn):
155
+ tone = 0
156
+ if re.search(r"\d$", phn):
157
+ tone = int(phn[-1]) + 1
158
+ phn = phn[:-1]
159
+ return phn.lower(), tone
160
+
161
+
162
+ def refine_syllables(syllables):
163
+ tones = []
164
+ phonemes = []
165
+ for phn_list in syllables:
166
+ for i in range(len(phn_list)):
167
+ phn = phn_list[i]
168
+ phn, tone = refine_ph(phn)
169
+ phonemes.append(phn)
170
+ tones.append(tone)
171
+ return phonemes, tones
172
+
173
+
174
+ def text_normalize(text):
175
+ # todo: eng text normalize
176
+ return text
177
+
178
+
179
+ def g2p(text):
180
+ phones = []
181
+ tones = []
182
+ words = re.split(r"([,;.\-\?\!\s+])", text)
183
+ for w in words:
184
+ if w.upper() in eng_dict:
185
+ phns, tns = refine_syllables(eng_dict[w.upper()])
186
+ phones += phns
187
+ tones += tns
188
+ else:
189
+ phone_list = list(filter(lambda p: p != " ", _g2p(w)))
190
+ for ph in phone_list:
191
+ if ph in arpa:
192
+ ph, tn = refine_ph(ph)
193
+ phones.append(ph)
194
+ tones.append(tn)
195
+ else:
196
+ phones.append(ph)
197
+ tones.append(0)
198
+ # todo: implement word2ph
199
+ word2ph = [1 for i in phones]
200
+
201
+ phones = [post_replace_ph(i) for i in phones]
202
+ return phones, tones, word2ph
203
+
204
+
205
+ if __name__ == "__main__":
206
+ # print(get_dict())
207
+ # print(eng_word_to_phoneme("hello"))
208
+ print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
209
+ # all_phones = set()
210
+ # for k, syllables in eng_dict.items():
211
+ # for group in syllables:
212
+ # for ph in group:
213
+ # all_phones.add(ph)
214
+ # print(all_phones)
text/english_bert_mock.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def get_bert_feature(norm_text, word2ph):
5
+ return torch.zeros(1024, sum(word2ph))
text/japanese.py ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Convert Japanese text to phonemes which is
2
+ # compatible with Julius https://github.com/julius-speech/segmentation-kit
3
+ import re
4
+ import unicodedata
5
+
6
+ from transformers import AutoTokenizer
7
+
8
+ from text import punctuation, symbols
9
+
10
+ try:
11
+ import MeCab
12
+ except ImportError as e:
13
+ raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e
14
+ from num2words import num2words
15
+
16
+ _CONVRULES = [
17
+ # Conversion of 2 letters
18
+ "アァ/ a a",
19
+ "イィ/ i i",
20
+ "イェ/ i e",
21
+ "イャ/ y a",
22
+ "ウゥ/ u:",
23
+ "エェ/ e e",
24
+ "オォ/ o:",
25
+ "カァ/ k a:",
26
+ "キィ/ k i:",
27
+ "クゥ/ k u:",
28
+ "クャ/ ky a",
29
+ "クュ/ ky u",
30
+ "クョ/ ky o",
31
+ "ケェ/ k e:",
32
+ "コォ/ k o:",
33
+ "ガァ/ g a:",
34
+ "ギィ/ g i:",
35
+ "グゥ/ g u:",
36
+ "グャ/ gy a",
37
+ "グュ/ gy u",
38
+ "グョ/ gy o",
39
+ "ゲェ/ g e:",
40
+ "ゴォ/ g o:",
41
+ "サァ/ s a:",
42
+ "シィ/ sh i:",
43
+ "スゥ/ s u:",
44
+ "スャ/ sh a",
45
+ "スュ/ sh u",
46
+ "スョ/ sh o",
47
+ "セェ/ s e:",
48
+ "ソォ/ s o:",
49
+ "ザァ/ z a:",
50
+ "ジィ/ j i:",
51
+ "ズゥ/ z u:",
52
+ "ズャ/ zy a",
53
+ "ズュ/ zy u",
54
+ "ズョ/ zy o",
55
+ "ゼェ/ z e:",
56
+ "ゾォ/ z o:",
57
+ "タァ/ t a:",
58
+ "チィ/ ch i:",
59
+ "ツァ/ ts a",
60
+ "ツィ/ ts i",
61
+ "ツゥ/ ts u:",
62
+ "ツャ/ ch a",
63
+ "ツュ/ ch u",
64
+ "ツョ/ ch o",
65
+ "ツェ/ ts e",
66
+ "ツォ/ ts o",
67
+ "テェ/ t e:",
68
+ "トォ/ t o:",
69
+ "ダァ/ d a:",
70
+ "ヂィ/ j i:",
71
+ "ヅゥ/ d u:",
72
+ "ヅャ/ zy a",
73
+ "ヅュ/ zy u",
74
+ "ヅョ/ zy o",
75
+ "デェ/ d e:",
76
+ "ドォ/ d o:",
77
+ "ナァ/ n a:",
78
+ "ニィ/ n i:",
79
+ "ヌゥ/ n u:",
80
+ "ヌャ/ ny a",
81
+ "ヌュ/ ny u",
82
+ "ヌョ/ ny o",
83
+ "ネェ/ n e:",
84
+ "ノォ/ n o:",
85
+ "ハァ/ h a:",
86
+ "ヒィ/ h i:",
87
+ "フゥ/ f u:",
88
+ "フャ/ hy a",
89
+ "フュ/ hy u",
90
+ "フョ/ hy o",
91
+ "ヘェ/ h e:",
92
+ "ホォ/ h o:",
93
+ "バァ/ b a:",
94
+ "ビィ/ b i:",
95
+ "ブゥ/ b u:",
96
+ "フャ/ hy a",
97
+ "ブュ/ by u",
98
+ "フョ/ hy o",
99
+ "ベェ/ b e:",
100
+ "ボォ/ b o:",
101
+ "パァ/ p a:",
102
+ "ピィ/ p i:",
103
+ "プゥ/ p u:",
104
+ "プャ/ py a",
105
+ "プュ/ py u",
106
+ "プョ/ py o",
107
+ "ペェ/ p e:",
108
+ "ポォ/ p o:",
109
+ "マァ/ m a:",
110
+ "ミィ/ m i:",
111
+ "ムゥ/ m u:",
112
+ "ムャ/ my a",
113
+ "ムュ/ my u",
114
+ "ムョ/ my o",
115
+ "メェ/ m e:",
116
+ "モォ/ m o:",
117
+ "ヤァ/ y a:",
118
+ "ユゥ/ y u:",
119
+ "ユャ/ y a:",
120
+ "ユュ/ y u:",
121
+ "ユョ/ y o:",
122
+ "ヨォ/ y o:",
123
+ "ラァ/ r a:",
124
+ "リィ/ r i:",
125
+ "ルゥ/ r u:",
126
+ "ルャ/ ry a",
127
+ "ルュ/ ry u",
128
+ "ルョ/ ry o",
129
+ "レェ/ r e:",
130
+ "ロォ/ r o:",
131
+ "ワァ/ w a:",
132
