Spaces:
Configuration error
Configuration error
firzaelbuho
commited on
Commit
•
6c4f135
1
Parent(s):
f006919
Upload 364 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- __pycache__/cuda_malloc.cpython-310.pyc +0 -0
- __pycache__/execution.cpython-310.pyc +0 -0
- __pycache__/folder_paths.cpython-310.pyc +0 -0
- __pycache__/latent_preview.cpython-310.pyc +0 -0
- __pycache__/nodes.cpython-310.pyc +0 -0
- __pycache__/server.cpython-310.pyc +0 -0
- app/__pycache__/app_settings.cpython-310.pyc +0 -0
- app/__pycache__/user_manager.cpython-310.pyc +0 -0
- app/app_settings.py +54 -0
- app/user_manager.py +140 -0
- comfy/__pycache__/checkpoint_pickle.cpython-310.pyc +0 -0
- comfy/__pycache__/cli_args.cpython-310.pyc +0 -0
- comfy/__pycache__/clip_model.cpython-310.pyc +0 -0
- comfy/__pycache__/clip_vision.cpython-310.pyc +0 -0
- comfy/__pycache__/conds.cpython-310.pyc +0 -0
- comfy/__pycache__/controlnet.cpython-310.pyc +0 -0
- comfy/__pycache__/diffusers_convert.cpython-310.pyc +0 -0
- comfy/__pycache__/diffusers_load.cpython-310.pyc +0 -0
- comfy/__pycache__/gligen.cpython-310.pyc +0 -0
- comfy/__pycache__/latent_formats.cpython-310.pyc +0 -0
- comfy/__pycache__/lora.cpython-310.pyc +0 -0
- comfy/__pycache__/model_base.cpython-310.pyc +0 -0
- comfy/__pycache__/model_detection.cpython-310.pyc +0 -0
- comfy/__pycache__/model_management.cpython-310.pyc +0 -0
- comfy/__pycache__/model_patcher.cpython-310.pyc +0 -0
- comfy/__pycache__/model_sampling.cpython-310.pyc +0 -0
- comfy/__pycache__/ops.cpython-310.pyc +0 -0
- comfy/__pycache__/options.cpython-310.pyc +0 -0
- comfy/__pycache__/sample.cpython-310.pyc +0 -0
- comfy/__pycache__/samplers.cpython-310.pyc +0 -0
- comfy/__pycache__/sd.cpython-310.pyc +0 -0
- comfy/__pycache__/sd1_clip.cpython-310.pyc +0 -0
- comfy/__pycache__/sd2_clip.cpython-310.pyc +0 -0
- comfy/__pycache__/sdxl_clip.cpython-310.pyc +0 -0
- comfy/__pycache__/supported_models.cpython-310.pyc +0 -0
- comfy/__pycache__/supported_models_base.cpython-310.pyc +0 -0
- comfy/__pycache__/utils.cpython-310.pyc +0 -0
- comfy/checkpoint_pickle.py +13 -0
- comfy/cldm/__pycache__/cldm.cpython-310.pyc +0 -0
- comfy/cldm/cldm.py +312 -0
- comfy/cli_args.py +126 -0
- comfy/clip_config_bigg.json +23 -0
- comfy/clip_model.py +188 -0
- comfy/clip_vision.py +116 -0
- comfy/clip_vision_config_g.json +18 -0
- comfy/clip_vision_config_h.json +18 -0
- comfy/clip_vision_config_vitl.json +18 -0
- comfy/conds.py +78 -0
- comfy/controlnet.py +525 -0
- comfy/diffusers_convert.py +261 -0
__pycache__/cuda_malloc.cpython-310.pyc
ADDED
Binary file (2.67 kB). View file
|
|
__pycache__/execution.cpython-310.pyc
ADDED
Binary file (18.6 kB). View file
|
|
__pycache__/folder_paths.cpython-310.pyc
ADDED
Binary file (7.45 kB). View file
|
|
__pycache__/latent_preview.cpython-310.pyc
ADDED
Binary file (3.66 kB). View file
|
|
__pycache__/nodes.cpython-310.pyc
ADDED
Binary file (59.9 kB). View file
|
|
__pycache__/server.cpython-310.pyc
ADDED
Binary file (20.4 kB). View file
|
|
app/__pycache__/app_settings.cpython-310.pyc
ADDED
Binary file (2.41 kB). View file
|
|
app/__pycache__/user_manager.cpython-310.pyc
ADDED
Binary file (4.12 kB). View file
|
|
app/app_settings.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from aiohttp import web
|
4 |
+
|
5 |
+
|
6 |
+
class AppSettings():
|
7 |
+
def __init__(self, user_manager):
|
8 |
+
self.user_manager = user_manager
|
9 |
+
|
10 |
+
def get_settings(self, request):
|
11 |
+
file = self.user_manager.get_request_user_filepath(
|
12 |
+
request, "comfy.settings.json")
|
13 |
+
if os.path.isfile(file):
|
14 |
+
with open(file) as f:
|
15 |
+
return json.load(f)
|
16 |
+
else:
|
17 |
+
return {}
|
18 |
+
|
19 |
+
def save_settings(self, request, settings):
|
20 |
+
file = self.user_manager.get_request_user_filepath(
|
21 |
+
request, "comfy.settings.json")
|
22 |
+
with open(file, "w") as f:
|
23 |
+
f.write(json.dumps(settings, indent=4))
|
24 |
+
|
25 |
+
def add_routes(self, routes):
|
26 |
+
@routes.get("/settings")
|
27 |
+
async def get_settings(request):
|
28 |
+
return web.json_response(self.get_settings(request))
|
29 |
+
|
30 |
+
@routes.get("/settings/{id}")
|
31 |
+
async def get_setting(request):
|
32 |
+
value = None
|
33 |
+
settings = self.get_settings(request)
|
34 |
+
setting_id = request.match_info.get("id", None)
|
35 |
+
if setting_id and setting_id in settings:
|
36 |
+
value = settings[setting_id]
|
37 |
+
return web.json_response(value)
|
38 |
+
|
39 |
+
@routes.post("/settings")
|
40 |
+
async def post_settings(request):
|
41 |
+
settings = self.get_settings(request)
|
42 |
+
new_settings = await request.json()
|
43 |
+
self.save_settings(request, {**settings, **new_settings})
|
44 |
+
return web.Response(status=200)
|
45 |
+
|
46 |
+
@routes.post("/settings/{id}")
|
47 |
+
async def post_setting(request):
|
48 |
+
setting_id = request.match_info.get("id", None)
|
49 |
+
if not setting_id:
|
50 |
+
return web.Response(status=400)
|
51 |
+
settings = self.get_settings(request)
|
52 |
+
settings[setting_id] = await request.json()
|
53 |
+
self.save_settings(request, settings)
|
54 |
+
return web.Response(status=200)
|
app/user_manager.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import uuid
|
5 |
+
from aiohttp import web
|
6 |
+
from comfy.cli_args import args
|
7 |
+
from folder_paths import user_directory
|
8 |
+
from .app_settings import AppSettings
|
9 |
+
|
10 |
+
default_user = "default"
|
11 |
+
users_file = os.path.join(user_directory, "users.json")
|
12 |
+
|
13 |
+
|
14 |
+
class UserManager():
|
15 |
+
def __init__(self):
|
16 |
+
global user_directory
|
17 |
+
|
18 |
+
self.settings = AppSettings(self)
|
19 |
+
if not os.path.exists(user_directory):
|
20 |
+
os.mkdir(user_directory)
|
21 |
+
if not args.multi_user:
|
22 |
+
print("****** User settings have been changed to be stored on the server instead of browser storage. ******")
|
23 |
+
print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
|
24 |
+
|
25 |
+
if args.multi_user:
|
26 |
+
if os.path.isfile(users_file):
|
27 |
+
with open(users_file) as f:
|
28 |
+
self.users = json.load(f)
|
29 |
+
else:
|
30 |
+
self.users = {}
|
31 |
+
else:
|
32 |
+
self.users = {"default": "default"}
|
33 |
+
|
34 |
+
def get_request_user_id(self, request):
|
35 |
+
user = "default"
|
36 |
+
if args.multi_user and "comfy-user" in request.headers:
|
37 |
+
user = request.headers["comfy-user"]
|
38 |
+
|
39 |
+
if user not in self.users:
|
40 |
+
raise KeyError("Unknown user: " + user)
|
41 |
+
|
42 |
+
return user
|
43 |
+
|
44 |
+
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
|
45 |
+
global user_directory
|
46 |
+
|
47 |
+
if type == "userdata":
|
48 |
+
root_dir = user_directory
|
49 |
+
else:
|
50 |
+
raise KeyError("Unknown filepath type:" + type)
|
51 |
+
|
52 |
+
user = self.get_request_user_id(request)
|
53 |
+
path = user_root = os.path.abspath(os.path.join(root_dir, user))
|
54 |
+
|
55 |
+
# prevent leaving /{type}
|
56 |
+
if os.path.commonpath((root_dir, user_root)) != root_dir:
|
57 |
+
return None
|
58 |
+
|
59 |
+
parent = user_root
|
60 |
+
|
61 |
+
if file is not None:
|
62 |
+
# prevent leaving /{type}/{user}
|
63 |
+
path = os.path.abspath(os.path.join(user_root, file))
|
64 |
+
if os.path.commonpath((user_root, path)) != user_root:
|
65 |
+
return None
|
66 |
+
|
67 |
+
if create_dir and not os.path.exists(parent):
|
68 |
+
os.mkdir(parent)
|
69 |
+
|
70 |
+
return path
|
71 |
+
|
72 |
+
def add_user(self, name):
|
73 |
+
name = name.strip()
|
74 |
+
if not name:
|
75 |
+
raise ValueError("username not provided")
|
76 |
+
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
|
77 |
+
user_id = user_id + "_" + str(uuid.uuid4())
|
78 |
+
|
79 |
+
self.users[user_id] = name
|
80 |
+
|
81 |
+
global users_file
|
82 |
+
with open(users_file, "w") as f:
|
83 |
+
json.dump(self.users, f)
|
84 |
+
|
85 |
+
return user_id
|
86 |
+
|
87 |
+
def add_routes(self, routes):
|
88 |
+
self.settings.add_routes(routes)
|
89 |
+
|
90 |
+
@routes.get("/users")
|
91 |
+
async def get_users(request):
|
92 |
+
if args.multi_user:
|
93 |
+
return web.json_response({"storage": "server", "users": self.users})
|
94 |
+
else:
|
95 |
+
user_dir = self.get_request_user_filepath(request, None, create_dir=False)
|
96 |
+
return web.json_response({
|
97 |
+
"storage": "server",
|
98 |
+
"migrated": os.path.exists(user_dir)
|
99 |
+
})
|
100 |
+
|
101 |
+
@routes.post("/users")
|
102 |
+
async def post_users(request):
|
103 |
+
body = await request.json()
|
104 |
+
username = body["username"]
|
105 |
+
if username in self.users.values():
|
106 |
+
return web.json_response({"error": "Duplicate username."}, status=400)
|
107 |
+
|
108 |
+
user_id = self.add_user(username)
|
109 |
+
return web.json_response(user_id)
|
110 |
+
|
111 |
+
@routes.get("/userdata/{file}")
|
112 |
+
async def getuserdata(request):
|
113 |
+
file = request.match_info.get("file", None)
|
114 |
+
if not file:
|
115 |
+
return web.Response(status=400)
|
116 |
+
|
117 |
+
path = self.get_request_user_filepath(request, file)
|
118 |
+
if not path:
|
119 |
+
return web.Response(status=403)
|
120 |
+
|
121 |
+
if not os.path.exists(path):
|
122 |
+
return web.Response(status=404)
|
123 |
+
|
124 |
+
return web.FileResponse(path)
|
125 |
+
|
126 |
+
@routes.post("/userdata/{file}")
|
127 |
+
async def post_userdata(request):
|
128 |
+
file = request.match_info.get("file", None)
|
129 |
+
if not file:
|
130 |
+
return web.Response(status=400)
|
131 |
+
|
132 |
+
path = self.get_request_user_filepath(request, file)
|
133 |
+
if not path:
|
134 |
+
return web.Response(status=403)
|
135 |
+
|
136 |
+
body = await request.read()
|
137 |
+
with open(path, "wb") as f:
|
138 |
+
f.write(body)
|
139 |
+
|
140 |
+
return web.Response(status=200)
|
comfy/__pycache__/checkpoint_pickle.cpython-310.pyc
ADDED
Binary file (716 Bytes). View file
|
|
comfy/__pycache__/cli_args.cpython-310.pyc
ADDED
Binary file (6.7 kB). View file
|
|
comfy/__pycache__/clip_model.cpython-310.pyc
ADDED
Binary file (8.5 kB). View file
|
|
comfy/__pycache__/clip_vision.cpython-310.pyc
ADDED
Binary file (5.16 kB). View file
|
|
comfy/__pycache__/conds.cpython-310.pyc
ADDED
Binary file (3.26 kB). View file
|
|
comfy/__pycache__/controlnet.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
comfy/__pycache__/diffusers_convert.cpython-310.pyc
ADDED
Binary file (6.69 kB). View file
|
|
comfy/__pycache__/diffusers_load.cpython-310.pyc
ADDED
Binary file (1.31 kB). View file
|
|
comfy/__pycache__/gligen.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
comfy/__pycache__/latent_formats.cpython-310.pyc
ADDED
Binary file (2.15 kB). View file
|
|
comfy/__pycache__/lora.cpython-310.pyc
ADDED
Binary file (5 kB). View file
|
|
comfy/__pycache__/model_base.cpython-310.pyc
ADDED
Binary file (16.3 kB). View file
|
|
comfy/__pycache__/model_detection.cpython-310.pyc
ADDED
Binary file (10 kB). View file
|
|
comfy/__pycache__/model_management.cpython-310.pyc
ADDED
Binary file (18.8 kB). View file
|
|
comfy/__pycache__/model_patcher.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
comfy/__pycache__/model_sampling.cpython-310.pyc
ADDED
Binary file (7.26 kB). View file
|
|
comfy/__pycache__/ops.cpython-310.pyc
ADDED
Binary file (6.65 kB). View file
|
|
comfy/__pycache__/options.cpython-310.pyc
ADDED
Binary file (286 Bytes). View file
|
|
comfy/__pycache__/sample.cpython-310.pyc
ADDED
Binary file (4.63 kB). View file
|
|
comfy/__pycache__/samplers.cpython-310.pyc
ADDED
Binary file (19.9 kB). View file
|
|
comfy/__pycache__/sd.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
comfy/__pycache__/sd1_clip.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
comfy/__pycache__/sd2_clip.cpython-310.pyc
ADDED
Binary file (2.01 kB). View file
|
|
comfy/__pycache__/sdxl_clip.cpython-310.pyc
ADDED
Binary file (5.43 kB). View file
|
|
comfy/__pycache__/supported_models.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
comfy/__pycache__/supported_models_base.cpython-310.pyc
ADDED
Binary file (3.59 kB). View file
|
|
comfy/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
comfy/checkpoint_pickle.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
|
3 |
+
load = pickle.load
|
4 |
+
|
5 |
+
class Empty:
|
6 |
+
pass
|
7 |
+
|
8 |
+
class Unpickler(pickle.Unpickler):
|
9 |
+
def find_class(self, module, name):
|
10 |
+
#TODO: safe unpickle
|
11 |
+
if module.startswith("pytorch_lightning"):
|
12 |
+
return Empty
|
13 |
+
return super().find_class(module, name)
|
comfy/cldm/__pycache__/cldm.cpython-310.pyc
ADDED
Binary file (6.07 kB). View file
|
|
comfy/cldm/cldm.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
2 |
+
#and modified
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from ..ldm.modules.diffusionmodules.util import (
|
9 |
+
zero_module,
|
10 |
+
timestep_embedding,
|
11 |
+
)
|
12 |
+
|
13 |
+
from ..ldm.modules.attention import SpatialTransformer
|
14 |
+
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
15 |
+
from ..ldm.util import exists
|
16 |
+
import comfy.ops
|
17 |
+
|
18 |
+
class ControlledUnetModel(UNetModel):
|
19 |
+
#implemented in the ldm unet
|
20 |
+
pass
|
21 |
+
|
22 |
+
class ControlNet(nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
image_size,
|
26 |
+
in_channels,
|
27 |
+
model_channels,
|
28 |
+
hint_channels,
|
29 |
+
num_res_blocks,
|
30 |
+
dropout=0,
|
31 |
+
channel_mult=(1, 2, 4, 8),
|
32 |
+
conv_resample=True,
|
33 |
+
dims=2,
|
34 |
+
num_classes=None,
|
35 |
+
use_checkpoint=False,
|
36 |
+
dtype=torch.float32,
|
37 |
+
num_heads=-1,
|
38 |
+
num_head_channels=-1,
|
39 |
+
num_heads_upsample=-1,
|
40 |
+
use_scale_shift_norm=False,
|
41 |
+
resblock_updown=False,
|
42 |
+
use_new_attention_order=False,
|
43 |
+
use_spatial_transformer=False, # custom transformer support
|
44 |
+
transformer_depth=1, # custom transformer support
|
45 |
+
context_dim=None, # custom transformer support
|
46 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
47 |
+
legacy=True,
|
48 |
+
disable_self_attentions=None,
|
49 |
+
num_attention_blocks=None,
|
50 |
+
disable_middle_self_attn=False,
|
51 |
+
use_linear_in_transformer=False,
|
52 |
+
adm_in_channels=None,
|
53 |
+
transformer_depth_middle=None,
|
54 |
+
transformer_depth_output=None,
|
55 |
+
device=None,
|
56 |
+
operations=comfy.ops.disable_weight_init,
|
57 |
+
**kwargs,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
61 |
+
if use_spatial_transformer:
|
62 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
63 |
+
|
64 |
+
if context_dim is not None:
|
65 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
66 |
+
# from omegaconf.listconfig import ListConfig
|
67 |
+
# if type(context_dim) == ListConfig:
|
68 |
+
# context_dim = list(context_dim)
|
69 |
+
|
70 |
+
if num_heads_upsample == -1:
|
71 |
+
num_heads_upsample = num_heads
|
72 |
+
|
73 |
+
if num_heads == -1:
|
74 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
75 |
+
|
76 |
+
if num_head_channels == -1:
|
77 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
78 |
+
|
79 |
+
self.dims = dims
|
80 |
+
self.image_size = image_size
|
81 |
+
self.in_channels = in_channels
|
82 |
+
self.model_channels = model_channels
|
83 |
+
|
84 |
+
if isinstance(num_res_blocks, int):
|
85 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
86 |
+
else:
|
87 |
+
if len(num_res_blocks) != len(channel_mult):
|
88 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
89 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
90 |
+
self.num_res_blocks = num_res_blocks
|
91 |
+
|
92 |
+
if disable_self_attentions is not None:
|
93 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
94 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
95 |
+
if num_attention_blocks is not None:
|
96 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
97 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
98 |
+
|
99 |
+
transformer_depth = transformer_depth[:]
|
100 |
+
|
101 |
+
self.dropout = dropout
|
102 |
+
self.channel_mult = channel_mult
|
103 |
+
self.conv_resample = conv_resample
|
104 |
+
self.num_classes = num_classes
|
105 |
+
self.use_checkpoint = use_checkpoint
|
106 |
+
self.dtype = dtype
|
107 |
+
self.num_heads = num_heads
|
108 |
+
self.num_head_channels = num_head_channels
|
109 |
+
self.num_heads_upsample = num_heads_upsample
|
110 |
+
self.predict_codebook_ids = n_embed is not None
|
111 |
+
|
112 |
+
time_embed_dim = model_channels * 4
|
113 |
+
self.time_embed = nn.Sequential(
|
114 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
115 |
+
nn.SiLU(),
|
116 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
117 |
+
)
|
118 |
+
|
119 |
+
if self.num_classes is not None:
|
120 |
+
if isinstance(self.num_classes, int):
|
121 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
122 |
+
elif self.num_classes == "continuous":
|
123 |
+
print("setting up linear c_adm embedding layer")
|
124 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
125 |
+
elif self.num_classes == "sequential":
|
126 |
+
assert adm_in_channels is not None
|
127 |
+
self.label_emb = nn.Sequential(
|
128 |
+
nn.Sequential(
|
129 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
130 |
+
nn.SiLU(),
|
131 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
132 |
+
)
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
raise ValueError()
|
136 |
+
|
137 |
+
self.input_blocks = nn.ModuleList(
|
138 |
+
[
|
139 |
+
TimestepEmbedSequential(
|
140 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
141 |
+
)
|
142 |
+
]
|
143 |
+
)
|
144 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
145 |
+
|
146 |
+
self.input_hint_block = TimestepEmbedSequential(
|
147 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
148 |
+
nn.SiLU(),
|
149 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
150 |
+
nn.SiLU(),
|
151 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
152 |
+
nn.SiLU(),
