ArkanDash commited on
Commit
1cb796d
1 Parent(s): d135017

feat: initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,35 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ weights/alice/added_IVF141_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text
36
+ weights/ayaka-jp/added_IVF1830_Flat_nprobe_9.index filter=lfs diff=lfs merge=lfs -text
37
+ weights/nilou-zh/added_IVF1939_Flat_nprobe_9.index filter=lfs diff=lfs merge=lfs -text
38
+ weights/teio/added_IVF3421_Flat_nprobe_11.index filter=lfs diff=lfs merge=lfs -text
39
+ weights/ayaka-jp/added_IVF415_Flat_nprobe_6.index filter=lfs diff=lfs merge=lfs -text
40
+ weights/klee-jp/added_IVF282_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text
41
+ weights/klee-jp/cover.png filter=lfs diff=lfs merge=lfs -text
42
+ weights/nahida-jp/added_IVF265_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text
43
+ weights/nahida-jp/cover.png filter=lfs diff=lfs merge=lfs -text
44
+ weights/hutao-jp/added_IVF265_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text
45
+ weights/hutao-jp/cover.png filter=lfs diff=lfs merge=lfs -text
46
+ weights/raiden-jp/added_IVF783_Flat_nprobe_7.index filter=lfs diff=lfs merge=lfs -text
47
+ weights/raiden-jp/cover.png filter=lfs diff=lfs merge=lfs -text
48
+ weights/kazuha-jp/added_IVF677_Flat_nprobe_7.index filter=lfs diff=lfs merge=lfs -text
49
+ weights/kazuha-jp/cover.png filter=lfs diff=lfs merge=lfs -text
50
+ weights/childe-jp/added_IVF428_Flat_nprobe_6.index filter=lfs diff=lfs merge=lfs -text
51
+ weights/childe-jp/cover.png filter=lfs diff=lfs merge=lfs -text
52
+ weights/noah/added_IVF467_Flat_nprobe_6.index filter=lfs diff=lfs merge=lfs -text
53
+ weights/noah/cover.jpeg filter=lfs diff=lfs merge=lfs -text
54
+ weights/rie/added_IVF325_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text
55
+ weights/rie/cover.png filter=lfs diff=lfs merge=lfs -text
56
+ weights/wanderer-jp/added_IVF128_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text
57
+ weights/wanderer-jp/cover.png filter=lfs diff=lfs merge=lfs -text
58
+ weights/xiao-jp/cover.png filter=lfs diff=lfs merge=lfs -text
59
+ weights/xiao-jp/added_IVF233_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text
60
+ weights/anji/added_IVF198_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text
61
+ weights/anji/cover.png filter=lfs diff=lfs merge=lfs -text
62
+ weights/ariana/added_IVF133_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text
63
+ weights/ariana/cover.png filter=lfs diff=lfs merge=lfs -text
64
+ weights/once/added_IVF229_Flat_nprobe_5.index filter=lfs diff=lfs merge=lfs -text
65
+ weights/once/cover.png filter=lfs diff=lfs merge=lfs -text
66
+ *.index filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Ignore Visual Studio temporary files, build results, and
2
+ ## files generated by popular Visual Studio add-ons.
3
+ ##
4
+ ## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
5
+
6
+ # User-specific files
7
+ *.rsuser
8
+ *.suo
9
+ *.user
10
+ *.userosscache
11
+ *.sln.docstates
12
+ load.py
13
+
14
+ # User-specific files (MonoDevelop/Xamarin Studio)
15
+ *.userprefs
16
+
17
+ # Mono auto generated files
18
+ mono_crash.*
19
+
20
+ # Build results
21
+ [Dd]ebug/
22
+ [Dd]ebugPublic/
23
+ [Rr]elease/
24
+ [Rr]eleases/
25
+ x64/
26
+ x86/
27
+ [Ww][Ii][Nn]32/
28
+ [Aa][Rr][Mm]/
29
+ [Aa][Rr][Mm]64/
30
+ bld/
31
+ [Bb]in/
32
+ [Oo]bj/
33
+ [Oo]ut/
34
+ [Ll]og/
35
+ [Ll]ogs/
36
+ infer_pack\__pycache__
37
+ # Visual Studio 2015/2017 cache/options directory
38
+ .vs/
39
+ # Uncomment if you have tasks that create the project's static files in wwwroot
40
+ #wwwroot/
41
+
42
+ # Visual Studio 2017 auto generated files
43
+ Generated\ Files/
44
+
45
+ # MSTest test Results
46
+ [Tt]est[Rr]esult*/
47
+ [Bb]uild[Ll]og.*
48
+
49
+ # NUnit
50
+ *.VisualState.xml
51
+ TestResult.xml
52
+ nunit-*.xml
53
+
54
+ # Build Results of an ATL Project
55
+ [Dd]ebugPS/
56
+ [Rr]eleasePS/
57
+ dlldata.c
58
+
59
+ # Benchmark Results
60
+ BenchmarkDotNet.Artifacts/
61
+
62
+ # .NET Core
63
+ project.lock.json
64
+ project.fragment.lock.json
65
+ artifacts/
66
+
67
+ # ASP.NET Scaffolding
68
+ ScaffoldingReadMe.txt
69
+
70
+ # StyleCop
71
+ StyleCopReport.xml
72
+
73
+ # Files built by Visual Studio
74
+ *_i.c
75
+ *_p.c
76
+ *_h.h
77
+ *.ilk
78
+ *.meta
79
+ *.obj
80
+ *.iobj
81
+ *.pch
82
+ *.pdb
83
+ *.ipdb
84
+ *.pgc
85
+ *.pgd
86
+ *.rsp
87
+ *.sbr
88
+ *.tlb
89
+ *.tli
90
+ *.tlh
91
+ *.tmp
92
+ *.tmp_proj
93
+ *_wpftmp.csproj
94
+ *.log
95
+ *.vspscc
96
+ *.vssscc
97
+ .builds
98
+ *.pidb
99
+ *.svclog
100
+ *.scc
101
+
102
+ # Chutzpah Test files
103
+ _Chutzpah*
104
+
105
+ # Visual C++ cache files
106
+ ipch/
107
+ *.aps
108
+ *.ncb
109
+ *.opendb
110
+ *.opensdf
111
+ *.sdf
112
+ *.cachefile
113
+ *.VC.db
114
+ *.VC.VC.opendb
115
+
116
+ # Visual Studio profiler
117
+ *.psess
118
+ *.vsp
119
+ *.vspx
120
+ *.sap
121
+
122
+ # Visual Studio Trace Files
123
+ *.e2e
124
+
125
+ # TFS 2012 Local Workspace
126
+ $tf/
127
+
128
+ # Guidance Automation Toolkit
129
+ *.gpState
130
+
131
+ # ReSharper is a .NET coding add-in
132
+ _ReSharper*/
133
+ *.[Rr]e[Ss]harper
134
+ *.DotSettings.user
135
+
136
+ # TeamCity is a build add-in
137
+ _TeamCity*
138
+
139
+ # DotCover is a Code Coverage Tool
140
+ *.dotCover
141
+
142
+ # AxoCover is a Code Coverage Tool
143
+ .axoCover/*
144
+ !.axoCover/settings.json
145
+
146
+ # Coverlet is a free, cross platform Code Coverage Tool
147
+ coverage*.json
148
+ coverage*.xml
149
+ coverage*.info
150
+
151
+ # Visual Studio code coverage results
152
+ *.coverage
153
+ *.coveragexml
154
+
155
+ # NCrunch
156
+ _NCrunch_*
157
+ .*crunch*.local.xml
158
+ nCrunchTemp_*
159
+
160
+ # MightyMoose
161
+ *.mm.*
162
+ AutoTest.Net/
163
+
164
+ # Web workbench (sass)
165
+ .sass-cache/
166
+
167
+ # Installshield output folder
168
+ [Ee]xpress/
169
+
170
+ # DocProject is a documentation generator add-in
171
+ DocProject/buildhelp/
172
+ DocProject/Help/*.HxT
173
+ DocProject/Help/*.HxC
174
+ DocProject/Help/*.hhc
175
+ DocProject/Help/*.hhk
176
+ DocProject/Help/*.hhp
177
+ DocProject/Help/Html2
178
+ DocProject/Help/html
179
+
180
+ # Click-Once directory
181
+ publish/
182
+
183
+ # Publish Web Output
184
+ *.[Pp]ublish.xml
185
+ *.azurePubxml
186
+ # Note: Comment the next line if you want to checkin your web deploy settings,
187
+ # but database connection strings (with potential passwords) will be unencrypted
188
+ *.pubxml
189
+ *.publishproj
190
+
191
+ # Microsoft Azure Web App publish settings. Comment the next line if you want to
192
+ # checkin your Azure Web App publish settings, but sensitive information contained
193
+ # in these scripts will be unencrypted
194
+ PublishScripts/
195
+
196
+ # NuGet Packages
197
+ *.nupkg
198
+ # NuGet Symbol Packages
199
+ *.snupkg
200
+ # The packages folder can be ignored because of Package Restore
201
+ **/[Pp]ackages/*
202
+ # except build/, which is used as an MSBuild target.
203
+ !**/[Pp]ackages/build/
204
+ # Uncomment if necessary however generally it will be regenerated when needed
205
+ #!**/[Pp]ackages/repositories.config
206
+ # NuGet v3's project.json files produces more ignorable files
207
+ *.nuget.props
208
+ *.nuget.targets
209
+
210
+ # Microsoft Azure Build Output
211
+ csx/
212
+ *.build.csdef
213
+
214
+ # Microsoft Azure Emulator
215
+ ecf/
216
+ rcf/
217
+
218
+ # Windows Store app package directories and files
219
+ AppPackages/
220
+ BundleArtifacts/
221
+ Package.StoreAssociation.xml
222
+ _pkginfo.txt
223
+ *.appx
224
+ *.appxbundle
225
+ *.appxupload
226
+
227
+ # Visual Studio cache files
228
+ # files ending in .cache can be ignored
229
+ *.[Cc]ache
230
+ # but keep track of directories ending in .cache
231
+ !?*.[Cc]ache/
232
+
233
+ # Others
234
+ ClientBin/
235
+ ~$*
236
+ *~
237
+ *.dbmdl
238
+ *.dbproj.schemaview
239
+ *.jfm
240
+ *.pfx
241
+ *.publishsettings
242
+ orleans.codegen.cs
243
+
244
+ # Including strong name files can present a security risk
245
+ # (https://github.com/github/gitignore/pull/2483#issue-259490424)
246
+ #*.snk
247
+
248
+ # Since there are multiple workflows, uncomment next line to ignore bower_components
249
+ # (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
250
+ #bower_components/
251
+
252
+ # RIA/Silverlight projects
253
+ Generated_Code/
254
+
255
+ # Backup & report files from converting an old project file
256
+ # to a newer Visual Studio version. Backup files are not needed,
257
+ # because we have git ;-)
258
+ _UpgradeReport_Files/
259
+ Backup*/
260
+ UpgradeLog*.XML
261
+ UpgradeLog*.htm
262
+ ServiceFabricBackup/
263
+ *.rptproj.bak
264
+
265
+ # SQL Server files
266
+ *.mdf
267
+ *.ldf
268
+ *.ndf
269
+
270
+ # Business Intelligence projects
271
+ *.rdl.data
272
+ *.bim.layout
273
+ *.bim_*.settings
274
+ *.rptproj.rsuser
275
+ *- [Bb]ackup.rdl
276
+ *- [Bb]ackup ([0-9]).rdl
277
+ *- [Bb]ackup ([0-9][0-9]).rdl
278
+
279
+ # Microsoft Fakes
280
+ FakesAssemblies/
281
+
282
+ # GhostDoc plugin setting file
283
+ *.GhostDoc.xml
284
+
285
+ # Node.js Tools for Visual Studio
286
+ .ntvs_analysis.dat
287
+ node_modules/
288
+
289
+ # Visual Studio 6 build log
290
+ *.plg
291
+
292
+ # Visual Studio 6 workspace options file
293
+ *.opt
294
+
295
+ # Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
296
+ *.vbw
297
+
298
+ # Visual Studio LightSwitch build output
299
+ **/*.HTMLClient/GeneratedArtifacts
300
+ **/*.DesktopClient/GeneratedArtifacts
301
+ **/*.DesktopClient/ModelManifest.xml
302
+ **/*.Server/GeneratedArtifacts
303
+ **/*.Server/ModelManifest.xml
304
+ _Pvt_Extensions
305
+
306
+ # Paket dependency manager
307
+ .paket/paket.exe
308
+ paket-files/
309
+
310
+ # FAKE - F# Make
311
+ .fake/
312
+
313
+ # CodeRush personal settings
314
+ .cr/personal
315
+
316
+ # Python Tools for Visual Studio (PTVS)
317
+ __pycache__/
318
+
319
+
320
+ # Cake - Uncomment if you are using it
321
+ # tools/**
322
+ # !tools/packages.config
323
+
324
+ # Tabs Studio
325
+ *.tss
326
+
327
+ # Telerik's JustMock configuration file
328
+ *.jmconfig
329
+
330
+ # BizTalk build output
331
+ *.btp.cs
332
+ *.btm.cs
333
+ *.odx.cs
334
+ *.xsd.cs
335
+
336
+ # OpenCover UI analysis results
337
+ OpenCover/
338
+
339
+ # Azure Stream Analytics local run output
340
+ ASALocalRun/
341
+
342
+ # MSBuild Binary and Structured Log
343
+ *.binlog
344
+
345
+ # NVidia Nsight GPU debugger configuration file
346
+ *.nvuser
347
+
348
+ # MFractors (Xamarin productivity tool) working folder
349
+ .mfractor/
350
+
351
+ # Local History for Visual Studio
352
+ .localhistory/
353
+
354
+ # BeatPulse healthcheck temp database
355
+ healthchecksdb
356
+
357
+ # Backup folder for Package Reference Convert tool in Visual Studio 2017
358
+ MigrationBackup/
359
+
360
+ # Ionide (cross platform F# VS Code tools) working folder
361
+ .ionide/
362
+
363
+ # Fody - auto-generated XML schema
364
+ FodyWeavers.xsd
365
+
366
+ # build
367
+ build
368
+ monotonic_align/core.c
369
+ *.o
370
+ *.so
371
+ *.dll
372
+
373
+ # data
374
+ /config.json
375
+ /*.pth
376
+ *.wav
377
+ /monotonic_align/monotonic_align
378
+ /resources
379
+ /MoeGoe.spec
380
+ /dist/MoeGoe
381
+ /dist
382
+
383
+ .idea
app-update.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import traceback
4
+ import logging
5
+ import gradio as gr
6
+ import numpy as np
7
+ import librosa
8
+ import torch
9
+ import asyncio
10
+ import edge_tts
11
+ import yt_dlp
12
+ import ffmpeg
13
+ import subprocess
14
+ import sys
15
+ import io
16
+ import wave
17
+ from datetime import datetime
18
+ from fairseq import checkpoint_utils
19
+ from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
20
+ from vc_infer_pipeline import VC
21
+ from config import Config
22
+ config = Config()
23
+ logging.getLogger("numba").setLevel(logging.WARNING)
24
+ limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
25
+
26
+ def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index):
27
+ def vc_fn(
28
+ input_audio,
29
+ f0_up_key,
30
+ f0_method,
31
+ index_rate,
32
+ tts_mode,
33
+ tts_text,
34
+ tts_voice
35
+ ):
36
+ try:
37
+ if tts_mode:
38
+ if len(tts_text) > 100 and limitation:
39
+ return "Text is too long", None
40
+ if tts_text is None or tts_voice is None:
41
+ return "You need to enter text and select a voice", None
42
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
43
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
44
+ else:
45
+ if config.files:
46
+ audio, sr = librosa.load(input_audio, sr=16000, mono=True)
47
+ else:
48
+ if input_audio is None:
49
+ return "You need to upload an audio", None
50
+ sampling_rate, audio = input_audio
51
+ duration = audio.shape[0] / sampling_rate
52
+ if duration > 20 and limitation:
53
+ return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
54
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
55
+ if len(audio.shape) > 1:
56
+ audio = librosa.to_mono(audio.transpose(1, 0))
57
+ if sampling_rate != 16000:
58
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
59
+ times = [0, 0, 0]
60
+ f0_up_key = int(f0_up_key)
61
+ audio_opt = vc.pipeline(
62
+ hubert_model,
63
+ net_g,
64
+ 0,
65
+ audio,
66
+ times,
67
+ f0_up_key,
68
+ f0_method,
69
+ file_index,
70
+ index_rate,
71
+ if_f0,
72
+ f0_file=None,
73
+ )
74
+ print(
75
+ f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
76
+ )
77
+ return "Success", (tgt_sr, audio_opt)
78
+ except:
79
+ info = traceback.format_exc()
80
+ print(info)
81
+ return info, (None, None)
82
+ return vc_fn
83
+
84
+ def cut_vocal_and_inst(yt_url):
85
+ if yt_url != "":
86
+ if not os.path.exists("/content/youtube_audio"):
87
+ os.mkdir("/content/youtube_audio")
88
+ ydl_opts = {
89
+ 'format': 'bestaudio/best',
90
+ 'postprocessors': [{
91
+ 'key': 'FFmpegExtractAudio',
92
+ 'preferredcodec': 'wav',
93
+ }],
94
+ "outtmpl": '/content/youtube_audio/audio',
95
+ }
96
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
97
+ ydl.download([yt_url])
98
+ yt_audio_path = "/content/youtube_audio/audio.wav"
99
+ command = f"demucs --two-stems=vocals {yt_audio_path}"
100
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
101
+ print(result.stdout.decode())
102
+ return ("/content/rvc-models/separated/htdemucs/audio/vocals.wav", "/content/rvc-models/separated/htdemucs/audio/no_vocals.wav", yt_audio_path, "/content/rvc-models/separated/htdemucs/audio/vocals.wav")
103
+
104
+ def combine_vocal_and_inst(audio_data, audio_volume):
105
+ print(audio_data)
106
+ if not os.path.exists("/content/result"):
107
+ os.mkdir("/content/result")
108
+ vocal_path = "/content/result/output.wav"
109
+ inst_path = "/content/rvc-models/separated/htdemucs/audio/no_vocals.wav"
110
+ output_path = "/content/result/combine.mp3"
111
+ with wave.open(vocal_path, "w") as wave_file:
112
+ wave_file.setnchannels(1)
113
+ wave_file.setsampwidth(2)
114
+ wave_file.setframerate(audio_data[0])
115
+ wave_file.writeframes(audio_data[1].tobytes())
116
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
117
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
118
+ return output_path
119
+
120
+ def load_hubert():
121
+ global hubert_model
122
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
123
+ ["hubert_base.pt"],
124
+ suffix="",
125
+ )
126
+ hubert_model = models[0]
127
+ hubert_model = hubert_model.to(config.device)
128
+ if config.is_half:
129
+ hubert_model = hubert_model.half()
130
+ else:
131
+ hubert_model = hubert_model.float()
132
+ hubert_model.eval()
133
+
134
+ def change_to_tts_mode(tts_mode):
135
+ if tts_mode:
136
+ return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
137
+ else:
138
+ return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
139
+
140
+ def change_audio_to_path_mode(audio_mode):
141
+ if audio_mode:
142
+ return gr.Audio.update(visible=False), gr.Textbox.update(visible=True)
143
+ else:
144
+ return gr.Audio.update(visible=True), gr.Textbox.update(visible=False)
145
+
146
+ if __name__ == '__main__':
147
+ load_hubert()
148
+ models = []
149
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
150
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
151
+ folder_path = "weights"
152
+ for name in os.listdir(folder_path):
153
+ print("check folder: " + name)
154
+ if name.startswith("."): break
155
+ cover_path = glob.glob(f"{folder_path}/{name}/*.png") + glob.glob(f"{folder_path}/{name}/*.jpg")
156
+ index_path = glob.glob(f"{folder_path}/{name}/*.index")
157
+ checkpoint_path = glob.glob(f"{folder_path}/{name}/*.pth")
158
+ title = name
159
+ cover = cover_path[0]
160
+ index = index_path[0]
161
+ cpt = torch.load(checkpoint_path[0], map_location="cpu")
162
+ tgt_sr = cpt["config"][-1]
163
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
164
+ if_f0 = cpt.get("f0", 1)
165
+ if if_f0 == 1:
166
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
167
+ else:
168
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
169
+ del net_g.enc_q
170
+ print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩
171
+ net_g.eval().to(config.device)
172
+ if config.is_half:
173
+ net_g = net_g.half()
174
+ else:
175
+ net_g = net_g.float()
176
+ vc = VC(tgt_sr, config)
177
+ models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index)))
178
+ with gr.Blocks() as app:
179
+ gr.Markdown(
180
+ "# <center> RVC Models (Latest Update)\n"
181
+ "## <center> The input audio should be clean and pure voice without background music.\n"
182
+ "### <center> More feature will be added soon... \n"
183
+ "<center> [![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1hx6kKvIuv5XNY1Gai2PEuZhpO5z6xpVh?usp=sharing)\n\n"
184
+ "<center> [![Original Repo](https://badgen.net/badge/icon/github?icon=github&label=Original%20Repo)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)"
185
+ )
186
+ with gr.Tabs():
187
+ for (name, title, author, cover, vc_fn) in models:
188
+ with gr.TabItem(name):
189
+ with gr.Row():
190
+ gr.Markdown(
191
+ '<div align="center">'
192
+ f'<div>{title}</div>\n'+
193
+ (f'<div>Model author: {author}</div>' if author else "")+
194
+ (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
195
+ '</div>'
196
+ )
197
+ with gr.Row():
198
+ if config.files:
199
+ with gr.Column():
200
+ vc_youtube = gr.Textbox(label="Youtube URL")
201
+ vc_convert = gr.Button("Convert", variant="primary")
202
+ vc_vocal_preview = gr.Audio(label="Vocal Preview")
203
+ vc_inst_preview = gr.Audio(label="Instrumental Preview")