+ "ヲォ/ o:",
133
+ "ディ/ d i",
134
+ "デェ/ d e:",
135
+ "デャ/ dy a",
136
+ "デュ/ dy u",
137
+ "デョ/ dy o",
138
+ "ティ/ t i",
139
+ "テェ/ t e:",
140
+ "テャ/ ty a",
141
+ "テュ/ ty u",
142
+ "テョ/ ty o",
143
+ "スィ/ s i",
144
+ "ズァ/ z u a",
145
+ "ズィ/ z i",
146
+ "ズゥ/ z u",
147
+ "ズャ/ zy a",
148
+ "ズュ/ zy u",
149
+ "ズョ/ zy o",
150
+ "ズェ/ z e",
151
+ "ズォ/ z o",
152
+ "キャ/ ky a",
153
+ "キュ/ ky u",
154
+ "キョ/ ky o",
155
+ "シャ/ sh a",
156
+ "シュ/ sh u",
157
+ "シェ/ sh e",
158
+ "ショ/ sh o",
159
+ "チャ/ ch a",
160
+ "チュ/ ch u",
161
+ "チェ/ ch e",
162
+ "チョ/ ch o",
163
+ "トゥ/ t u",
164
+ "トャ/ ty a",
165
+ "トュ/ ty u",
166
+ "トョ/ ty o",
167
+ "ドァ/ d o a",
168
+ "ドゥ/ d u",
169
+ "ドャ/ dy a",
170
+ "ドュ/ dy u",
171
+ "ドョ/ dy o",
172
+ "ドォ/ d o:",
173
+ "ニャ/ ny a",
174
+ "ニュ/ ny u",
175
+ "ニョ/ ny o",
176
+ "ヒャ/ hy a",
177
+ "ヒュ/ hy u",
178
+ "ヒョ/ hy o",
179
+ "ミャ/ my a",
180
+ "ミュ/ my u",
181
+ "ミョ/ my o",
182
+ "リャ/ ry a",
183
+ "リュ/ ry u",
184
+ "リョ/ ry o",
185
+ "ギャ/ gy a",
186
+ "ギュ/ gy u",
187
+ "ギョ/ gy o",
188
+ "ヂェ/ j e",
189
+ "ヂャ/ j a",
190
+ "ヂュ/ j u",
191
+ "ヂョ/ j o",
192
+ "ジェ/ j e",
193
+ "ジャ/ j a",
194
+ "ジュ/ j u",
195
+ "ジョ/ j o",
196
+ "ビャ/ by a",
197
+ "ビュ/ by u",
198
+ "ビョ/ by o",
199
+ "ピャ/ py a",
200
+ "ピュ/ py u",
201
+ "ピョ/ py o",
202
+ "ウァ/ u a",
203
+ "ウィ/ w i",
204
+ "ウェ/ w e",
205
+ "ウォ/ w o",
206
+ "ファ/ f a",
207
+ "フィ/ f i",
208
+ "フゥ/ f u",
209
+ "フャ/ hy a",
210
+ "フュ/ hy u",
211
+ "フョ/ hy o",
212
+ "フェ/ f e",
213
+ "フォ/ f o",
214
+ "ヴァ/ b a",
215
+ "ヴィ/ b i",
216
+ "ヴェ/ b e",
217
+ "ヴォ/ b o",
218
+ "ヴュ/ by u",
219
+ # Conversion of 1 letter
220
+ "ア/ a",
221
+ "イ/ i",
222
+ "ウ/ u",
223
+ "エ/ e",
224
+ "オ/ o",
225
+ "カ/ k a",
226
+ "キ/ k i",
227
+ "ク/ k u",
228
+ "ケ/ k e",
229
+ "コ/ k o",
230
+ "サ/ s a",
231
+ "シ/ sh i",
232
+ "ス/ s u",
233
+ "セ/ s e",
234
+ "ソ/ s o",
235
+ "タ/ t a",
236
+ "チ/ ch i",
237
+ "ツ/ ts u",
238
+ "テ/ t e",
239
+ "ト/ t o",
240
+ "ナ/ n a",
241
+ "ニ/ n i",
242
+ "ヌ/ n u",
243
+ "ネ/ n e",
244
+ "ノ/ n o",
245
+ "ハ/ h a",
246
+ "ヒ/ h i",
247
+ "フ/ f u",
248
+ "ヘ/ h e",
249
+ "ホ/ h o",
250
+ "マ/ m a",
251
+ "ミ/ m i",
252
+ "ム/ m u",
253
+ "メ/ m e",
254
+ "モ/ m o",
255
+ "ラ/ r a",
256
+ "リ/ r i",
257
+ "ル/ r u",
258
+ "レ/ r e",
259
+ "ロ/ r o",
260
+ "ガ/ g a",
261
+ "ギ/ g i",
262
+ "グ/ g u",
263
+ "ゲ/ g e",
264
+ "ゴ/ g o",
265
+ "ザ/ z a",
266
+ "ジ/ j i",
267
+ "ズ/ z u",
268
+ "ゼ/ z e",
269
+ "ゾ/ z o",
270
+ "ダ/ d a",
271
+ "ヂ/ j i",
272
+ "ヅ/ z u",
273
+ "デ/ d e",
274
+ "ド/ d o",
275
+ "バ/ b a",
276
+ "ビ/ b i",
277
+ "ブ/ b u",
278
+ "ベ/ b e",
279
+ "ボ/ b o",
280
+ "パ/ p a",
281
+ "ピ/ p i",
282
+ "プ/ p u",
283
+ "ペ/ p e",
284
+ "ポ/ p o",
285
+ "ヤ/ y a",
286
+ "ユ/ y u",
287
+ "ヨ/ y o",
288
+ "ワ/ w a",
289
+ "ヰ/ i",
290
+ "ヱ/ e",
291
+ "ヲ/ o",
292
+ "ン/ N",
293
+ "ッ/ q",
294
+ "ヴ/ b u",
295
+ "ー/:",
296
+ # Try converting broken text
297
+ "ァ/ a",
298
+ "ィ/ i",
299
+ "ゥ/ u",
300
+ "ェ/ e",
301
+ "ォ/ o",
302
+ "ヮ/ w a",
303
+ "ォ/ o",
304
+ # Symbols
305
+ "、/ ,",
306
+ "。/ .",
307
+ "!/ !",
308
+ "?/ ?",
309
+ "・/ ,",
310
+ ]
311
+
312
+ _COLON_RX = re.compile(":+")
313
+ _REJECT_RX = re.compile("[^ a-zA-Z:,.?]")
314
+
315
+
316
+ def _makerulemap():
317
+ l = [tuple(x.split("/")) for x in _CONVRULES]
318
+ return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2))
319
+
320
+
321
+ _RULEMAP1, _RULEMAP2 = _makerulemap()
322
+
323
+
324
+ def kata2phoneme(text: str) -> str:
325
+ """Convert katakana text to phonemes."""
326
+ text = text.strip()
327
+ res = []
328
+ while text:
329
+ if len(text) >= 2:
330
+ x = _RULEMAP2.get(text[:2])
331
+ if x is not None:
332
+ text = text[2:]
333
+ res += x.split(" ")[1:]
334
+ continue
335
+ x = _RULEMAP1.get(text[0])
336
+ if x is not None:
337
+ text = text[1:]
338
+ res += x.split(" ")[1:]
339
+ continue
340
+ res.append(text[0])
341
+ text = text[1:]
342
+ # res = _COLON_RX.sub(":", res)
343
+ return res
344
+
345
+
346
+ _KATAKANA = "".join(chr(ch) for ch in range(ord("ァ"), ord("ン") + 1))
347
+ _HIRAGANA = "".join(chr(ch) for ch in range(ord("ぁ"), ord("ん") + 1))
348
+ _HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
349
+
350
+
351
+ def hira2kata(text: str) -> str:
352
+ text = text.translate(_HIRA2KATATRANS)
353
+ return text.replace("う゛", "ヴ")
354
+
355
+
356
+ _SYMBOL_TOKENS = set(list("・、。?!"))
