bert_vits2 / text /japanese.py
Akito-UzukiP
remove unused tdmelodic
a0c46b5
# Convert Japanese text to phonemes which is
# compatible with Julius https://github.com/julius-speech/segmentation-kit
import re
import unicodedata
from transformers import AutoTokenizer
from text import punctuation, symbols
try:
import MeCab
except ImportError as e:
raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e
from num2words import num2words
_CONVRULES = [
# Conversion of 2 letters
"アァ/ a a",
"イィ/ i i",
"イェ/ i e",
"イャ/ y a",
"ウゥ/ u:",
"エェ/ e e",
"オォ/ o:",
"カァ/ k a:",
"キィ/ k i:",
"クゥ/ k u:",
"クャ/ ky a",
"クュ/ ky u",
"クョ/ ky o",
"ケェ/ k e:",
"コォ/ k o:",
"ガァ/ g a:",
"ギィ/ g i:",
"グゥ/ g u:",
"グャ/ gy a",
"グュ/ gy u",
"グョ/ gy o",
"ゲェ/ g e:",
"ゴォ/ g o:",
"サァ/ s a:",
"シィ/ sh i:",
"スゥ/ s u:",
"スャ/ sh a",
"スュ/ sh u",
"スョ/ sh o",
"セェ/ s e:",
"ソォ/ s o:",
"ザァ/ z a:",
"ジィ/ j i:",
"ズゥ/ z u:",
"ズャ/ zy a",
"ズュ/ zy u",
"ズョ/ zy o",
"ゼェ/ z e:",
"ゾォ/ z o:",
"タァ/ t a:",
"チィ/ ch i:",
"ツァ/ ts a",
"ツィ/ ts i",
"ツゥ/ ts u:",
"ツャ/ ch a",
"ツュ/ ch u",
"ツョ/ ch o",
"ツェ/ ts e",
"ツォ/ ts o",
"テェ/ t e:",
"トォ/ t o:",
"ダァ/ d a:",
"ヂィ/ j i:",
"ヅゥ/ d u:",
"ヅャ/ zy a",
"ヅュ/ zy u",
"ヅョ/ zy o",
"デェ/ d e:",
"ドォ/ d o:",
"ナァ/ n a:",
"ニィ/ n i:",
"ヌゥ/ n u:",
"ヌャ/ ny a",
"ヌュ/ ny u",
"ヌョ/ ny o",
"ネェ/ n e:",
"ノォ/ n o:",
"ハァ/ h a:",
"ヒィ/ h i:",
"フゥ/ f u:",
"フャ/ hy a",
"フュ/ hy u",
"フョ/ hy o",
"ヘェ/ h e:",
"ホォ/ h o:",
"バァ/ b a:",
"ビィ/ b i:",
"ブゥ/ b u:",
"フャ/ hy a",
"ブュ/ by u",
"フョ/ hy o",
"ベェ/ b e:",
"ボォ/ b o:",
"パァ/ p a:",
"ピィ/ p i:",
"プゥ/ p u:",
"プャ/ py a",
"プュ/ py u",
"プョ/ py o",
"ペェ/ p e:",
"ポォ/ p o:",
"マァ/ m a:",
"ミィ/ m i:",
"ムゥ/ m u:",
"ムャ/ my a",
"ムュ/ my u",
"ムョ/ my o",
"メェ/ m e:",
"モォ/ m o:",
"ヤァ/ y a:",
"ユゥ/ y u:",
"ユャ/ y a:",
"ユュ/ y u:",
"ユョ/ y o:",
"ヨォ/ y o:",
"ラァ/ r a:",
"リィ/ r i:",
"ルゥ/ r u:",
"ルャ/ ry a",
"ルュ/ ry u",
"ルョ/ ry o",
"レェ/ r e:",
"ロォ/ r o:",
"ワァ/ w a:",
"ヲォ/ o:",
"ディ/ d i",
"デェ/ d e:",
"デャ/ dy a",
"デュ/ dy u",
"デョ/ dy o",
"ティ/ t i",
"テェ/ t e:",
"テャ/ ty a",
"テュ/ ty u",
"テョ/ ty o",
"スィ/ s i",
"ズァ/ z u a",
"ズィ/ z i",
"ズゥ/ z u",
"ズャ/ zy a",
"ズュ/ zy u",
"ズョ/ zy o",
"ズェ/ z e",
"ズォ/ z o",
"キャ/ ky a",
"キュ/ ky u",
"キョ/ ky o",
"シャ/ sh a",
"シュ/ sh u",
"シェ/ sh e",
"ショ/ sh o",
"チャ/ ch a",
"チュ/ ch u",
"チェ/ ch e",
"チョ/ ch o",
"トゥ/ t u",
"トャ/ ty a",
"トュ/ ty u",
"トョ/ ty o",
"ドァ/ d o a",
"ドゥ/ d u",
"ドャ/ dy a",
"ドュ/ dy u",
"ドョ/ dy o",
"ドォ/ d o:",
"ニャ/ ny a",
"ニュ/ ny u",