204
+ vc_audio_preview = gr.Audio(label="Audio Preview")
205
+ with gr.Column():
206
+ vc_audio_mode = gr.Checkbox(label="Use audio path", value=False)
207
+ if config.files:
208
+ vc_input = gr.Textbox(label="Input audio path")
209
+ else:
210
+ vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
211
+ vc_transpose = gr.Number(label="Transpose", value=0)
212
+ vc_f0method = gr.Radio(
213
+ label="Pitch extraction algorithm, PM is fast but Harvest is better for low frequencies",
214
+ choices=["pm", "harvest"],
215
+ value="pm",
216
+ interactive=True,
217
+ )
218
+ vc_index_ratio = gr.Slider(
219
+ minimum=0,
220
+ maximum=1,
221
+ label="Retrieval feature ratio",
222
+ value=0.6,
223
+ interactive=True,
224
+ )
225
+ tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
226
+ tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
227
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
228
+ vc_submit = gr.Button("Generate", variant="primary")
229
+ vc_output1 = gr.Textbox(label="Output Message")
230
+ vc_output2 = gr.Audio(label="Output Audio")
231
+ if config.files:
232
+ with gr.Column():
233
+ vc_volume = gr.Slider(
234
+ minimum=0,
235
+ maximum=10,
236
+ label="Vocal volume",
237
+ value=5,
238
+ interactive=True,
239
+ step=1
240
+ )
241
+ vc_outputCombine = gr.Audio(label="Output Combined Audio")
242
+ vc_combine = gr.Button("Combine",variant="primary")
243
+ vc_submit.click(vc_fn, [vc_input, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output1, vc_output2])
244
+ tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice])
245
+ vc_audio_input(change_audio_to_path_mode, [vc_audio_mode])
246
+ if config.files:
247
+ vc_convert.click(cut_vocal_and_inst, vc_youtube, [vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input])
248
+ vc_combine.click(combine_vocal_and_inst, [vc_output2, vc_volume], vc_outputCombine)
249
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.share)
app.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import json
4
+ import argparse
5
+ import traceback
6
+ import logging
7
+ import gradio as gr
8
+ import numpy as np
9
+ import librosa
10
+ import torch
11
+ import asyncio
12
+ import edge_tts
13
+ from datetime import datetime
14
+ from fairseq import checkpoint_utils
15
+ from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
16
+ from vc_infer_pipeline import VC
17
+ from config import Config
18
+ config = Config()
19
+ logging.getLogger("numba").setLevel(logging.WARNING)
20
+ limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
21
+
22
+ def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index):
23
+ def vc_fn(
24
+ input_audio,
25
+ f0_up_key,
26
+ f0_method,
27
+ index_rate,
28
+ tts_mode,
29
+ tts_text,
30
+ tts_voice
31
+ ):
32
+ try:
33
+ if tts_mode:
34
+ if len(tts_text) > 100 and limitation:
35
+ return "Text is too long", None
36
+ if tts_text is None or tts_voice is None:
37
+ return "You need to enter text and select a voice", None
38
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
39
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
40
+ else:
41
+ if config.files:
42
+ audio, sr = librosa.load(input_audio, sr=16000, mono=True)
43
+ else:
44
+ if input_audio is None:
45
+ return "You need to upload an audio", None
46
+ sampling_rate, audio = input_audio
47
+ duration = audio.shape[0] / sampling_rate
48
+ if duration > 20 and limitation:
49
+ return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
50
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
51
+ if len(audio.shape) > 1:
52
+ audio = librosa.to_mono(audio.transpose(1, 0))
53
+ if sampling_rate != 16000:
54
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
55
+ times = [0, 0, 0]
56
+ f0_up_key = int(f0_up_key)
57
+ audio_opt = vc.pipeline(
58
+ hubert_model,
59
+ net_g,
60
+ 0,
61
+ audio,
62
+ times,
63
+ f0_up_key,
64
+ f0_method,
65
+ file_index,
66
+ index_rate,
67
+ if_f0,
68
+ f0_file=None,
69
+ )
70
+ print(
71
+ f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
72
+ )
73
+ return "Success", (tgt_sr, audio_opt)
74
+ except:
75
+ info = traceback.format_exc()
76
+ print(info)
77
+ return info, (None, None)
78
+ return vc_fn
79
+
80
+ def load_hubert():
81
+ global hubert_model
82
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
83
+ ["hubert_base.pt"],
84
+ suffix="",
85
+ )
86
+ hubert_model = models[0]
87
+ hubert_model = hubert_model.to(device)
88
+ if is_half:
89
+ hubert_model = hubert_model.half()
90
+ else:
91
+ hubert_model = hubert_model.float()
92
+ hubert_model.eval()
93
+
94
+ def change_to_tts_mode(tts_mode):
95
+ if tts_mode:
96
+ return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
97
+ else:
98
+ return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
99
+
100
+ if __name__ == '__main__':
101
+ load_hubert()
102
+ models = []
103
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
104
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
105
+ folder_path = "weights"
106
+ for name in os.listdir(folder_path):
107
+ print("check folder: " + name)
108
+ if name.startswith("."): break
109
+ cover_path = glob.glob(f"{folder_path}/{name}/*.png") + glob.glob(f"{folder_path}/{name}/*.jpg")
110
+ index_path = glob.glob(f"{folder_path}/{name}/*.index")
111
+ checkpoint_path = glob.glob(f"{folder_path}/{name}/*.pth")
112
+ title = name
113
+ cover = cover_path[0]
114
+ index = index_path[0]
115
+ cpt = torch.load(checkpoint_path[0], map_location="cpu")
116
+ tgt_sr = cpt["config"][-1]
117
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
118
+ if_f0 = cpt.get("f0", 1)
119
+ if if_f0 == 1:
120
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
121
+ else:
122
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
123
+ del net_g.enc_q
124
+ print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩
125
+ net_g.eval().to(config.device)
126
+ if config.is_half:
127
+ net_g = net_g.half()
128
+ else:
129
+ net_g = net_g.float()
130
+ vc = VC(tgt_sr, config)
131
+ models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index)))
132
+ with gr.Blocks() as app:
133
+ gr.Markdown(
134
+ "# <center> RVC Models (Latest Update)\n"
135
+ "## <center> The input audio should be clean and pure voice without background music.\n"
136
+ "### <center> More feature will be added soon... \n"
137
+ "<center> [![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1hx6kKvIuv5XNY1Gai2PEuZhpO5z6xpVh?usp=sharing)\n\n"
138
+ "<center> [![Original Repo](https://badgen.net/badge/icon/github?icon=github&label=Original%20Repo)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)"
139
+ )
140
+ with gr.Tabs():
141
+ for (name, title, author, cover, vc_fn) in models:
142
+ with gr.TabItem(name):
143
+ with gr.Row():
144
+ gr.Markdown(
145
+ '<div align="center">'
146
+ f'<div>{title}</div>\n'+
147
+ (f'<div>Model author: {author}</div>' if author else "")+
148
+ (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
149
+ '</div>'
150
+ )
151
+ with gr.Row():
152
+ with gr.Column():
153
+ vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
154
+ vc_transpose = gr.Number(label="Transpose", value=0)
155
+ vc_f0method = gr.Radio(
156
+ label="Pitch extraction algorithm, PM is fast but Harvest is better for low frequencies",
157
+ choices=["pm", "harvest"],
158
+ value="pm",
159
+ interactive=True,
160
+ )
161
+ vc_index_ratio = gr.Slider(
162
+ minimum=0,
163
+ maximum=1,
164
+ label="Retrieval feature ratio",
165
+ value=0.6,
166
+ interactive=True,
167
+ )
168
+ tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
169
+ tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
170
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
171
+ vc_submit = gr.Button("Generate", variant="primary")
172
+ with gr.Column():
173
+ vc_output1 = gr.Textbox(label="Output Message")
174
+ vc_output2 = gr.Audio(label="Output Audio")
175
+ vc_submit.click(vc_fn, [vc_input, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output1, vc_output2])
176
+ tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice])
177
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.share)
config.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+ from multiprocessing import cpu_count
4
+
5
+
6
+ class Config:
7
+ def __init__(self):
8
+ self.device = "cuda:0"
9
+ self.is_half = True
10
+ self.n_cpu = 0
11
+ self.gpu_name = None
12
+ self.gpu_mem = None
13
+ (
14
+ self.python_cmd,
15
+ self.listen_port,
16
+ self.iscolab,
17
+ self.noparallel,
18
+ self.noautoopen,
19
+ self.api,
20
+ self.share,
21
+ self.files
22
+ ) = self.arg_parse()
23
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
24
+
25
+ @staticmethod
26
+ def arg_parse() -> tuple:
27
+ parser = argparse.ArgumentParser()
28
+ parser.add_argument("--port", type=int, default=7865, help="Listen port")
29
+ parser.add_argument(
30
+ "--pycmd", type=str, default="python", help="Python command"
31
+ )
32
+ parser.add_argument("--colab", action="store_true", help="Launch in colab")
33
+ parser.add_argument(
34
+ "--noparallel", action="store_true", help="Disable parallel processing"
35
+ )
36
+ parser.add_argument(
37
+ "--noautoopen",
38
+ action="store_true",
39
+ help="Do not open in browser automatically",
40
+ )
41
+ parser.add_argument('--api', action="store_true", default=False)
42
+ parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
43
+ parser.add_argument("--files", action="store_true", default=False, help="load audio from path")
44
+ cmd_opts = parser.parse_args()
45
+
46
+ cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
47
+
48
+ return (
49
+ cmd_opts.pycmd,
50
+ cmd_opts.port,
51
+ cmd_opts.colab,
52
+ cmd_opts.noparallel,
53
+ cmd_opts.noautoopen,
54
+ cmd_opts.api,
55
+ cmd_opts.share,
56
+ cmd_opts.files,
57
+ )
58
+
59
+ def device_config(self) -> tuple:
60
+ if torch.cuda.is_available():
61
+ i_device = int(self.device.split(":")[-1])
62
+ self.gpu_name = torch.cuda.get_device_name(i_device)
63
+ if (
64
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
65
+ or "P40" in self.gpu_name.upper()
66
+ or "1060" in self.gpu_name
67
+ or "1070" in self.gpu_name
68
+ or "1080" in self.gpu_name
69
+ ):
70
+ print("16系/10系显卡和P40强制单精度")
71
+ self.is_half = False
72
+ for config_file in ["32k.json", "40k.json", "48k.json"]:
73
+ with open(f"configs/{config_file}", "r") as f:
74
+ strr = f.read().replace("true", "false")
75
+ with open(f"configs/{config_file}", "w") as f:
76
+ f.write(strr)
77
+ with open("trainset_preprocess_pipeline_print.py", "r") as f:
78
+ strr = f.read().replace("3.7", "3.0")
79
+ with open("trainset_preprocess_pipeline_print.py", "w") as f:
80
+ f.write(strr)
81
+ else:
82
+ self.gpu_name = None
83
+ self.gpu_mem = int(
84
+ torch.cuda.get_device_properties(i_device).total_memory
85
+ / 1024
86
+ / 1024
87
+ / 1024
88
+ + 0.4
89
+ )
90
+ if self.gpu_mem <= 4:
91
+ with open("trainset_preprocess_pipeline_print.py", "r") as f:
92
+ strr = f.read().replace("3.7", "3.0")
93
+ with open("trainset_preprocess_pipeline_print.py", "w") as f:
94
+ f.write(strr)
95
+ elif torch.backends.mps.is_available():
96
+ print("没有发现支持的N卡, 使用MPS进行推理")
97
+ self.device = "mps"
98
+ self.is_half = False
99
+ else:
100
+ print("没有发现支持的N卡, 使用CPU进行推理")
101
+ self.device = "cpu"
102
+ self.is_half = False
103
+
104
+ if self.n_cpu == 0:
105
+ self.n_cpu = cpu_count()
106
+
107
+ if self.is_half:
108
+ # 6G显存配置
109
+ x_pad = 3
110
+ x_query = 10
111
+ x_center = 60
112
+ x_max = 65
113
+ else:
114
+ # 5G显存配置
115
+ x_pad = 1
116
+ x_query = 6
117
+ x_center = 38
118
+ x_max = 41
119
+
120
+ if self.gpu_mem != None and self.gpu_mem <= 4:
121
+ x_pad = 1
122
+ x_query = 5
123
+ x_center = 30
124
+ x_max = 32
125
+
126
+ return x_pad, x_query, x_center, x_max
hubert_base.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
3
+ size 189507909
infer_pack/attentions.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from infer_pack import commons
9
+ from infer_pack import modules
10
+ from infer_pack.modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(
15
+ self,
16
+ hidden_channels,
17
+ filter_channels,
18
+ n_heads,
19
+ n_layers,
20
+ kernel_size=1,
21
+ p_dropout=0.0,
22
+ window_size=10,
23
+ **kwargs
24
+ ):
25
+ super().__init__()
26
+ self.hidden_channels = hidden_channels
27
+ self.filter_channels = filter_channels
28
+ self.n_heads = n_heads
29
+ self.n_layers = n_layers
30
+ self.kernel_size = kernel_size
31
+ self.p_dropout = p_dropout
32
+ self.window_size = window_size
33
+
34
+ self.drop = nn.Dropout(p_dropout)
35
+ self.attn_layers = nn.ModuleList()
36
+ self.norm_layers_1 = nn.ModuleList()
37
+ self.ffn_layers = nn.ModuleList()
38
+ self.norm_layers_2 = nn.ModuleList()
39
+ for i in range(self.n_layers):
40
+ self.attn_layers.append(
41
+ MultiHeadAttention(
42
+ hidden_channels,
43
+ hidden_channels,
44
+ n_heads,
45
+ p_dropout=p_dropout,
46
+ window_size=window_size,
47
+ )
48
+ )
49
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
50
+ self.ffn_layers.append(
51
+ FFN(
52
+ hidden_channels,
53
+ hidden_channels,
54
+ filter_channels,
55
+ kernel_size,
56
+ p_dropout=p_dropout,
57
+ )
58
+ )
59
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
60
+
61
+ def forward(self, x, x_mask):
62
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
63
+ x = x * x_mask
64
+ for i in range(self.n_layers):
65
+ y = self.attn_layers[i](x, x, attn_mask)
66
+ y = self.drop(y)
67
+ x = self.norm_layers_1[i](x + y)
68
+
69
+ y = self.ffn_layers[i](x, x_mask)
70
+ y = self.drop(y)
71
+ x = self.norm_layers_2[i](x + y)
72
+ x = x * x_mask
73
+ return x
74
+
75
+
76
+ class Decoder(nn.Module):
77
+ def __init__(
78
+ self,
79
+ hidden_channels,
80
+ filter_channels,
81
+ n_heads,
82
+ n_layers,
83
+ kernel_size=1,
84
+ p_dropout=0.0,
85
+ proximal_bias=False,
86
+ proximal_init=True,
87
+ **kwargs
88
+ ):
89
+ super().__init__()
90
+ self.hidden_channels = hidden_channels
91
+ self.filter_channels = filter_channels
92
+ self.n_heads = n_heads
93
+ self.n_layers = n_layers
94
+ self.kernel_size = kernel_size
95
+ self.p_dropout = p_dropout
96
+ self.proximal_bias = proximal_bias
97
+ self.proximal_init = proximal_init
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.self_attn_layers = nn.ModuleList()
101
+ self.norm_layers_0 = nn.ModuleList()
102
+ self.encdec_attn_layers = nn.ModuleList()
103
+ self.norm_layers_1 = nn.ModuleList()
104
+ self.ffn_layers = nn.ModuleList()
105
+ self.norm_layers_2 = nn.ModuleList()
106
+ for i in range(self.n_layers):
107
+ self.self_attn_layers.append(
108
+ MultiHeadAttention(
109
+ hidden_channels,
110
+ hidden_channels,
111
+ n_heads,
112
+ p_dropout=p_dropout,
113
+ proximal_bias=proximal_bias,
114
+ proximal_init=proximal_init,
115
+ )
116
+ )
117
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
118
+ self.encdec_attn_layers.append(
119
+ MultiHeadAttention(
120
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
121
+ )
122
+ )
123
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
124
+ self.ffn_layers.append(
125
+ FFN(
126
+ hidden_channels,
127
+ hidden_channels,
128
+ filter_channels,
129
+ kernel_size,
130
+ p_dropout=p_dropout,
131
+ causal=True,
132
+ )
133
+ )
134
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
135
+
136
+ def forward(self, x, x_mask, h, h_mask):
137
+ """
138
+ x: decoder input
139
+ h: encoder output
140
+ """
141
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
142
+ device=x.device, dtype=x.dtype
143
+ )
144
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
145
+ x = x * x_mask
146
+ for i in range(self.n_layers):
147
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
148
+ y = self.drop(y)
149
+ x = self.norm_layers_0[i](x + y)
150
+
151
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
152
+ y = self.drop(y)
153
+ x = self.norm_layers_1[i](x + y)
154
+
155
+ y = self.ffn_layers[i](x, x_mask)
156
+ y = self.drop(y)
157
+ x = self.norm_layers_2[i](x + y)
158
+ x = x * x_mask
159
+ return x
160
+
161
+
162
+ class MultiHeadAttention(nn.Module):
163
+ def __init__(
164
+ self,
165
+ channels,
166
+ out_channels,
167
+ n_heads,
168
+ p_dropout=0.0,
169
+ window_size=None,
170
+ heads_share=True,
171
+ block_length=None,
172
+ proximal_bias=False,
173
+ proximal_init=False,
174
+ ):
175
+ super().__init__()
176
+ assert channels % n_heads == 0
177
+
178
+ self.channels = channels
179
+ self.out_channels = out_channels
180
+ self.n_heads = n_heads
181
+ self.p_dropout = p_dropout
182
+ self.window_size = window_size
183
+ self.heads_share = heads_share
184
+ self.block_length = block_length
185
+ self.proximal_bias = proximal_bias
186
+ self.proximal_init = proximal_init
187
+ self.attn = None
188
+
189
+ self.k_channels = channels // n_heads
190
+ self.conv_q = nn.Conv1d(channels, channels, 1)
191
+ self.conv_k = nn.Conv1d(channels, channels, 1)
192
+ self.conv_v = nn.Conv1d(channels, channels, 1)
193
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
194
+ self.drop = nn.Dropout(p_dropout)
195
+
196
+ if window_size is not None:
197
+ n_heads_rel = 1 if heads_share else n_heads
198
+ rel_stddev = self.k_channels**-0.5
199
+ self.emb_rel_k = nn.Parameter(
200
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
201
+ * rel_stddev
202
+ )
203
+ self.emb_rel_v = nn.Parameter(
204
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
205
+ * rel_stddev
206
+ )
207
+
208
+ nn.init.xavier_uniform_(self.conv_q.weight)
209
+ nn.init.xavier_uniform_(self.conv_k.weight)
210
+ nn.init.xavier_uniform_(self.conv_v.weight)
211
+ if proximal_init:
212
+ with torch.no_grad():
213
+ self.conv_k.weight.copy_(self.conv_q.weight)
214
+ self.conv_k.bias.copy_(self.conv_q.bias)
215
+
216
+ def forward(self, x, c, attn_mask=None):
217
+ q = self.conv_q(x)
218
+ k = self.conv_k(c)
219
+ v = self.conv_v(c)
220
+
221
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
222
+
223
+ x = self.conv_o(x)
224
+ return x
225
+
226
+ def attention(self, query, key, value, mask=None):
227
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
228
+ b, d, t_s, t_t = (*key.size(), query.size(2))
229
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
230
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
231
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
232
+
233
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
234
+ if self.window_size is not None:
235
+ assert (
236
+ t_s == t_t
237
+ ), "Relative attention is only available for self-attention."