357
+ _NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
358
+ _TAGGER = MeCab.Tagger()
359
+
360
+
361
+ def text2kata(text: str) -> str:
362
+ parsed = _TAGGER.parse(text)
363
+ res = []
364
+ for line in parsed.split("\n"):
365
+ if line == "EOS":
366
+ break
367
+ parts = line.split("\t")
368
+
369
+ word, yomi = parts[0], parts[1]
370
+ if yomi:
371
+ res.append(yomi)
372
+ else:
373
+ if word in _SYMBOL_TOKENS:
374
+ res.append(word)
375
+ elif word in ("っ", "ッ"):
376
+ res.append("ッ")
377
+ elif word in _NO_YOMI_TOKENS:
378
+ pass
379
+ else:
380
+ res.append(word)
381
+ return hira2kata("".join(res))
382
+
383
+
384
+ _ALPHASYMBOL_YOMI = {
385
+ "#": "シャープ",
386
+ "%": "パーセント",
387
+ "&": "アンド",
388
+ "+": "プラス",
389
+ "-": "マイナス",
390
+ ":": "コロン",
391
+ ";": "セミコロン",
392
+ "<": "小なり",
393
+ "=": "イコール",
394
+ ">": "大なり",
395
+ "@": "アット",
396
+ "a": "エー",
397
+ "b": "ビー",
398
+ "c": "シー",
399
+ "d": "ディー",
400
+ "e": "イー",
401
+ "f": "エフ",
402
+ "g": "ジー",
403
+ "h": "エイチ",
404
+ "i": "アイ",
405
+ "j": "ジェー",
406
+ "k": "ケー",
407
+ "l": "エル",
408
+ "m": "エム",
409
+ "n": "エヌ",
410
+ "o": "オー",
411
+ "p": "ピー",
412
+ "q": "キュー",
413
+ "r": "アール",
414
+ "s": "エス",
415
+ "t": "ティー",
416
+ "u": "ユー",
417
+ "v": "ブイ",
418
+ "w": "ダブリュー",
419
+ "x": "エックス",
420
+ "y": "ワイ",
421
+ "z": "ゼット",
422
+ "α": "アルファ",
423
+ "β": "ベータ",
424
+ "γ": "ガンマ",
425
+ "δ": "デルタ",
426
+ "ε": "イプシロン",
427
+ "ζ": "ゼータ",
428
+ "η": "イータ",
429
+ "θ": "シータ",
430
+ "ι": "イオタ",
431
+ "κ": "カッパ",
432
+ "λ": "ラムダ",
433
+ "μ": "ミュー",
434
+ "ν": "ニュー",
435
+ "ξ": "クサイ",
436
+ "ο": "オミクロン",
437
+ "π": "パイ",
438
+ "ρ": "ロー",
439
+ "σ": "シグマ",
440
+ "τ": "タウ",
441
+ "υ": "ウプシロン",
442
+ "φ": "ファイ",
443
+ "χ": "カイ",
444
+ "ψ": "プサイ",
445
+ "ω": "オメガ",
446
+ }
447
+
448
+
449
+ _NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
450
+ _CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
451
+ _CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
452
+ _NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
453
+
454
+
455
+ def japanese_convert_numbers_to_words(text: str) -> str:
456
+ res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
457
+ res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
458
+ res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
459
+ return res
460
+
461
+
462
+ def japanese_convert_alpha_symbols_to_words(text: str) -> str:
463
+ return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
464
+
465
+
466
+ def japanese_text_to_phonemes(text: str) -> str:
467
+ """Convert Japanese text to phonemes."""
468
+ res = unicodedata.normalize("NFKC", text)
469
+ res = japanese_convert_numbers_to_words(res)
470
+ # res = japanese_convert_alpha_symbols_to_words(res)
471
+ res = text2kata(res)
472
+ res = kata2phoneme(res)
473
+ return res
474
+
475
+
476
+ def is_japanese_character(char):
477
+ # 定义日语文字系统的 Unicode 范围
478
+ japanese_ranges = [
479
+ (0x3040, 0x309F), # 平假名
480
+ (0x30A0, 0x30FF), # 片假名
481
+ (0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
482
+ (0x3400, 0x4DBF), # 汉字扩展 A
483
+ (0x20000, 0x2A6DF), # 汉字扩展 B
484
+ # 可以根据需要添加其他汉字扩展范围
485
+ ]
486
+
487
+ # 将字符的 Unicode 编码转换为整数
488
+ char_code = ord(char)
489
+
490
+ # 检查字符是否在任何一个日语范围内
491
+ for start, end in japanese_ranges:
492
+ if start <= char_code <= end:
493
+ return True
494
+
495
+ return False
496
+
497
+
498
+ rep_map = {
499
+ ":": ",",
500
+ ";": ",",
501
+ ",": ",",
502
+ "。": ".",
503
+ "!": "!",
504
+ "?": "?",
505
+ "\n": ".",
506
+ "·": ",",
507
+ "、": ",",
508
+ "...": "…",
509
+ }
510
+
511
+
512
+ def replace_punctuation(text):
513
+ pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
514
+
515
+ replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
516
+
517
+ replaced_text = re.sub(
518
+ r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF"
519
+ + "".join(punctuation)
520
+ + r"]+",
521
+ "",
522
+ replaced_text,
523
+ )
524
+
525
+ return replaced_text
526
+
527
+
528
+ def text_normalize(text):
529
+ res = unicodedata.normalize("NFKC", text)
530
+ res = japanese_convert_numbers_to_words(res)
531
+ # res = "".join([i for i in res if is_japanese_character(i)])
532
+ res = replace_punctuation(res)
533
+ return res
534
+
535
+
536
+ def distribute_phone(n_phone, n_word):
537
+ phones_per_word = [0] * n_word
538
+ for task in range(n_phone):
539
+ min_tasks = min(phones_per_word)
540
+ min_index = phones_per_word.index(min_tasks)
541
+ phones_per_word[min_index] += 1
542
+ return phones_per_word
543
+
544
+
545
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
546
+
547
+
548
+ def g2p(norm_text):
549
+ tokenized = tokenizer.tokenize(norm_text)
550
+ phs = []
551
+ ph_groups = []
552
+ for t in tokenized:
553
+ if not t.startswith("#"):
554
+ ph_groups.append([t])
555
+ else:
556
+ ph_groups[-1].append(t.replace("#", ""))
557
+ word2ph = []
558
+ for group in ph_groups:
559
+ phonemes = kata2phoneme(text2kata("".join(group)))
560
+ # phonemes = [i for i in phonemes if i in symbols]
561
+ for i in phonemes:
562
+ assert i in symbols, (group, norm_text, tokenized)
563
+ phone_len = len(phonemes)
564
+ word_len = len(group)
565
+
566
+ aaa = distribute_phone(phone_len, word_len)
567
+ word2ph += aaa
568
+
569
+ phs += phonemes
570
+ phones = ["_"] + phs + ["_"]
571
+ tones = [0 for i in phones]
572
+ word2ph = [1] + word2ph + [1]
573
+ return phones, tones, word2ph
574