"ニョ/ ny o",
"ヒャ/ hy a",
"ヒュ/ hy u",
"ヒョ/ hy o",
"ミャ/ my a",
"ミュ/ my u",
"ミョ/ my o",
"リャ/ ry a",
"リュ/ ry u",
"リョ/ ry o",
"ギャ/ gy a",
"ギュ/ gy u",
"ギョ/ gy o",
"ヂェ/ j e",
"ヂャ/ j a",
"ヂュ/ j u",
"ヂョ/ j o",
"ジェ/ j e",
"ジャ/ j a",
"ジュ/ j u",
"ジョ/ j o",
"ビャ/ by a",
"ビュ/ by u",
"ビョ/ by o",
"ピャ/ py a",
"ピュ/ py u",
"ピョ/ py o",
"ウァ/ u a",
"ウィ/ w i",
"ウェ/ w e",
"ウォ/ w o",
"ファ/ f a",
"フィ/ f i",
"フゥ/ f u",
"フャ/ hy a",
"フュ/ hy u",
"フョ/ hy o",
"フェ/ f e",
"フォ/ f o",
"ヴァ/ b a",
"ヴィ/ b i",
"ヴェ/ b e",
"ヴォ/ b o",
"ヴュ/ by u",
"アー/ a:",
"イー/ i:",
"ウー/ u:",
"エー/ e:",
"オー/ o:",
"カー/ k a:",
"キー/ k i:",
"クー/ k u:",
"ケー/ k e:",
"コー/ k o:",
"サー/ s a:",
"シー/ sh i:",
"スー/ s u:",
"セー/ s e:",
"ソー/ s o:",
"ター/ t a:",
"チー/ ch i:",
"ツー/ ts u:",
"テー/ t e:",
"トー/ t o:",
"ナー/ n a:",
"ニー/ n i:",
"ヌー/ n u:",
"ネー/ n e:",
"ノー/ n o:",
"ハー/ h a:",
"ヒー/ h i:",
"フー/ f u:",
"ヘー/ h e:",
"ホー/ h o:",
"マー/ m a:",
"ミー/ m i:",
"ムー/ m u:",
"メー/ m e:",
"モー/ m o:",
"ラー/ r a:",
"リー/ r i:",
"ルー/ r u:",
"レー/ r e:",
"ロー/ r o:",
"ガー/ g a:",
"ギー/ g i:",
"グー/ g u:",
"ゲー/ g e:",
"ゴー/ g o:",
"ザー/ z a:",
"ジー/ j i:",
"ズー/ z u:",
"ゼー/ z e:",
"ゾー/ z o:",
"ダー/ d a:",
"ヂー/ j i:",
"ヅー/ z u:",
"デー/ d e:",
"ドー/ d o:",
"バー/ b a:",
"ビー/ b i:",
"ブー/ b u:",
"ベー/ b e:",
"ボー/ b o:",
"パー/ p a:",
"ピー/ p i:",
"プー/ p u:",
"ペー/ p e:",
"ポー/ p o:",
"ヤー/ y a:",
"ユー/ y u:",
"ヨー/ y o:",
"ワー/ w a:",
"ヰー/ i:",
"ヱー/ e:",
"ヲー/ o:",
"ヴー/ b u:",
# Conversion of 1 letter
"ア/ a",
"イ/ i",
"ウ/ u",
"エ/ e",
"オ/ o",
"カ/ k a",
"キ/ k i",
"ク/ k u",
"ケ/ k e",
"コ/ k o",
"サ/ s a",
"シ/ sh i",
"ス/ s u",
"セ/ s e",
"ソ/ s o",
"タ/ t a",
"チ/ ch i",
"ツ/ ts u",
"テ/ t e",
"ト/ t o",
"ナ/ n a",
"ニ/ n i",
"ヌ/ n u",
"ネ/ n e",
"ノ/ n o",
"ハ/ h a",
"ヒ/ h i",
"フ/ f u",
"ヘ/ h e",
"ホ/ h o",
"マ/ m a",
"ミ/ m i",
"ム/ m u",
"メ/ m e",
"モ/ m o",
"ラ/ r a",
"リ/ r i",
"ル/ r u",
"レ/ r e",
"ロ/ r o",
"ガ/ g a",
"ギ/ g i",
"グ/ g u",
"ゲ/ g e",
"ゴ/ g o",
"ザ/ z a",
"ジ/ j i",
"ズ/ z u",
"ゼ/ z e",
"ゾ/ z o",
"ダ/ d a",
"ヂ/ j i",
"ヅ/ z u",
"デ/ d e",
"ド/ d o",
"バ/ b a",
"ビ/ b i",
"ブ/ b u",
"ベ/ b e",
"ボ/ b o",
"パ/ p a",
"ピ/ p i",
"プ/ p u",
"ペ/ p e",
"ポ/ p o",
"ヤ/ y a",
"ユ/ y u",
"ヨ/ y o",
"ワ/ w a",
"ヰ/ i",
"ヱ/ e",
"ヲ/ o",
"ン/ N",
"ッ/ q",
"ヴ/ b u",
"ー/:", #这个不起作用
# Try converting broken text
"ァ/ a",
"ィ/ i",
"ゥ/ u",
"ェ/ e",
"ォ/ o",
"ヮ/ w a",
"ォ/ o",
# Symbols
"、/ ,",
"。/ .",
"!/ !",
"?/ ?",
"・/ ,",
]
_COLON_RX = re.compile(":+")
_REJECT_RX = re.compile("[^ a-zA-Z:,.?]")