238
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
239
+ rel_logits = self._matmul_with_relative_keys(
240
+ query / math.sqrt(self.k_channels), key_relative_embeddings
241
+ )
242
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
243
+ scores = scores + scores_local
244
+ if self.proximal_bias:
245
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
246
+ scores = scores + self._attention_bias_proximal(t_s).to(
247
+ device=scores.device, dtype=scores.dtype
248
+ )
249
+ if mask is not None:
250
+ scores = scores.masked_fill(mask == 0, -1e4)
251
+ if self.block_length is not None:
252
+ assert (
253
+ t_s == t_t
254
+ ), "Local attention is only available for self-attention."
255
+ block_mask = (
256
+ torch.ones_like(scores)
257
+ .triu(-self.block_length)
258
+ .tril(self.block_length)
259
+ )
260
+ scores = scores.masked_fill(block_mask == 0, -1e4)
261
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
262
+ p_attn = self.drop(p_attn)
263
+ output = torch.matmul(p_attn, value)
264
+ if self.window_size is not None:
265
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
266
+ value_relative_embeddings = self._get_relative_embeddings(
267
+ self.emb_rel_v, t_s
268
+ )
269
+ output = output + self._matmul_with_relative_values(
270
+ relative_weights, value_relative_embeddings
271
+ )
272
+ output = (
273
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
274
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
275
+ return output, p_attn
276
+
277
+ def _matmul_with_relative_values(self, x, y):
278
+ """
279
+ x: [b, h, l, m]
280
+ y: [h or 1, m, d]
281
+ ret: [b, h, l, d]
282
+ """
283
+ ret = torch.matmul(x, y.unsqueeze(0))
284
+ return ret
285
+
286
+ def _matmul_with_relative_keys(self, x, y):
287
+ """
288
+ x: [b, h, l, d]
289
+ y: [h or 1, m, d]
290
+ ret: [b, h, l, m]
291
+ """
292
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
293
+ return ret
294
+
295
+ def _get_relative_embeddings(self, relative_embeddings, length):
296
+ max_relative_position = 2 * self.window_size + 1
297
+ # Pad first before slice to avoid using cond ops.
298
+ pad_length = max(length - (self.window_size + 1), 0)
299
+ slice_start_position = max((self.window_size + 1) - length, 0)
300
+ slice_end_position = slice_start_position + 2 * length - 1
301
+ if pad_length > 0:
302
+ padded_relative_embeddings = F.pad(
303
+ relative_embeddings,
304
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
305
+ )
306
+ else:
307
+ padded_relative_embeddings = relative_embeddings
308
+ used_relative_embeddings = padded_relative_embeddings[
309
+ :, slice_start_position:slice_end_position
310
+ ]
311
+ return used_relative_embeddings
312
+
313
+ def _relative_position_to_absolute_position(self, x):
314
+ """
315
+ x: [b, h, l, 2*l-1]
316
+ ret: [b, h, l, l]
317
+ """
318
+ batch, heads, length, _ = x.size()
319
+ # Concat columns of pad to shift from relative to absolute indexing.
320
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
321
+
322
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
323
+ x_flat = x.view([batch, heads, length * 2 * length])
324
+ x_flat = F.pad(
325
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
326
+ )
327
+
328
+ # Reshape and slice out the padded elements.
329
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
330
+ :, :, :length, length - 1 :
331
+ ]
332
+ return x_final
333
+
334
+ def _absolute_position_to_relative_position(self, x):
335
+ """
336
+ x: [b, h, l, l]
337
+ ret: [b, h, l, 2*l-1]
338
+ """
339
+ batch, heads, length, _ = x.size()
340
+ # padd along column
341
+ x = F.pad(
342
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
343
+ )
344
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
345
+ # add 0's in the beginning that will skew the elements after reshape
346
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
347
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
348
+ return x_final
349
+
350
+ def _attention_bias_proximal(self, length):
351
+ """Bias for self-attention to encourage attention to close positions.
352
+ Args:
353
+ length: an integer scalar.
354
+ Returns:
355
+ a Tensor with shape [1, 1, length, length]
356
+ """
357
+ r = torch.arange(length, dtype=torch.float32)
358
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
359
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
360
+
361
+
362
+ class FFN(nn.Module):
363
+ def __init__(
364
+ self,
365
+ in_channels,
366
+ out_channels,
367
+ filter_channels,
368
+ kernel_size,
369
+ p_dropout=0.0,
370
+ activation=None,
371
+ causal=False,
372
+ ):
373
+ super().__init__()
374
+ self.in_channels = in_channels
375
+ self.out_channels = out_channels
376
+ self.filter_channels = filter_channels
377
+ self.kernel_size = kernel_size
378
+ self.p_dropout = p_dropout
379
+ self.activation = activation
380
+ self.causal = causal
381
+
382
+ if causal:
383
+ self.padding = self._causal_padding
384
+ else:
385
+ self.padding = self._same_padding
386
+
387
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
388
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
389
+ self.drop = nn.Dropout(p_dropout)
390
+
391
+ def forward(self, x, x_mask):
392
+ x = self.conv_1(self.padding(x * x_mask))
393
+ if self.activation == "gelu":
394
+ x = x * torch.sigmoid(1.702 * x)
395
+ else:
396
+ x = torch.relu(x)
397
+ x = self.drop(x)
398
+ x = self.conv_2(self.padding(x * x_mask))
399
+ return x * x_mask
400
+
401
+ def _causal_padding(self, x):
402
+ if self.kernel_size == 1:
403
+ return x
404
+ pad_l = self.kernel_size - 1
405
+ pad_r = 0
406
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
407
+ x = F.pad(x, commons.convert_pad_shape(padding))
408
+ return x
409
+
410
+ def _same_padding(self, x):
411
+ if self.kernel_size == 1:
412
+ return x
413
+ pad_l = (self.kernel_size - 1) // 2
414
+ pad_r = self.kernel_size // 2
415
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
416
+ x = F.pad(x, commons.convert_pad_shape(padding))
417
+ return x
infer_pack/commons.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size * dilation - dilation) / 2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
25
+ """KL(P||Q)"""
26
+ kl = (logs_q - logs_p) - 0.5
27
+ kl += (
28
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
29
+ )
30
+ return kl
31
+
32
+
33
+ def rand_gumbel(shape):
34
+ """Sample from the Gumbel distribution, protect from overflows."""
35
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
36
+ return -torch.log(-torch.log(uniform_samples))
37
+
38
+
39
+ def rand_gumbel_like(x):
40
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
41
+ return g
42
+
43
+
44
+ def slice_segments(x, ids_str, segment_size=4):
45
+ ret = torch.zeros_like(x[:, :, :segment_size])
46
+ for i in range(x.size(0)):
47
+ idx_str = ids_str[i]
48
+ idx_end = idx_str + segment_size
49
+ ret[i] = x[i, :, idx_str:idx_end]
50
+ return ret
51
+
52
+
53
+ def slice_segments2(x, ids_str, segment_size=4):
54
+ ret = torch.zeros_like(x[:, :segment_size])
55
+ for i in range(x.size(0)):
56
+ idx_str = ids_str[i]
57
+ idx_end = idx_str + segment_size
58
+ ret[i] = x[i, idx_str:idx_end]
59
+ return ret
60
+
61
+
62
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
63
+ b, d, t = x.size()
64
+ if x_lengths is None:
65
+ x_lengths = t
66
+ ids_str_max = x_lengths - segment_size + 1
67
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
68
+ ret = slice_segments(x, ids_str, segment_size)
69
+ return ret, ids_str
70
+
71
+
72
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
73
+ position = torch.arange(length, dtype=torch.float)
74
+ num_timescales = channels // 2
75
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
76
+ num_timescales - 1
77
+ )
78
+ inv_timescales = min_timescale * torch.exp(
79
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
80
+ )
81
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
82
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
83
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
84
+ signal = signal.view(1, channels, length)
85
+ return signal
86
+
87
+
88
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
89
+ b, channels, length = x.size()
90
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
91
+ return x + signal.to(dtype=x.dtype, device=x.device)
92
+
93
+
94
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
95
+ b, channels, length = x.size()
96
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
97
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
98
+
99
+
100
+ def subsequent_mask(length):
101
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
102
+ return mask
103
+
104
+
105
+ @torch.jit.script
106
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
107
+ n_channels_int = n_channels[0]
108
+ in_act = input_a + input_b
109
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
110
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
111
+ acts = t_act * s_act
112
+ return acts
113
+
114
+
115
+ def convert_pad_shape(pad_shape):
116
+ l = pad_shape[::-1]
117
+ pad_shape = [item for sublist in l for item in sublist]
118
+ return pad_shape
119
+
120
+
121
+ def shift_1d(x):
122
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
123
+ return x
124
+
125
+
126
+ def sequence_mask(length, max_length=None):
127
+ if max_length is None:
128
+ max_length = length.max()
129
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
130
+ return x.unsqueeze(0) < length.unsqueeze(1)
131
+
132
+
133
+ def generate_path(duration, mask):
134
+ """
135
+ duration: [b, 1, t_x]
136
+ mask: [b, 1, t_y, t_x]
137
+ """
138
+ device = duration.device
139
+
140
+ b, _, t_y, t_x = mask.shape
141
+ cum_duration = torch.cumsum(duration, -1)
142
+
143
+ cum_duration_flat = cum_duration.view(b * t_x)
144
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
145
+ path = path.view(b, t_x, t_y)
146
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
147
+ path = path.unsqueeze(1).transpose(2, 3) * mask
148
+ return path
149
+
150
+
151
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
152
+ if isinstance(parameters, torch.Tensor):
153
+ parameters = [parameters]
154
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
155
+ norm_type = float(norm_type)
156
+ if clip_value is not None:
157
+ clip_value = float(clip_value)
158
+
159
+ total_norm = 0
160
+ for p in parameters:
161
+ param_norm = p.grad.data.norm(norm_type)
162
+ total_norm += param_norm.item() ** norm_type
163
+ if clip_value is not None:
164
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
165
+ total_norm = total_norm ** (1.0 / norm_type)
166
+ return total_norm
infer_pack/models.py ADDED
@@ -0,0 +1,982 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from infer_pack import modules
7
+ from infer_pack import attentions
8
+ from infer_pack import commons
9
+ from infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder256Sim(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(256, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ x = self.proj(x) * x_mask
106
+ return x, x_mask
107
+
108
+
109
+ class ResidualCouplingBlock(nn.Module):
110
+ def __init__(
111
+ self,
112
+ channels,
113
+ hidden_channels,
114
+ kernel_size,
115
+ dilation_rate,
116
+ n_layers,
117
+ n_flows=4,
118
+ gin_channels=0,
119
+ ):
120
+ super().__init__()
121
+ self.channels = channels
122
+ self.hidden_channels = hidden_channels
123
+ self.kernel_size = kernel_size
124
+ self.dilation_rate = dilation_rate
125
+ self.n_layers = n_layers
126
+ self.n_flows = n_flows
127
+ self.gin_channels = gin_channels
128
+
129
+ self.flows = nn.ModuleList()
130
+ for i in range(n_flows):
131
+ self.flows.append(
132
+ modules.ResidualCouplingLayer(
133
+ channels,
134
+ hidden_channels,
135
+ kernel_size,
136
+ dilation_rate,
137
+ n_layers,
138
+ gin_channels=gin_channels,
139
+ mean_only=True,
140
+ )
141
+ )
142
+ self.flows.append(modules.Flip())
143
+
144
+ def forward(self, x, x_mask, g=None, reverse=False):
145
+ if not reverse:
146
+ for flow in self.flows:
147
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
148
+ else:
149
+ for flow in reversed(self.flows):
150
+ x = flow(x, x_mask, g=g, reverse=reverse)
151
+ return x
152
+
153
+ def remove_weight_norm(self):
154
+ for i in range(self.n_flows):
155
+ self.flows[i * 2].remove_weight_norm()
156
+
157
+
158
+ class PosteriorEncoder(nn.Module):
159
+ def __init__(
160
+ self,
161
+ in_channels,
162
+ out_channels,
163
+ hidden_channels,
164
+ kernel_size,
165
+ dilation_rate,
166
+ n_layers,
167
+ gin_channels=0,
168
+ ):
169
+ super().__init__()
170
+ self.in_channels = in_channels
171
+ self.out_channels = out_channels
172
+ self.hidden_channels = hidden_channels
173
+ self.kernel_size = kernel_size
174
+ self.dilation_rate = dilation_rate
175
+ self.n_layers = n_layers
176
+ self.gin_channels = gin_channels
177
+
178
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
179
+ self.enc = modules.WN(
180
+ hidden_channels,
181
+ kernel_size,
182
+ dilation_rate,
183
+ n_layers,
184
+ gin_channels=gin_channels,
185
+ )
186
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
187
+
188
+ def forward(self, x, x_lengths, g=None):
189
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
190
+ x.dtype
191
+ )
192
+ x = self.pre(x) * x_mask
193
+ x = self.enc(x, x_mask, g=g)
194
+ stats = self.proj(x) * x_mask
195
+ m, logs = torch.split(stats, self.out_channels, dim=1)
196
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
197
+ return z, m, logs, x_mask
198
+
199
+ def remove_weight_norm(self):
200
+ self.enc.remove_weight_norm()
201
+
202
+
203
+ class Generator(torch.nn.Module):
204
+ def __init__(
205
+ self,
206
+ initial_channel,
207
+ resblock,
208
+ resblock_kernel_sizes,
209
+ resblock_dilation_sizes,
210
+ upsample_rates,
211
+ upsample_initial_channel,
212
+ upsample_kernel_sizes,
213
+ gin_channels=0,
214
+ ):
215
+ super(Generator, self).__init__()
216
+ self.num_kernels = len(resblock_kernel_sizes)
217
+ self.num_upsamples = len(upsample_rates)
218
+ self.conv_pre = Conv1d(
219
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
220
+ )
221
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
222
+
223
+ self.ups = nn.ModuleList()
224
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
225
+ self.ups.append(
226
+ weight_norm(
227
+ ConvTranspose1d(
228
+ upsample_initial_channel // (2**i),
229
+ upsample_initial_channel // (2 ** (i + 1)),
230
+ k,
231
+ u,
232
+ padding=(k - u) // 2,
233
+ )
234
+ )
235
+ )
236
+
237
+ self.resblocks = nn.ModuleList()
238
+ for i in range(len(self.ups)):
239
+ ch = upsample_initial_channel // (2 ** (i + 1))
240
+ for j, (k, d) in enumerate(
241
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
242
+ ):
243
+ self.resblocks.append(resblock(ch, k, d))
244
+
245
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
246
+ self.ups.apply(init_weights)
247
+
248
+ if gin_channels != 0:
249
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
250
+
251
+ def forward(self, x, g=None):
252
+ x = self.conv_pre(x)
253
+ if g is not None:
254
+ x = x + self.cond(g)
255
+
256
+ for i in range(self.num_upsamples):
257
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
258
+ x = self.ups[i](x)
259
+ xs = None
260
+ for j in range(self.num_kernels):
261
+ if xs is None:
262
+ xs = self.resblocks[i * self.num_kernels + j](x)
263
+ else:
264
+ xs += self.resblocks[i * self.num_kernels + j](x)
265
+ x = xs / self.num_kernels
266
+ x = F.leaky_relu(x)
267
+ x = self.conv_post(x)
268
+ x = torch.tanh(x)
269
+
270
+ return x
271
+
272
+ def remove_weight_norm(self):
273
+ for l in self.ups:
274
+ remove_weight_norm(l)
275
+ for l in self.resblocks:
276
+ l.remove_weight_norm()
277
+
278
+
279
+ class SineGen(torch.nn.Module):
280
+ """Definition of sine generator
281
+ SineGen(samp_rate, harmonic_num = 0,
282
+ sine_amp = 0.1, noise_std = 0.003,
283
+ voiced_threshold = 0,
284
+ flag_for_pulse=False)
285
+ samp_rate: sampling rate in Hz
286
+ harmonic_num: number of harmonic overtones (default 0)
287
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
288
+ noise_std: std of Gaussian noise (default 0.003)
289
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
290
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
291
+ Note: when flag_for_pulse is True, the first time step of a voiced
292
+ segment is always sin(np.pi) or cos(0)
293
+ """
294
+
295
+ def __init__(
296
+ self,
297
+ samp_rate,
298
+ harmonic_num=0,
299
+ sine_amp=0.1,
300
+ noise_std=0.003,
301
+ voiced_threshold=0,
302
+ flag_for_pulse=False,
303
+ ):
304
+ super(SineGen, self).__init__()
305
+ self.sine_amp = sine_amp
306
+ self.noise_std = noise_std
307
+ self.harmonic_num = harmonic_num
308
+ self.dim = self.harmonic_num + 1
309
+ self.sampling_rate = samp_rate
310
+ self.voiced_threshold = voiced_threshold
311
+
312
+ def _f02uv(self, f0):
313
+ # generate uv signal
314
+ uv = torch.ones_like(f0)
315
+ uv = uv * (f0 > self.voiced_threshold)
316
+ return uv
317
+
318
+ def forward(self, f0, upp):
319
+ """sine_tensor, uv = forward(f0)
320
+ input F0: tensor(batchsize=1, length, dim=1)
321
+ f0 for unvoiced steps should be 0
322
+ output sine_tensor: tensor(batchsize=1, length, dim)
323
+ output uv: tensor(batchsize=1, length, 1)
324
+ """
325
+ with torch.no_grad():
326
+ f0 = f0[:, None].transpose(1, 2)
327
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
328
+ # fundamental component
329
+ f0_buf[:, :, 0] = f0[:, :, 0]
330
+ for idx in np.arange(self.harmonic_num):
331
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
332
+ idx + 2
333
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
334
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
335
+ rand_ini = torch.rand(
336
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
337
+ )
338
+ rand_ini[:, 0] = 0
339
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
340
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
341
+ tmp_over_one *= upp
342
+ tmp_over_one = F.interpolate(
343
+ tmp_over_one.transpose(2, 1),
344
+ scale_factor=upp,
345
+ mode="linear",
346
+ align_corners=True,
347
+ ).transpose(2, 1)
348
+ rad_values = F.interpolate(
349
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
350
+ ).transpose(
351
+ 2, 1
352
+ ) #######
353
+ tmp_over_one %= 1
354
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
355
+ cumsum_shift = torch.zeros_like(rad_values)
356
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
357
+ sine_waves = torch.sin(
358
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
359
+ )
360
+ sine_waves = sine_waves * self.sine_amp
361
+ uv = self._f02uv(f0)
362
+ uv = F.interpolate(
363
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
364
+ ).transpose(2, 1)
365
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
366
+ noise = noise_amp * torch.randn_like(sine_waves)
367
+ sine_waves = sine_waves * uv + noise
368
+ return sine_waves, uv, noise
369
+
370
+
371
+ class SourceModuleHnNSF(torch.nn.Module):
372
+ """SourceModule for hn-nsf
373
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
374
+ add_noise_std=0.003, voiced_threshod=0)
375
+ sampling_rate: sampling_rate in Hz
376
+ harmonic_num: number of harmonic above F0 (default: 0)
377
+ sine_amp: amplitude of sine source signal (default: 0.1)
378
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
379
+ note that amplitude of noise in unvoiced is decided
380
+ by sine_amp
381
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
382
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
383
+ F0_sampled (batchsize, length, 1)
384
+ Sine_source (batchsize, length, 1)
385
+ noise_source (batchsize, length 1)
386
+ uv (batchsize, length, 1)
387
+ """
388
+
389
+ def __init__(
390
+ self,
391
+ sampling_rate,
392
+ harmonic_num=0,
393
+ sine_amp=0.1,
394
+ add_noise_std=0.003,
