File size: 44,953 Bytes
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ef07b
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ef07b
 
74fba50
64ef07b
74fba50
64ef07b
f3e787d
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ef07b
 
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ef07b
 
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ef07b
 
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ef07b
f3e787d
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e787d
848d745
74fba50
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e787d
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ef07b
 
848d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
from __future__ import unicode_literals

import os
import glob
import json
import traceback
import logging
import gradio as gr
import numpy as np
import librosa
import torch
import asyncio
import edge_tts
import yt_dlp
import ffmpeg
import subprocess
import sys
import io
import wave
from datetime import datetime
from fairseq import checkpoint_utils
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from vc_infer_pipeline import VC
from config import Config
config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)
spaces = os.getenv("SYSTEM") == "spaces"
force_support = None
if config.unsupported is False:
    if config.device == "mps" or config.device == "cpu":
        force_support = False
else:
    force_support = True

audio_mode = []
f0method_mode = []
f0method_info = ""

if force_support is False or spaces is True:
    if spaces is True:
        audio_mode = ["Upload audio", "TTS Audio"]
    else:
        audio_mode = ["Input path", "Upload audio", "TTS Audio"]
    f0method_mode = ["pm", "harvest"]
    f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better). (Default: PM)"
else:
    audio_mode = ["Input path", "Upload audio", "Youtube", "TTS Audio"]
    f0method_mode = ["pm", "harvest", "crepe"]
    f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"

if os.path.isfile("rmvpe.pt"):
    f0method_mode.insert(2, "rmvpe")

def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
    def vc_fn(
        vc_audio_mode,
        vc_input, 
        vc_upload,
        tts_text,
        tts_voice,
	      tts_rate,
        f0_up_key,
        f0_method,
        index_rate,
        filter_radius,
        resample_sr,
        rms_mix_rate,
        protect,
    ):
        try:
            logs = []
            print(f"Converting using {model_name}...")
            logs.append(f"Converting using {model_name}...")
            yield "\n".join(logs), None
            if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
                audio, sr = librosa.load(vc_input, sr=16000, mono=True)
            elif vc_audio_mode == "Upload audio":
                if vc_upload is None:
                    return "You need to upload an audio", None
                sampling_rate, audio = vc_upload
                duration = audio.shape[0] / sampling_rate
                if duration > 20 and spaces:
                    return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
                audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
                if len(audio.shape) > 1:
                    audio = librosa.to_mono(audio.transpose(1, 0))
                if sampling_rate != 16000:
                    audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
            elif vc_audio_mode == "TTS Audio":
                if len(tts_text) > 100 and spaces:
                    return "Text is too long", None
                if tts_text is None or tts_voice is None:
                    return "You need to enter text and select a voice", None
                inc_rate = "+0%"
                if tts_rate < 0 :
                  inc_rate = (f"{round(tts_rate)}%")
                else:
                  inc_rate = (f"+{round(tts_rate)}%")

                asyncio.run(edge_tts.Communicate(text=tts_text, voice= "-".join(tts_voice.split('-')[:-1]), rate= inc_rate).save("tts.mp3"))
                audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
                vc_input = "tts.mp3"
            times = [0, 0, 0]
            f0_up_key = int(f0_up_key)
            audio_opt = vc.pipeline(
                hubert_model,
                net_g,
                0,
                audio,
                vc_input,
                times,
                f0_up_key,
                f0_method,
                file_index,
                # file_big_npy,
                index_rate,
                if_f0,
                filter_radius,
                tgt_sr,
                resample_sr,
                rms_mix_rate,
                version,
                protect,
                f0_file=None,
            )
            info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
            print(f"{model_name} | {info}")
            logs.append(f"Successfully Convert {model_name}\n{info}")
            yield "\n".join(logs), (tgt_sr, audio_opt)
        except Exception as err:
            info = traceback.format_exc()
            print(info)
            primt(f"Error when using {model_name}.\n{str(err)}")
            yield info, None
    return vc_fn