def _makerulemap():
l = [tuple(x.split("/")) for x in _CONVRULES]
return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2))
_RULEMAP1, _RULEMAP2 = _makerulemap()
def kata2phoneme(text: str) -> str:
"""Convert katakana text to phonemes."""
text = text.strip()
res = []
while text:
if len(text) >= 2:
x = _RULEMAP2.get(text[:2])
if x is not None:
text = text[2:]
res += x.split(" ")[1:]
continue
x = _RULEMAP1.get(text[0])
if x is not None:
text = text[1:]
res += x.split(" ")[1:]
continue
res.append(text[0])
text = text[1:]
# res = _COLON_RX.sub(":", res)
return res
_KATAKANA = "".join(chr(ch) for ch in range(ord("ァ"), ord("ン") + 1))
_HIRAGANA = "".join(chr(ch) for ch in range(ord("ぁ"), ord("ん") + 1))
_HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
def hira2kata(text: str) -> str:
text = text.translate(_HIRA2KATATRANS)
return text.replace("う゛", "ヴ")
_SYMBOL_TOKENS = set(list("・、。?!"))
_NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
_TAGGER = MeCab.Tagger()
def text2kata(text: str) -> str:
parsed = _TAGGER.parse(text)
res = []
for line in parsed.split("\n"):
if line == "EOS":
break
parts = line.split("\t")
word, yomi = parts[0], parts[1]
if yomi:
res.append(yomi)
else:
if word in _SYMBOL_TOKENS:
res.append(word)
elif word in ("っ", "ッ"):
res.append("ッ")
elif word in _NO_YOMI_TOKENS:
pass
else:
res.append(word)
return hira2kata("".join(res))
def text2sep_kata(text: str) -> (list, list):
parsed = _TAGGER.parse(text)
res = []
sep = []
for line in parsed.split("\n"):
if line == "EOS":
break
parts = line.split("\t")
word, yomi = parts[0], parts[1]
if yomi:
res.append(yomi)
else:
if word in _SYMBOL_TOKENS:
res.append(word)
elif word in ("っ", "ッ"):
res.append("ッ")
elif word in _NO_YOMI_TOKENS:
pass
else:
res.append(word)
sep.append(word)
return sep, [hira2kata(i) for i in res]
_ALPHASYMBOL_YOMI = {
"#": "シャープ",
"%": "パーセント",
"&": "アンド",
"+": "プラス",
"-": "マイナス",
":": "コロン",
";": "セミコロン",
"<": "小なり",
"=": "イコール",
">": "大なり",
"@": "アット",
"a": "エー",
"b": "ビー",
"c": "シー",
"d": "ディー",
"e": "イー",
"f": "エフ",
"g": "ジー",
"h": "エイチ",
"i": "アイ",
"j": "ジェー",
"k": "ケー",
"l": "エル",
"m": "エム",
"n": "エヌ",
"o": "オー",
"p": "ピー",
"q": "キュー",
"r": "アール",
"s": "エス",
"t": "ティー",
"u": "ユー",
"v": "ブイ",
"w": "ダブリュー",
"x": "エックス",
"y": "ワイ",
"z": "ゼット",
"α": "アルファ",
"β": "ベータ",
"γ": "ガンマ",
"δ": "デルタ",
"ε": "イプシロン",
"ζ": "ゼータ",
"η": "イータ",
"θ": "シータ",
"ι": "イオタ",
"κ": "カッパ",
"λ": "ラムダ",
"μ": "ミュー",
"ν": "ニュー",
"ξ": "クサイ",
"ο": "オミクロン",
"π": "パイ",
"ρ": "ロー",
"σ": "シグマ",
"τ": "タウ",
"υ": "ウプシロン",
"φ": "ファイ",
"χ": "カイ",
"ψ": "プサイ",
"ω": "オメガ",
}
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
def japanese_convert_numbers_to_words(text: str) -> str:
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
return res
def japanese_convert_alpha_symbols_to_words(text: str) -> str:
return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
def japanese_text_to_phonemes(text: str) -> str:
"""Convert Japanese text to phonemes."""