|
153 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
154 |
+
nn.SiLU(),
|
155 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
156 |
+
nn.SiLU(),
|
157 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
158 |
+
nn.SiLU(),
|
159 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
160 |
+
nn.SiLU(),
|
161 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
162 |
+
)
|
163 |
+
|
164 |
+
self._feature_size = model_channels
|
165 |
+
input_block_chans = [model_channels]
|
166 |
+
ch = model_channels
|
167 |
+
ds = 1
|
168 |
+
for level, mult in enumerate(channel_mult):
|
169 |
+
for nr in range(self.num_res_blocks[level]):
|
170 |
+
layers = [
|
171 |
+
ResBlock(
|
172 |
+
ch,
|
173 |
+
time_embed_dim,
|
174 |
+
dropout,
|
175 |
+
out_channels=mult * model_channels,
|
176 |
+
dims=dims,
|
177 |
+
use_checkpoint=use_checkpoint,
|
178 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
179 |
+
dtype=self.dtype,
|
180 |
+
device=device,
|
181 |
+
operations=operations,
|
182 |
+
)
|
183 |
+
]
|
184 |
+
ch = mult * model_channels
|
185 |
+
num_transformers = transformer_depth.pop(0)
|
186 |
+
if num_transformers > 0:
|
187 |
+
if num_head_channels == -1:
|
188 |
+
dim_head = ch // num_heads
|
189 |
+
else:
|
190 |
+
num_heads = ch // num_head_channels
|
191 |
+
dim_head = num_head_channels
|
192 |
+
if legacy:
|
193 |
+
#num_heads = 1
|
194 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
195 |
+
if exists(disable_self_attentions):
|
196 |
+
disabled_sa = disable_self_attentions[level]
|
197 |
+
else:
|
198 |
+
disabled_sa = False
|
199 |
+
|
200 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
201 |
+
layers.append(
|
202 |
+
SpatialTransformer(
|
203 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
204 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
205 |
+
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
206 |
+
)
|
207 |
+
)
|
208 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
209 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
210 |
+
self._feature_size += ch
|
211 |
+
input_block_chans.append(ch)
|
212 |
+
if level != len(channel_mult) - 1:
|
213 |
+
out_ch = ch
|
214 |
+
self.input_blocks.append(
|
215 |
+
TimestepEmbedSequential(
|
216 |
+
ResBlock(
|
217 |
+
ch,
|
218 |
+
time_embed_dim,
|
219 |
+
dropout,
|
220 |
+
out_channels=out_ch,
|
221 |
+
dims=dims,
|
222 |
+
use_checkpoint=use_checkpoint,
|
223 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
224 |
+
down=True,
|
225 |
+
dtype=self.dtype,
|
226 |
+
device=device,
|
227 |
+
operations=operations
|
228 |
+
)
|
229 |
+
if resblock_updown
|
230 |
+
else Downsample(
|
231 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
232 |
+
)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
ch = out_ch
|
236 |
+
input_block_chans.append(ch)
|
237 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
238 |
+
ds *= 2
|
239 |
+
self._feature_size += ch
|
240 |
+
|
241 |
+
if num_head_channels == -1:
|
242 |
+
dim_head = ch // num_heads
|
243 |
+
else:
|
244 |
+
num_heads = ch // num_head_channels
|
245 |
+
dim_head = num_head_channels
|
246 |
+
if legacy:
|
247 |
+
#num_heads = 1
|
248 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
249 |
+
mid_block = [
|
250 |
+
ResBlock(
|
251 |
+
ch,
|
252 |
+
time_embed_dim,
|
253 |
+
dropout,
|
254 |
+
dims=dims,
|
255 |
+
use_checkpoint=use_checkpoint,
|
256 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
257 |
+
dtype=self.dtype,
|
258 |
+
device=device,
|
259 |
+
operations=operations
|
260 |
+
)]
|
261 |
+
if transformer_depth_middle >= 0:
|
262 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
263 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
264 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
265 |
+
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
266 |
+
),
|
267 |
+
ResBlock(
|
268 |
+
ch,
|
269 |
+
time_embed_dim,
|
270 |
+
dropout,
|
271 |
+
dims=dims,
|
272 |
+
use_checkpoint=use_checkpoint,
|
273 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
274 |
+
dtype=self.dtype,
|
275 |
+
device=device,
|
276 |
+
operations=operations
|
277 |
+
)]
|
278 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
279 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
280 |
+
self._feature_size += ch
|
281 |
+
|
282 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
283 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
284 |
+
|
285 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
286 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
287 |
+
emb = self.time_embed(t_emb)
|
288 |
+
|
289 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
290 |
+
|
291 |
+
outs = []
|
292 |
+
|
293 |
+
hs = []
|
294 |
+
if self.num_classes is not None:
|
295 |
+
assert y.shape[0] == x.shape[0]
|
296 |
+
emb = emb + self.label_emb(y)
|
297 |
+
|
298 |
+
h = x
|
299 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
300 |
+
if guided_hint is not None:
|
301 |
+
h = module(h, emb, context)
|
302 |
+
h += guided_hint
|
303 |
+
guided_hint = None
|
304 |
+
else:
|
305 |
+
h = module(h, emb, context)
|
306 |
+
outs.append(zero_conv(h, emb, context))
|
307 |
+
|
308 |
+
h = self.middle_block(h, emb, context)
|
309 |
+
outs.append(self.middle_block_out(h, emb, context))
|
310 |
+
|
311 |
+
return outs
|
312 |
+
|
comfy/cli_args.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import enum
|
3 |
+
import comfy.options
|
4 |
+
|
5 |
+
class EnumAction(argparse.Action):
|
6 |
+
"""
|
7 |
+
Argparse action for handling Enums
|
8 |
+
"""
|
9 |
+
def __init__(self, **kwargs):
|
10 |
+
# Pop off the type value
|
11 |
+
enum_type = kwargs.pop("type", None)
|
12 |
+
|
13 |
+
# Ensure an Enum subclass is provided
|
14 |
+
if enum_type is None:
|
15 |
+
raise ValueError("type must be assigned an Enum when using EnumAction")
|
16 |
+
if not issubclass(enum_type, enum.Enum):
|
17 |
+
raise TypeError("type must be an Enum when using EnumAction")
|
18 |
+
|
19 |
+
# Generate choices from the Enum
|
20 |
+
choices = tuple(e.value for e in enum_type)
|
21 |
+
kwargs.setdefault("choices", choices)
|
22 |
+
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
23 |
+
|
24 |
+
super(EnumAction, self).__init__(**kwargs)
|
25 |
+
|
26 |
+
self._enum = enum_type
|
27 |
+
|
28 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
29 |
+
# Convert value back into an Enum
|
30 |
+
value = self._enum(values)
|
31 |
+
setattr(namespace, self.dest, value)
|
32 |
+
|
33 |
+
|
34 |
+
parser = argparse.ArgumentParser()
|
35 |
+
|
36 |
+
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
37 |
+
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
38 |
+
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
39 |
+
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
40 |
+
|
41 |
+
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
42 |
+
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
43 |
+
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
|
44 |
+
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
|
45 |
+
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
46 |
+
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
47 |
+
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
48 |
+
cm_group = parser.add_mutually_exclusive_group()
|
49 |
+
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
50 |
+
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
51 |
+
|
52 |
+
parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
|
53 |
+
|
54 |
+
fp_group = parser.add_mutually_exclusive_group()
|
55 |
+
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
56 |
+
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
57 |
+
|
58 |
+
fpunet_group = parser.add_mutually_exclusive_group()
|
59 |
+
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
|
60 |
+
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
|
61 |
+
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
62 |
+
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
63 |
+
|
64 |
+
fpvae_group = parser.add_mutually_exclusive_group()
|
65 |
+
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
66 |
+
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
67 |
+
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
68 |
+
|
69 |
+
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
70 |
+
|
71 |
+
fpte_group = parser.add_mutually_exclusive_group()
|
72 |
+
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
73 |
+
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
74 |
+
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
75 |
+
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
76 |
+
|
77 |
+
|
78 |
+
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
79 |
+
|
80 |
+
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
|
81 |
+
|
82 |
+
class LatentPreviewMethod(enum.Enum):
|
83 |
+
NoPreviews = "none"
|
84 |
+
Auto = "auto"
|
85 |
+
Latent2RGB = "latent2rgb"
|
86 |
+
TAESD = "taesd"
|
87 |
+
|
88 |
+
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