def load_model():
    categories = []
    if os.path.isfile("weights/folder_info.json"):
        for _, w_dirs, _ in os.walk(f"weights"):
            category_count_total = len(w_dirs)
        category_count = 1
        with open("weights/folder_info.json", "r", encoding="utf-8") as f:
            folder_info = json.load(f)
        for category_name, category_info in folder_info.items():
            if not category_info['enable']:
                continue
            category_title = category_info['title']
            category_folder = category_info['folder_path']
            description = category_info['description']
            print(f"Load {category_title} [{category_count}/{category_count_total}]")
            models = []
            for _, m_dirs, _ in os.walk(f"weights/{category_folder}"):
                model_count_total = len(m_dirs)
            model_count = 1
            with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
                models_info = json.load(f)
            for character_name, info in models_info.items():
                if not info['enable']:
                    continue
                model_title = info['title']
                model_name = info['model_path']
                model_author = info.get("author", None)
                model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
                model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
                cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
                tgt_sr = cpt["config"][-1]
                cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
                if_f0 = cpt.get("f0", 1)
                version = cpt.get("version", "v1")
                if version == "v1":
                    if if_f0 == 1:
                        net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
                    else:
                        net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
                    model_version = "V1"
                elif version == "v2":
                    if if_f0 == 1:
                        net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
                    else:
                        net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
                    model_version = "V2"
                del net_g.enc_q
                print(net_g.load_state_dict(cpt["weight"], strict=False))
                net_g.eval().to(config.device)
                if config.is_half:
                    net_g = net_g.half()
                else:
                    net_g = net_g.float()
                vc = VC(tgt_sr, config)
                print(f"Model loaded [{model_count}/{model_count_total}]: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
                model_count += 1
                models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, model_index)))
            category_count += 1
            categories.append([category_title, description, models])
    elif os.path.exists("weights"):
        models = []
        for w_root, w_dirs, _ in os.walk("weights"):
            model_count = 1
            for sub_dir in w_dirs:
                pth_files = glob.glob(f"weights/{sub_dir}/*.pth")
                index_files = glob.glob(f"weights/{sub_dir}/*.index")
                if pth_files == []:
                    print(f"Model [{model_count}/{len(w_dirs)}]: No Model file detected, skipping...")
                    continue
                cpt = torch.load(pth_files[0])
                tgt_sr = cpt["config"][-1]
                cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
                if_f0 = cpt.get("f0", 1)
                version = cpt.get("version", "v1")
                if version == "v1":
                    if if_f0 == 1:
                        net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
                    else:
                        net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
                    model_version = "V1"
                elif version == "v2":
                    if if_f0 == 1:
                        net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
                    else:
                        net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
                    model_version = "V2"
                del net_g.enc_q
                print(net_g.load_state_dict(cpt["weight"], strict=False))
                net_g.eval().to(config.device)
                if config.is_half:
                    net_g = net_g.half()
                else:
                    net_g = net_g.float()
                vc = VC(tgt_sr, config)
                if index_files == []:
                    print("Warning: No Index file detected!")
                    index_info = "None"
                    model_index = ""
                else:
                    index_info = index_files[0]
                    model_index = index_files[0]
                print(f"Model loaded [{model_count}/{len(w_dirs)}]: {index_files[0]} / {index_info} | ({model_version})")
                model_count += 1
                models.append((index_files[0][:-4], index_files[0][:-4], "", "", model_version, create_vc_fn(index_files[0], tgt_sr, net_g, vc, if_f0, version, model_index)))
        categories.append(["Models", "", models])
    else:
        categories = []
    return categories

def download_audio(url, audio_provider):
    logs = []
    if url == "":
        logs.append("URL required!")
        yield None, "\n".join(logs)
        return None, "\n".join(logs)
    if not os.path.exists("dl_audio"):
        os.mkdir("dl_audio")
    if audio_provider == "Youtube":
        logs.append("Downloading the audio...")
        yield None, "\n".join(logs)
        ydl_opts = {
            'noplaylist': True,
            'format': 'bestaudio/best',
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'wav',
            }],
            "outtmpl": 'dl_audio/audio',
        }
        audio_path = "dl_audio/audio.wav"
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.download([url])
        logs.append("Download Complete.")
        yield audio_path, "\n".join(logs)

def cut_vocal_and_inst(split_model):
    logs = []
    logs.append("Starting the audio splitting process...")
    yield "\n".join(logs), None, None, None
    command = f"demucs --two-stems=vocals -n {split_model} dl_audio/audio.wav -o output"
    result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
    for line in result.stdout:
        logs.append(line)
        yield "\n".join(logs), None, None, None
    print(result.stdout)
    vocal = f"output/{split_model}/audio/vocals.wav"
    inst = f"output/{split_model}/audio/no_vocals.wav"
    logs.append("Audio splitting complete.")
    yield "\n".join(logs), vocal, inst, vocal