+
575
+
576
+ if __name__ == "__main__":
577
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
578
+ text = "hello,こんにちは、世界!……"
579
+ from text.japanese_bert import get_bert_feature
580
+
581
+ text = text_normalize(text)
582
+ print(text)
583
+ phones, tones, word2ph = g2p(text)
584
+ bert = get_bert_feature(text, word2ph)
585
+
586
+ print(phones, tones, word2ph, bert.shape)
text/japanese_bert.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
3
+ import sys
4
+
5
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
6
+
7
+ models = dict()
8
+
9
+
10
+ def get_bert_feature(text, word2ph, device=None):
11
+ if (
12
+ sys.platform == "darwin"
13
+ and torch.backends.mps.is_available()
14
+ and device == "cpu"
15
+ ):
16
+ device = "mps"
17
+ if not device:
18
+ device = "cuda"
19
+ if device not in models.keys():
20
+ models[device] = AutoModelForMaskedLM.from_pretrained(
21
+ "./bert/bert-base-japanese-v3"
22
+ ).to(device)
23
+ with torch.no_grad():
24
+ inputs = tokenizer(text, return_tensors="pt")
25
+ for i in inputs:
26
+ inputs[i] = inputs[i].to(device)
27
+ res = models[device](**inputs, output_hidden_states=True)
28
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
29
+ assert inputs["input_ids"].shape[-1] == len(word2ph)
30
+ word2phone = word2ph
31
+ phone_level_feature = []
32
+ for i in range(len(word2phone)):
33
+ repeat_feature = res[i].repeat(word2phone[i], 1)
34
+ phone_level_feature.append(repeat_feature)
35
+
36
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
37
+
38
+ return phone_level_feature.T
text/opencpop-strict.txt ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ a AA a
2
+ ai AA ai
3
+ an AA an
4
+ ang AA ang
5
+ ao AA ao
6
+ ba b a
7
+ bai b ai
8
+ ban b an
9
+ bang b ang
10
+ bao b ao
11
+ bei b ei
12
+ ben b en
13
+ beng b eng
14
+ bi b i
15
+ bian b ian
16
+ biao b iao
17
+ bie b ie
18
+ bin b in
19
+ bing b ing
20
+ bo b o
21
+ bu b u
22
+ ca c a
23
+ cai c ai
24
+ can c an
25
+ cang c ang
26
+ cao c ao
27
+ ce c e
28
+ cei c ei
29
+ cen c en
30
+ ceng c eng
31
+ cha ch a
32
+ chai ch ai
33
+ chan ch an
34
+ chang ch ang
35
+ chao ch ao
36
+ che ch e
37
+ chen ch en
38
+ cheng ch eng
39
+ chi ch ir
40
+ chong ch ong
41
+ chou ch ou
42
+ chu ch u
43
+ chua ch ua
44
+ chuai ch uai
45
+ chuan ch uan
46
+ chuang ch uang
47
+ chui ch ui
48
+ chun ch un
49
+ chuo ch uo
50
+ ci c i0
51
+ cong c ong
52
+ cou c ou
53
+ cu c u
54
+ cuan c uan
55
+ cui c ui
56
+ cun c un
57
+ cuo c uo
58
+ da d a
59
+ dai d ai
60
+ dan d an
61
+ dang d ang
62
+ dao d ao
63
+ de d e
64
+ dei d ei
65
+ den d en
66
+ deng d eng
67
+ di d i
68
+ dia d ia
69
+ dian d ian
70
+ diao d iao
71
+ die d ie
72
+ ding d ing
73
+ diu d iu
74
+ dong d ong
75
+ dou d ou
76
+ du d u
77
+ duan d uan
78
+ dui d ui
79
+ dun d un
80
+ duo d uo
81
+ e EE e
82
+ ei EE ei
83
+ en EE en
84
+ eng EE eng
85
+ er EE er
86
+ fa f a
87
+ fan f an
88
+ fang f ang
89
+ fei f ei
90
+ fen f en
91
+ feng f eng
92
+ fo f o
93
+ fou f ou
94
+ fu f u
95
+ ga g a
96
+ gai g ai
97
+ gan g an
98
+ gang g ang
99
+ gao g ao
100
+ ge g e
101
+ gei g ei
102
+ gen g en
103
+ geng g eng
104
+ gong g ong
105
+ gou g ou
106
+ gu g u
107
+ gua g ua
108
+ guai g uai
109
+ guan g uan
110
+ guang g uang
111
+ gui g ui
112
+ gun g un
113
+ guo g uo
114
+ ha h a
115
+ hai h ai
116
+ han h an
117
+ hang h ang
118
+ hao h ao
119
+ he h e
120
+ hei h ei
121
+ hen h en
122
+ heng h eng
123
+ hong h ong
124
+ hou h ou
125
+ hu h u
126
+ hua h ua
127
+ huai h uai
128
+ huan h uan
129
+ huang h uang
130
+ hui h ui
131
+ hun h un
132
+ huo h uo
133
+ ji j i
134
+ jia j ia
135
+ jian j ian
136
+ jiang j iang
137
+ jiao j iao
138
+ jie j ie
139
+ jin j in
140
+ jing j ing
141
+ jiong j iong
142
+ jiu j iu
143
+ ju j v
144
+ jv j v
145
+ juan j van
146
+ jvan j van
147
+ jue j ve
148
+ jve j ve
149
+ jun j vn
150
+ jvn j vn
151
+ ka k a
152
+ kai k ai
153
+ kan k an
154
+ kang k ang
155
+ kao k ao
156
+ ke k e
157
+ kei k ei
158
+ ken k en
159
+ keng k eng
160
+ kong k ong
161
+ kou k ou
162
+ ku k u
163
+ kua k ua
164
+ kuai k uai
165
+ kuan k uan
166
+ kuang k uang
167
+ kui k ui
168
+ kun k un
169
+ kuo k uo
170
+ la l a
171
+ lai l ai
172
+ lan l an
173
+ lang l ang
174
+ lao l ao
175
+ le l e
176
+ lei l ei
177
+ leng l eng
178
+ li l i
179
+ lia l ia
180
+ lian l ian
181
+ liang l iang
182
+ liao l iao
183
+ lie l ie
184
+ lin l in
185
+ ling l ing
186
+ liu l iu
187
+ lo l o
188
+ long l ong
189
+ lou l ou
190
+ lu l u
191
+ luan l uan
192
+ lun l un
193
+ luo l uo
194
+ lv l v
195
+ lve l ve
196
+ ma m a
197
+ mai m ai
198
+ man m an
199
+ mang m ang
200
+ mao m ao
201
+ me m e
202
+ mei m ei
203
+ men m en
204
+ meng m eng
205
+ mi m i
206
+ mian m ian
207
+ miao m iao
208
+ mie m ie
209
+ min m in
210
+ ming m ing
211
+ miu m iu
212
+ mo m o
213
+ mou m ou
214
+ mu m u
215
+ na n a
216
+ nai n ai
217
+ nan n an
218
+ nang n ang
219
+ nao n ao
220
+ ne n e
221
+ nei n ei
222
+ nen n en
223
+ neng n eng
224
+ ni n i
225
+ nian n ian
226
+ niang n iang
227
+ niao n iao
228
+ nie n ie
229
+ nin n in
230
+ ning n ing
231
+ niu n iu
232
+ nong n ong
233
+ nou n ou
234
+ nu n u
235
+ nuan n uan
236
+ nun n un
237
+ nuo n uo
238
+ nv n v
239
+ nve n ve
240
+ o OO o
241
+ ou OO ou
242
+ pa p a
243
+ pai p ai
244
+ pan p an
245
+ pang p ang
246
+ pao p ao
247
+ pei p ei
248
+ pen p en
249
+ peng p eng
250
+ pi p i