89 |
+
|
90 |
+
attn_group = parser.add_mutually_exclusive_group()
|
91 |
+
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
92 |
+
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
93 |
+
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
94 |
+
|
95 |
+
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
96 |
+
|
97 |
+
vram_group = parser.add_mutually_exclusive_group()
|
98 |
+
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
99 |
+
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
100 |
+
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
101 |
+
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
102 |
+
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
103 |
+
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
104 |
+
|
105 |
+
|
106 |
+
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
107 |
+
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
108 |
+
|
109 |
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
110 |
+
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
111 |
+
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
112 |
+
|
113 |
+
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
114 |
+
|
115 |
+
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
116 |
+
|
117 |
+
if comfy.options.args_parsing:
|
118 |
+
args = parser.parse_args()
|
119 |
+
else:
|
120 |
+
args = parser.parse_args([])
|
121 |
+
|
122 |
+
if args.windows_standalone_build:
|
123 |
+
args.auto_launch = True
|
124 |
+
|
125 |
+
if args.disable_auto_launch:
|
126 |
+
args.auto_launch = False
|
comfy/clip_config_bigg.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_size": 1280,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 5120,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 77,
|
16 |
+
"model_type": "clip_text_model",
|
17 |
+
"num_attention_heads": 20,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"projection_dim": 1280,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"vocab_size": 49408
|
23 |
+
}
|
comfy/clip_model.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from comfy.ldm.modules.attention import optimized_attention_for_device
|
3 |
+
|
4 |
+
class CLIPAttention(torch.nn.Module):
|
5 |
+
def __init__(self, embed_dim, heads, dtype, device, operations):
|
6 |
+
super().__init__()
|
7 |
+
|
8 |
+
self.heads = heads
|
9 |
+
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
10 |
+
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
11 |
+
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
12 |
+
|
13 |
+
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
14 |
+
|
15 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
16 |
+
q = self.q_proj(x)
|
17 |
+
k = self.k_proj(x)
|
18 |
+
v = self.v_proj(x)
|
19 |
+
|
20 |
+
out = optimized_attention(q, k, v, self.heads, mask)
|
21 |
+
return self.out_proj(out)
|
22 |
+
|
23 |
+
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
24 |
+
"gelu": torch.nn.functional.gelu,
|
25 |
+
}
|
26 |
+
|
27 |
+
class CLIPMLP(torch.nn.Module):
|
28 |
+
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
29 |
+
super().__init__()
|
30 |
+
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
31 |
+
self.activation = ACTIVATIONS[activation]
|
32 |
+
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
x = self.fc1(x)
|
36 |
+
x = self.activation(x)
|
37 |
+
x = self.fc2(x)
|
38 |
+
return x
|
39 |
+
|
40 |
+
class CLIPLayer(torch.nn.Module):
|
41 |
+
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
42 |
+
super().__init__()
|
43 |
+
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
44 |
+
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
45 |
+
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
46 |
+
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
47 |
+
|
48 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
49 |
+
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
50 |
+
x += self.mlp(self.layer_norm2(x))
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
class CLIPEncoder(torch.nn.Module):
|
55 |
+
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
56 |
+
super().__init__()
|
57 |
+
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
58 |
+
|
59 |
+
def forward(self, x, mask=None, intermediate_output=None):
|
60 |
+
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
61 |
+
|
62 |
+
if intermediate_output is not None:
|
63 |
+
if intermediate_output < 0:
|
64 |
+
intermediate_output = len(self.layers) + intermediate_output
|
65 |
+
|
66 |
+
intermediate = None
|
67 |
+
for i, l in enumerate(self.layers):
|
68 |
+
x = l(x, mask, optimized_attention)
|
69 |
+
if i == intermediate_output:
|
70 |
+
intermediate = x.clone()
|
71 |
+
return x, intermediate
|
72 |
+
|
73 |
+
class CLIPEmbeddings(torch.nn.Module):
|
74 |
+
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
|
75 |
+
super().__init__()
|
76 |
+
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
77 |
+
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
78 |
+
|
79 |
+
def forward(self, input_tokens):
|
80 |
+
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
81 |
+
|
82 |
+
|
83 |
+
class CLIPTextModel_(torch.nn.Module):
|
84 |
+
def __init__(self, config_dict, dtype, device, operations):
|
85 |
+
num_layers = config_dict["num_hidden_layers"]
|
86 |
+
embed_dim = config_dict["hidden_size"]
|
87 |
+
heads = config_dict["num_attention_heads"]
|
88 |
+
intermediate_size = config_dict["intermediate_size"]
|
89 |
+
intermediate_activation = config_dict["hidden_act"]
|
90 |
+
|
91 |
+
super().__init__()
|
92 |
+
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
|
93 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
94 |
+
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
95 |
+
|
96 |
+
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
97 |
+
x = self.embeddings(input_tokens)
|
98 |
+
mask = None
|
99 |
+
if attention_mask is not None:
|
100 |
+
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
101 |
+
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
102 |
+
|
103 |
+
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
104 |
+
if mask is not None:
|
105 |
+
mask += causal_mask
|
106 |
+
else:
|
107 |
+
mask = causal_mask
|
108 |
+
|
109 |
+
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
|
110 |
+
x = self.final_layer_norm(x)
|
111 |
+
if i is not None and final_layer_norm_intermediate:
|
112 |
+
i = self.final_layer_norm(i)
|
113 |
+
|
114 |
+
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
|
115 |
+
return x, i, pooled_output
|
116 |
+
|
117 |
+
class CLIPTextModel(torch.nn.Module):
|
118 |
+
def __init__(self, config_dict, dtype, device, operations):
|
119 |
+
super().__init__()
|
120 |
+
self.num_layers = config_dict["num_hidden_layers"]
|
121 |
+
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
122 |
+
self.dtype = dtype
|
123 |
+
|
124 |
+
def get_input_embeddings(self):
|
125 |
+
return self.text_model.embeddings.token_embedding
|
126 |
+
|
127 |
+
def set_input_embeddings(self, embeddings):
|
128 |
+
self.text_model.embeddings.token_embedding = embeddings
|
129 |
+
|
130 |
+
def forward(self, *args, **kwargs):
|
131 |
+
return self.text_model(*args, **kwargs)
|
132 |
+
|
133 |
+
class CLIPVisionEmbeddings(torch.nn.Module):
|
134 |
+
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None):
|
135 |
+
super().__init__()
|
136 |
+
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
137 |
+
|
138 |
+
self.patch_embedding = operations.Conv2d(
|
139 |
+
in_channels=num_channels,
|
140 |
+
out_channels=embed_dim,
|
141 |
+
kernel_size=patch_size,
|
142 |
+
stride=patch_size,
|
143 |
+
bias=False,
|
144 |
+
dtype=dtype,
|
145 |
+
device=device
|
146 |
+
)
|
147 |
+
|
148 |
+
num_patches = (image_size // patch_size) ** 2
|
149 |
+
num_positions = num_patches + 1
|
150 |
+
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
151 |
+
|
152 |
+
def forward(self, pixel_values):
|
153 |
+
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
154 |
+
return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device)
|
155 |
+
|
156 |
+
|
157 |
+
class CLIPVision(torch.nn.Module):
|
158 |
+
def __init__(self, config_dict, dtype, device, operations):
|
159 |
+
super().__init__()
|
160 |
+
num_layers = config_dict["num_hidden_layers"]
|
161 |
+
embed_dim = config_dict["hidden_size"]
|
162 |
+
heads = config_dict["num_attention_heads"]
|
163 |
+
intermediate_size = config_dict["intermediate_size"]
|
164 |
+
intermediate_activation = config_dict["hidden_act"]
|
165 |
+
|
166 |
+
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations)
|
167 |
+
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
168 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
169 |
+
self.post_layernorm = operations.LayerNorm(embed_dim)
|
170 |
+
|
171 |
+
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
172 |
+
x = self.embeddings(pixel_values)
|
173 |
+
x = self.pre_layrnorm(x)
|
174 |
+
#TODO: attention_mask?