def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model):
    if not os.path.exists("output/result"):
        os.mkdir("output/result")
    vocal_path = "output/result/output.wav"
    output_path = "output/result/combine.mp3"
    inst_path = f"output/{split_model}/audio/no_vocals.wav"
    with wave.open(vocal_path, "w") as wave_file:
        wave_file.setnchannels(1) 
        wave_file.setsampwidth(2)
        wave_file.setframerate(audio_data[0])
        wave_file.writeframes(audio_data[1].tobytes())
    command =  f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
    result = subprocess.run(command.split(), stdout=subprocess.PIPE)
    print(result.stdout.decode())
    return output_path

def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

def change_audio_mode(vc_audio_mode):
    if vc_audio_mode == "Input path":
        return (
            # Input & Upload
            gr.Textbox.update(visible=True),
            gr.Checkbox.update(visible=False),
            gr.Audio.update(visible=False),
            # Youtube
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            # Splitter
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Button.update(visible=False),
            # TTS
            gr.Textbox.update(visible=False),
            gr.Dropdown.update(visible=False),
            gr.Number.update(visible=False)
        )
    elif vc_audio_mode == "Upload audio":
        return (
            # Input & Upload
            gr.Textbox.update(visible=False),
            gr.Checkbox.update(visible=True),
            gr.Audio.update(visible=True),
            # Youtube
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            # Splitter
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Button.update(visible=False),
            # TTS
            gr.Textbox.update(visible=False),
            gr.Dropdown.update(visible=False),
            gr.Number.update(visible=False)
        )
    elif vc_audio_mode == "Youtube":
        return (
            # Input & Upload
            gr.Textbox.update(visible=False),
            gr.Checkbox.update(visible=False),
            gr.Audio.update(visible=False),
            # Youtube
            gr.Dropdown.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Button.update(visible=True),
            # Splitter
            gr.Dropdown.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Button.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Slider.update(visible=True),
            gr.Slider.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Button.update(visible=True),
            # TTS
            gr.Textbox.update(visible=False),
            gr.Dropdown.update(visible=False),
            gr.Number.update(visible=False)
        )
    elif vc_audio_mode == "TTS Audio":
        return (
            # Input & Upload
            gr.Textbox.update(visible=False),
            gr.Checkbox.update(visible=False),
            gr.Audio.update(visible=False),
            # Youtube
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            # Splitter
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Button.update(visible=False),
            # TTS
            gr.Textbox.update(visible=True),
            gr.Dropdown.update(visible=True),
            gr.Number.update(visible=True)
        )

def use_microphone(microphone):
    if microphone == True:
        return gr.Audio.update(source="microphone")
    else:
        return gr.Audio.update(source="upload")



# Audio Tool Functions

# cvt audio

from pydub import AudioSegment
def convert_audio(url,title):

  # Mendefinisikan path untuk file audio
  input_path = url
  file_name = os.path.basename(input_path)
  filename = os.path.splitext(file_name)[0]


  parent_dir = os.path.dirname(url)
  new_path = os.path.relpath(parent_dir, "")



  output_path = f'youtubeaudio/{title}_converted.mp3'

  # Mengkonversi file audio WAV menjadi MP3 menggunakan pydub
  sound = AudioSegment.from_wav(input_path)
  sound.export(output_path, format="mp3")

  # Mengecek apakah file audio MP3 sudah tersimpan
  if os.path.isfile(output_path):
      # return output_path
      return "sukses"
  else:
      return "Konversi gagal"


# Fungsi play Audio
def play_audio(url):

  file_path = url
  file_name = os.path.basename(file_path)
  filename = os.path.splitext(file_name)[0]

  original_path = f"/content/youtubeaudio/{filename}.wav"
  vocal_path = f"/content/separated/htdemucs/{filename}/vocals.wav"
  instrument_path = f"/content/separated/htdemucs/{filename}/no_vocals.wav"

  return url



# Fungsi download audio

import yt_dlp
import ffmpeg
import sys


def download_audio(title, url):

  ydl_opts = {
    'format': 'bestaudio/best',
    #   'outtmpl': 'output.%(ext)s',
    'postprocessors': [{
        'key': 'FFmpegExtractAudio',
        'preferredcodec': 'wav',
    }],
    "outtmpl": f'youtubeaudio/{title}',  # this is where you can edit how you'd like the filenames to be formatted
  }

  with yt_dlp.YoutubeDL(ydl_opts) as ydl:
    # url = "https://www.youtube.com/watch?v=LCcNtQuhUgg" #@param {type:"string"}
    ydl.download([url])
  # return f"/content/youtubeaudio/{title}.wav"
  # return f"/content/youtubeaudio/adudio.wav"
  return "sukses"