251
+ pian p ian
252
+ piao p iao
253
+ pie p ie
254
+ pin p in
255
+ ping p ing
256
+ po p o
257
+ pou p ou
258
+ pu p u
259
+ qi q i
260
+ qia q ia
261
+ qian q ian
262
+ qiang q iang
263
+ qiao q iao
264
+ qie q ie
265
+ qin q in
266
+ qing q ing
267
+ qiong q iong
268
+ qiu q iu
269
+ qu q v
270
+ qv q v
271
+ quan q van
272
+ qvan q van
273
+ que q ve
274
+ qve q ve
275
+ qun q vn
276
+ qvn q vn
277
+ ran r an
278
+ rang r ang
279
+ rao r ao
280
+ re r e
281
+ ren r en
282
+ reng r eng
283
+ ri r ir
284
+ rong r ong
285
+ rou r ou
286
+ ru r u
287
+ rua r ua
288
+ ruan r uan
289
+ rui r ui
290
+ run r un
291
+ ruo r uo
292
+ sa s a
293
+ sai s ai
294
+ san s an
295
+ sang s ang
296
+ sao s ao
297
+ se s e
298
+ sen s en
299
+ seng s eng
300
+ sha sh a
301
+ shai sh ai
302
+ shan sh an
303
+ shang sh ang
304
+ shao sh ao
305
+ she sh e
306
+ shei sh ei
307
+ shen sh en
308
+ sheng sh eng
309
+ shi sh ir
310
+ shou sh ou
311
+ shu sh u
312
+ shua sh ua
313
+ shuai sh uai
314
+ shuan sh uan
315
+ shuang sh uang
316
+ shui sh ui
317
+ shun sh un
318
+ shuo sh uo
319
+ si s i0
320
+ song s ong
321
+ sou s ou
322
+ su s u
323
+ suan s uan
324
+ sui s ui
325
+ sun s un
326
+ suo s uo
327
+ ta t a
328
+ tai t ai
329
+ tan t an
330
+ tang t ang
331
+ tao t ao
332
+ te t e
333
+ tei t ei
334
+ teng t eng
335
+ ti t i
336
+ tian t ian
337
+ tiao t iao
338
+ tie t ie
339
+ ting t ing
340
+ tong t ong
341
+ tou t ou
342
+ tu t u
343
+ tuan t uan
344
+ tui t ui
345
+ tun t un
346
+ tuo t uo
347
+ wa w a
348
+ wai w ai
349
+ wan w an
350
+ wang w ang
351
+ wei w ei
352
+ wen w en
353
+ weng w eng
354
+ wo w o
355
+ wu w u
356
+ xi x i
357
+ xia x ia
358
+ xian x ian
359
+ xiang x iang
360
+ xiao x iao
361
+ xie x ie
362
+ xin x in
363
+ xing x ing
364
+ xiong x iong
365
+ xiu x iu
366
+ xu x v
367
+ xv x v
368
+ xuan x van
369
+ xvan x van
370
+ xue x ve
371
+ xve x ve
372
+ xun x vn
373
+ xvn x vn
374
+ ya y a
375
+ yan y En
376
+ yang y ang
377
+ yao y ao
378
+ ye y E
379
+ yi y i
380
+ yin y in
381
+ ying y ing
382
+ yo y o
383
+ yong y ong
384
+ you y ou
385
+ yu y v
386
+ yv y v
387
+ yuan y van
388
+ yvan y van
389
+ yue y ve
390
+ yve y ve
391
+ yun y vn
392
+ yvn y vn
393
+ za z a
394
+ zai z ai
395
+ zan z an
396
+ zang z ang
397
+ zao z ao
398
+ ze z e
399
+ zei z ei
400
+ zen z en
401
+ zeng z eng
402
+ zha zh a
403
+ zhai zh ai
404
+ zhan zh an
405
+ zhang zh ang
406
+ zhao zh ao
407
+ zhe zh e
408
+ zhei zh ei
409
+ zhen zh en
410
+ zheng zh eng
411
+ zhi zh ir
412
+ zhong zh ong
413
+ zhou zh ou
414
+ zhu zh u
415
+ zhua zh ua
416
+ zhuai zh uai
417
+ zhuan zh uan
418
+ zhuang zh uang
419
+ zhui zh ui
420
+ zhun zh un
421
+ zhuo zh uo
422
+ zi z i0
423
+ zong z ong
424
+ zou z ou
425
+ zu z u
426
+ zuan z uan
427
+ zui z ui
428
+ zun z un
429
+ zuo z uo
text/symbols.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ punctuation = ["!", "?", "…", ",", ".", "'", "-"]
2
+ pu_symbols = punctuation + ["SP", "UNK"]
3
+ pad = "_"
4
+
5
+ # chinese
6
+ zh_symbols = [
7
+ "E",
8
+ "En",
9
+ "a",
10
+ "ai",
11
+ "an",
12
+ "ang",
13
+ "ao",
14
+ "b",
15
+ "c",
16
+ "ch",
17
+ "d",
18
+ "e",
19
+ "ei",
20
+ "en",
21
+ "eng",
22
+ "er",
23
+ "f",
24
+ "g",
25
+ "h",
26
+ "i",
27
+ "i0",
28
+ "ia",
29
+ "ian",
30
+ "iang",
31
+ "iao",
32
+ "ie",
33
+ "in",
34
+ "ing",
35
+ "iong",
36
+ "ir",
37
+ "iu",
38
+ "j",
39
+ "k",
40
+ "l",
41
+ "m",
42
+ "n",
43
+ "o",
44
+ "ong",
45
+ "ou",
46
+ "p",
47
+ "q",
48
+ "r",
49
+ "s",
50
+ "sh",
51
+ "t",
52
+ "u",
53
+ "ua",
54
+ "uai",
55
+ "uan",
56
+ "uang",
57
+ "ui",
58
+ "un",
59
+ "uo",
60
+ "v",
61
+ "van",
62
+ "ve",
63
+ "vn",
64
+ "w",
65
+ "x",
66
+ "y",
67
+ "z",
68
+ "zh",
69
+ "AA",
70
+ "EE",
71
+ "OO",
72
+ ]
73
+ num_zh_tones = 6
74
+
75
+ # japanese
76
+ ja_symbols = [
77
+ "N",
78
+ "a",
79
+ "a:",
80
+ "b",
81
+ "by",
82
+ "ch",
83
+ "d",
84
+ "dy",
85
+ "e",
86
+ "e:",
87
+ "f",
88
+ "g",
89
+ "gy",
90
+ "h",
91
+ "hy",
92
+ "i",
93
+ "i:",
94
+ "j",
95
+ "k",
96
+ "ky",
97
+ "m",
98
+ "my",
99
+ "n",
100
+ "ny",
101
+ "o",
102
+ "o:",
103
+ "p",
104
+ "py",
105
+ "q",
106
+ "r",
107
+ "ry",
108
+ "s",
109
+ "sh",
110
+ "t",
111
+ "ts",
112
+ "ty",
113
+ "u",
114
+ "u:",
115
+ "w",
116
+ "y",
117
+ "z",
118
+ "zy",
119
+ ]
120
+ num_ja_tones = 1
121
+
122
+ # English
123
+ en_symbols = [
124
+ "aa",
125
+ "ae",
126
+ "ah",
127
+ "ao",
128
+ "aw",
129
+ "ay",
130
+ "b",
131
+ "ch",
132
+ "d",
133
+ "dh",
134
+ "eh",
135
+ "er",
136
+ "ey",
137
+ "f",
138
+ "g",
139
+ "hh",
140
+ "ih",
141
+ "iy",
142
+ "jh",
143
+ "k",
144
+ "l",
145
+ "m",
146
+ "n",
147
+ "ng",
148
+ "ow",
149
+ "oy",
150
+ "p",
151
+ "r",
152
+ "s",
153
+ "sh",
154
+ "t",
155
+ "th",
156
+ "uh",
157
+ "uw",
158
+ "V",
159
+ "w",
160
+ "y",
161
+ "z",
162
+ "zh",
163
+ ]
164
+ num_en_tones = 4
165
+
166
+ # combine all symbols
167
+ normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
168
+ symbols = [pad] + normal_symbols + pu_symbols
169
+ sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
170
+
171
+ # combine all tones
172
+ num_tones = num_zh_tones + num_ja_tones + num_en_tones
173
+
174
+ # language maps
175
+ language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
176
+ num_languages = len(language_id_map.keys())
177
+
178
+ language_tone_start_map = {
179
+ "ZH": 0,
180
+ "JP": num_zh_tones,
181
+ "EN": num_zh_tones + num_ja_tones,