|
175 |
+
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
176 |
+
pooled_output = self.post_layernorm(x[:, 0, :])
|
177 |
+
return x, i, pooled_output
|
178 |
+
|
179 |
+
class CLIPVisionModelProjection(torch.nn.Module):
|
180 |
+
def __init__(self, config_dict, dtype, device, operations):
|
181 |
+
super().__init__()
|
182 |
+
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
183 |
+
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
184 |
+
|
185 |
+
def forward(self, *args, **kwargs):
|
186 |
+
x = self.vision_model(*args, **kwargs)
|
187 |
+
out = self.visual_projection(x[2])
|
188 |
+
return (x[0], x[1], out)
|
comfy/clip_vision.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
|
6 |
+
import comfy.ops
|
7 |
+
import comfy.model_patcher
|
8 |
+
import comfy.model_management
|
9 |
+
import comfy.utils
|
10 |
+
import comfy.clip_model
|
11 |
+
|
12 |
+
class Output:
|
13 |
+
def __getitem__(self, key):
|
14 |
+
return getattr(self, key)
|
15 |
+
def __setitem__(self, key, item):
|
16 |
+
setattr(self, key, item)
|
17 |
+
|
18 |
+
def clip_preprocess(image, size=224):
|
19 |
+
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
|
20 |
+
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
|
21 |
+
image = image.movedim(-1, 1)
|
22 |
+
if not (image.shape[2] == size and image.shape[3] == size):
|
23 |
+
scale = (size / min(image.shape[2], image.shape[3]))
|
24 |
+
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
|
25 |
+
h = (image.shape[2] - size)//2
|
26 |
+
w = (image.shape[3] - size)//2
|
27 |
+
image = image[:,:,h:h+size,w:w+size]
|
28 |
+
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
29 |
+
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
30 |
+
|
31 |
+
class ClipVisionModel():
|
32 |
+
def __init__(self, json_config):
|
33 |
+
with open(json_config) as f:
|
34 |
+
config = json.load(f)
|
35 |
+
|
36 |
+
self.load_device = comfy.model_management.text_encoder_device()
|
37 |
+
offload_device = comfy.model_management.text_encoder_offload_device()
|
38 |
+
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
39 |
+
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
40 |
+
self.model.eval()
|
41 |
+
|
42 |
+
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
43 |
+
|
44 |
+
def load_sd(self, sd):
|
45 |
+
return self.model.load_state_dict(sd, strict=False)
|
46 |
+
|
47 |
+
def get_sd(self):
|
48 |
+
return self.model.state_dict()
|
49 |
+
|
50 |
+
def encode_image(self, image):
|
51 |
+
comfy.model_management.load_model_gpu(self.patcher)
|
52 |
+
pixel_values = clip_preprocess(image.to(self.load_device)).float()
|
53 |
+
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
54 |
+
|
55 |
+
outputs = Output()
|
56 |
+
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
57 |
+
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
58 |
+
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
59 |
+
return outputs
|
60 |
+
|
61 |
+
def convert_to_transformers(sd, prefix):
|
62 |
+
sd_k = sd.keys()
|
63 |
+
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
64 |
+
keys_to_replace = {
|
65 |
+
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
66 |
+
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
67 |
+
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
68 |
+
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
69 |
+
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
70 |
+
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
71 |
+
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
72 |
+
}
|
73 |
+
|
74 |
+
for x in keys_to_replace:
|
75 |
+
if x in sd_k:
|
76 |
+
sd[keys_to_replace[x]] = sd.pop(x)
|
77 |
+
|
78 |
+
if "{}proj".format(prefix) in sd_k:
|
79 |
+
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
80 |
+
|
81 |
+
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
82 |
+
else:
|
83 |
+
replace_prefix = {prefix: ""}
|
84 |
+
sd = state_dict_prefix_replace(sd, replace_prefix)
|
85 |
+
return sd
|
86 |
+
|
87 |
+
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
88 |
+
if convert_keys:
|
89 |
+
sd = convert_to_transformers(sd, prefix)
|
90 |
+
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
91 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
92 |
+
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
93 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
94 |
+
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
95 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
96 |
+
else:
|
97 |
+
return None
|
98 |
+
|
99 |
+
clip = ClipVisionModel(json_config)
|
100 |
+
m, u = clip.load_sd(sd)
|
101 |
+
if len(m) > 0:
|
102 |
+
print("missing clip vision:", m)
|
103 |
+
u = set(u)
|
104 |
+
keys = list(sd.keys())
|
105 |
+
for k in keys:
|
106 |
+
if k not in u:
|
107 |
+
t = sd.pop(k)
|
108 |
+
del t
|
109 |
+
return clip
|
110 |
+
|
111 |
+
def load(ckpt_path):
|
112 |
+
sd = load_torch_file(ckpt_path)
|
113 |
+
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
114 |
+
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
115 |
+
else:
|
116 |
+
return load_clipvision_from_sd(sd)
|
comfy/clip_vision_config_g.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_size": 1664,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 8192,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 48,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 1280,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/clip_vision_config_h.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_size": 1280,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 5120,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 32,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 1024,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/clip_vision_config_vitl.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "quick_gelu",
|
5 |
+
"hidden_size": 1024,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 4096,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 24,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 768,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/conds.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
import comfy.utils
|
4 |
+
|
5 |
+
|
6 |
+
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
7 |
+
return abs(a*b) // math.gcd(a, b)
|
8 |
+
|
9 |
+
class CONDRegular:
|
10 |
+
def __init__(self, cond):
|
11 |
+
self.cond = cond
|
12 |
+
|
13 |
+
def _copy_with(self, cond):
|
14 |
+
return self.__class__(cond)
|
15 |
+
|
16 |
+
def process_cond(self, batch_size, device, **kwargs):
|
17 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
18 |
+
|
19 |
+
def can_concat(self, other):
|
20 |
+
if self.cond.shape != other.cond.shape:
|
21 |
+
return False
|
22 |
+
return True
|
23 |
+
|
24 |
+
def concat(self, others):
|
25 |
+
conds = [self.cond]
|
26 |
+
for x in others:
|
27 |
+
conds.append(x.cond)
|
28 |
+
return torch.cat(conds)
|
29 |
+
|
30 |
+
class CONDNoiseShape(CONDRegular):
|
31 |
+
def process_cond(self, batch_size, device, area, **kwargs):
|
32 |
+
data = self.cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
33 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
|
34 |
+
|
35 |
+
|
36 |
+
class CONDCrossAttn(CONDRegular):
|
37 |
+
def can_concat(self, other):
|
38 |
+
s1 = self.cond.shape
|
39 |
+
s2 = other.cond.shape
|
40 |
+
if s1 != s2:
|
41 |
+
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
|
42 |
+
return False
|
43 |
+
|
44 |
+
mult_min = lcm(s1[1], s2[1])
|
45 |
+
diff = mult_min // min(s1[1], s2[1])
|
46 |
+
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
47 |
+
return False
|
48 |
+
return True
|
49 |
+
|
50 |
+
def concat(self, others):
|
51 |
+
conds = [self.cond]
|
52 |
+
crossattn_max_len = self.cond.shape[1]
|
53 |
+
for x in others:
|
54 |
+
c = x.cond
|
55 |
+
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
56 |
+
conds.append(c)
|
57 |
+
|
58 |
+
out = []
|
59 |
+
for c in conds:
|
60 |
+
if c.shape[1] < crossattn_max_len:
|
61 |
+
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
|
62 |
+
out.append(c)
|
63 |
+
return torch.cat(out)
|
64 |
+
|
65 |
+
class CONDConstant(CONDRegular):
|
66 |
+
def __init__(self, cond):
|
67 |
+
self.cond = cond
|
68 |
+
|
69 |
+
def process_cond(self, batch_size, device, **kwargs):
|
70 |
+
return self._copy_with(self.cond)
|
71 |
+
|
72 |
+
def can_concat(self, other):
|
73 |
+
if self.cond != other.cond:
|
74 |
+
return False
|
75 |
+
return True
|
76 |
+
|
77 |
+
def concat(self, others):
|
78 |
+
return self.cond
|
comfy/controlnet.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import comfy.utils
|
5 |
+
import comfy.model_management
|
6 |
+
import comfy.model_detection
|
7 |
+
import comfy.model_patcher
|
8 |
+
import comfy.ops
|
9 |
+
|
10 |
+
import comfy.cldm.cldm
|
11 |
+
import comfy.t2i_adapter.adapter
|
12 |
+
|
13 |
+
|
14 |
+
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
15 |
+
current_batch_size = tensor.shape[0]
|
16 |
+
#print(current_batch_size, target_batch_size)
|
17 |
+
if current_batch_size == 1:
|
18 |
+
return tensor
|
19 |
+
|
20 |
+
per_batch = target_batch_size // batched_number
|
21 |
+
tensor = tensor[:per_batch]
|
22 |
+
|
23 |
+
if per_batch > tensor.shape[0]:
|
24 |
+
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
25 |
+
|
26 |
+
current_batch_size = tensor.shape[0]
|
27 |
+
if current_batch_size == target_batch_size:
|
28 |
+
return tensor
|
29 |
+
else:
|
30 |
+
return torch.cat([tensor] * batched_number, dim=0)
|
31 |
+
|
32 |
+
class ControlBase:
|
33 |
+
def __init__(self, device=None):
|
34 |
+
self.cond_hint_original = None
|
35 |
+
self.cond_hint = None
|
36 |
+
self.strength = 1.0
|
37 |
+
self.timestep_percent_range = (0.0, 1.0)
|
38 |
+