#fungsi download video
def download_video(url, resolution):

  from pytube import YouTube

  yt = YouTube(url)
  try:
    stream_check = yt.streams.filter(res=f"{resolution}p")
    if len(stream_check) > 0:
      stream = yt.streams.filter(file_extension='mp4', res=f'{resolution}p').first()
    else:
      stream = yt.streams.get_highest_resolution()
  except Exception as e:
      return "error"




  folder_path = 'youtubevideo'
  if not os.path.exists(folder_path):
      os.makedirs(folder_path)

  file_path = os.path.join(folder_path, stream.default_filename)
  stream.download(output_path=folder_path, filename=stream.default_filename)

  return "sukses"


# fungsi split audio
def split_audio(url):
  import subprocess

  command = f"demucs --two-stems=vocals {url}"
  result = subprocess.run(command.split(), stdout=subprocess.PIPE)
  print(result.stdout.decode())
  return "sukses"


def aio(title, yt_url):
  download_status = download_audio(title, yt_url)

  audio_url = f"youtubeaudio/{title}.wav"
  split_status = split_audio(audio_url)

  vocal_url = f"separated/htdemucs/{title}/vocals.wav"
  no_vocal_url = f"separated/htdemucs/{title}/no_vocals.wav"

  vocal_convert_status = convert_audio(vocal_url, title+"_vocal")
  no_vocal_convert_status = convert_audio(no_vocal_url, title+"_instrumen")

  import os

  # specify old file path name
  # old_vocal_name = f"separated/htdemucs/{title}/vocals_converted.mp3"
  # old_instrumen_name = f"separated/htdemucs/{title}/no_vocals_converted.mp3"


  # Specify the new file path and name
  # new_vocal_name = f"separated/htdemucs/{title}/{title}_vocal.mp3"
  # new_instrumen_name = f"separated/htdemucs/{title}/{title}_instrumen.mp3"

  # Rename the file separated
  # os.rename(old_vocal_name, new_vocal_name)
  # os.rename(old_instrumen_name, new_instrumen_name)


  return "sukses"




