File size: 3,411 Bytes
883d44b
31a8225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
import parselmouth
import numpy as np


class PMF0Predictor(F0Predictor):
    def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
        self.hop_length = hop_length
        self.f0_min = f0_min
        self.f0_max = f0_max
        self.sampling_rate = sampling_rate

    def interpolate_f0(self, f0):
        """
        对F0进行插值处理
        """

        data = np.reshape(f0, (f0.size, 1))

        vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
        vuv_vector[data > 0.0] = 1.0
        vuv_vector[data <= 0.0] = 0.0

        ip_data = data

        frame_number = data.size
        last_value = 0.0
        for i in range(frame_number):
            if data[i] <= 0.0:
                j = i + 1
                for j in range(i + 1, frame_number):
                    if data[j] > 0.0:
                        break
                if j < frame_number - 1:
                    if last_value > 0.0:
                        step = (data[j] - data[i - 1]) / float(j - i)
                        for k in range(i, j):
                            ip_data[k] = data[i - 1] + step * (k - i + 1)
                    else:
                        for k in range(i, j):
                            ip_data[k] = data[j]
                else:
                    for k in range(i, frame_number):
                        ip_data[k] = last_value
            else:
                ip_data[i] = data[i]  # 这里可能存在一个没有必要的拷贝
                last_value = data[i]

        return ip_data[:, 0], vuv_vector[:, 0]

    def compute_f0(self, wav, p_len=None):
        x = wav
        if p_len is None:
            p_len = x.shape[0] // self.hop_length
        else:
            assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
        time_step = self.hop_length / self.sampling_rate * 1000
        f0 = (
            parselmouth.Sound(x, self.sampling_rate)
            .to_pitch_ac(
                time_step=time_step / 1000,
                voicing_threshold=0.6,
                pitch_floor=self.f0_min,
                pitch_ceiling=self.f0_max,
            )
            .selected_array["frequency"]
        )

        pad_size = (p_len - len(f0) + 1) // 2
        if pad_size > 0 or p_len - len(f0) - pad_size > 0:
            f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
        f0, uv = self.interpolate_f0(f0)
        return f0

    def compute_f0_uv(self, wav, p_len=None):
        x = wav
        if p_len is None:
            p_len = x.shape[0] // self.hop_length
        else:
            assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
        time_step = self.hop_length / self.sampling_rate * 1000
        f0 = (
            parselmouth.Sound(x, self.sampling_rate)
            .to_pitch_ac(
                time_step=time_step / 1000,
                voicing_threshold=0.6,
                pitch_floor=self.f0_min,
                pitch_ceiling=self.f0_max,
            )
            .selected_array["frequency"]
        )

        pad_size = (p_len - len(f0) + 1) // 2
        if pad_size > 0 or p_len - len(f0) - pad_size > 0:
            f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
        f0, uv = self.interpolate_f0(f0)
        return f0, uv