182
+ }
183
+
184
+ if __name__ == "__main__":
185
+ a = set(zh_symbols)
186
+ b = set(en_symbols)
187
+ print(sorted(a & b))
text/tone_sandhi.py ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import List
15
+ from typing import Tuple
16
+
17
+ import jieba
18
+ from pypinyin import lazy_pinyin
19
+ from pypinyin import Style
20
+
21
+
22
+ class ToneSandhi:
23
+ def __init__(self):
24
+ self.must_neural_tone_words = {
25
+ "麻烦",
26
+ "麻利",
27
+ "鸳鸯",
28
+ "高粱",
29
+ "骨头",
30
+ "骆驼",
31
+ "马虎",
32
+ "首饰",
33
+ "馒头",
34
+ "馄饨",
35
+ "风筝",
36
+ "难为",
37
+ "队伍",
38
+ "阔气",
39
+ "闺女",
40
+ "门道",
41
+ "锄头",
42
+ "铺盖",
43
+ "铃铛",
44
+ "铁匠",
45
+ "钥匙",
46
+ "里脊",
47
+ "里头",
48
+ "部分",
49
+ "那么",
50
+ "道士",
51
+ "造化",
52
+ "迷糊",
53
+ "连累",
54
+ "这么",
55
+ "这个",
56
+ "运气",
57
+ "过去",
58
+ "软和",
59
+ "转悠",
60
+ "踏实",
61
+ "跳蚤",
62
+ "跟头",
63
+ "趔趄",
64
+ "财主",
65
+ "豆腐",
66
+ "讲究",
67
+ "记性",
68
+ "记号",
69
+ "认识",
70
+ "规矩",
71
+ "见识",
72
+ "裁缝",
73
+ "补丁",
74
+ "衣裳",
75
+ "衣服",
76
+ "衙门",
77
+ "街坊",
78
+ "行李",
79
+ "行当",
80
+ "蛤蟆",
81
+ "蘑菇",
82
+ "薄荷",
83
+ "葫芦",
84
+ "葡萄",
85
+ "萝卜",
86
+ "荸荠",
87
+ "苗条",
88
+ "苗头",
89
+ "苍蝇",
90
+ "芝麻",
91
+ "舒服",
92
+ "舒坦",
93
+ "舌头",
94
+ "自在",
95
+ "膏药",
96
+ "脾气",
97
+ "脑袋",
98
+ "脊梁",
99
+ "能耐",
100
+ "胳膊",
101
+ "胭脂",
102
+ "胡萝",
103
+ "胡琴",
104
+ "胡同",
105
+ "聪明",
106
+ "耽误",
107
+ "耽搁",
108
+ "耷拉",
109
+ "耳朵",
110
+ "老爷",
111
+ "老实",
112
+ "老婆",
113
+ "老头",
114
+ "老太",
115
+ "翻腾",
116
+ "罗嗦",
117
+ "罐头",
118
+ "编辑",
119
+ "结实",
120
+ "红火",
121
+ "累赘",
122
+ "糨糊",
123
+ "糊涂",
124
+ "精神",
125
+ "粮食",
126
+ "簸箕",
127
+ "篱笆",
128
+ "算计",
129
+ "算盘",
130
+ "答应",
131
+ "笤帚",
132
+ "笑语",
133
+ "笑话",
134
+ "窟窿",
135
+ "窝囊",
136
+ "窗户",
137
+ "稳当",
138
+ "稀罕",
139
+ "称呼",
140
+ "秧歌",
141
+ "秀气",
142
+ "秀才",
143
+ "福气",
144
+ "祖宗",
145
+ "砚台",
146
+ "码头",
147
+ "石榴",
148
+ "石头",
149
+ "石匠",
150
+ "知识",
151
+ "眼睛",
152
+ "眯缝",
153
+ "眨巴",
154
+ "眉毛",
155
+ "相声",
156
+ "盘算",
157
+ "白净",
158
+ "痢疾",
159
+ "痛快",
160
+ "疟疾",
161
+ "疙瘩",
162
+ "疏忽",
163
+ "畜生",
164
+ "生意",
165
+ "甘蔗",
166
+ "琵琶",
167
+ "琢磨",
168
+ "琉璃",
169
+ "玻璃",
170
+ "玫瑰",
171
+ "玄乎",
172
+ "狐狸",
173
+ "状元",
174
+ "特务",
175
+ "牲口",
176
+ "牙碜",
177
+ "牌楼",
178
+ "爽快",
179
+ "爱人",
180
+ "热闹",
181
+ "烧饼",
182
+ "烟筒",
183
+ "烂糊",
184
+ "点心",
185
+ "炊帚",
186
+ "灯笼",
187
+ "火候",
188
+ "漂亮",
189
+ "滑溜",
190
+ "溜达",
191
+ "温和",
192
+ "清楚",
193
+ "消息",
194
+ "浪头",
195
+ "活泼",
196
+ "比方",
197
+ "正经",
198
+ "欺负",
199
+ "模糊",
200
+ "槟榔",
201
+ "棺材",
202
+ "棒槌",
203
+ "棉花",
204
+ "核桃",
205
+ "栅栏",
206
+ "柴火",
207
+ "架势",
208
+ "枕头",
209
+ "枇杷",
210
+ "机灵",
211
+ "本事",
212
+ "木头",
213
+ "木匠",
214
+ "朋友",
215
+ "月饼",
216
+ "月亮",
217
+ "暖和",
218
+ "明白",
219
+ "时候",
220
+ "新鲜",
221
+ "故事",
222
+ "收拾",
223
+ "收成",
224
+ "提防",
225
+ "挖苦",
226
+ "挑剔",
227
+ "指甲",
228
+ "指头",
229
+ "拾掇",
230
+ "拳头",
231
+ "拨弄",
232
+ "招牌",
233
+ "招呼",
234
+ "抬举",
235
+ "护士",
236
+ "折腾",
237
+ "扫帚",
238
+ "打量",
239
+ "打算",
240
+ "打点",
241
+ "打扮",
242
+ "打听",
243
+ "打发",
244
+ "扎实",
245
+ "扁担",
246
+ "戒指",
247
+ "懒得",
248
+ "意识",
249
+ "意思",
250
+ "情形",
251
+ "悟性",
252
+ "怪物",
253
+ "思量",
254
+ "怎么",
255
+ "念头",
256
+ "念叨",
257
+ "快活",
258
+ "忙活",
259
+ "志气",
260
+ "心思",
261
+ "得罪",
262
+ "张罗",
263
+ "弟兄",
264
+ "开通",
265
+ "应酬",
266
+ "庄稼",
267
+ "干事",
268
+ "帮手",
269
+ "帐篷",
270
+ "希罕",
271
+ "师父",
272
+ "师傅",
273
+ "巴结",
274
+ "巴掌",
275
+ "差事",
276
+ "工夫",
277
+ "岁数",
278
+ "屁股",
279
+ "尾巴",
280
+ "少爷",
281
+ "小气",
282
+ "小伙",
283
+ "将就",
284
+ "对头",
285
+ "对付",
286
+ "寡妇",
287
+ "家伙",
288
+ "客气",
289
+ "实在",
290
+ "官司",
291
+ "学问",
292
+ "学生",
293
+ "字号",
294
+ "嫁妆",
295
+ "媳妇",
296
+ "媒人",
297
+ "婆家",
298
+ "娘家",
299
+ "委屈",
300
+ "姑娘",
301
+ "姐夫",
302
+ "妯娌",
303
+ "妥当",
304
+ "妖精",
305
+ "奴才",
306
+ "女婿",
307
+ "头发",
308
+ "太阳",
309
+ "大爷",
310
+ "大方",
311
+ "大意",
312
+ "大夫",
313
+ "多少",
314
+ "多么",
315
+ "外甥",
316
+ "壮实",
317
+ "地道",
318
+ "地方",
319
+ "在乎",
320
+ "困难",
321
+ "嘴巴",
322
+ "嘱咐",
323
+ "嘟囔",
324
+ "嘀咕",
325
+ "喜欢",
326
+ "喇嘛",
327
+ "喇叭",
328
+ "商量",
329
+ "唾沫",
330
+ "哑巴",
331
+ "哈欠",
332
+ "哆嗦",
333
+ "咳嗽",
334
+ "和尚",
335
+ "告诉",
336
+ "告示",
337
+ "含糊",
338
+ "吓唬",
339
+ "后头",
340
+ "名字",
341
+ "名堂",
342
+ "合同",
343
+ "吆喝",
344
+ "叫唤",
345
+ "口袋",
346
+ "厚道",
347
+ "厉害",
348
+ "千斤",
349
+ "包袱",
350
+ "包涵",
351
+ "匀称",
352
+ "勤快",
353
+ "动静",
354
+ "动弹",
355
+ "功夫",
356
+ "力气",
357
+ "前头",
358
+ "刺猬",
359
+ "刺激",
360
+ "别扭",
361
+ "利落",
362
+ "利索",
363
+ "利害",
364
+ "分析",
365
+ "出息",
366
+ "凑合",
367
+ "凉快",
368
+ "冷战",
369
+ "冤枉",
370
+ "冒失",
371
+ "养活",
372
+ "关系",
373
+ "先生",
374
+ "兄弟",
375
+ "便宜",
376
+ "使唤",
377
+ "佩服",
378
+ "作坊",
379
+ "体面",
380
+ "位置",
381
+ "似的",
382
+ "伙计",
383
+ "休息",
384
+ "什么",
385
+ "人家",
386
+ "亲戚",
387
+ "亲家",
388
+ "交情",
389
+ "云彩",
390
+ "事情",
391
+ "买卖",
392
+ "主意",
393
+ "丫头",
394
+ "丧气",
395
+ "两口",
396
+ "东西",
397
+ "东家",
398
+ "世故",
399
+ "不由",
400
+ "不在",
401
+ "下水",
402
+ "下巴",
403
+ "上头",
404
+ "上司",
405
+ "丈夫",
406
+ "丈人",
407
+ "一辈",
408
+ "那个",
409
+ "菩萨",
410
+ "父亲",
411
+ "母亲",
412
+ "咕噜",
413
+ "邋遢",
414
+ "费用",
415
+ "冤家",
416
+ "甜头",
417
+ "介绍",
418
+ "荒唐",
419
+ "大人",
420
+ "泥鳅",
421
+ "幸福",
422
+ "熟悉",
423
+ "计划",
424
+ "扑腾",
425
+ "蜡烛",
426
+ "姥爷",
427
+ "照顾",
428
+ "喉咙",
429
+ "吉他",
430
+ "弄堂",
431
+ "蚂蚱",
432
+ "凤凰",
433
+ "拖沓",
434
+ "寒碜",
435
+ "糟蹋",
436
+ "倒腾",
437
+ "报复",
438
+ "逻辑",
439
+ "盘缠",
440
+ "喽啰",
441
+ "牢骚",
442
+ "咖喱",
443