if __name__ == '__main__':
    load_hubert()
    categories = load_model()
    tts_voice_list = asyncio.new_event_loop().run_until_complete(edge_tts.list_voices())
    voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
    with gr.Blocks() as app:
        gr.Markdown(
            "<div align='center'>\n\n"+
            "# RVC Genshin Impact\n\n"+
            "### Recommended to use Google Colab to use other character and feature.\n\n"+
            "[![Colab](https://img.shields.io/badge/Colab-RVC%20Genshin%20Impact-blue?style=for-the-badge&logo=googlecolab)](https://colab.research.google.com/drive/110kiMZTdP6Ri1lY9-NbQf17GVPPhHyeT?usp=sharing)\n\n"+
            "</div>\n\n"+
            "[![Repository](https://img.shields.io/badge/Github-Multi%20Model%20RVC%20Inference-blue?style=for-the-badge&logo=github)](https://github.com/ArkanDash/Multi-Model-RVC-Inference)"
        )
        if categories == []:
            gr.Markdown(
                "<div align='center'>\n\n"+
                "## No model found, please add the model into weights folder\n\n"+
                "</div>"
            )
        for (folder_title, description, models) in categories:
            with gr.TabItem(folder_title):
                if description:
                    gr.Markdown(f"### <center> {description}")
                with gr.Tabs():
                    if not models:
                        gr.Markdown("# <center> No Model Loaded.")
                        gr.Markdown("## <center> Please add the model or fix your model path.")
                        continue
                    for (name, title, author, cover, model_version, vc_fn) in models:
                        with gr.TabItem(name):
                            with gr.Row():
                                gr.Markdown(
                                    '<div align="center">'
                                    f'<div>{title}</div>\n'+
                                    f'<div>RVC {model_version} Model</div>\n'+
                                    (f'<div>Model author: {author}</div>' if author else "")+
                                    (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
                                    '</div>'
                                )
                            with gr.Row():
                                if spaces is False:
                                    with gr.TabItem("Input"):
                                        with gr.Row():
                                            with gr.Column():
                                                vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
                                                # Input
                                                vc_input = gr.Textbox(label="Input audio path", visible=False)
                                                # Upload
                                                vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
                                                vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
                                                # Youtube
                                                vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
                                                vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
                                                vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
                                                vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
                                                vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
                                                # TTS
                                                tts_text = gr.Textbox(label="TTS text", value="hello world", info="Text to speech input", visible=False)
                                                tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
                                                tts_rate = gr.Number(label="TTS Rate", value = 0 ,info='Change to increase tts speed (0 = normal)',  visible=False)
                                            with gr.Column():
                                                vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
                                                vc_split_log = gr.Textbox(label="Output Information", visible=False, interactive=False)
                                                vc_split = gr.Button("Split Audio", variant="primary", visible=False)
                                                vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
                                                vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
                                    with gr.TabItem("Convert"):
                                        with gr.Row():
                                            with gr.Column():
                                                vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
                                                f0method0 = gr.Radio(
                                                    label="Pitch extraction algorithm",
                                                    info=f0method_info,
                                                    choices=f0method_mode,
                                                    value="pm",
                                                    interactive=True
                                                )
                                                index_rate1 = gr.Slider(
                                                    minimum=0,
                                                    maximum=1,
                                                    label="Retrieval feature ratio",
                                                    info="(Default: 0.7)",
                                                    value=0.7,
                                                    interactive=True,
                                                )
                                                filter_radius0 = gr.Slider(
                                                    minimum=0,
                                                    maximum=7,
                                                    label="Apply Median Filtering",
                                                    info="The value represents the filter radius and can reduce breathiness.",
                                                    value=3,
                                                    step=1,
                                                    interactive=True,
                                                )
                                                resample_sr0 = gr.Slider(
                                                    minimum=0,
                                                    maximum=48000,
                                                    label="Resample the output audio",
                                                    info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
                                                    value=0,
                                                    step=1,
                                                    interactive=True,
                                                )
                                                rms_mix_rate0 = gr.Slider(
                                                    minimum=0,
                                                    maximum=1,
                                                    label="Volume Envelope",
                                                    info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
                                                    value=1,
                                                    interactive=True,
                                                )
                                                protect0 = gr.Slider(
                                                    minimum=0,
                                                    maximum=0.5,
                                                    label="Voice Protection",
                                                    info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
                                                    value=0.5,
                                                    step=0.01,
                                                    interactive=True,
                                                )
                                            with gr.Column():
                                                vc_log = gr.Textbox(label="Output Information", interactive=False)
                                                vc_output = gr.Audio(label="Output Audio", interactive=False)
                                                vc_convert = gr.Button("Convert", variant="primary")
                                                vc_vocal_volume = gr.Slider(
                                                    minimum=0,
                                                    maximum=10,
                                                    label="Vocal volume",
                                                    value=1,
                                                    interactive=True,
                                                    step=1,
                                                    info="Adjust vocal volume (Default: 1}",
                                                    visible=False
                                                )
                                                vc_inst_volume = gr.Slider(
                                                    minimum=0,
                                                    maximum=10,
                                                    label="Instrument volume",
                                                    value=1,
                                                    interactive=True,
                                                    step=1,
                                                    info="Adjust instrument volume (Default: 1}",
                                                    visible=False
                                                )
                                                vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
                                                vc_combine =  gr.Button("Combine",variant="primary", visible=False)