395
+ voiced_threshod=0,
396
+ is_half=True,
397
+ ):
398
+ super(SourceModuleHnNSF, self).__init__()
399
+
400
+ self.sine_amp = sine_amp
401
+ self.noise_std = add_noise_std
402
+ self.is_half = is_half
403
+ # to produce sine waveforms
404
+ self.l_sin_gen = SineGen(
405
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
406
+ )
407
+
408
+ # to merge source harmonics into a single excitation
409
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
410
+ self.l_tanh = torch.nn.Tanh()
411
+
412
+ def forward(self, x, upp=None):
413
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
414
+ if self.is_half:
415
+ sine_wavs = sine_wavs.half()
416
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
417
+ return sine_merge, None, None # noise, uv
418
+
419
+
420
+ class GeneratorNSF(torch.nn.Module):
421
+ def __init__(
422
+ self,
423
+ initial_channel,
424
+ resblock,
425
+ resblock_kernel_sizes,
426
+ resblock_dilation_sizes,
427
+ upsample_rates,
428
+ upsample_initial_channel,
429
+ upsample_kernel_sizes,
430
+ gin_channels,
431
+ sr,
432
+ is_half=False,
433
+ ):
434
+ super(GeneratorNSF, self).__init__()
435
+ self.num_kernels = len(resblock_kernel_sizes)
436
+ self.num_upsamples = len(upsample_rates)
437
+
438
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
439
+ self.m_source = SourceModuleHnNSF(
440
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
441
+ )
442
+ self.noise_convs = nn.ModuleList()
443
+ self.conv_pre = Conv1d(
444
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
445
+ )
446
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
447
+
448
+ self.ups = nn.ModuleList()
449
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
450
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
451
+ self.ups.append(
452
+ weight_norm(
453
+ ConvTranspose1d(
454
+ upsample_initial_channel // (2**i),
455
+ upsample_initial_channel // (2 ** (i + 1)),
456
+ k,
457
+ u,
458
+ padding=(k - u) // 2,
459
+ )
460
+ )
461
+ )
462
+ if i + 1 < len(upsample_rates):
463
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
464
+ self.noise_convs.append(
465
+ Conv1d(
466
+ 1,
467
+ c_cur,
468
+ kernel_size=stride_f0 * 2,
469
+ stride=stride_f0,
470
+ padding=stride_f0 // 2,
471
+ )
472
+ )
473
+ else:
474
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
475
+
476
+ self.resblocks = nn.ModuleList()
477
+ for i in range(len(self.ups)):
478
+ ch = upsample_initial_channel // (2 ** (i + 1))
479
+ for j, (k, d) in enumerate(
480
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
481
+ ):
482
+ self.resblocks.append(resblock(ch, k, d))
483
+
484
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
485
+ self.ups.apply(init_weights)
486
+
487
+ if gin_channels != 0:
488
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
489
+
490
+ self.upp = np.prod(upsample_rates)
491
+
492
+ def forward(self, x, f0, g=None):
493
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
494
+ har_source = har_source.transpose(1, 2)
495
+ x = self.conv_pre(x)
496
+ if g is not None:
497
+ x = x + self.cond(g)
498
+
499
+ for i in range(self.num_upsamples):
500
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
501
+ x = self.ups[i](x)
502
+ x_source = self.noise_convs[i](har_source)
503
+ x = x + x_source
504
+ xs = None
505
+ for j in range(self.num_kernels):
506
+ if xs is None:
507
+ xs = self.resblocks[i * self.num_kernels + j](x)
508
+ else:
509
+ xs += self.resblocks[i * self.num_kernels + j](x)
510
+ x = xs / self.num_kernels
511
+ x = F.leaky_relu(x)
512
+ x = self.conv_post(x)
513
+ x = torch.tanh(x)
514
+ return x
515
+
516
+ def remove_weight_norm(self):
517
+ for l in self.ups:
518
+ remove_weight_norm(l)
519
+ for l in self.resblocks:
520
+ l.remove_weight_norm()
521
+
522
+
523
+ sr2sr = {
524
+ "32k": 32000,
525
+ "40k": 40000,
526
+ "48k": 48000,
527
+ }
528
+
529
+
530
+ class SynthesizerTrnMs256NSFsid(nn.Module):
531
+ def __init__(
532
+ self,
533
+ spec_channels,
534
+ segment_size,
535
+ inter_channels,
536
+ hidden_channels,
537
+ filter_channels,
538
+ n_heads,
539
+ n_layers,
540
+ kernel_size,
541
+ p_dropout,
542
+ resblock,
543
+ resblock_kernel_sizes,
544
+ resblock_dilation_sizes,
545
+ upsample_rates,
546
+ upsample_initial_channel,
547
+ upsample_kernel_sizes,
548
+ spk_embed_dim,
549
+ gin_channels,
550
+ sr,
551
+ **kwargs
552
+ ):
553
+ super().__init__()
554
+ if type(sr) == type("strr"):
555
+ sr = sr2sr[sr]
556
+ self.spec_channels = spec_channels
557
+ self.inter_channels = inter_channels
558
+ self.hidden_channels = hidden_channels
559
+ self.filter_channels = filter_channels
560
+ self.n_heads = n_heads
561
+ self.n_layers = n_layers
562
+ self.kernel_size = kernel_size
563
+ self.p_dropout = p_dropout
564
+ self.resblock = resblock
565
+ self.resblock_kernel_sizes = resblock_kernel_sizes
566
+ self.resblock_dilation_sizes = resblock_dilation_sizes
567
+ self.upsample_rates = upsample_rates
568
+ self.upsample_initial_channel = upsample_initial_channel
569
+ self.upsample_kernel_sizes = upsample_kernel_sizes
570
+ self.segment_size = segment_size
571
+ self.gin_channels = gin_channels
572
+ # self.hop_length = hop_length#
573
+ self.spk_embed_dim = spk_embed_dim
574
+ self.enc_p = TextEncoder256(
575
+ inter_channels,
576
+ hidden_channels,
577
+ filter_channels,
578
+ n_heads,
579
+ n_layers,
580
+ kernel_size,
581
+ p_dropout,
582
+ )
583
+ self.dec = GeneratorNSF(
584
+ inter_channels,
585
+ resblock,
586
+ resblock_kernel_sizes,
587
+ resblock_dilation_sizes,
588
+ upsample_rates,
589
+ upsample_initial_channel,
590
+ upsample_kernel_sizes,
591
+ gin_channels=gin_channels,
592
+ sr=sr,
593
+ is_half=kwargs["is_half"],
594
+ )
595
+ self.enc_q = PosteriorEncoder(
596
+ spec_channels,
597
+ inter_channels,
598
+ hidden_channels,
599
+ 5,
600
+ 1,
601
+ 16,
602
+ gin_channels=gin_channels,
603
+ )
604
+ self.flow = ResidualCouplingBlock(
605
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
606
+ )
607
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
608
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
609
+
610
+ def remove_weight_norm(self):
611
+ self.dec.remove_weight_norm()
612
+ self.flow.remove_weight_norm()
613
+ self.enc_q.remove_weight_norm()
614
+
615
+ def forward(
616
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
617
+ ): # 这里ds是id,[bs,1]
618
+ # print(1,pitch.shape)#[bs,t]
619
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
620
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
621
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
622
+ z_p = self.flow(z, y_mask, g=g)
623
+ z_slice, ids_slice = commons.rand_slice_segments(
624
+ z, y_lengths, self.segment_size
625
+ )
626
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
627
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
628
+ # print(-2,pitchf.shape,z_slice.shape)
629
+ o = self.dec(z_slice, pitchf, g=g)
630
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
631
+
632
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
633
+ g = self.emb_g(sid).unsqueeze(-1)
634
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
635
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
636
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
637
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
638
+ return o, x_mask, (z, z_p, m_p, logs_p)
639
+
640
+
641
+ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
642
+ def __init__(
643
+ self,
644
+ spec_channels,
645
+ segment_size,
646
+ inter_channels,
647
+ hidden_channels,
648
+ filter_channels,
649
+ n_heads,
650
+ n_layers,
651
+ kernel_size,
652
+ p_dropout,
653
+ resblock,
654
+ resblock_kernel_sizes,
655
+ resblock_dilation_sizes,
656
+ upsample_rates,
657
+ upsample_initial_channel,
658
+ upsample_kernel_sizes,
659
+ spk_embed_dim,
660
+ gin_channels,
661
+ sr=None,
662
+ **kwargs
663
+ ):
664
+ super().__init__()
665
+ self.spec_channels = spec_channels
666
+ self.inter_channels = inter_channels
667
+ self.hidden_channels = hidden_channels
668
+ self.filter_channels = filter_channels
669
+ self.n_heads = n_heads
670
+ self.n_layers = n_layers
671
+ self.kernel_size = kernel_size
672
+ self.p_dropout = p_dropout
673
+ self.resblock = resblock
674
+ self.resblock_kernel_sizes = resblock_kernel_sizes
675
+ self.resblock_dilation_sizes = resblock_dilation_sizes
676
+ self.upsample_rates = upsample_rates
677
+ self.upsample_initial_channel = upsample_initial_channel
678
+ self.upsample_kernel_sizes = upsample_kernel_sizes
679
+ self.segment_size = segment_size
680
+ self.gin_channels = gin_channels
681
+ # self.hop_length = hop_length#
682
+ self.spk_embed_dim = spk_embed_dim
683
+ self.enc_p = TextEncoder256(
684
+ inter_channels,
685
+ hidden_channels,
686
+ filter_channels,
687
+ n_heads,
688
+ n_layers,
689
+ kernel_size,
690
+ p_dropout,
691
+ f0=False,
692
+ )
693
+ self.dec = Generator(
694
+ inter_channels,
695
+ resblock,
696
+ resblock_kernel_sizes,
697
+ resblock_dilation_sizes,
698
+ upsample_rates,
699
+ upsample_initial_channel,
700
+ upsample_kernel_sizes,
701
+ gin_channels=gin_channels,
702
+ )
703
+ self.enc_q = PosteriorEncoder(
704
+ spec_channels,
705
+ inter_channels,
706
+ hidden_channels,
707
+ 5,
708
+ 1,
709
+ 16,
710
+ gin_channels=gin_channels,
711
+ )
712
+ self.flow = ResidualCouplingBlock(
713
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
714
+ )
715
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
716
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
717
+
718
+ def remove_weight_norm(self):
719
+ self.dec.remove_weight_norm()
720
+ self.flow.remove_weight_norm()
721
+ self.enc_q.remove_weight_norm()
722
+
723
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
724
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
725
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
726
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
727
+ z_p = self.flow(z, y_mask, g=g)
728
+ z_slice, ids_slice = commons.rand_slice_segments(
729
+ z, y_lengths, self.segment_size
730
+ )
731
+ o = self.dec(z_slice, g=g)
732
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
733
+
734
+ def infer(self, phone, phone_lengths, sid, max_len=None):
735
+ g = self.emb_g(sid).unsqueeze(-1)
736
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
737
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
738
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
739
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
740
+ return o, x_mask, (z, z_p, m_p, logs_p)
741
+
742
+
743
+ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
744
+ """
745
+ Synthesizer for Training
746
+ """
747
+
748
+ def __init__(
749
+ self,
750
+ spec_channels,
751
+ segment_size,
752
+ inter_channels,
753
+ hidden_channels,
754
+ filter_channels,
755
+ n_heads,
756
+ n_layers,
757
+ kernel_size,
758
+ p_dropout,
759
+ resblock,
760
+ resblock_kernel_sizes,
761
+ resblock_dilation_sizes,
762
+ upsample_rates,
763
+ upsample_initial_channel,
764
+ upsample_kernel_sizes,
765
+ spk_embed_dim,
766
+ # hop_length,
767
+ gin_channels=0,
768
+ use_sdp=True,
769
+ **kwargs
770
+ ):
771
+ super().__init__()
772
+ self.spec_channels = spec_channels
773
+ self.inter_channels = inter_channels
774
+ self.hidden_channels = hidden_channels
775
+ self.filter_channels = filter_channels
776
+ self.n_heads = n_heads
777
+ self.n_layers = n_layers
778
+ self.kernel_size = kernel_size
779
+ self.p_dropout = p_dropout
780
+ self.resblock = resblock
781
+ self.resblock_kernel_sizes = resblock_kernel_sizes
782
+ self.resblock_dilation_sizes = resblock_dilation_sizes
783
+ self.upsample_rates = upsample_rates
784
+ self.upsample_initial_channel = upsample_initial_channel
785
+ self.upsample_kernel_sizes = upsample_kernel_sizes
786
+ self.segment_size = segment_size
787
+ self.gin_channels = gin_channels
788
+ # self.hop_length = hop_length#
789
+ self.spk_embed_dim = spk_embed_dim
790
+ self.enc_p = TextEncoder256Sim(
791
+ inter_channels,
792
+ hidden_channels,
793
+ filter_channels,
794
+ n_heads,
795
+ n_layers,
796
+ kernel_size,
797
+ p_dropout,
798
+ )
799
+ self.dec = GeneratorNSF(
800
+ inter_channels,
801
+ resblock,
802
+ resblock_kernel_sizes,
803
+ resblock_dilation_sizes,
804
+ upsample_rates,
805
+ upsample_initial_channel,
806
+ upsample_kernel_sizes,
807
+ gin_channels=gin_channels,
808
+ is_half=kwargs["is_half"],
809
+ )
810
+
811
+ self.flow = ResidualCouplingBlock(
812
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
813
+ )
814
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
815
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
816
+
817
+ def remove_weight_norm(self):
818
+ self.dec.remove_weight_norm()
819
+ self.flow.remove_weight_norm()
820
+ self.enc_q.remove_weight_norm()
821
+
822
+ def forward(
823
+ self, phone, phone_lengths, pitch, pitchf, y_lengths, ds
824
+ ): # y是spec不需要了现在
825
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
826
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
827
+ x = self.flow(x, x_mask, g=g, reverse=True)
828
+ z_slice, ids_slice = commons.rand_slice_segments(
829
+ x, y_lengths, self.segment_size
830
+ )
831
+
832
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
833
+ o = self.dec(z_slice, pitchf, g=g)
834
+ return o, ids_slice
835
+
836
+ def infer(
837
+ self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
838
+ ): # y是spec不需要了现在
839
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
840
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
841
+ x = self.flow(x, x_mask, g=g, reverse=True)
842
+ o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
843
+ return o, o
844
+
845
+
846
+ class MultiPeriodDiscriminator(torch.nn.Module):
847
+ def __init__(self, use_spectral_norm=False):
848
+ super(MultiPeriodDiscriminator, self).__init__()
849
+ periods = [2, 3, 5, 7, 11, 17]
850
+ # periods = [3, 5, 7, 11, 17, 23, 37]
851
+
852
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
853
+ discs = discs + [
854
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
855
+ ]
856
+ self.discriminators = nn.ModuleList(discs)
857
+
858
+ def forward(self, y, y_hat):
859
+ y_d_rs = [] #
860
+ y_d_gs = []
861
+ fmap_rs = []
862
+ fmap_gs = []
863
+ for i, d in enumerate(self.discriminators):
864
+ y_d_r, fmap_r = d(y)
865
+ y_d_g, fmap_g = d(y_hat)
866
+ # for j in range(len(fmap_r)):
867
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
868
+ y_d_rs.append(y_d_r)
869
+ y_d_gs.append(y_d_g)
870
+ fmap_rs.append(fmap_r)
871
+ fmap_gs.append(fmap_g)
872
+
873
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
874
+
875
+
876
+ class DiscriminatorS(torch.nn.Module):
877
+ def __init__(self, use_spectral_norm=False):
878
+ super(DiscriminatorS, self).__init__()
879
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
880
+ self.convs = nn.ModuleList(
881
+ [
882
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
883
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
884
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
885
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
886
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
887
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
888
+ ]
889
+ )
890
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
891
+
892
+ def forward(self, x):
893
+ fmap = []
894
+
895
+ for l in self.convs:
896
+ x = l(x)
897
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
898
+ fmap.append(x)
899
+ x = self.conv_post(x)
900
+ fmap.append(x)
901
+ x = torch.flatten(x, 1, -1)
902
+
903
+ return x, fmap
904
+
905
+
906
+ class DiscriminatorP(torch.nn.Module):
907
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
908
+ super(DiscriminatorP, self).__init__()
909
+ self.period = period
910
+ self.use_spectral_norm = use_spectral_norm
911
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
912
+ self.convs = nn.ModuleList(
913
+ [
914
+ norm_f(
915
+ Conv2d(
916
+ 1,
917
+ 32,
918
+ (kernel_size, 1),
919
+ (stride, 1),
920
+ padding=(get_padding(kernel_size, 1), 0),
921
+ )
922
+ ),
923
+ norm_f(
924
+ Conv2d(
925
+ 32,
926
+ 128,
927
+ (kernel_size, 1),
928
+ (stride, 1),
929
+ padding=(get_padding(kernel_size, 1), 0),
930
+ )
931
+ ),
932
+ norm_f(
933
+ Conv2d(
934
+ 128,
935
+ 512,
936
+ (kernel_size, 1),
937
+ (stride, 1),
938
+ padding=(get_padding(kernel_size, 1), 0),
939
+ )
940
+ ),
941
+ norm_f(
942
+ Conv2d(
943
+ 512,
944
+ 1024,
945
+ (kernel_size, 1),
946
+ (stride, 1),
947
+ padding=(get_padding(kernel_size, 1), 0),
948
+ )
949
+ ),
950
+ norm_f(
951
+ Conv2d(
952
+ 1024,
953
+ 1024,
954
+ (kernel_size, 1),
955
+ 1,
956
+ padding=(get_padding(kernel_size, 1), 0),
957
+ )
958
+ ),
959
+ ]
960
+ )
961
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
962
+
963
+ def forward(self, x):
964
+ fmap = []
965
+
966
+ # 1d to 2d
967
+ b, c, t = x.shape
968
+ if t % self.period != 0: # pad first
969
+ n_pad = self.period - (t % self.period)
970
+ x = F.pad(x, (0, n_pad), "reflect")
971
+ t = t + n_pad
972
+ x = x.view(b, c, t // self.period, self.period)
973
+
974
+ for l in self.convs:
975
+ x = l(x)
976
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
977
+ fmap.append(x)
978
+ x = self.conv_post(x)
979
+ fmap.append(x)
980
+ x = torch.flatten(x, 1, -1)
981
+
982
+ return x, fmap
infer_pack/models_onnx.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from infer_pack import modules
7
+ from infer_pack import attentions
8
+ from infer_pack import commons
9
+ from infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder256Sim(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(256, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ x = self.proj(x) * x_mask
106
+ return x, x_mask
107
+
108
+
109
+ class ResidualCouplingBlock(nn.Module):
110
+ def __init__(
111
+ self,
112
+ channels,
113
+ hidden_channels,
114
+ kernel_size,
115
+ dilation_rate,
116
+ n_layers,
117
+ n_flows=4,
118
+ gin_channels=0,
119
+ ):
120
+ super().__init__()
121
+ self.channels = channels
122
+ self.hidden_channels = hidden_channels
123
+ self.kernel_size = kernel_size
124
+ self.dilation_rate = dilation_rate
125
+ self.n_layers = n_layers
126
+ self.n_flows = n_flows
127
+ self.gin_channels = gin_channels
128
+
129
+ self.flows = nn.ModuleList()
130
+ for i in range(n_flows):
131
+ self.flows.append(
132
+ modules.ResidualCouplingLayer(
133
+ channels,
134
+ hidden_channels,
135
+ kernel_size,
136
+ dilation_rate,
137
+ n_layers,
138
+ gin_channels=gin_channels,
139
+ mean_only=True,
140
+ )
141
+ )
142
+ self.flows.append(modules.Flip())
143
+
144
+ def forward(self, x, x_mask, g=None, reverse=False):
145
+ if not reverse:
146
+ for flow in self.flows:
147
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
148
+ else:
149
+ for flow in reversed(self.flows):
150
+ x = flow(x, x_mask, g=g, reverse=reverse)
151
+ return x
152
+
153
+ def remove_weight_norm(self):
154
+ for i in range(self.n_flows):
155
+ self.flows[i * 2].remove_weight_norm()
156
+
157
+
158
+ class PosteriorEncoder(nn.Module):
159
+ def __init__(
160
+ self,
161
+ in_channels,
162
+ out_channels,
163
+ hidden_channels,
164
+ kernel_size,
165
+ dilation_rate,
166
+ n_layers,
167
+ gin_channels=0,
168
+ ):
169
+ super().__init__()
170
+ self.in_channels = in_channels
171
+ self.out_channels = out_channels
172
+ self.hidden_channels = hidden_channels
173
+ self.kernel_size = kernel_size
174
+ self.dilation_rate = dilation_rate
175
+ self.n_layers = n_layers
176
+ self.gin_channels = gin_channels
177
+
178
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
179
+ self.enc = modules.WN(
180
+ hidden_channels,
181
+ kernel_size,
182
+ dilation_rate,
183
+ n_layers,
184
+ gin_channels=gin_channels,
185
+ )
186
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
187
+
188
+ def forward(self, x, x_lengths, g=None):
189