self.global_average_pooling = False
|
39 |
+
self.timestep_range = None
|
40 |
+
|
41 |
+
if device is None:
|
42 |
+
device = comfy.model_management.get_torch_device()
|
43 |
+
self.device = device
|
44 |
+
self.previous_controlnet = None
|
45 |
+
|
46 |
+
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
|
47 |
+
self.cond_hint_original = cond_hint
|
48 |
+
self.strength = strength
|
49 |
+
self.timestep_percent_range = timestep_percent_range
|
50 |
+
return self
|
51 |
+
|
52 |
+
def pre_run(self, model, percent_to_timestep_function):
|
53 |
+
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
54 |
+
if self.previous_controlnet is not None:
|
55 |
+
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
56 |
+
|
57 |
+
def set_previous_controlnet(self, controlnet):
|
58 |
+
self.previous_controlnet = controlnet
|
59 |
+
return self
|
60 |
+
|
61 |
+
def cleanup(self):
|
62 |
+
if self.previous_controlnet is not None:
|
63 |
+
self.previous_controlnet.cleanup()
|
64 |
+
if self.cond_hint is not None:
|
65 |
+
del self.cond_hint
|
66 |
+
self.cond_hint = None
|
67 |
+
self.timestep_range = None
|
68 |
+
|
69 |
+
def get_models(self):
|
70 |
+
out = []
|
71 |
+
if self.previous_controlnet is not None:
|
72 |
+
out += self.previous_controlnet.get_models()
|
73 |
+
return out
|
74 |
+
|
75 |
+
def copy_to(self, c):
|
76 |
+
c.cond_hint_original = self.cond_hint_original
|
77 |
+
c.strength = self.strength
|
78 |
+
c.timestep_percent_range = self.timestep_percent_range
|
79 |
+
c.global_average_pooling = self.global_average_pooling
|
80 |
+
|
81 |
+
def inference_memory_requirements(self, dtype):
|
82 |
+
if self.previous_controlnet is not None:
|
83 |
+
return self.previous_controlnet.inference_memory_requirements(dtype)
|
84 |
+
return 0
|
85 |
+
|
86 |
+
def control_merge(self, control_input, control_output, control_prev, output_dtype):
|
87 |
+
out = {'input':[], 'middle':[], 'output': []}
|
88 |
+
|
89 |
+
if control_input is not None:
|
90 |
+
for i in range(len(control_input)):
|
91 |
+
key = 'input'
|
92 |
+
x = control_input[i]
|
93 |
+
if x is not None:
|
94 |
+
x *= self.strength
|
95 |
+
if x.dtype != output_dtype:
|
96 |
+
x = x.to(output_dtype)
|
97 |
+
out[key].insert(0, x)
|
98 |
+
|
99 |
+
if control_output is not None:
|
100 |
+
for i in range(len(control_output)):
|
101 |
+
if i == (len(control_output) - 1):
|
102 |
+
key = 'middle'
|
103 |
+
index = 0
|
104 |
+
else:
|
105 |
+
key = 'output'
|
106 |
+
index = i
|
107 |
+
x = control_output[i]
|
108 |
+
if x is not None:
|
109 |
+
if self.global_average_pooling:
|
110 |
+
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
111 |
+
|
112 |
+
x *= self.strength
|
113 |
+
if x.dtype != output_dtype:
|
114 |
+
x = x.to(output_dtype)
|
115 |
+
|
116 |
+
out[key].append(x)
|
117 |
+
if control_prev is not None:
|
118 |
+
for x in ['input', 'middle', 'output']:
|
119 |
+
o = out[x]
|
120 |
+
for i in range(len(control_prev[x])):
|
121 |
+
prev_val = control_prev[x][i]
|
122 |
+
if i >= len(o):
|
123 |
+
o.append(prev_val)
|
124 |
+
elif prev_val is not None:
|
125 |
+
if o[i] is None:
|
126 |
+
o[i] = prev_val
|
127 |
+
else:
|
128 |
+
if o[i].shape[0] < prev_val.shape[0]:
|
129 |
+
o[i] = prev_val + o[i]
|
130 |
+
else:
|
131 |
+
o[i] += prev_val
|
132 |
+
return out
|
133 |
+
|
134 |
+
class ControlNet(ControlBase):
|
135 |
+
def __init__(self, control_model, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None):
|
136 |
+
super().__init__(device)
|
137 |
+
self.control_model = control_model
|
138 |
+
self.load_device = load_device
|
139 |
+
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
140 |
+
self.global_average_pooling = global_average_pooling
|
141 |
+
self.model_sampling_current = None
|
142 |
+
self.manual_cast_dtype = manual_cast_dtype
|
143 |
+
|
144 |
+
def get_control(self, x_noisy, t, cond, batched_number):
|
145 |
+
control_prev = None
|
146 |
+
if self.previous_controlnet is not None:
|
147 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
148 |
+
|
149 |
+
if self.timestep_range is not None:
|
150 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
151 |
+
if control_prev is not None:
|
152 |
+
return control_prev
|
153 |
+
else:
|
154 |
+
return None
|
155 |
+
|
156 |
+
dtype = self.control_model.dtype
|
157 |
+
if self.manual_cast_dtype is not None:
|
158 |
+
dtype = self.manual_cast_dtype
|
159 |
+
|
160 |
+
output_dtype = x_noisy.dtype
|
161 |
+
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
162 |
+
if self.cond_hint is not None:
|
163 |
+
del self.cond_hint
|
164 |
+
self.cond_hint = None
|
165 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(self.device)
|
166 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
167 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
168 |
+
|
169 |
+
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
|
170 |
+
y = cond.get('y', None)
|
171 |
+
if y is not None:
|
172 |
+
y = y.to(dtype)
|
173 |
+
timestep = self.model_sampling_current.timestep(t)
|
174 |
+
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
175 |
+
|
176 |
+
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
|
177 |
+
return self.control_merge(None, control, control_prev, output_dtype)
|
178 |
+
|
179 |
+
def copy(self):
|
180 |
+
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
181 |
+
self.copy_to(c)
|
182 |
+
return c
|
183 |
+
|
184 |
+
def get_models(self):
|
185 |
+
out = super().get_models()
|
186 |
+
out.append(self.control_model_wrapped)
|
187 |
+
return out
|
188 |
+
|
189 |
+
def pre_run(self, model, percent_to_timestep_function):
|
190 |
+
super().pre_run(model, percent_to_timestep_function)
|
191 |
+
self.model_sampling_current = model.model_sampling
|
192 |
+
|
193 |
+
def cleanup(self):
|
194 |
+
self.model_sampling_current = None
|
195 |
+
super().cleanup()
|
196 |
+
|
197 |
+
class ControlLoraOps:
|
198 |
+
class Linear(torch.nn.Module):
|
199 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
200 |
+
device=None, dtype=None) -> None:
|
201 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
202 |
+
super().__init__()
|
203 |
+
self.in_features = in_features
|
204 |
+
self.out_features = out_features
|
205 |
+
self.weight = None
|
206 |
+
self.up = None
|
207 |
+
self.down = None
|
208 |
+
self.bias = None
|
209 |
+
|
210 |
+
def forward(self, input):
|
211 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
212 |
+
if self.up is not None:
|
213 |
+
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
214 |
+
else:
|
215 |
+
return torch.nn.functional.linear(input, weight, bias)
|
216 |
+
|
217 |
+
class Conv2d(torch.nn.Module):
|
218 |
+
def __init__(
|
219 |
+
self,
|
220 |
+
in_channels,
|
221 |
+
out_channels,
|
222 |
+
kernel_size,
|
223 |
+
stride=1,
|
224 |
+
padding=0,
|
225 |
+
dilation=1,
|
226 |
+
groups=1,
|
227 |
+
bias=True,
|
228 |
+
padding_mode='zeros',
|
229 |
+
device=None,
|
230 |
+
dtype=None
|
231 |
+
):
|
232 |
+
super().__init__()
|
233 |
+
self.in_channels = in_channels
|
234 |
+
self.out_channels = out_channels
|
235 |
+
self.kernel_size = kernel_size
|
236 |
+
self.stride = stride
|
237 |
+
self.padding = padding
|
238 |
+
self.dilation = dilation
|
239 |
+
self.transposed = False
|
240 |
+
self.output_padding = 0
|
241 |
+
self.groups = groups
|
242 |
+
self.padding_mode = padding_mode
|
243 |
+
|
244 |
+
self.weight = None
|
245 |
+
self.bias = None
|
246 |
+
self.up = None
|
247 |
+
self.down = None
|
248 |
+
|
249 |
+
|
250 |
+
def forward(self, input):
|
251 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
252 |
+
if self.up is not None:
|
253 |
+
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
254 |
+
else:
|
255 |
+
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
256 |
+
|
257 |
+
|
258 |
+
class ControlLora(ControlNet):
|
259 |
+
def __init__(self, control_weights, global_average_pooling=False, device=None):
|
260 |
+
ControlBase.__init__(self, device)
|
261 |
+
self.control_weights = control_weights
|
262 |
+
self.global_average_pooling = global_average_pooling
|
263 |
+
|
264 |
+
def pre_run(self, model, percent_to_timestep_function):
|
265 |
+
super().pre_run(model, percent_to_timestep_function)
|
266 |
+
controlnet_config = model.model_config.unet_config.copy()
|
267 |
+
controlnet_config.pop("out_channels")
|
268 |
+
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
269 |
+
self.manual_cast_dtype = model.manual_cast_dtype
|
270 |
+
dtype = model.get_dtype()
|
271 |
+
if self.manual_cast_dtype is None:
|
272 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
|
273 |
+
pass
|
274 |
+
else:
|
275 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
|
276 |
+
pass
|
277 |
+
dtype = self.manual_cast_dtype
|
278 |
+
|
279 |
+
controlnet_config["operations"] = control_lora_ops
|
280 |
+
controlnet_config["dtype"] = dtype
|
281 |
+
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
282 |
+
self.control_model.to(comfy.model_management.get_torch_device())
|
283 |
+
diffusion_model = model.diffusion_model
|
284 |
+
sd = diffusion_model.state_dict()
|
285 |
+
cm = self.control_model.state_dict()
|
286 |
+
|
287 |
+
for k in sd:
|
288 |
+
weight = sd[k]
|
289 |
+
try:
|
290 |
+
comfy.utils.set_attr(self.control_model, k, weight)
|
291 |
+
except:
|
292 |
+
pass
|
293 |
+
|
294 |
+
for k in self.control_weights:
|
295 |
+
if k not in {"lora_controlnet"}:
|
296 |
+
comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
297 |
+
|
298 |
+
def copy(self):
|
299 |
+
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
300 |
+
self.copy_to(c)
|
301 |
+
return c
|
302 |
+
|
303 |
+
def cleanup(self):
|
304 |
+
del self.control_model
|
305 |
+
self.control_model = None
|
306 |
+
super().cleanup()
|
307 |