+ "扫把",
444
+ "惦记",
445
+ }
446
+ self.must_not_neural_tone_words = {
447
+ "男子",
448
+ "女子",
449
+ "分子",
450
+ "原子",
451
+ "量子",
452
+ "莲子",
453
+ "石子",
454
+ "瓜子",
455
+ "电子",
456
+ "人人",
457
+ "虎虎",
458
+ }
459
+ self.punc = ":,;。?!“”‘’':,;.?!"
460
+
461
+ # the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
462
+ # e.g.
463
+ # word: "家里"
464
+ # pos: "s"
465
+ # finals: ['ia1', 'i3']
466
+ def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
467
+ # reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
468
+ for j, item in enumerate(word):
469
+ if (
470
+ j - 1 >= 0
471
+ and item == word[j - 1]
472
+ and pos[0] in {"n", "v", "a"}
473
+ and word not in self.must_not_neural_tone_words
474
+ ):
475
+ finals[j] = finals[j][:-1] + "5"
476
+ ge_idx = word.find("个")
477
+ if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
478
+ finals[-1] = finals[-1][:-1] + "5"
479
+ elif len(word) >= 1 and word[-1] in "的地得":
480
+ finals[-1] = finals[-1][:-1] + "5"
481
+ # e.g. 走了, 看着, 去过
482
+ # elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
483
+ # finals[-1] = finals[-1][:-1] + "5"
484
+ elif (
485
+ len(word) > 1
486
+ and word[-1] in "们子"
487
+ and pos in {"r", "n"}
488
+ and word not in self.must_not_neural_tone_words
489
+ ):
490
+ finals[-1] = finals[-1][:-1] + "5"
491
+ # e.g. 桌上, 地下, 家里
492
+ elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
493
+ finals[-1] = finals[-1][:-1] + "5"
494
+ # e.g. 上来, 下去
495
+ elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
496
+ finals[-1] = finals[-1][:-1] + "5"
497
+ # 个做量词
498
+ elif (
499
+ ge_idx >= 1
500
+ and (word[ge_idx - 1].isnumeric() or word[ge_idx - 1] in "几有两半多各整每做是")
501
+ ) or word == "个":
502
+ finals[ge_idx] = finals[ge_idx][:-1] + "5"
503
+ else:
504
+ if (
505
+ word in self.must_neural_tone_words
506
+ or word[-2:] in self.must_neural_tone_words
507
+ ):
508
+ finals[-1] = finals[-1][:-1] + "5"
509
+
510
+ word_list = self._split_word(word)
511
+ finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
512
+ for i, word in enumerate(word_list):
513
+ # conventional neural in Chinese
514
+ if (
515
+ word in self.must_neural_tone_words
516
+ or word[-2:] in self.must_neural_tone_words
517
+ ):
518
+ finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
519
+ finals = sum(finals_list, [])
520
+ return finals
521
+
522
+ def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
523
+ # e.g. 看不懂
524
+ if len(word) == 3 and word[1] == "不":
525
+ finals[1] = finals[1][:-1] + "5"
526
+ else:
527
+ for i, char in enumerate(word):
528
+ # "不" before tone4 should be bu2, e.g. 不怕
529
+ if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
530
+ finals[i] = finals[i][:-1] + "2"
531
+ return finals
532
+
533
+ def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
534
+ # "一" in number sequences, e.g. 一零零, 二一零
535
+ if word.find("一") != -1 and all(
536
+ [item.isnumeric() for item in word if item != "一"]
537
+ ):
538
+ return finals
539
+ # "一" between reduplication words should be yi5, e.g. 看一看
540
+ elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
541
+ finals[1] = finals[1][:-1] + "5"
542
+ # when "一" is ordinal word, it should be yi1
543
+ elif word.startswith("第一"):
544
+ finals[1] = finals[1][:-1] + "1"
545
+ else:
546
+ for i, char in enumerate(word):
547
+ if char == "一" and i + 1 < len(word):
548
+ # "一" before tone4 should be yi2, e.g. 一段
549
+ if finals[i + 1][-1] == "4":
550
+ finals[i] = finals[i][:-1] + "2"
551
+ # "一" before non-tone4 should be yi4, e.g. 一天
552
+ else:
553
+ # "一" 后面如果是标点,还读一声
554
+ if word[i + 1] not in self.punc:
555
+ finals[i] = finals[i][:-1] + "4"
556
+ return finals
557
+
558
+ def _split_word(self, word: str) -> List[str]:
559
+ word_list = jieba.cut_for_search(word)
560
+ word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
561
+ first_subword = word_list[0]
562
+ first_begin_idx = word.find(first_subword)
563
+ if first_begin_idx == 0:
564
+ second_subword = word[len(first_subword) :]
565
+ new_word_list = [first_subword, second_subword]
566
+ else:
567
+ second_subword = word[: -len(first_subword)]
568
+ new_word_list = [second_subword, first_subword]
569
+ return new_word_list
570
+
571
+ def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
572
+ if len(word) == 2 and self._all_tone_three(finals):
573
+ finals[0] = finals[0][:-1] + "2"
574
+ elif len(word) == 3:
575
+ word_list = self._split_word(word)
576
+ if self._all_tone_three(finals):
577
+ # disyllabic + monosyllabic, e.g. 蒙古/包
578
+ if len(word_list[0]) == 2:
579
+ finals[0] = finals[0][:-1] + "2"
580
+ finals[1] = finals[1][:-1] + "2"
581
+ # monosyllabic + disyllabic, e.g. 纸/老虎
582
+ elif len(word_list[0]) == 1:
583
+ finals[1] = finals[1][:-1] + "2"
584
+ else:
585
+ finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
586
+ if len(finals_list) == 2:
587
+ for i, sub in enumerate(finals_list):
588
+ # e.g. 所有/人
589
+ if self._all_tone_three(sub) and len(sub) == 2:
590
+ finals_list[i][0] = finals_list[i][0][:-1] + "2"
591
+ # e.g. 好/喜欢
592
+ elif (
593
+ i == 1
594
+ and not self._all_tone_three(sub)
595
+ and finals_list[i][0][-1] == "3"
596
+ and finals_list[0][-1][-1] == "3"
597
+ ):
598
+ finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
599
+ finals = sum(finals_list, [])
600
+ # split idiom into two words who's length is 2
601
+ elif len(word) == 4:
602