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
190
+ x.dtype
191
+ )
192
+ x = self.pre(x) * x_mask
193
+ x = self.enc(x, x_mask, g=g)
194
+ stats = self.proj(x) * x_mask
195
+ m, logs = torch.split(stats, self.out_channels, dim=1)
196
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
197
+ return z, m, logs, x_mask
198
+
199
+ def remove_weight_norm(self):
200
+ self.enc.remove_weight_norm()
201
+
202
+
203
+ class Generator(torch.nn.Module):
204
+ def __init__(
205
+ self,
206
+ initial_channel,
207
+ resblock,
208
+ resblock_kernel_sizes,
209
+ resblock_dilation_sizes,
210
+ upsample_rates,
211
+ upsample_initial_channel,
212
+ upsample_kernel_sizes,
213
+ gin_channels=0,
214
+ ):
215
+ super(Generator, self).__init__()
216
+ self.num_kernels = len(resblock_kernel_sizes)
217
+ self.num_upsamples = len(upsample_rates)
218
+ self.conv_pre = Conv1d(
219
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
220
+ )
221
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
222
+
223
+ self.ups = nn.ModuleList()
224
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
225
+ self.ups.append(
226
+ weight_norm(
227
+ ConvTranspose1d(
228
+ upsample_initial_channel // (2**i),
229
+ upsample_initial_channel // (2 ** (i + 1)),
230
+ k,
231
+ u,
232
+ padding=(k - u) // 2,
233
+ )
234
+ )
235
+ )
236
+
237
+ self.resblocks = nn.ModuleList()
238
+ for i in range(len(self.ups)):
239
+ ch = upsample_initial_channel // (2 ** (i + 1))
240
+ for j, (k, d) in enumerate(
241
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
242
+ ):
243
+ self.resblocks.append(resblock(ch, k, d))
244
+
245
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
246
+ self.ups.apply(init_weights)
247
+
248
+ if gin_channels != 0:
249
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
250
+
251
+ def forward(self, x, g=None):
252
+ x = self.conv_pre(x)
253
+ if g is not None:
254
+ x = x + self.cond(g)
255
+
256
+ for i in range(self.num_upsamples):
257
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
258
+ x = self.ups[i](x)
259
+ xs = None
260
+ for j in range(self.num_kernels):
261
+ if xs is None:
262
+ xs = self.resblocks[i * self.num_kernels + j](x)
263
+ else:
264
+ xs += self.resblocks[i * self.num_kernels + j](x)
265
+ x = xs / self.num_kernels
266
+ x = F.leaky_relu(x)
267
+ x = self.conv_post(x)
268
+ x = torch.tanh(x)
269
+
270
+ return x
271
+
272
+ def remove_weight_norm(self):
273
+ for l in self.ups:
274
+ remove_weight_norm(l)
275
+ for l in self.resblocks:
276
+ l.remove_weight_norm()
277
+
278
+
279
+ class SineGen(torch.nn.Module):
280
+ """Definition of sine generator
281
+ SineGen(samp_rate, harmonic_num = 0,
282
+ sine_amp = 0.1, noise_std = 0.003,
283
+ voiced_threshold = 0,
284
+ flag_for_pulse=False)
285
+ samp_rate: sampling rate in Hz
286
+ harmonic_num: number of harmonic overtones (default 0)
287
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
288
+ noise_std: std of Gaussian noise (default 0.003)
289
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
290
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
291
+ Note: when flag_for_pulse is True, the first time step of a voiced
292
+ segment is always sin(np.pi) or cos(0)
293
+ """
294
+
295
+ def __init__(
296
+ self,
297
+ samp_rate,
298
+ harmonic_num=0,
299
+ sine_amp=0.1,
300
+ noise_std=0.003,
301
+ voiced_threshold=0,
302
+ flag_for_pulse=False,
303
+ ):
304
+ super(SineGen, self).__init__()
305
+ self.sine_amp = sine_amp
306
+ self.noise_std = noise_std
307
+ self.harmonic_num = harmonic_num
308
+ self.dim = self.harmonic_num + 1
309
+ self.sampling_rate = samp_rate
310
+ self.voiced_threshold = voiced_threshold
311
+
312
+ def _f02uv(self, f0):
313
+ # generate uv signal
314
+ uv = torch.ones_like(f0)
315
+ uv = uv * (f0 > self.voiced_threshold)
316
+ return uv
317
+
318
+ def forward(self, f0, upp):
319
+ """sine_tensor, uv = forward(f0)
320
+ input F0: tensor(batchsize=1, length, dim=1)
321
+ f0 for unvoiced steps should be 0
322
+ output sine_tensor: tensor(batchsize=1, length, dim)
323
+ output uv: tensor(batchsize=1, length, 1)
324
+ """
325
+ with torch.no_grad():
326
+ f0 = f0[:, None].transpose(1, 2)
327
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
328
+ # fundamental component
329
+ f0_buf[:, :, 0] = f0[:, :, 0]
330
+ for idx in np.arange(self.harmonic_num):
331
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
332
+ idx + 2
333
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
334
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
335
+ rand_ini = torch.rand(
336
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
337
+ )
338
+ rand_ini[:, 0] = 0
339
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
340
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
341
+ tmp_over_one *= upp
342
+ tmp_over_one = F.interpolate(
343
+ tmp_over_one.transpose(2, 1),
344
+ scale_factor=upp,
345
+ mode="linear",
346
+ align_corners=True,
347
+ ).transpose(2, 1)
348
+ rad_values = F.interpolate(
349
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
350
+ ).transpose(
351
+ 2, 1
352
+ ) #######
353
+ tmp_over_one %= 1
354
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
355
+ cumsum_shift = torch.zeros_like(rad_values)
356
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
357
+ sine_waves = torch.sin(
358
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
359
+ )
360
+ sine_waves = sine_waves * self.sine_amp
361
+ uv = self._f02uv(f0)
362
+ uv = F.interpolate(
363
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
364
+ ).transpose(2, 1)
365
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
366
+ noise = noise_amp * torch.randn_like(sine_waves)
367
+ sine_waves = sine_waves * uv + noise
368
+ return sine_waves, uv, noise
369
+
370
+
371
+ class SourceModuleHnNSF(torch.nn.Module):
372
+ """SourceModule for hn-nsf
373
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
374
+ add_noise_std=0.003, voiced_threshod=0)
375
+ sampling_rate: sampling_rate in Hz
376
+ harmonic_num: number of harmonic above F0 (default: 0)
377
+ sine_amp: amplitude of sine source signal (default: 0.1)
378
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
379
+ note that amplitude of noise in unvoiced is decided
380
+ by sine_amp
381
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
382
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
383
+ F0_sampled (batchsize, length, 1)
384
+ Sine_source (batchsize, length, 1)
385
+ noise_source (batchsize, length 1)
386
+ uv (batchsize, length, 1)
387
+ """
388
+
389
+ def __init__(
390
+ self,
391
+ sampling_rate,
392
+ harmonic_num=0,
393
+ sine_amp=0.1,
394
+ add_noise_std=0.003,
395
+ voiced_threshod=0,
396
+ is_half=True,
397
+ ):
398
+ super(SourceModuleHnNSF, self).__init__()
399
+
400
+ self.sine_amp = sine_amp
401
+ self.noise_std = add_noise_std
402
+ self.is_half = is_half
403
+ # to produce sine waveforms
404
+ self.l_sin_gen = SineGen(
405
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
406
+ )
407
+
408
+ # to merge source harmonics into a single excitation
409
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
410
+ self.l_tanh = torch.nn.Tanh()
411
+
412
+ def forward(self, x, upp=None):
413
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
414
+ if self.is_half:
415
+ sine_wavs = sine_wavs.half()
416
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
417
+ return sine_merge, None, None # noise, uv
418
+
419
+
420
+ class GeneratorNSF(torch.nn.Module):
421
+ def __init__(
422
+ self,
423
+ initial_channel,
424
+ resblock,
425
+ resblock_kernel_sizes,
426
+ resblock_dilation_sizes,
427
+ upsample_rates,
428
+ upsample_initial_channel,
429
+ upsample_kernel_sizes,
430
+ gin_channels,
431
+ sr,
432
+ is_half=False,
433
+ ):
434
+ super(GeneratorNSF, self).__init__()
435
+ self.num_kernels = len(resblock_kernel_sizes)
436
+ self.num_upsamples = len(upsample_rates)
437
+
438
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
439
+ self.m_source = SourceModuleHnNSF(
440
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
441
+ )
442
+ self.noise_convs = nn.ModuleList()
443
+ self.conv_pre = Conv1d(
444
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
445
+ )
446
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
447
+
448
+ self.ups = nn.ModuleList()
449
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
450
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
451
+ self.ups.append(
452
+ weight_norm(
453
+ ConvTranspose1d(
454
+ upsample_initial_channel // (2**i),
455
+ upsample_initial_channel // (2 ** (i + 1)),
456
+ k,
457
+ u,
458
+ padding=(k - u) // 2,
459
+ )
460
+ )
461
+ )
462
+ if i + 1 < len(upsample_rates):
463
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
464
+ self.noise_convs.append(
465
+ Conv1d(
466
+ 1,
467
+ c_cur,
468
+ kernel_size=stride_f0 * 2,
469
+ stride=stride_f0,
470
+ padding=stride_f0 // 2,
471
+ )
472
+ )
473
+ else:
474
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
475
+
476
+ self.resblocks = nn.ModuleList()
477
+ for i in range(len(self.ups)):
478
+ ch = upsample_initial_channel // (2 ** (i + 1))
479
+ for j, (k, d) in enumerate(
480
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
481
+ ):
482
+ self.resblocks.append(resblock(ch, k, d))
483
+
484
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
485
+ self.ups.apply(init_weights)
486
+
487
+ if gin_channels != 0:
488
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
489
+
490
+ self.upp = np.prod(upsample_rates)
491
+
492
+ def forward(self, x, f0, g=None):
493
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
494
+ har_source = har_source.transpose(1, 2)
495
+ x = self.conv_pre(x)
496
+ if g is not None:
497
+ x = x + self.cond(g)
498
+
499
+ for i in range(self.num_upsamples):
500
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
501
+ x = self.ups[i](x)
502
+ x_source = self.noise_convs[i](har_source)
503
+ x = x + x_source
504
+ xs = None
505
+ for j in range(self.num_kernels):
506
+ if xs is None:
507
+ xs = self.resblocks[i * self.num_kernels + j](x)
508
+ else:
509
+ xs += self.resblocks[i * self.num_kernels + j](x)
510
+ x = xs / self.num_kernels
511
+ x = F.leaky_relu(x)
512
+ x = self.conv_post(x)
513
+ x = torch.tanh(x)
514
+ return x
515
+
516
+ def remove_weight_norm(self):
517
+ for l in self.ups:
518
+ remove_weight_norm(l)
519
+ for l in self.resblocks:
520
+ l.remove_weight_norm()
521
+
522
+
523
+ sr2sr = {
524
+ "32k": 32000,
525
+ "40k": 40000,
526
+ "48k": 48000,
527
+ }
528
+
529
+
530
+ class SynthesizerTrnMs256NSFsidO(nn.Module):
531
+ def __init__(
532
+ self,
533
+ spec_channels,
534
+ segment_size,
535
+ inter_channels,
536
+ hidden_channels,
537
+ filter_channels,
538
+ n_heads,
539
+ n_layers,
540
+ kernel_size,
541
+ p_dropout,
542
+ resblock,
543
+ resblock_kernel_sizes,
544
+ resblock_dilation_sizes,
545
+ upsample_rates,
546
+ upsample_initial_channel,
547
+ upsample_kernel_sizes,
548
+ spk_embed_dim,
549
+ gin_channels,
550
+ sr,
551
+ **kwargs
552
+ ):
553
+ super().__init__()
554
+ if type(sr) == type("strr"):
555
+ sr = sr2sr[sr]
556
+ self.spec_channels = spec_channels
557
+ self.inter_channels = inter_channels
558
+ self.hidden_channels = hidden_channels
559
+ self.filter_channels = filter_channels
560
+ self.n_heads = n_heads
561
+ self.n_layers = n_layers
562
+ self.kernel_size = kernel_size
563
+ self.p_dropout = p_dropout
564
+ self.resblock = resblock
565
+ self.resblock_kernel_sizes = resblock_kernel_sizes
566
+ self.resblock_dilation_sizes = resblock_dilation_sizes
567
+ self.upsample_rates = upsample_rates
568
+ self.upsample_initial_channel = upsample_initial_channel
569
+ self.upsample_kernel_sizes = upsample_kernel_sizes
570
+ self.segment_size = segment_size
571
+ self.gin_channels = gin_channels
572
+ # self.hop_length = hop_length#
573
+ self.spk_embed_dim = spk_embed_dim
574
+ self.enc_p = TextEncoder256(
575
+ inter_channels,
576
+ hidden_channels,
577
+ filter_channels,
578
+ n_heads,
579
+ n_layers,
580
+ kernel_size,
581
+ p_dropout,
582
+ )
583
+ self.dec = GeneratorNSF(
584
+ inter_channels,
585
+ resblock,
586
+ resblock_kernel_sizes,
587
+ resblock_dilation_sizes,
588
+ upsample_rates,
589
+ upsample_initial_channel,
590
+ upsample_kernel_sizes,
591
+ gin_channels=gin_channels,
592
+ sr=sr,
593
+ is_half=kwargs["is_half"],
594
+ )
595
+ self.enc_q = PosteriorEncoder(
596
+ spec_channels,
597
+ inter_channels,
598
+ hidden_channels,
599
+ 5,
600
+ 1,
601
+ 16,
602
+ gin_channels=gin_channels,
603
+ )
604
+ self.flow = ResidualCouplingBlock(
605
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
606
+ )
607
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
608
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
609
+
610
+ def remove_weight_norm(self):
611
+ self.dec.remove_weight_norm()
612
+ self.flow.remove_weight_norm()
613
+ self.enc_q.remove_weight_norm()
614
+
615
+ def forward(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
616
+ g = self.emb_g(sid).unsqueeze(-1)
617
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
618
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
619
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
620
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
621
+ return o
622
+
623
+
624
+ class MultiPeriodDiscriminator(torch.nn.Module):
625
+ def __init__(self, use_spectral_norm=False):
626
+ super(MultiPeriodDiscriminator, self).__init__()
627
+ periods = [2, 3, 5, 7, 11, 17]
628
+ # periods = [3, 5, 7, 11, 17, 23, 37]
629
+
630
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
631
+ discs = discs + [
632
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
633
+ ]
634
+ self.discriminators = nn.ModuleList(discs)
635
+
636
+ def forward(self, y, y_hat):
637
+ y_d_rs = [] #
638
+ y_d_gs = []
639
+ fmap_rs = []
640
+ fmap_gs = []
641
+ for i, d in enumerate(self.discriminators):
642
+ y_d_r, fmap_r = d(y)
643
+ y_d_g, fmap_g = d(y_hat)
644
+ # for j in range(len(fmap_r)):
645
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
646
+ y_d_rs.append(y_d_r)
647
+ y_d_gs.append(y_d_g)
648
+ fmap_rs.append(fmap_r)
649
+ fmap_gs.append(fmap_g)
650
+
651
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
652
+
653
+
654
+ class DiscriminatorS(torch.nn.Module):
655
+ def __init__(self, use_spectral_norm=False):
656
+ super(DiscriminatorS, self).__init__()
657
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
658
+ self.convs = nn.ModuleList(
659
+ [
660
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
661
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
662
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
663
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
664
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
665
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
666
+ ]
667
+ )
668
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
669
+
670
+ def forward(self, x):
671
+ fmap = []
672
+
673
+ for l in self.convs:
674
+ x = l(x)
675
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
676
+ fmap.append(x)
677
+ x = self.conv_post(x)
678
+ fmap.append(x)
679
+ x = torch.flatten(x, 1, -1)
680
+
681
+ return x, fmap
682
+
683
+
684
+ class DiscriminatorP(torch.nn.Module):
685
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
686
+ super(DiscriminatorP, self).__init__()
687
+ self.period = period
688
+ self.use_spectral_norm = use_spectral_norm
689
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
690
+ self.convs = nn.ModuleList(
691
+ [
692
+ norm_f(
693
+ Conv2d(
694
+ 1,
695
+ 32,
696
+ (kernel_size, 1),
697
+ (stride, 1),
698
+ padding=(get_padding(kernel_size, 1), 0),
699
+ )
700
+ ),
701
+ norm_f(
702
+ Conv2d(
703
+ 32,
704
+ 128,
705
+ (kernel_size, 1),
706
+ (stride, 1),
707
+ padding=(get_padding(kernel_size, 1), 0),
708
+ )
709
+ ),
710
+ norm_f(
711
+ Conv2d(
712
+ 128,
713
+ 512,
714
+ (kernel_size, 1),
715
+ (stride, 1),
716
+ padding=(get_padding(kernel_size, 1), 0),
717
+ )
718
+ ),
719
+ norm_f(
720
+ Conv2d(
721
+ 512,
722
+ 1024,
723
+ (kernel_size, 1),
724
+ (stride, 1),
725
+ padding=(get_padding(kernel_size, 1), 0),
726
+ )
727
+ ),
728
+ norm_f(
729
+ Conv2d(
730
+ 1024,
731
+ 1024,
732
+ (kernel_size, 1),
733
+ 1,
734
+ padding=(get_padding(kernel_size, 1), 0),
735
+ )
736
+ ),
737
+ ]
738
+ )
739
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
740
+
741
+ def forward(self, x):
742
+ fmap = []
743
+
744
+ # 1d to 2d
745
+ b, c, t = x.shape
746
+ if t % self.period != 0: # pad first
747
+ n_pad = self.period - (t % self.period)
748
+ x = F.pad(x, (0, n_pad), "reflect")
749
+ t = t + n_pad
750
+ x = x.view(b, c, t // self.period, self.period)
751
+
752
+ for l in self.convs:
753
+ x = l(x)
754
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
755
+ fmap.append(x)
756
+ x = self.conv_post(x)
757
+ fmap.append(x)
758
+ x = torch.flatten(x, 1, -1)
759
+
760
+ return x, fmap
infer_pack/models_onnx_moess.py ADDED
@@ -0,0 +1,849 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from infer_pack import modules
7
+ from infer_pack import attentions
8
+ from infer_pack import commons
9
+ from infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder256Sim(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(256, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ x = self.proj(x) * x_mask
106
+ return x, x_mask
107
+
108
+
109
+ class ResidualCouplingBlock(nn.Module):
110
+ def __init__(
111
+ self,
112
+ channels,
113
+ hidden_channels,
114
+ kernel_size,
115
+ dilation_rate,
116
+ n_layers,
117
+ n_flows=4,
118
+ gin_channels=0,
119
+ ):
120
+ super().__init__()
121
+ self.channels = channels
122
+ self.hidden_channels = hidden_channels
123
+ self.kernel_size = kernel_size
124
+ self.dilation_rate = dilation_rate
125
+ self.n_layers = n_layers
126
+ self.n_flows = n_flows
127
+ self.gin_channels = gin_channels
128
+
129
+ self.flows = nn.ModuleList()
130
+ for i in range(n_flows):
131
+ self.flows.append(
132
+ modules.ResidualCouplingLayer(
133
+ channels,
134
+ hidden_channels,
135
+ kernel_size,
136
+ dilation_rate,
137
+ n_layers,
138
+ gin_channels=gin_channels,
139
+ mean_only=True,
140
+ )
141
+ )
142
+ self.flows.append(modules.Flip())
143
+
144
+ def forward(self, x, x_mask, g=None, reverse=False):
145
+ if not reverse:
146
+ for flow in self.flows:
147
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
148
+ else:
149
+ for flow in reversed(self.flows):
150
+ x = flow(x, x_mask, g=g, reverse=reverse)
151
+ return x
152
+
153
+ def remove_weight_norm(self):
154
+ for i in range(self.n_flows):
155
+ self.flows[i * 2].remove_weight_norm()
156
+
157
+
158
+ class PosteriorEncoder(nn.Module):
159
+ def __init__(
160
+ self,
161
+ in_channels,
162
+ out_channels,
163
+ hidden_channels,
164
+ kernel_size,
165
+ dilation_rate,
166
+ n_layers,
167
+ gin_channels=0,
168
+ ):
169
+ super().__init__()
170
+ self.in_channels = in_channels
171
+ self.out_channels = out_channels
172
+ self.hidden_channels = hidden_channels
173
+ self.kernel_size = kernel_size
174
+ self.dilation_rate = dilation_rate
175
+ self.n_layers = n_layers
176
+ self.gin_channels = gin_channels
177
+
178
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
179
+ self.enc = modules.WN(
180
+ hidden_channels,
181
+ kernel_size,
182
+ dilation_rate,
183
+ n_layers,
184
+ gin_channels=gin_channels,
185
+ )
186
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
187
+
188
+ def forward(self, x, x_lengths, g=None):
189
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
190
+ x.dtype
191
+ )
192
+ x = self.pre(x) * x_mask
193
+ x = self.enc(x, x_mask, g=g)
194
+ stats = self.proj(x) * x_mask
195
+ m, logs = torch.split(stats, self.out_channels, dim=1)
196
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
197
+ return z, m, logs, x_mask
198
+
199
+ def remove_weight_norm(self):
