Spaces:
Sleeping
Sleeping
# flake8: noqa: E402 | |
import sys, os | |
import logging | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig( | |
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
import torch | |
import argparse | |
import commons | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
import gradio as gr | |
import webbrowser | |
import numpy as np | |
net_g = None | |
if sys.platform == "darwin" and torch.backends.mps.is_available(): | |
device = "mps" | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
else: | |
device = "cuda" | |
def get_text(text, language_str, hps): | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert = get_bert(norm_text, word2ph, language_str, device) | |
del word2ph | |
assert bert.shape[-1] == len(phone), phone | |
if language_str == "ZH": | |
bert = bert | |
ja_bert = torch.zeros(768, len(phone)) | |
elif language_str == "JP": | |
ja_bert = bert | |
bert = torch.zeros(1024, len(phone)) | |
else: | |
bert = torch.zeros(1024, len(phone)) | |
ja_bert = torch.zeros(768, len(phone)) | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, phone, tone, language | |
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language): | |
global net_g | |
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps) | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
ja_bert = ja_bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
audio = ( | |
net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speakers, | |
tones, | |
lang_ids, | |
bert, | |
ja_bert, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers | |
torch.cuda.empty_cache() | |
return audio | |
__LOG__ = "./generation_logs.txt" | |
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language): | |
with open(__LOG__,"a") as f: | |
f.write(f"{text} | {speaker}\n") | |
print(f"{text} | {speaker}") | |
slices = text.split("|") | |
audio_list = [] | |
with torch.no_grad(): | |
for slice in slices: | |
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language) | |
audio_list.append(audio) | |
silence = np.zeros(hps.data.sampling_rate) # ηζ1η§ηιι³ | |
audio_list.append(silence) # ε°ιι³ζ·»ε ε°εθ‘¨δΈ | |
audio_concat = np.concatenate(audio_list) | |
return "Success", (hps.data.sampling_rate, audio_concat) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-m", "--model", default="./logs/umamusume/G_138000.pth", help="path of your model" | |
) | |
parser.add_argument( | |
"-c", | |
"--config", | |
default="./configs/config.json", | |
help="path of your config file", | |
) | |
parser.add_argument( | |
"--share", default=False, help="make link public", action="store_true" | |
) | |
parser.add_argument( | |
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log" | |
) | |
args = parser.parse_args() | |
if args.debug: | |
logger.info("Enable DEBUG-LEVEL log") | |
logging.basicConfig(level=logging.DEBUG) | |
hps = utils.get_hparams_from_file(args.config) | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True) | |
speaker_ids = hps.data.spk2id | |
speakers = list(speaker_ids.keys()) | |
languages = ["ZH", "JP"] | |
with gr.Blocks() as app: | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.TextArea( | |
label="Text", | |
placeholder="Input Text Here", | |
value="γ―γγγ£γ¦γγγοΌ", | |
) | |
speaker = gr.Dropdown( | |
choices=speakers, value=speakers[0], label="Speaker" | |
) | |
sdp_ratio = gr.Slider( | |
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio" | |
) | |
noise_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale" | |
) | |
noise_scale_w = gr.Slider( | |
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W" | |
) | |
length_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale" | |
) | |
language = gr.Dropdown( | |
choices=languages, value=languages[1], label="Language" | |
) | |
btn = gr.Button("Generate!", variant="primary") | |
with gr.Column(): | |
text_output = gr.Textbox(label="Message") | |
audio_output = gr.Audio(label="Output Audio") | |
btn.click( | |
tts_fn, | |
inputs=[ | |
text, | |
speaker, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
language, | |
], | |
outputs=[text_output, audio_output], | |
) | |
app.launch() | |