+
|
308 |
+
def get_models(self):
|
309 |
+
out = ControlBase.get_models(self)
|
310 |
+
return out
|
311 |
+
|
312 |
+
def inference_memory_requirements(self, dtype):
|
313 |
+
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
314 |
+
|
315 |
+
def load_controlnet(ckpt_path, model=None):
|
316 |
+
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
317 |
+
if "lora_controlnet" in controlnet_data:
|
318 |
+
return ControlLora(controlnet_data)
|
319 |
+
|
320 |
+
controlnet_config = None
|
321 |
+
supported_inference_dtypes = None
|
322 |
+
|
323 |
+
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
324 |
+
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
|
325 |
+
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
326 |
+
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
327 |
+
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
328 |
+
|
329 |
+
count = 0
|
330 |
+
loop = True
|
331 |
+
while loop:
|
332 |
+
suffix = [".weight", ".bias"]
|
333 |
+
for s in suffix:
|
334 |
+
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
335 |
+
k_out = "zero_convs.{}.0{}".format(count, s)
|
336 |
+
if k_in not in controlnet_data:
|
337 |
+
loop = False
|
338 |
+
break
|
339 |
+
diffusers_keys[k_in] = k_out
|
340 |
+
count += 1
|
341 |
+
|
342 |
+
count = 0
|
343 |
+
loop = True
|
344 |
+
while loop:
|
345 |
+
suffix = [".weight", ".bias"]
|
346 |
+
for s in suffix:
|
347 |
+
if count == 0:
|
348 |
+
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
349 |
+
else:
|
350 |
+
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
351 |
+
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
352 |
+
if k_in not in controlnet_data:
|
353 |
+
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
354 |
+
loop = False
|
355 |
+
diffusers_keys[k_in] = k_out
|
356 |
+
count += 1
|
357 |
+
|
358 |
+
new_sd = {}
|
359 |
+
for k in diffusers_keys:
|
360 |
+
if k in controlnet_data:
|
361 |
+
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
362 |
+
|
363 |
+
leftover_keys = controlnet_data.keys()
|
364 |
+
if len(leftover_keys) > 0:
|
365 |
+
print("leftover keys:", leftover_keys)
|
366 |
+
controlnet_data = new_sd
|
367 |
+
|
368 |
+
pth_key = 'control_model.zero_convs.0.0.weight'
|
369 |
+
pth = False
|
370 |
+
key = 'zero_convs.0.0.weight'
|
371 |
+
if pth_key in controlnet_data:
|
372 |
+
pth = True
|
373 |
+
key = pth_key
|
374 |
+
prefix = "control_model."
|
375 |
+
elif key in controlnet_data:
|
376 |
+
prefix = ""
|
377 |
+
else:
|
378 |
+
net = load_t2i_adapter(controlnet_data)
|
379 |
+
if net is None:
|
380 |
+
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
381 |
+
return net
|
382 |
+
|
383 |
+
if controlnet_config is None:
|
384 |
+
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
|
385 |
+
supported_inference_dtypes = model_config.supported_inference_dtypes
|
386 |
+
controlnet_config = model_config.unet_config
|
387 |
+
|
388 |
+
load_device = comfy.model_management.get_torch_device()
|
389 |
+
if supported_inference_dtypes is None:
|
390 |
+
unet_dtype = comfy.model_management.unet_dtype()
|
391 |
+
else:
|
392 |
+
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
|
393 |
+
|
394 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
395 |
+
if manual_cast_dtype is not None:
|
396 |
+
controlnet_config["operations"] = comfy.ops.manual_cast
|
397 |
+
controlnet_config["dtype"] = unet_dtype
|
398 |
+
controlnet_config.pop("out_channels")
|
399 |
+
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
400 |
+
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
401 |
+
|
402 |
+
if pth:
|
403 |
+
if 'difference' in controlnet_data:
|
404 |
+
if model is not None:
|
405 |
+
comfy.model_management.load_models_gpu([model])
|
406 |
+
model_sd = model.model_state_dict()
|
407 |
+
for x in controlnet_data:
|
408 |
+
c_m = "control_model."
|
409 |
+
if x.startswith(c_m):
|
410 |
+
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
411 |
+
if sd_key in model_sd:
|
412 |
+
cd = controlnet_data[x]
|
413 |
+
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
414 |
+
else:
|
415 |
+
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
416 |
+
|
417 |
+
class WeightsLoader(torch.nn.Module):
|
418 |
+
pass
|
419 |
+
w = WeightsLoader()
|
420 |
+
w.control_model = control_model
|
421 |
+
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
422 |
+
else:
|
423 |
+
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
424 |
+
print(missing, unexpected)
|
425 |
+
|
426 |
+
global_average_pooling = False
|
427 |
+
filename = os.path.splitext(ckpt_path)[0]
|
428 |
+
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
429 |
+
global_average_pooling = True
|
430 |
+
|
431 |
+
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
432 |
+
return control
|
433 |
+
|
434 |
+
class T2IAdapter(ControlBase):
|
435 |
+
def __init__(self, t2i_model, channels_in, device=None):
|
436 |
+
super().__init__(device)
|
437 |
+
self.t2i_model = t2i_model
|
438 |
+
self.channels_in = channels_in
|
439 |
+
self.control_input = None
|
440 |
+
|
441 |
+
def scale_image_to(self, width, height):
|
442 |
+
unshuffle_amount = self.t2i_model.unshuffle_amount
|
443 |
+
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
444 |
+
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
445 |
+
return width, height
|
446 |
+
|
447 |
+
def get_control(self, x_noisy, t, cond, batched_number):
|
448 |
+
control_prev = None
|
449 |
+
if self.previous_controlnet is not None:
|
450 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
451 |
+
|
452 |
+
if self.timestep_range is not None:
|
453 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
454 |
+
if control_prev is not None:
|
455 |
+
return control_prev
|
456 |
+
else:
|
457 |
+
return None
|
458 |
+
|
459 |
+
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
460 |
+
if self.cond_hint is not None:
|
461 |
+
del self.cond_hint
|
462 |
+
self.control_input = None
|
463 |
+
self.cond_hint = None
|
464 |
+
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
|
465 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
|
466 |
+
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
467 |
+
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
468 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
469 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
470 |
+
if self.control_input is None:
|
471 |
+
self.t2i_model.to(x_noisy.dtype)
|
472 |
+
self.t2i_model.to(self.device)
|
473 |
+
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
474 |
+
self.t2i_model.cpu()
|
475 |
+
|
476 |
+
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
|
477 |
+
mid = None
|
478 |
+
if self.t2i_model.xl == True:
|
479 |
+
mid = control_input[-1:]
|
480 |
+
control_input = control_input[:-1]
|
481 |
+
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
|
482 |
+
|
483 |
+
def copy(self):
|
484 |
+
c = T2IAdapter(self.t2i_model, self.channels_in)
|
485 |
+
self.copy_to(c)
|
486 |
+
return c
|
487 |
+
|
488 |
+
def load_t2i_adapter(t2i_data):
|
489 |
+
if 'adapter' in t2i_data:
|
490 |
+
t2i_data = t2i_data['adapter']
|
491 |
+
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
|
492 |
+
prefix_replace = {}
|
493 |
+
for i in range(4):
|
494 |
+
for j in range(2):
|
495 |
+
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
496 |
+
prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
|
497 |
+
prefix_replace["adapter."] = ""
|
498 |
+
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
499 |
+
keys = t2i_data.keys()
|
500 |
+
|
501 |
+
if "body.0.in_conv.weight" in keys:
|
502 |
+
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
503 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
504 |
+
elif 'conv_in.weight' in keys:
|
505 |
+
cin = t2i_data['conv_in.weight'].shape[1]
|
506 |
+
channel = t2i_data['conv_in.weight'].shape[0]
|
507 |
+
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
508 |
+
use_conv = False
|
509 |
+
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
510 |
+
if len(down_opts) > 0:
|
511 |
+
use_conv = True
|
512 |
+
xl = False
|
513 |
+
if cin == 256 or cin == 768:
|
514 |
+
xl = True
|
515 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
516 |
+
else:
|
517 |
+
return None
|
518 |
+
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
519 |
+
if len(missing) > 0:
|
520 |
+
print("t2i missing", missing)
|
521 |
+
|
522 |
+
if len(unexpected) > 0:
|
523 |
+
print("t2i unexpected", unexpected)
|
524 |
+
|
525 |
+
return T2IAdapter(model_ad, model_ad.input_channels)
|
comfy/diffusers_convert.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
5 |
+
|
6 |
+
# =================#
|
7 |
+
# UNet Conversion #
|
8 |
+
# =================#
|
9 |
+
|
10 |
+
unet_conversion_map = [
|
11 |
+
# (stable-diffusion, HF Diffusers)
|
12 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
13 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
14 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
15 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
16 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
17 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
18 |
+
("out.0.weight", "conv_norm_out.weight"),
|
19 |
+
("out.0.bias", "conv_norm_out.bias"),
|
20 |
+
("out.2.weight", "conv_out.weight"),
|
21 |
+
("out.2.bias", "conv_out.bias"),
|
22 |
+
]
|
23 |
+
|
24 |
+
unet_conversion_map_resnet = [
|
25 |
+
# (stable-diffusion, HF Diffusers)
|
26 |
+
("in_layers.0", "norm1"),
|
27 |
+
("in_layers.2", "conv1"),
|
28 |
+
("out_layers.0", "norm2"),
|
29 |
+
("out_layers.3", "conv2"),
|
30 |
+
("emb_layers.1", "time_emb_proj"),
|
31 |
+
("skip_connection", "conv_shortcut"),
|
32 |
+
]
|
33 |
+
|
34 |
+
unet_conversion_map_layer = []