                                else:
                                    with gr.Column():
                                        vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
                                        # Input
                                        vc_input = gr.Textbox(label="Input audio path", visible=False)
                                        # Upload
                                        vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
                                        vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
                                        # Youtube
                                        vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
                                        vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
                                        vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
                                        vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
                                        vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
                                        # Splitter
                                        vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
                                        vc_split_log = gr.Textbox(label="Output Information", visible=False, interactive=False)
                                        vc_split = gr.Button("Split Audio", variant="primary", visible=False)
                                        vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
                                        vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
                                        # TTS
                                        tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
                                        tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
                                    with gr.Column():
                                        vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
                                        f0method0 = gr.Radio(
                                            label="Pitch extraction algorithm",
                                            info=f0method_info,
                                            choices=f0method_mode,
                                            value="pm",
                                            interactive=True
                                        )
                                        index_rate1 = gr.Slider(
                                            minimum=0,
                                            maximum=1,
                                            label="Retrieval feature ratio",
                                            info="(Default: 0.7)",
                                            value=0.7,
                                            interactive=True,
                                        )
                                        filter_radius0 = gr.Slider(
                                            minimum=0,
                                            maximum=7,
                                            label="Apply Median Filtering",
                                            info="The value represents the filter radius and can reduce breathiness.",
                                            value=3,
                                            step=1,
                                            interactive=True,
                                        )
                                        resample_sr0 = gr.Slider(
                                            minimum=0,
                                            maximum=48000,
                                            label="Resample the output audio",
                                            info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
                                            value=0,
                                            step=1,
                                            interactive=True,
                                        )
                                        rms_mix_rate0 = gr.Slider(
                                            minimum=0,
                                            maximum=1,
                                            label="Volume Envelope",
                                            info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
                                            value=1,
                                            interactive=True,
                                        )
                                        protect0 = gr.Slider(
                                            minimum=0,
                                            maximum=0.5,
                                            label="Voice Protection",
                                            info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
                                            value=0.5,
                                            step=0.01,
                                            interactive=True,
                                        )
                                    with gr.Column():
                                        vc_log = gr.Textbox(label="Output Information", interactive=False)
                                        vc_output = gr.Audio(label="Output Audio", interactive=False)
                                        vc_convert = gr.Button("Convert", variant="primary")
                                        vc_vocal_volume = gr.Slider(
                                            minimum=0,
                                            maximum=10,
                                            label="Vocal volume",
                                            value=1,
                                            interactive=True,
                                            step=1,
                                            info="Adjust vocal volume (Default: 1}",
                                            visible=False
                                        )
                                        vc_inst_volume = gr.Slider(
                                            minimum=0,
                                            maximum=10,
                                            label="Instrument volume",
                                            value=1,
                                            interactive=True,
                                            step=1,
                                            info="Adjust instrument volume (Default: 1}",
                                            visible=False
                                        )
                                        vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
                                        vc_combine =  gr.Button("Combine",variant="primary", visible=False)
                        vc_convert.click(
                            fn=vc_fn, 
                            inputs=[
                                vc_audio_mode,
                                vc_input,
                                vc_upload,
                                tts_text,
                                tts_voice,
                                tts_rate,
                                vc_transform0,
                                f0method0,
                                index_rate1,
                                filter_radius0,
                                resample_sr0,
                                rms_mix_rate0,
                                protect0,
                            ], 
                            outputs=[vc_log ,vc_output]
                        )
                        vc_download_button.click(
                            fn=download_audio, 
                            inputs=[vc_link, vc_download_audio], 
                            outputs=[vc_audio_preview, vc_log_yt]
                        )
                        vc_split.click(
                            fn=cut_vocal_and_inst, 
                            inputs=[vc_split_model], 
                            outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview, vc_input]
                        )
                        vc_combine.click(
                            fn=combine_vocal_and_inst,
                            inputs=[vc_output, vc_vocal_volume, vc_inst_volume, vc_split_model],
                            outputs=[vc_combined_output]
                        )
                        vc_microphone_mode.change(
                            fn=use_microphone,
                            inputs=vc_microphone_mode,
                            outputs=vc_upload
                        )
                        vc_audio_mode.change(
                            fn=change_audio_mode,
                            inputs=[vc_audio_mode],
                            outputs=[
                                vc_input,
                                vc_microphone_mode,
                                vc_upload,
                                vc_download_audio,
                                vc_link,
                                vc_log_yt,
                                vc_download_button,
                                vc_split_model,
                                vc_split_log,
                                vc_split,
                                vc_audio_preview,
                                vc_vocal_preview,
                                vc_inst_preview,
                                vc_vocal_volume,
                                vc_inst_volume,
                                vc_combined_output,
                                vc_combine,
                                tts_text,
                                tts_voice,
				tts_rate
                            ]
                        )
        # Audio tool

        with gr.Tab("AIO"):
            with gr.Row():
              with gr.Column():
                aio_input = [gr.Textbox(label = "title"), gr.Textbox(label = "Youtube Url")]
                aio_button = gr.Button("Procces")
              with gr.Column():
                aio_output =[gr.Textbox(label = "Status Output")]

        aio_button.click(aio, inputs=aio_input, outputs=aio_output)


        app.queue(concurrency_count=5, max_size=50, api_open=config.api).launch(share=config.share, debug=True)