+ finals_list = [finals[:2], finals[2:]]
603
+ finals = []
604
+ for sub in finals_list:
605
+ if self._all_tone_three(sub):
606
+ sub[0] = sub[0][:-1] + "2"
607
+ finals += sub
608
+
609
+ return finals
610
+
611
+ def _all_tone_three(self, finals: List[str]) -> bool:
612
+ return all(x[-1] == "3" for x in finals)
613
+
614
+ # merge "不" and the word behind it
615
+ # if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
616
+ def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
617
+ new_seg = []
618
+ last_word = ""
619
+ for word, pos in seg:
620
+ if last_word == "不":
621
+ word = last_word + word
622
+ if word != "不":
623
+ new_seg.append((word, pos))
624
+ last_word = word[:]
625
+ if last_word == "不":
626
+ new_seg.append((last_word, "d"))
627
+ last_word = ""
628
+ return new_seg
629
+
630
+ # function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
631
+ # function 2: merge single "一" and the word behind it
632
+ # if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
633
+ # e.g.
634
+ # input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
635
+ # output seg: [['听一听', 'v']]
636
+ def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
637
+ new_seg = []
638
+ # function 1
639
+ for i, (word, pos) in enumerate(seg):
640
+ if (
641
+ i - 1 >= 0
642
+ and word == "一"
643
+ and i + 1 < len(seg)
644
+ and seg[i - 1][0] == seg[i + 1][0]
645
+ and seg[i - 1][1] == "v"
646
+ ):
647
+ new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
648
+ else:
649
+ if (
650
+ i - 2 >= 0
651
+ and seg[i - 1][0] == "一"
652
+ and seg[i - 2][0] == word
653
+ and pos == "v"
654
+ ):
655
+ continue
656
+ else:
657
+ new_seg.append([word, pos])
658
+ seg = new_seg
659
+ new_seg = []
660
+ # function 2
661
+ for i, (word, pos) in enumerate(seg):
662
+ if new_seg and new_seg[-1][0] == "一":
663
+ new_seg[-1][0] = new_seg[-1][0] + word
664
+ else:
665
+ new_seg.append([word, pos])
666
+ return new_seg
667
+
668
+ # the first and the second words are all_tone_three
669
+ def _merge_continuous_three_tones(
670
+ self, seg: List[Tuple[str, str]]
671
+ ) -> List[Tuple[str, str]]:
672
+ new_seg = []
673
+ sub_finals_list = [
674
+ lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
675
+ for (word, pos) in seg
676
+ ]
677
+ assert len(sub_finals_list) == len(seg)
678
+ merge_last = [False] * len(seg)
679
+ for i, (word, pos) in enumerate(seg):
680
+ if (
681
+ i - 1 >= 0
682
+ and self._all_tone_three(sub_finals_list[i - 1])
683
+ and self._all_tone_three(sub_finals_list[i])
684
+ and not merge_last[i - 1]
685
+ ):
686
+ # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
687
+ if (
688
+ not self._is_reduplication(seg[i - 1][0])
689
+ and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
690
+ ):
691
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
692
+ merge_last[i] = True
693
+ else:
694
+ new_seg.append([word, pos])
695
+ else:
696
+ new_seg.append([word, pos])
697
+
698
+ return new_seg
699
+
700
+ def _is_reduplication(self, word: str) -> bool:
701
+ return len(word) == 2 and word[0] == word[1]
702
+
703
+ # the last char of first word and the first char of second word is tone_three
704
+ def _merge_continuous_three_tones_2(
705
+ self, seg: List[Tuple[str, str]]
706
+ ) -> List[Tuple[str, str]]:
707
+ new_seg = []
708
+ sub_finals_list = [
709
+ lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
710
+ for (word, pos) in seg
711
+ ]
712
+ assert len(sub_finals_list) == len(seg)
713
+ merge_last = [False] * len(seg)
714
+ for i, (word, pos) in enumerate(seg):
715
+ if (
716
+ i - 1 >= 0
717
+ and sub_finals_list[i - 1][-1][-1] == "3"
718
+ and sub_finals_list[i][0][-1] == "3"
719
+ and not merge_last[i - 1]
720
+ ):
721
+ # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
722
+ if (
723
+ not self._is_reduplication(seg[i - 1][0])
724
+ and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
725
+ ):
726
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
727
+ merge_last[i] = True
728
+ else:
729
+ new_seg.append([word, pos])
730
+ else:
731
+ new_seg.append([word, pos])
732
+ return new_seg
733
+
734
+ def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
735
+ new_seg = []
736
+ for i, (word, pos) in enumerate(seg):
737
+ if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
738
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
739
+ else:
740
+ new_seg.append([word, pos])
741
+ return new_seg
742
+
743
+ def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
744
+ new_seg = []
745
+ for i, (word, pos) in enumerate(seg):
746
+ if new_seg and word == new_seg[-1][0]:
747
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
748
+ else:
749
+ new_seg.append([word, pos])
750
+ return new_seg
751
+
752
+ def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
753
+ seg = self._merge_bu(seg)
754
+ try:
755
+ seg = self._merge_yi(seg)
756
+ except:
757
+ print("_merge_yi failed")
758
+ seg = self._merge_reduplication(seg)
759
+ seg = self._merge_continuous_three_tones(seg)
760
+ seg = self._merge_continuous_three_tones_2(seg)
761
+ seg = self._merge_er(seg)
762
+ return seg
763
+
764
+ def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
765
+ finals = self._bu_sandhi(word, finals)
766
+ finals = self._yi_sandhi(word, finals)
767
+ finals = self._neural_sandhi(word, pos, finals)
768
+ finals = self._three_sandhi(word, finals)
769
+ return finals