|
35 |
+
# hardcoded number of downblocks and resnets/attentions...
|
36 |
+
# would need smarter logic for other networks.
|
37 |
+
for i in range(4):
|
38 |
+
# loop over downblocks/upblocks
|
39 |
+
|
40 |
+
for j in range(2):
|
41 |
+
# loop over resnets/attentions for downblocks
|
42 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
43 |
+
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
|
44 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
45 |
+
|
46 |
+
if i < 3:
|
47 |
+
# no attention layers in down_blocks.3
|
48 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
49 |
+
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
|
50 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
51 |
+
|
52 |
+
for j in range(3):
|
53 |
+
# loop over resnets/attentions for upblocks
|
54 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
55 |
+
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
|
56 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
57 |
+
|
58 |
+
if i > 0:
|
59 |
+
# no attention layers in up_blocks.0
|
60 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
61 |
+
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
62 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
63 |
+
|
64 |
+
if i < 3:
|
65 |
+
# no downsample in down_blocks.3
|
66 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
67 |
+
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
|
68 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
69 |
+
|
70 |
+
# no upsample in up_blocks.3
|
71 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
72 |
+
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
|
73 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
74 |
+
|
75 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
76 |
+
sd_mid_atn_prefix = "middle_block.1."
|
77 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
78 |
+
|
79 |
+
for j in range(2):
|
80 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
81 |
+
sd_mid_res_prefix = f"middle_block.{2 * j}."
|
82 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
83 |
+
|
84 |
+
|
85 |
+
def convert_unet_state_dict(unet_state_dict):
|
86 |
+
# buyer beware: this is a *brittle* function,
|
87 |
+
# and correct output requires that all of these pieces interact in
|
88 |
+
# the exact order in which I have arranged them.
|
89 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
90 |
+
for sd_name, hf_name in unet_conversion_map:
|
91 |
+
mapping[hf_name] = sd_name
|
92 |
+
for k, v in mapping.items():
|
93 |
+
if "resnets" in k:
|
94 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
95 |
+
v = v.replace(hf_part, sd_part)
|
96 |
+
mapping[k] = v
|
97 |
+
for k, v in mapping.items():
|
98 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
99 |
+
v = v.replace(hf_part, sd_part)
|
100 |
+
mapping[k] = v
|
101 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
102 |
+
return new_state_dict
|
103 |
+
|
104 |
+
|
105 |
+
# ================#
|
106 |
+
# VAE Conversion #
|
107 |
+
# ================#
|
108 |
+
|
109 |
+
vae_conversion_map = [
|
110 |
+
# (stable-diffusion, HF Diffusers)
|
111 |
+
("nin_shortcut", "conv_shortcut"),
|
112 |
+
("norm_out", "conv_norm_out"),
|
113 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
114 |
+
]
|
115 |
+
|
116 |
+
for i in range(4):
|
117 |
+
# down_blocks have two resnets
|
118 |
+
for j in range(2):
|
119 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
120 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
121 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
122 |
+
|
123 |
+
if i < 3:
|
124 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
125 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
126 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
127 |
+
|
128 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
129 |
+
sd_upsample_prefix = f"up.{3 - i}.upsample."
|
130 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
131 |
+
|
132 |
+
# up_blocks have three resnets
|
133 |
+
# also, up blocks in hf are numbered in reverse from sd
|
134 |
+
for j in range(3):
|
135 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
136 |
+
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
|
137 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
138 |
+
|
139 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
140 |
+
for i in range(2):
|
141 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
142 |
+
sd_mid_res_prefix = f"mid.block_{i + 1}."
|
143 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
144 |
+
|
145 |
+
vae_conversion_map_attn = [
|
146 |
+
# (stable-diffusion, HF Diffusers)
|
147 |
+
("norm.", "group_norm."),
|
148 |
+
("q.", "query."),
|
149 |
+
("k.", "key."),
|
150 |
+
("v.", "value."),
|
151 |
+
("q.", "to_q."),
|
152 |
+
("k.", "to_k."),
|
153 |
+
("v.", "to_v."),
|
154 |
+
("proj_out.", "to_out.0."),
|
155 |
+
("proj_out.", "proj_attn."),
|
156 |
+
]
|
157 |
+
|
158 |
+
|
159 |
+
def reshape_weight_for_sd(w):
|
160 |
+
# convert HF linear weights to SD conv2d weights
|
161 |
+
return w.reshape(*w.shape, 1, 1)
|
162 |
+
|
163 |
+
|
164 |
+
def convert_vae_state_dict(vae_state_dict):
|
165 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
166 |
+
for k, v in mapping.items():
|
167 |
+
for sd_part, hf_part in vae_conversion_map:
|
168 |
+
v = v.replace(hf_part, sd_part)
|
169 |
+
mapping[k] = v
|
170 |
+
for k, v in mapping.items():
|
171 |
+
if "attentions" in k:
|
172 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
173 |
+
v = v.replace(hf_part, sd_part)
|
174 |
+
mapping[k] = v
|
175 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
176 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
177 |
+
for k, v in new_state_dict.items():
|
178 |
+
for weight_name in weights_to_convert:
|
179 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
180 |
+
print(f"Reshaping {k} for SD format")
|
181 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
182 |
+
return new_state_dict
|
183 |
+
|
184 |
+
|
185 |
+
# =========================#
|
186 |
+
# Text Encoder Conversion #
|
187 |
+
# =========================#
|
188 |
+
|
189 |
+
|
190 |
+
textenc_conversion_lst = [
|
191 |
+
# (stable-diffusion, HF Diffusers)
|
192 |
+
("resblocks.", "text_model.encoder.layers."),
|
193 |
+
("ln_1", "layer_norm1"),
|
194 |
+
("ln_2", "layer_norm2"),
|
195 |
+
(".c_fc.", ".fc1."),
|
196 |
+
(".c_proj.", ".fc2."),
|
197 |
+
(".attn", ".self_attn"),
|
198 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
199 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
200 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
201 |
+
]
|
202 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
203 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
204 |
+
|
205 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
206 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
207 |
+
|
208 |
+
|
209 |
+
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
|
210 |
+
new_state_dict = {}
|
211 |
+
capture_qkv_weight = {}
|
212 |
+
capture_qkv_bias = {}
|
213 |
+
for k, v in text_enc_dict.items():
|
214 |
+
if not k.startswith(prefix):
|
215 |
+
continue
|
216 |
+
if (
|
217 |
+
k.endswith(".self_attn.q_proj.weight")
|
218 |
+
or k.endswith(".self_attn.k_proj.weight")
|
219 |
+
or k.endswith(".self_attn.v_proj.weight")
|
220 |
+
):
|
221 |
+
k_pre = k[: -len(".q_proj.weight")]
|
222 |
+
k_code = k[-len("q_proj.weight")]
|
223 |
+
if k_pre not in capture_qkv_weight:
|
224 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
225 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
226 |
+
continue
|
227 |
+
|
228 |
+
if (
|
229 |
+
k.endswith(".self_attn.q_proj.bias")
|
230 |
+
or k.endswith(".self_attn.k_proj.bias")
|
231 |
+
or k.endswith(".self_attn.v_proj.bias")
|
232 |
+
):
|
233 |
+
k_pre = k[: -len(".q_proj.bias")]
|
234 |
+
k_code = k[-len("q_proj.bias")]
|
235 |
+
if k_pre not in capture_qkv_bias:
|
236 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
237 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
238 |
+
continue
|
239 |
+
|
240 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
241 |
+
new_state_dict[relabelled_key] = v
|
242 |
+
|
243 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
244 |
+
if None in tensors:
|
245 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
246 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
247 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
248 |
+
|
249 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
250 |
+
if None in tensors:
|
251 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
252 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
253 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
254 |
+
|
255 |
+
return new_state_dict
|
256 |
+
|
257 |
+
|
258 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
259 |
+
return text_enc_dict
|
260 |
+
|
261 |
+
|