200
+ self.enc.remove_weight_norm()
201
+
202
+
203
+ class Generator(torch.nn.Module):
204
+ def __init__(
205
+ self,
206
+ initial_channel,
207
+ resblock,
208
+ resblock_kernel_sizes,
209
+ resblock_dilation_sizes,
210
+ upsample_rates,
211
+ upsample_initial_channel,
212
+ upsample_kernel_sizes,
213
+ gin_channels=0,
214
+ ):
215
+ super(Generator, self).__init__()
216
+ self.num_kernels = len(resblock_kernel_sizes)
217
+ self.num_upsamples = len(upsample_rates)
218
+ self.conv_pre = Conv1d(
219
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
220
+ )
221
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
222
+
223
+ self.ups = nn.ModuleList()
224
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
225
+ self.ups.append(
226
+ weight_norm(
227
+ ConvTranspose1d(
228
+ upsample_initial_channel // (2**i),
229
+ upsample_initial_channel // (2 ** (i + 1)),
230
+ k,
231
+ u,
232
+ padding=(k - u) // 2,
233
+ )
234
+ )
235
+ )
236
+
237
+ self.resblocks = nn.ModuleList()
238
+ for i in range(len(self.ups)):
239
+ ch = upsample_initial_channel // (2 ** (i + 1))
240
+ for j, (k, d) in enumerate(
241
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
242
+ ):
243
+ self.resblocks.append(resblock(ch, k, d))
244
+
245
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
246
+ self.ups.apply(init_weights)
247
+
248
+ if gin_channels != 0:
249
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
250
+
251
+ def forward(self, x, g=None):
252
+ x = self.conv_pre(x)
253
+ if g is not None:
254
+ x = x + self.cond(g)
255
+
256
+ for i in range(self.num_upsamples):
257
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
258
+ x = self.ups[i](x)
259
+ xs = None
260
+ for j in range(self.num_kernels):
261
+ if xs is None:
262
+ xs = self.resblocks[i * self.num_kernels + j](x)
263
+ else:
264
+ xs += self.resblocks[i * self.num_kernels + j](x)
265
+ x = xs / self.num_kernels
266
+ x = F.leaky_relu(x)
267
+ x = self.conv_post(x)
268
+ x = torch.tanh(x)
269
+
270
+ return x
271
+
272
+ def remove_weight_norm(self):
273
+ for l in self.ups:
274
+ remove_weight_norm(l)
275
+ for l in self.resblocks:
276
+ l.remove_weight_norm()
277
+
278
+
279
+ class SineGen(torch.nn.Module):
280
+ """Definition of sine generator
281
+ SineGen(samp_rate, harmonic_num = 0,
282
+ sine_amp = 0.1, noise_std = 0.003,
283
+ voiced_threshold = 0,
284
+ flag_for_pulse=False)
285
+ samp_rate: sampling rate in Hz
286
+ harmonic_num: number of harmonic overtones (default 0)
287
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
288
+ noise_std: std of Gaussian noise (default 0.003)
289
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
290
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
291
+ Note: when flag_for_pulse is True, the first time step of a voiced
292
+ segment is always sin(np.pi) or cos(0)
293
+ """
294
+
295
+ def __init__(
296
+ self,
297
+ samp_rate,
298
+ harmonic_num=0,
299
+ sine_amp=0.1,
300
+ noise_std=0.003,
301
+ voiced_threshold=0,
302
+ flag_for_pulse=False,
303
+ ):
304
+ super(SineGen, self).__init__()
305
+ self.sine_amp = sine_amp
306
+ self.noise_std = noise_std
307
+ self.harmonic_num = harmonic_num
308
+ self.dim = self.harmonic_num + 1
309
+ self.sampling_rate = samp_rate
310
+ self.voiced_threshold = voiced_threshold
311
+
312
+ def _f02uv(self, f0):
313
+ # generate uv signal
314
+ uv = torch.ones_like(f0)
315
+ uv = uv * (f0 > self.voiced_threshold)
316
+ return uv
317
+
318
+ def forward(self, f0, upp):
319
+ """sine_tensor, uv = forward(f0)
320
+ input F0: tensor(batchsize=1, length, dim=1)
321
+ f0 for unvoiced steps should be 0
322
+ output sine_tensor: tensor(batchsize=1, length, dim)
323
+ output uv: tensor(batchsize=1, length, 1)
324
+ """
325
+ with torch.no_grad():
326
+ f0 = f0[:, None].transpose(1, 2)
327
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
328
+ # fundamental component
329
+ f0_buf[:, :, 0] = f0[:, :, 0]
330
+ for idx in np.arange(self.harmonic_num):
331
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
332
+ idx + 2
333
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
334
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
335
+ rand_ini = torch.rand(
336
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
337
+ )
338
+ rand_ini[:, 0] = 0
339
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
340
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
341
+ tmp_over_one *= upp
342
+ tmp_over_one = F.interpolate(
343
+ tmp_over_one.transpose(2, 1),
344
+ scale_factor=upp,
345
+ mode="linear",
346
+ align_corners=True,
347
+ ).transpose(2, 1)
348
+ rad_values = F.interpolate(
349
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
350
+ ).transpose(
351
+ 2, 1
352
+ ) #######
353
+ tmp_over_one %= 1
354
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
355
+ cumsum_shift = torch.zeros_like(rad_values)
356
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
357
+ sine_waves = torch.sin(
358
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
359
+ )
360
+ sine_waves = sine_waves * self.sine_amp
361
+ uv = self._f02uv(f0)
362
+ uv = F.interpolate(
363
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
364
+ ).transpose(2, 1)
365
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
366
+ noise = noise_amp * torch.randn_like(sine_waves)
367
+ sine_waves = sine_waves * uv + noise
368
+ return sine_waves, uv, noise
369
+
370
+
371
+ class SourceModuleHnNSF(torch.nn.Module):
372
+ """SourceModule for hn-nsf
373
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
374
+ add_noise_std=0.003, voiced_threshod=0)
375
+ sampling_rate: sampling_rate in Hz
376
+ harmonic_num: number of harmonic above F0 (default: 0)
377
+ sine_amp: amplitude of sine source signal (default: 0.1)
378
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
379
+ note that amplitude of noise in unvoiced is decided
380
+ by sine_amp
381
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
382
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
383
+ F0_sampled (batchsize, length, 1)
384
+ Sine_source (batchsize, length, 1)
385
+ noise_source (batchsize, length 1)
386
+ uv (batchsize, length, 1)
387
+ """
388
+
389
+ def __init__(
390
+ self,
391
+ sampling_rate,
392
+ harmonic_num=0,
393
+ sine_amp=0.1,
394
+ add_noise_std=0.003,
395
+ voiced_threshod=0,
396
+ is_half=True,
397
+ ):
398
+ super(SourceModuleHnNSF, self).__init__()
399
+
400
+ self.sine_amp = sine_amp
401
+ self.noise_std = add_noise_std
402
+ self.is_half = is_half
403
+ # to produce sine waveforms
404
+ self.l_sin_gen = SineGen(
405
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
406
+ )
407
+
408
+ # to merge source harmonics into a single excitation
409
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
410
+ self.l_tanh = torch.nn.Tanh()
411
+
412
+ def forward(self, x, upp=None):
413
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
414
+ if self.is_half:
415
+ sine_wavs = sine_wavs.half()
416
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
417
+ return sine_merge, None, None # noise, uv
418
+
419
+
420
+ class GeneratorNSF(torch.nn.Module):
421
+ def __init__(
422
+ self,
423
+ initial_channel,
424
+ resblock,
425
+ resblock_kernel_sizes,
426
+ resblock_dilation_sizes,
427
+ upsample_rates,
428
+ upsample_initial_channel,
429
+ upsample_kernel_sizes,
430
+ gin_channels,
431
+ sr,
432
+ is_half=False,
433
+ ):
434
+ super(GeneratorNSF, self).__init__()
435
+ self.num_kernels = len(resblock_kernel_sizes)
436
+ self.num_upsamples = len(upsample_rates)
437
+
438
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
439
+ self.m_source = SourceModuleHnNSF(
440
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
441
+ )
442
+ self.noise_convs = nn.ModuleList()
443
+ self.conv_pre = Conv1d(
444
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
445
+ )
446
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
447
+
448
+ self.ups = nn.ModuleList()
449
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
450
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
451
+ self.ups.append(
452
+ weight_norm(
453
+ ConvTranspose1d(
454
+ upsample_initial_channel // (2**i),
455
+ upsample_initial_channel // (2 ** (i + 1)),
456
+ k,
457
+ u,
458
+ padding=(k - u) // 2,
459
+ )
460
+ )
461
+ )
462
+ if i + 1 < len(upsample_rates):
463
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
464
+ self.noise_convs.append(
465
+ Conv1d(
466
+ 1,
467
+ c_cur,
468
+ kernel_size=stride_f0 * 2,
469
+ stride=stride_f0,
470
+ padding=stride_f0 // 2,
471
+ )
472
+ )
473
+ else:
474
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
475
+
476
+ self.resblocks = nn.ModuleList()
477
+ for i in range(len(self.ups)):
478
+ ch = upsample_initial_channel // (2 ** (i + 1))
479
+ for j, (k, d) in enumerate(
480
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
481
+ ):
482
+ self.resblocks.append(resblock(ch, k, d))
483
+
484
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
485
+ self.ups.apply(init_weights)
486
+
487
+ if gin_channels != 0:
488
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
489
+
490
+ self.upp = np.prod(upsample_rates)
491
+
492
+ def forward(self, x, f0, g=None):
493
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
494
+ har_source = har_source.transpose(1, 2)
495
+ x = self.conv_pre(x)
496
+ if g is not None:
497
+ x = x + self.cond(g)
498
+
499
+ for i in range(self.num_upsamples):
500
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
501
+ x = self.ups[i](x)
502
+ x_source = self.noise_convs[i](har_source)
503
+ x = x + x_source
504
+ xs = None
505
+ for j in range(self.num_kernels):
506
+ if xs is None:
507
+ xs = self.resblocks[i * self.num_kernels + j](x)
508
+ else:
509
+ xs += self.resblocks[i * self.num_kernels + j](x)
510
+ x = xs / self.num_kernels
511
+ x = F.leaky_relu(x)
512
+ x = self.conv_post(x)
513
+ x = torch.tanh(x)
514
+ return x
515
+
516
+ def remove_weight_norm(self):
517
+ for l in self.ups:
518
+ remove_weight_norm(l)
519
+ for l in self.resblocks:
520
+ l.remove_weight_norm()
521
+
522
+
523
+ sr2sr = {
524
+ "32k": 32000,
525
+ "40k": 40000,
526
+ "48k": 48000,
527
+ }
528
+
529
+
530
+ class SynthesizerTrnMs256NSFsidM(nn.Module):
531
+ def __init__(
532
+ self,
533
+ spec_channels,
534
+ segment_size,
535
+ inter_channels,
536
+ hidden_channels,
537
+ filter_channels,
538
+ n_heads,
539
+ n_layers,
540
+ kernel_size,
541
+ p_dropout,
542
+ resblock,
543
+ resblock_kernel_sizes,
544
+ resblock_dilation_sizes,
545
+ upsample_rates,
546
+ upsample_initial_channel,
547
+ upsample_kernel_sizes,
548
+ spk_embed_dim,
549
+ gin_channels,
550
+ sr,
551
+ **kwargs
552
+ ):
553
+ super().__init__()
554
+ if type(sr) == type("strr"):
555
+ sr = sr2sr[sr]
556
+ self.spec_channels = spec_channels
557
+ self.inter_channels = inter_channels
558
+ self.hidden_channels = hidden_channels
559
+ self.filter_channels = filter_channels
560
+ self.n_heads = n_heads
561
+ self.n_layers = n_layers
562
+ self.kernel_size = kernel_size
563
+ self.p_dropout = p_dropout
564
+ self.resblock = resblock
565
+ self.resblock_kernel_sizes = resblock_kernel_sizes
566
+ self.resblock_dilation_sizes = resblock_dilation_sizes
567
+ self.upsample_rates = upsample_rates
568
+ self.upsample_initial_channel = upsample_initial_channel
569
+ self.upsample_kernel_sizes = upsample_kernel_sizes
570
+ self.segment_size = segment_size
571
+ self.gin_channels = gin_channels
572
+ # self.hop_length = hop_length#
573
+ self.spk_embed_dim = spk_embed_dim
574
+ self.enc_p = TextEncoder256(
575
+ inter_channels,
576
+ hidden_channels,
577
+ filter_channels,
578
+ n_heads,
579
+ n_layers,
580
+ kernel_size,
581
+ p_dropout,
582
+ )
583
+ self.dec = GeneratorNSF(
584
+ inter_channels,
585
+ resblock,
586
+ resblock_kernel_sizes,
587
+ resblock_dilation_sizes,
588
+ upsample_rates,
589
+ upsample_initial_channel,
590
+ upsample_kernel_sizes,
591
+ gin_channels=gin_channels,
592
+ sr=sr,
593
+ is_half=kwargs["is_half"],
594
+ )
595
+ self.enc_q = PosteriorEncoder(
596
+ spec_channels,
597
+ inter_channels,
598
+ hidden_channels,
599
+ 5,
600
+ 1,
601
+ 16,
602
+ gin_channels=gin_channels,
603
+ )
604
+ self.flow = ResidualCouplingBlock(
605
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
606
+ )
607
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
608
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
609
+
610
+ def remove_weight_norm(self):
611
+ self.dec.remove_weight_norm()
612
+ self.flow.remove_weight_norm()
613
+ self.enc_q.remove_weight_norm()
614
+
615
+ def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None):
616
+ g = self.emb_g(sid).unsqueeze(-1)
617
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
618
+ z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
619
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
620
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
621
+ return o
622
+
623
+
624
+ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
625
+ """
626
+ Synthesizer for Training
627
+ """
628
+
629
+ def __init__(
630
+ self,
631
+ spec_channels,
632
+ segment_size,
633
+ inter_channels,
634
+ hidden_channels,
635
+ filter_channels,
636
+ n_heads,
637
+ n_layers,
638
+ kernel_size,
639
+ p_dropout,
640
+ resblock,
641
+ resblock_kernel_sizes,
642
+ resblock_dilation_sizes,
643
+ upsample_rates,
644
+ upsample_initial_channel,
645
+ upsample_kernel_sizes,
646
+ spk_embed_dim,
647
+ # hop_length,
648
+ gin_channels=0,
649
+ use_sdp=True,
650
+ **kwargs
651
+ ):
652
+ super().__init__()
653
+ self.spec_channels = spec_channels
654
+ self.inter_channels = inter_channels
655
+ self.hidden_channels = hidden_channels
656
+ self.filter_channels = filter_channels
657
+ self.n_heads = n_heads
658
+ self.n_layers = n_layers
659
+ self.kernel_size = kernel_size
660
+ self.p_dropout = p_dropout
661
+ self.resblock = resblock
662
+ self.resblock_kernel_sizes = resblock_kernel_sizes
663
+ self.resblock_dilation_sizes = resblock_dilation_sizes
664
+ self.upsample_rates = upsample_rates
665
+ self.upsample_initial_channel = upsample_initial_channel
666
+ self.upsample_kernel_sizes = upsample_kernel_sizes
667
+ self.segment_size = segment_size
668
+ self.gin_channels = gin_channels
669
+ # self.hop_length = hop_length#
670
+ self.spk_embed_dim = spk_embed_dim
671
+ self.enc_p = TextEncoder256Sim(
672
+ inter_channels,
673
+ hidden_channels,
674
+ filter_channels,
675
+ n_heads,
676
+ n_layers,
677
+ kernel_size,
678
+ p_dropout,
679
+ )
680
+ self.dec = GeneratorNSF(
681
+ inter_channels,
682
+ resblock,
683
+ resblock_kernel_sizes,
684
+ resblock_dilation_sizes,
685
+ upsample_rates,
686
+ upsample_initial_channel,
687
+ upsample_kernel_sizes,
688
+ gin_channels=gin_channels,
689
+ is_half=kwargs["is_half"],
690
+ )
691
+
692
+ self.flow = ResidualCouplingBlock(
693
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
694
+ )
695
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
696
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
697
+
698
+ def remove_weight_norm(self):
699
+ self.dec.remove_weight_norm()
700
+ self.flow.remove_weight_norm()
701
+ self.enc_q.remove_weight_norm()
702
+
703
+ def forward(
704
+ self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
705
+ ): # y是spec不需要了现在
706
+ g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
707
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
708
+ x = self.flow(x, x_mask, g=g, reverse=True)
709
+ o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
710
+ return o
711
+
712
+
713
+ class MultiPeriodDiscriminator(torch.nn.Module):
714
+ def __init__(self, use_spectral_norm=False):
715
+ super(MultiPeriodDiscriminator, self).__init__()
716
+ periods = [2, 3, 5, 7, 11, 17]
717
+ # periods = [3, 5, 7, 11, 17, 23, 37]
718
+
719
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
720
+ discs = discs + [
721
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
722
+ ]
723
+ self.discriminators = nn.ModuleList(discs)
724
+
725
+ def forward(self, y, y_hat):
726
+ y_d_rs = [] #
727
+ y_d_gs = []
728
+ fmap_rs = []
729
+ fmap_gs = []
730
+ for i, d in enumerate(self.discriminators):
731
+ y_d_r, fmap_r = d(y)
732
+ y_d_g, fmap_g = d(y_hat)
733
+ # for j in range(len(fmap_r)):
734
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
735
+ y_d_rs.append(y_d_r)
736
+ y_d_gs.append(y_d_g)
737
+ fmap_rs.append(fmap_r)
738
+ fmap_gs.append(fmap_g)
739
+
740
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
741
+
742
+
743
+ class DiscriminatorS(torch.nn.Module):
744
+ def __init__(self, use_spectral_norm=False):
745
+ super(DiscriminatorS, self).__init__()
746
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
747
+ self.convs = nn.ModuleList(
748
+ [
749
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
750
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
751
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
752
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
753
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
754
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
755
+ ]
756
+ )
757
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
758
+
759
+ def forward(self, x):
760
+ fmap = []
761
+
762
+ for l in self.convs:
763
+ x = l(x)
764
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
765
+ fmap.append(x)
766
+ x = self.conv_post(x)
767
+ fmap.append(x)
768
+ x = torch.flatten(x, 1, -1)
769
+
770
+ return x, fmap
771
+
772
+
773
+ class DiscriminatorP(torch.nn.Module):
774
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
775
+ super(DiscriminatorP, self).__init__()
776
+ self.period = period
777
+ self.use_spectral_norm = use_spectral_norm
778
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
779
+ self.convs = nn.ModuleList(
780
+ [
781
+ norm_f(
782
+ Conv2d(
783
+ 1,
784
+ 32,
785
+ (kernel_size, 1),
786
+ (stride, 1),
787
+ padding=(get_padding(kernel_size, 1), 0),
788
+ )
789
+ ),
790
+ norm_f(
791
+ Conv2d(
792
+ 32,
793
+ 128,
794
+ (kernel_size, 1),
795
+ (stride, 1),
796
+ padding=(get_padding(kernel_size, 1), 0),
797
+ )
798
+ ),
799
+ norm_f(
800
+ Conv2d(
801
+ 128,
802
+ 512,
803
+ (kernel_size, 1),
804
+ (stride, 1),
805
+ padding=(get_padding(kernel_size, 1), 0),
806
+ )
807
+ ),
808
+ norm_f(
809
+ Conv2d(
810
+ 512,
811
+ 1024,
812
+ (kernel_size, 1),
813
+ (stride, 1),
814
+ padding=(get_padding(kernel_size, 1), 0),
815
+ )
816
+ ),
817
+ norm_f(
818
+ Conv2d(
819
+ 1024,
820
+ 1024,
821
+ (kernel_size, 1),
822
+ 1,
823
+ padding=(get_padding(kernel_size, 1), 0),
824
+ )
825
+ ),
826
+ ]
827
+ )
828
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
829
+
830
+ def forward(self, x):
831
+ fmap = []
832
+
833
+ # 1d to 2d
834
+ b, c, t = x.shape
835
+ if t % self.period != 0: # pad first
836
+ n_pad = self.period - (t % self.period)
837
+ x = F.pad(x, (0, n_pad), "reflect")
838
+ t = t + n_pad
839
+ x = x.view(b, c, t // self.period, self.period)
840
+
841
+ for l in self.convs:
842
+ x = l(x)
843
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
844
+ fmap.append(x)
845
+ x = self.conv_post(x)
846
+ fmap.append(x)
847
+ x = torch.flatten(x, 1, -1)
848
+
849
+ return x, fmap
infer_pack/modules.py ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ from infer_pack import commons
13
+ from infer_pack.commons import init_weights, get_padding
14
+ from infer_pack.transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(
37
+ self,
38
+ in_channels,
39
+ hidden_channels,
40
+ out_channels,
41
+ kernel_size,
42
+ n_layers,
43
+ p_dropout,
44
+ ):
45
+ super().__init__()
46
+ self.in_channels = in_channels
47
+ self.hidden_channels = hidden_channels
48
+ self.out_channels = out_channels
49
+ self.kernel_size = kernel_size
50
+ self.n_layers = n_layers
51
+ self.p_dropout = p_dropout
52
+ assert n_layers > 1, "Number of layers should be larger than 0."