res = unicodedata.normalize("NFKC", text)
res = japanese_convert_numbers_to_words(res)
# res = japanese_convert_alpha_symbols_to_words(res)
res = text2kata(res)
res = kata2phoneme(res)
return res
def is_japanese_character(char):
# 定义日语文字系统的 Unicode 范围
japanese_ranges = [
(0x3040, 0x309F), # 平假名
(0x30A0, 0x30FF), # 片假名
(0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
(0x3400, 0x4DBF), # 汉字扩展 A
(0x20000, 0x2A6DF), # 汉字扩展 B
# 可以根据需要添加其他汉字扩展范围
]
# 将字符的 Unicode 编码转换为整数
char_code = ord(char)
# 检查字符是否在任何一个日语范围内
for start, end in japanese_ranges:
if start <= char_code <= end:
return True
return False
rep_map = {
":": ",",
";": ",",
",": ",",
"。": ".",
"!": "!",
"?": "?",
"\n": ".",
"·": ",",
"、": ",",
"…": "...",
}
def replace_punctuation(text):
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
replaced_text = re.sub(
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF"
+ "".join(punctuation)
+ r"]+",
"",
replaced_text,
)
return replaced_text
def text_normalize(text):
res = unicodedata.normalize("NFKC", text)
res = japanese_convert_numbers_to_words(res)
# res = "".join([i for i in res if is_japanese_character(i)])
res = replace_punctuation(res)
return res
def distribute_phone(n_phone, n_word):
phones_per_word = [0] * n_word
for task in range(n_phone):
min_tasks = min(phones_per_word)
min_index = phones_per_word.index(min_tasks)
phones_per_word[min_index] += 1
return phones_per_word
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
def g2p(norm_text):
sep_text, sep_kata = text2sep_kata(norm_text)
sep_tokenized = [tokenizer.tokenize(i) for i in sep_text]
sep_phonemes = [kata2phoneme(i) for i in sep_kata]
# 异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况
for i in sep_phonemes:
for j in i:
assert j in symbols, (sep_text, sep_kata, sep_phonemes)
word2ph = []
for token, phoneme in zip(sep_tokenized, sep_phonemes):
phone_len = len(phoneme)
word_len = len(token)
aaa = distribute_phone(phone_len, word_len)
word2ph += aaa
phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"]
tones = [0 for i in phones]
word2ph = [1] + word2ph + [1]
return phones, tones, word2ph
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
text = "だったら私、スズカさんと同じチームに入りたいです! スズカさんの走りを毎日近くで、なんなら真横から見ていたいので!"
#print(_TAGGER.parse(text))
# nodes = [{"surface": "こんにちは", "pos": "感動詞:*:*:*", "pron": "コンニチワ", "c_type": "*", "c_form": "*", "accent_type": 0, "accent_con_type": "-1", "chain_flag": -1}]
nodes = [{"surface":"こんにちは","pron": "コンニチワ","pos": "感動詞:*:*:*",}]
from text.japanese_bert import get_bert_feature
import pyopenjtalk
from marine.predict import Predictor
from marine.utils.openjtalk_util import convert_njd_feature_to_marine_feature
text = text_normalize(text)
NJD_NODES = pyopenjtalk.run_frontend(text)
predictor = Predictor()
# important_info = [{"string":i["string"],"pron":i["pron"],"acc":i["acc"]}for i in pyopenjtalk.estimate_accent(NJD_NODES)]
print(text)
marine_feature = convert_njd_feature_to_marine_feature(NJD_NODES)
results = predictor.predict([marine_feature])
for mora,acc in zip(results["mora"][0],results["accent_status"][0]):
print(f"{mora}:{acc}")
# for i in pyopenjtalk.estimate_accent(NJD_NODES):
# print(f"{i['string']}:{i['pron']}:{i['acc']}")
# info = pyopenjtalk.extract_fullcontext(text,run_marine=True)
# info_nomarine = pyopenjtalk.extract_fullcontext(text,run_marine=False)
# # nodes = pyopenjtalk
# # print(info)
# for i,j in zip(info,info_nomarine):
# print(i)
# print(j)
# print("\n")
# predictor = Predictor()
#print(pyopenjtalk.estimate_accent(text))
# output = predictor.predict([nodes],accent_represent_mode="high_low")
#print(output)
# phones, tones, word2ph = g2p(text)
# bert = get_bert_feature(text, word2ph)
# print(phones, tones, word2ph, bert.shape)