53
+
54
+ self.conv_layers = nn.ModuleList()
55
+ self.norm_layers = nn.ModuleList()
56
+ self.conv_layers.append(
57
+ nn.Conv1d(
58
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
59
+ )
60
+ )
61
+ self.norm_layers.append(LayerNorm(hidden_channels))
62
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
63
+ for _ in range(n_layers - 1):
64
+ self.conv_layers.append(
65
+ nn.Conv1d(
66
+ hidden_channels,
67
+ hidden_channels,
68
+ kernel_size,
69
+ padding=kernel_size // 2,
70
+ )
71
+ )
72
+ self.norm_layers.append(LayerNorm(hidden_channels))
73
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
74
+ self.proj.weight.data.zero_()
75
+ self.proj.bias.data.zero_()
76
+
77
+ def forward(self, x, x_mask):
78
+ x_org = x
79
+ for i in range(self.n_layers):
80
+ x = self.conv_layers[i](x * x_mask)
81
+ x = self.norm_layers[i](x)
82
+ x = self.relu_drop(x)
83
+ x = x_org + self.proj(x)
84
+ return x * x_mask
85
+
86
+
87
+ class DDSConv(nn.Module):
88
+ """
89
+ Dialted and Depth-Separable Convolution
90
+ """
91
+
92
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
93
+ super().__init__()
94
+ self.channels = channels
95
+ self.kernel_size = kernel_size
96
+ self.n_layers = n_layers
97
+ self.p_dropout = p_dropout
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.convs_sep = nn.ModuleList()
101
+ self.convs_1x1 = nn.ModuleList()
102
+ self.norms_1 = nn.ModuleList()
103
+ self.norms_2 = nn.ModuleList()
104
+ for i in range(n_layers):
105
+ dilation = kernel_size**i
106
+ padding = (kernel_size * dilation - dilation) // 2
107
+ self.convs_sep.append(
108
+ nn.Conv1d(
109
+ channels,
110
+ channels,
111
+ kernel_size,
112
+ groups=channels,
113
+ dilation=dilation,
114
+ padding=padding,
115
+ )
116
+ )
117
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
118
+ self.norms_1.append(LayerNorm(channels))
119
+ self.norms_2.append(LayerNorm(channels))
120
+
121
+ def forward(self, x, x_mask, g=None):
122
+ if g is not None:
123
+ x = x + g
124
+ for i in range(self.n_layers):
125
+ y = self.convs_sep[i](x * x_mask)
126
+ y = self.norms_1[i](y)
127
+ y = F.gelu(y)
128
+ y = self.convs_1x1[i](y)
129
+ y = self.norms_2[i](y)
130
+ y = F.gelu(y)
131
+ y = self.drop(y)
132
+ x = x + y
133
+ return x * x_mask
134
+
135
+
136
+ class WN(torch.nn.Module):
137
+ def __init__(
138
+ self,
139
+ hidden_channels,
140
+ kernel_size,
141
+ dilation_rate,
142
+ n_layers,
143
+ gin_channels=0,
144
+ p_dropout=0,
145
+ ):
146
+ super(WN, self).__init__()
147
+ assert kernel_size % 2 == 1
148
+ self.hidden_channels = hidden_channels
149
+ self.kernel_size = (kernel_size,)
150
+ self.dilation_rate = dilation_rate
151
+ self.n_layers = n_layers
152
+ self.gin_channels = gin_channels
153
+ self.p_dropout = p_dropout
154
+
155
+ self.in_layers = torch.nn.ModuleList()
156
+ self.res_skip_layers = torch.nn.ModuleList()
157
+ self.drop = nn.Dropout(p_dropout)
158
+
159
+ if gin_channels != 0:
160
+ cond_layer = torch.nn.Conv1d(
161
+ gin_channels, 2 * hidden_channels * n_layers, 1
162
+ )
163
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
164
+
165
+ for i in range(n_layers):
166
+ dilation = dilation_rate**i
167
+ padding = int((kernel_size * dilation - dilation) / 2)
168
+ in_layer = torch.nn.Conv1d(
169
+ hidden_channels,
170
+ 2 * hidden_channels,
171
+ kernel_size,
172
+ dilation=dilation,
173
+ padding=padding,
174
+ )
175
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
176
+ self.in_layers.append(in_layer)
177
+
178
+ # last one is not necessary
179
+ if i < n_layers - 1:
180
+ res_skip_channels = 2 * hidden_channels
181
+ else:
182
+ res_skip_channels = hidden_channels
183
+
184
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
185
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
186
+ self.res_skip_layers.append(res_skip_layer)
187
+
188
+ def forward(self, x, x_mask, g=None, **kwargs):
189
+ output = torch.zeros_like(x)
190
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
191
+
192
+ if g is not None:
193
+ g = self.cond_layer(g)
194
+
195
+ for i in range(self.n_layers):
196
+ x_in = self.in_layers[i](x)
197
+ if g is not None:
198
+ cond_offset = i * 2 * self.hidden_channels
199
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
200
+ else:
201
+ g_l = torch.zeros_like(x_in)
202
+
203
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
204
+ acts = self.drop(acts)
205
+
206
+ res_skip_acts = self.res_skip_layers[i](acts)
207
+ if i < self.n_layers - 1:
208
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
209
+ x = (x + res_acts) * x_mask
210
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
211
+ else:
212
+ output = output + res_skip_acts
213
+ return output * x_mask
214
+
215
+ def remove_weight_norm(self):
216
+ if self.gin_channels != 0:
217
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
218
+ for l in self.in_layers:
219
+ torch.nn.utils.remove_weight_norm(l)
220
+ for l in self.res_skip_layers:
221
+ torch.nn.utils.remove_weight_norm(l)
222
+
223
+
224
+ class ResBlock1(torch.nn.Module):
225
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
226
+ super(ResBlock1, self).__init__()
227
+ self.convs1 = nn.ModuleList(
228
+ [
229
+ weight_norm(
230
+ Conv1d(
231
+ channels,
232
+ channels,
233
+ kernel_size,
234
+ 1,
235
+ dilation=dilation[0],
236
+ padding=get_padding(kernel_size, dilation[0]),
237
+ )
238
+ ),
239
+ weight_norm(
240
+ Conv1d(
241
+ channels,
242
+ channels,
243
+ kernel_size,
244
+ 1,
245
+ dilation=dilation[1],
246
+ padding=get_padding(kernel_size, dilation[1]),
247
+ )
248
+ ),
249
+ weight_norm(
250
+ Conv1d(
251
+ channels,
252
+ channels,
253
+ kernel_size,
254
+ 1,
255
+ dilation=dilation[2],
256
+ padding=get_padding(kernel_size, dilation[2]),
257
+ )
258
+ ),
259
+ ]
260
+ )
261
+ self.convs1.apply(init_weights)
262
+
263
+ self.convs2 = nn.ModuleList(
264
+ [
265
+ weight_norm(
266
+ Conv1d(
267
+ channels,
268
+ channels,
269
+ kernel_size,
270
+ 1,
271
+ dilation=1,
272
+ padding=get_padding(kernel_size, 1),
273
+ )
274
+ ),
275
+ weight_norm(
276
+ Conv1d(
277
+ channels,
278
+ channels,
279
+ kernel_size,
280
+ 1,
281
+ dilation=1,
282
+ padding=get_padding(kernel_size, 1),
283
+ )
284
+ ),
285
+ weight_norm(
286
+ Conv1d(
287
+ channels,
288
+ channels,
289
+ kernel_size,
290
+ 1,
291
+ dilation=1,
292
+ padding=get_padding(kernel_size, 1),
293
+ )
294
+ ),
295
+ ]
296
+ )
297
+ self.convs2.apply(init_weights)
298
+
299
+ def forward(self, x, x_mask=None):
300
+ for c1, c2 in zip(self.convs1, self.convs2):
301
+ xt = F.leaky_relu(x, LRELU_SLOPE)
302
+ if x_mask is not None:
303
+ xt = xt * x_mask
304
+ xt = c1(xt)
305
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
306
+ if x_mask is not None:
307
+ xt = xt * x_mask
308
+ xt = c2(xt)
309
+ x = xt + x
310
+ if x_mask is not None:
311
+ x = x * x_mask
312
+ return x
313
+
314
+ def remove_weight_norm(self):
315
+ for l in self.convs1:
316
+ remove_weight_norm(l)
317
+ for l in self.convs2:
318
+ remove_weight_norm(l)
319
+
320
+
321
+ class ResBlock2(torch.nn.Module):
322
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
323
+ super(ResBlock2, self).__init__()
324
+ self.convs = nn.ModuleList(
325
+ [
326
+ weight_norm(
327
+ Conv1d(
328
+ channels,
329
+ channels,
330
+ kernel_size,
331
+ 1,
332
+ dilation=dilation[0],
333
+ padding=get_padding(kernel_size, dilation[0]),
334
+ )
335
+ ),
336
+ weight_norm(
337
+ Conv1d(
338
+ channels,
339
+ channels,
340
+ kernel_size,
341
+ 1,
342
+ dilation=dilation[1],
343
+ padding=get_padding(kernel_size, dilation[1]),
344
+ )
345
+ ),
346
+ ]
347
+ )
348
+ self.convs.apply(init_weights)
349
+
350
+ def forward(self, x, x_mask=None):
351
+ for c in self.convs:
352
+ xt = F.leaky_relu(x, LRELU_SLOPE)
353
+ if x_mask is not None:
354
+ xt = xt * x_mask
355
+ xt = c(xt)
356
+ x = xt + x
357
+ if x_mask is not None:
358
+ x = x * x_mask
359
+ return x
360
+
361
+ def remove_weight_norm(self):
362
+ for l in self.convs:
363
+ remove_weight_norm(l)
364
+
365
+
366
+ class Log(nn.Module):
367
+ def forward(self, x, x_mask, reverse=False, **kwargs):
368
+ if not reverse:
369
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
370
+ logdet = torch.sum(-y, [1, 2])
371
+ return y, logdet
372
+ else:
373
+ x = torch.exp(x) * x_mask
374
+ return x
375
+
376
+
377
+ class Flip(nn.Module):
378
+ def forward(self, x, *args, reverse=False, **kwargs):
379
+ x = torch.flip(x, [1])
380
+ if not reverse:
381
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
382
+ return x, logdet
383
+ else:
384
+ return x
385
+
386
+
387
+ class ElementwiseAffine(nn.Module):
388
+ def __init__(self, channels):
389
+ super().__init__()
390
+ self.channels = channels
391
+ self.m = nn.Parameter(torch.zeros(channels, 1))
392
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
393
+
394
+ def forward(self, x, x_mask, reverse=False, **kwargs):
395
+ if not reverse:
396
+ y = self.m + torch.exp(self.logs) * x
397
+ y = y * x_mask
398
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
399
+ return y, logdet
400
+ else:
401
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
402
+ return x
403
+
404
+
405
+ class ResidualCouplingLayer(nn.Module):
406
+ def __init__(
407
+ self,
408
+ channels,
409
+ hidden_channels,
410
+ kernel_size,
411
+ dilation_rate,
412
+ n_layers,
413
+ p_dropout=0,
414
+ gin_channels=0,
415
+ mean_only=False,
416
+ ):
417
+ assert channels % 2 == 0, "channels should be divisible by 2"
418
+ super().__init__()
419
+ self.channels = channels
420
+ self.hidden_channels = hidden_channels
421
+ self.kernel_size = kernel_size
422
+ self.dilation_rate = dilation_rate
423
+ self.n_layers = n_layers
424
+ self.half_channels = channels // 2
425
+ self.mean_only = mean_only
426
+
427
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
428
+ self.enc = WN(
429
+ hidden_channels,
430
+ kernel_size,
431
+ dilation_rate,
432
+ n_layers,
433
+ p_dropout=p_dropout,
434
+ gin_channels=gin_channels,
435
+ )
436
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
437
+ self.post.weight.data.zero_()
438
+ self.post.bias.data.zero_()
439
+
440
+ def forward(self, x, x_mask, g=None, reverse=False):
441
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
442
+ h = self.pre(x0) * x_mask
443
+ h = self.enc(h, x_mask, g=g)
444
+ stats = self.post(h) * x_mask
445
+ if not self.mean_only:
446
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
447
+ else:
448
+ m = stats
449
+ logs = torch.zeros_like(m)
450
+
451
+ if not reverse:
452
+ x1 = m + x1 * torch.exp(logs) * x_mask
453
+ x = torch.cat([x0, x1], 1)
454
+ logdet = torch.sum(logs, [1, 2])
455
+ return x, logdet
456
+ else:
457
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
458
+ x = torch.cat([x0, x1], 1)
459
+ return x
460
+
461
+ def remove_weight_norm(self):
462
+ self.enc.remove_weight_norm()
463
+
464
+
465
+ class ConvFlow(nn.Module):
466
+ def __init__(
467
+ self,
468
+ in_channels,
469
+ filter_channels,
470
+ kernel_size,
471
+ n_layers,
472
+ num_bins=10,
473
+ tail_bound=5.0,
474
+ ):
475
+ super().__init__()
476
+ self.in_channels = in_channels
477
+ self.filter_channels = filter_channels
478
+ self.kernel_size = kernel_size
479
+ self.n_layers = n_layers
480
+ self.num_bins = num_bins
481
+ self.tail_bound = tail_bound
482
+ self.half_channels = in_channels // 2
483
+
484
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
485
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
486
+ self.proj = nn.Conv1d(
487
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
488
+ )
489
+ self.proj.weight.data.zero_()
490
+ self.proj.bias.data.zero_()
491
+
492
+ def forward(self, x, x_mask, g=None, reverse=False):
493
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
494
+ h = self.pre(x0)
495
+ h = self.convs(h, x_mask, g=g)
496
+ h = self.proj(h) * x_mask
497
+
498
+ b, c, t = x0.shape
499
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
500
+
501
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
502
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
503
+ self.filter_channels
504
+ )
505
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
506
+
507
+ x1, logabsdet = piecewise_rational_quadratic_transform(
508
+ x1,
509
+ unnormalized_widths,
510
+ unnormalized_heights,
511
+ unnormalized_derivatives,
512
+ inverse=reverse,
513
+ tails="linear",
514
+ tail_bound=self.tail_bound,
515
+ )
516
+
517
+ x = torch.cat([x0, x1], 1) * x_mask
518
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
519
+ if not reverse:
520
+ return x, logdet
521
+ else:
522
+ return x
infer_pack/transforms.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(
13
+ inputs,
14
+ unnormalized_widths,
15
+ unnormalized_heights,
16
+ unnormalized_derivatives,
17
+ inverse=False,
18
+ tails=None,
19
+ tail_bound=1.0,
20
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
21
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
22
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
23
+ ):
24
+ if tails is None:
25
+ spline_fn = rational_quadratic_spline
26
+ spline_kwargs = {}
27
+ else:
28
+ spline_fn = unconstrained_rational_quadratic_spline
29
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
30
+
31
+ outputs, logabsdet = spline_fn(
32
+ inputs=inputs,
33
+ unnormalized_widths=unnormalized_widths,
34
+ unnormalized_heights=unnormalized_heights,
35
+ unnormalized_derivatives=unnormalized_derivatives,
36
+ inverse=inverse,
37
+ min_bin_width=min_bin_width,
38
+ min_bin_height=min_bin_height,
39
+ min_derivative=min_derivative,
40
+ **spline_kwargs
41
+ )
42
+ return outputs, logabsdet
43
+
44
+
45
+ def searchsorted(bin_locations, inputs, eps=1e-6):
46
+ bin_locations[..., -1] += eps
47
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
48
+
49
+
50
+ def unconstrained_rational_quadratic_spline(
51
+ inputs,
52
+ unnormalized_widths,
53
+ unnormalized_heights,
54
+ unnormalized_derivatives,
55
+ inverse=False,
56
+ tails="linear",
57
+ tail_bound=1.0,
58
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
59
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
60
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
61
+ ):
62
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
63
+ outside_interval_mask = ~inside_interval_mask
64
+
65
+ outputs = torch.zeros_like(inputs)
66
+ logabsdet = torch.zeros_like(inputs)
67
+
68
+ if tails == "linear":
69
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
70
+ constant = np.log(np.exp(1 - min_derivative) - 1)
71
+ unnormalized_derivatives[..., 0] = constant
72
+ unnormalized_derivatives[..., -1] = constant
73
+
74
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
75
+ logabsdet[outside_interval_mask] = 0
76
+ else:
77
+ raise RuntimeError("{} tails are not implemented.".format(tails))
78
+
79
+ (
80
+ outputs[inside_interval_mask],
81
+ logabsdet[inside_interval_mask],
82
+ ) = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound,
89
+ right=tail_bound,
90
+ bottom=-tail_bound,
91
+ top=tail_bound,
92
+ min_bin_width=min_bin_width,
93
+ min_bin_height=min_bin_height,
94
+ min_derivative=min_derivative,
95
+ )
96
+
97
+ return outputs, logabsdet
98
+
99
+
100
+ def rational_quadratic_spline(
101
+ inputs,
102
+ unnormalized_widths,
103
+ unnormalized_heights,
104
+ unnormalized_derivatives,
105
+ inverse=False,
106
+ left=0.0,
107
+ right=1.0,
108
+ bottom=0.0,
109
+ top=1.0,
110
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
111
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
112
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
113
+ ):
114
+ if torch.min(inputs) < left or torch.max(inputs) > right:
115
+ raise ValueError("Input to a transform is not within its domain")
116
+
117
+ num_bins = unnormalized_widths.shape[-1]
118
+
119
+ if min_bin_width * num_bins > 1.0:
120
+ raise ValueError("Minimal bin width too large for the number of bins")
121
+ if min_bin_height * num_bins > 1.0:
122
+ raise ValueError("Minimal bin height too large for the number of bins")
123
+
124
+ widths = F.softmax(unnormalized_widths, dim=-1)
125
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
126
+ cumwidths = torch.cumsum(widths, dim=-1)
127
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
128
+ cumwidths = (right - left) * cumwidths + left
129
+ cumwidths[..., 0] = left
130
+ cumwidths[..., -1] = right
131
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
132
+
133
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
134
+
135
+ heights = F.softmax(unnormalized_heights, dim=-1)
136
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
137
+ cumheights = torch.cumsum(heights, dim=-1)
138
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
139
+ cumheights = (top - bottom) * cumheights + bottom
140
+ cumheights[..., 0] = bottom
141
+ cumheights[..., -1] = top
142
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
143
+
144
+ if inverse:
145
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
146
+ else:
147
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
148
+
149
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
150
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
151
+
152
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
153
+ delta = heights / widths
154
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
155
+
156
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
157
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
158
+
159
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
160
+
161
+ if inverse:
162
+ a = (inputs - input_cumheights) * (
163
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
164
+ ) + input_heights * (input_delta - input_derivatives)
165
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
166
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
167
+ )
168
+ c = -input_delta * (inputs - input_cumheights)
169
+
170
+ discriminant = b.pow(2) - 4 * a * c
171
+ assert (discriminant >= 0).all()
172
+
173
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
174
+ outputs = root * input_bin_widths + input_cumwidths
175
+
176
+ theta_one_minus_theta = root * (1 - root)
177
+ denominator = input_delta + (
178
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
179
+ * theta_one_minus_theta
180
+ )
181
+ derivative_numerator = input_delta.pow(2) * (
182
+ input_derivatives_plus_one * root.pow(2)
183
+ + 2 * input_delta * theta_one_minus_theta
184
+ + input_derivatives * (1 - root).pow(2)
185
+ )
186
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
187
+
188
+ return outputs, -logabsdet
189
+ else:
190
+ theta = (inputs - input_cumwidths) / input_bin_widths
191
+ theta_one_minus_theta = theta * (1 - theta)
192
+
193
+ numerator = input_heights * (
194
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
195
+ )
196
+ denominator = input_delta + (
197
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
198
+ * theta_one_minus_theta
199
+ )
200
+ outputs = input_cumheights + numerator / denominator
201
+
202
+ derivative_numerator = input_delta.pow(2) * (
203
+ input_derivatives_plus_one * theta.pow(2)
204
+ + 2 * input_delta * theta_one_minus_theta
205
+ + input_derivatives * (1 - theta).pow(2)
206
+ )
207
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
208
+
209
+ return outputs, logabsdet
requirements-gcolab.txt ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numba==0.56.4
2
+ numpy==1.23.5
3
+ scipy==1.9.3
4
+ librosa==0.9.2
5
+ llvmlite==0.39.0
6
+ fairseq==0.12.2
7
+ faiss-cpu==1.7.0; sys_platform == "darwin"
8
+ faiss-cpu==1.7.2; sys_platform != "darwin"
9
+ gradio
10
+ Cython
11
+ future>=0.18.3
12
+ pydub>=0.25.1
13
+ soundfile>=0.12.1
14
+ ffmpeg-python>=0.2.0
15
+ tensorboardX
16
+ functorch>=2.0.0
17
+ Jinja2>=3.1.2
18
+ json5>=0.9.11
19
+ Markdown
20
+ matplotlib>=3.7.1
21
+ matplotlib-inline>=0.1.6
22
+ praat-parselmouth>=0.4.3
23
+ Pillow>=9.1.1
24
+ pyworld>=0.3.2
25
+ resampy>=0.4.2
26
+ scikit-learn>=1.2.2
27
+ starlette>=0.26.1
28
+ tensorboard
29
+ tensorboard-data-server
30
+ tensorboard-plugin-wit
31
+ torchgen>=0.0.1
32
+ tqdm>=4.65.0
33
+ tornado>=6.2
34
+ Werkzeug>=2.2.3
35
+ uc-micro-py>=1.0.1
36
+ sympy>=1.11.1
37
+ tabulate>=0.9.0
38
+ PyYAML>=6.0
39
+ pyasn1>=0.4.8
40
+ pyasn1-modules>=0.2.8
41
+ fsspec>=2023.3.0
42
+ absl-py>=1.4.0
43
+ audioread
44
+ uvicorn>=0.21.1
45
+ colorama>=0.4.6
46
+ edge-tts
47
+ demucs
48
+ yt_dlp
49
+ ffmpeg
requirements.txt ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numba==0.56.4
2
+ numpy==1.23.5
3
+ scipy==1.9.3
4
+ librosa==0.9.2
5
+ llvmlite==0.39.0
6
+ fairseq==0.12.2
7
+ faiss-cpu==1.7.0; sys_platform == "darwin"
8
+ faiss-cpu==1.7.2; sys_platform != "darwin"
9
+ gradio
10
+ Cython
11
+ future>=0.18.3
12
+ pydub>=0.25.1
13
+ soundfile>=0.12.1
14
+ ffmpeg-python>=0.2.0
15
+ tensorboardX
16
+ functorch>=2.0.0
17
+ Jinja2>=3.1.2
18
+ json5>=0.9.11
19
+ Markdown
20
+ matplotlib>=3.7.1
21
+ matplotlib-inline>=0.1.6
22
+ praat-parselmouth>=0.4.3
23
+ Pillow>=9.1.1
24
+ pyworld>=0.3.2
25
+ resampy>=0.4.2
26
+ scikit-learn>=1.2.2
27
+ starlette>=0.26.1
28
+ tensorboard
29
+ tensorboard-data-server
30
+ tensorboard-plugin-wit
31
+ torchgen>=0.0.1
32
+ tqdm>=4.65.0
33
+ tornado>=6.2
34
+ Werkzeug>=2.2.3
35
+ uc-micro-py>=1.0.1
36
+ sympy>=1.11.1
37
+ tabulate>=0.9.0
38
+ PyYAML>=6.0
39
+ pyasn1>=0.4.8
40
+ pyasn1-modules>=0.2.8
41
+ fsspec>=2023.3.0
42
+ absl-py>=1.4.0
43
+ audioread
44
+ uvicorn>=0.21.1
45
+ colorama>=0.4.6
46
+ edge-tts
vc_infer_pipeline.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np, parselmouth, torch, pdb
2
+ from time import time as ttime
3
+ import torch.nn.functional as F
4
+ import scipy.signal as signal
5
+ import pyworld, os, traceback, faiss
6
+ from scipy import signal
7
+
8
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
9
+
10
+
11
+ class VC(object):
12
+ def __init__(self, tgt_sr, config):
13
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
14
+ config.x_pad,
15
+ config.x_query,
16
+ config.x_center,
17
+ config.x_max,
18
+ config.is_half,
19
+ )
20
+ self.sr = 16000 # hubert输入采样率
21
+ self.window = 160 # 每帧点数
22
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
23
+ self.t_pad_tgt = tgt_sr * self.x_pad
24
+ self.t_pad2 = self.t_pad * 2
25
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
26
+ self.t_center = self.sr * self.x_center # 查询切点位置
27
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
28
+ self.device = config.device
29
+
30
+ def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None):
31
+ time_step = self.window / self.sr * 1000
32
+ f0_min = 50
33
+ f0_max = 1100
34
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
35
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
36
+ if f0_method == "pm":
37
+ f0 = (
38
+ parselmouth.Sound(x, self.sr)
39
+ .to_pitch_ac(
40
+ time_step=time_step / 1000,
41
+ voicing_threshold=0.6,
42
+ pitch_floor=f0_min,
43
+ pitch_ceiling=f0_max,
44
+ )
45
+ .selected_array["frequency"]
46
+ )
47
+ pad_size = (p_len - len(f0) + 1) // 2
48
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
49
+ f0 = np.pad(
50
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
51
+ )
52
+ elif f0_method == "harvest":
53
+ f0, t = pyworld.harvest(
54
+ x.astype(np.double),
55
+ fs=self.sr,
56
+ f0_ceil=f0_max,
57
+ f0_floor=f0_min,
58
+ frame_period=10,
59
+ )
60
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
61
+ f0 = signal.medfilt(f0, 3)
62
+ f0 *= pow(2, f0_up_key / 12)
63
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
64
+ tf0 = self.sr // self.window # 每秒f0点数
65
+ if inp_f0 is not None:
66
+ delta_t = np.round(
67
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
68
+ ).astype("int16")
69
+ replace_f0 = np.interp(
70
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
71
+ )
72
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
73
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
74
+ :shape
75
+ ]
76
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
77
+ f0bak = f0.copy()
78
+ f0_mel = 1127 * np.log(1 + f0 / 700)
79
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
80
+ f0_mel_max - f0_mel_min
81
+ ) + 1
82
+ f0_mel[f0_mel <= 1] = 1
83
+ f0_mel[f0_mel > 255] = 255
84
+ f0_coarse = np.rint(f0_mel).astype(np.int)
85
+ return f0_coarse, f0bak # 1-0
86
+
87
+ def vc(
88
+ self,
89
+ model,
90
+ net_g,
91
+ sid,
92
+ audio0,
93
+ pitch,
94
+ pitchf,
95
+ times,
96
+ index,
97
+ big_npy,
98
+ index_rate,
99
+ ): # ,file_index,file_big_npy
100
+ feats = torch.from_numpy(audio0)
101
+ if self.is_half:
102
+ feats = feats.half()
103
+ else:
104
+ feats = feats.float()
105
+ if feats.dim() == 2: # double channels
106
+ feats = feats.mean(-1)
107
+ assert feats.dim() == 1, feats.dim()
108
+ feats = feats.view(1, -1)
109
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
110
+
111
+ inputs = {
112
+ "source": feats.to(self.device),
113
+ "padding_mask": padding_mask,
114
+ "output_layer": 9, # layer 9
115
+ }
116
+ t0 = ttime()
117
+ with torch.no_grad():
118
+ logits = model.extract_features(**inputs)
119
+ feats = model.final_proj(logits[0])
120
+
121
+ if (
122
+ isinstance(index, type(None)) == False
123
+ and isinstance(big_npy, type(None)) == False
124
+ and index_rate != 0
125
+ ):
126
+ npy = feats[0].cpu().numpy()
127
+ if self.is_half:
128
+ npy = npy.astype("float32")
129
+
130
+ # _, I = index.search(npy, 1)
131
+ # npy = big_npy[I.squeeze()]
132
+
133
+ score, ix = index.search(npy, k=8)
134
+ weight = np.square(1 / score)
135
+ weight /= weight.sum(axis=1, keepdims=True)
136
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
137
+
138
+ if self.is_half:
139
+ npy = npy.astype("float16")
140
+ feats = (
141
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
142
+ + (1 - index_rate) * feats
143
+ )
144
+
145
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
146
+ t1 = ttime()
147
+ p_len = audio0.shape[0] // self.window
148
+ if feats.shape[1] < p_len:
149
+ p_len = feats.shape[1]
150
+ if pitch != None and pitchf != None:
151
+ pitch = pitch[:, :p_len]
152
+ pitchf = pitchf[:, :p_len]
153
+ p_len = torch.tensor([p_len], device=self.device).long()
154
+ with torch.no_grad():
155
+ if pitch != None and pitchf != None:
156
+ audio1 = (
157
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
158
+ .data.cpu()
159
+ .float()
160
+ .numpy()
161
+ .astype(np.int16)
162
+ )
163
+ else:
164
+ audio1 = (
165
+ (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
166
+ .data.cpu()
167
+ .float()
168
+ .numpy()
169
+ .astype(np.int16)
170
+ )
171
+ del feats, p_len, padding_mask
172
+ if torch.cuda.is_available():
173
+ torch.cuda.empty_cache()
174
+ t2 = ttime()
175
+ times[0] += t1 - t0
176
+ times[2] += t2 - t1
177
+ return audio1
178
+
179
+ def pipeline(
180
+ self,
181
+ model,
182
+ net_g,
183
+ sid,
184
+ audio,
185
+ times,
186
+ f0_up_key,
187
+ f0_method,
188
+ file_index,
189
+ # file_big_npy,
190
+ index_rate,
191
+ if_f0,
192
+ f0_file=None,
193
+ ):
194
+ if (
195
+ file_index != ""
196
+ # and file_big_npy != ""
197
+ # and os.path.exists(file_big_npy) == True
198
+ and os.path.exists(file_index) == True
199
+ and index_rate != 0
200
+ ):
201
+ try:
202
+ index = faiss.read_index(file_index)
203
+ # big_npy = np.load(file_big_npy)
204
+ big_npy = index.reconstruct_n(0, index.ntotal)
205
+ except:
206
+ traceback.print_exc()
207
+ index = big_npy = None
208
+ else:
209
+ index = big_npy = None
210
+ audio = signal.filtfilt(bh, ah, audio)
211
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
212
+ opt_ts = []
213
+ if audio_pad.shape[0] > self.t_max:
214
+ audio_sum = np.zeros_like(audio)
215
+ for i in range(self.window):
216
+ audio_sum += audio_pad[i : i - self.window]
217
+ for t in range(self.t_center, audio.shape[0], self.t_center):
218
+ opt_ts.append(
219
+ t
220
+ - self.t_query
221
+ + np.where(
222
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
223
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
224
+ )[0][0]
225
+ )
226
+ s = 0
227
+ audio_opt = []
228
+ t = None
229
+ t1 = ttime()
230
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
231
+ p_len = audio_pad.shape[0] // self.window
232
+ inp_f0 = None
233
+ if hasattr(f0_file, "name") == True:
234
+ try:
235
+ with open(f0_file.name, "r") as f:
236
+ lines = f.read().strip("\n").split("\n")
237
+ inp_f0 = []
238
+ for line in lines:
239
+ inp_f0.append([float(i) for i in line.split(",")])
240
+ inp_f0 = np.array(inp_f0, dtype="float32")
241
+ except:
242
+ traceback.print_exc()
243
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
244
+ pitch, pitchf = None, None
245
+ if if_f0 == 1:
246
+ pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0)
247
+ pitch = pitch[:p_len]
248
+ pitchf = pitchf[:p_len]
249
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
250
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
251
+ t2 = ttime()
252
+ times[1] += t2 - t1
253
+ for t in opt_ts:
254
+ t = t // self.window * self.window
255
+ if if_f0 == 1:
256
+ audio_opt.append(
257
+ self.vc(
258
+ model,
259
+ net_g,
260
+ sid,
261
+ audio_pad[s : t + self.t_pad2 + self.window],
262
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
263
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
264
+ times,
265
+ index,
266
+ big_npy,
267
+ index_rate,
268
+ )[self.t_pad_tgt : -self.t_pad_tgt]
269
+ )
270
+ else:
271
+ audio_opt.append(
272
+ self.vc(
273
+ model,
274
+ net_g,
275
+ sid,
276
+ audio_pad[s : t + self.t_pad2 + self.window],
277
+ None,
278
+ None,
279
+ times,
280
+ index,
281
+ big_npy,
282
+ index_rate,
283
+ )[self.t_pad_tgt : -self.t_pad_tgt]
284
+ )
285
+ s = t
286
+ if if_f0 == 1:
287
+ audio_opt.append(
288
+ self.vc(
289
+ model,
290
+ net_g,
291
+ sid,
292
+ audio_pad[t:],
293
+ pitch[:, t // self.window :] if t is not None else pitch,
294
+ pitchf[:, t // self.window :] if t is not None else pitchf,
295
+ times,
296
+ index,
297
+ big_npy,
298
+ index_rate,
299
+ )[self.t_pad_tgt : -self.t_pad_tgt]
300
+ )
301
+ else:
302
+ audio_opt.append(
303
+ self.vc(
304
+ model,
305
+ net_g,
306
+ sid,
307
+ audio_pad[t:],
308
+ None,
309
+ None,
310
+ times,
311
+ index,
312
+ big_npy,
313
+ index_rate,
314
+ )[self.t_pad_tgt : -self.t_pad_tgt]
315
+ )
316
+ audio_opt = np.concatenate(audio_opt)
317
+ del pitch, pitchf, sid
318
+ if torch.cuda.is_available():
319
+ torch.cuda.empty_cache()
320
+ return audio_opt
weights/nilou-jp/added_IVF218_Flat_nprobe_5.index ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:269e4975471b98f9f85d3bd5a6832d2e8496f5a54953a9e6018dbe62e7584fe9
3
+ size 9006403
weights/nilou-jp/cover.png ADDED
weights/nilou-jp/nilou-jp.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e64fe080b45e1a2b539090f88eb1813fc7310239bdc5e3abe3250d28e383d4af
3
+ size 55027130