File size: 4,159 Bytes
b2eb230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from dataclasses import dataclass
from pathlib import Path
from typing import Optional

import librosa
import numpy as np
import torch
from lightning import LightningDataModule
from torch.utils.data import DataLoader, Dataset

from fish_speech.utils import RankedLogger

logger = RankedLogger(__name__, rank_zero_only=False)


class VQGANDataset(Dataset):
    def __init__(

        self,

        filelist: str,

        sample_rate: int = 32000,

        hop_length: int = 640,

        slice_frames: Optional[int] = None,

    ):
        super().__init__()

        filelist = Path(filelist)
        root = filelist.parent

        self.files = [
            root / line.strip()
            for line in filelist.read_text(encoding="utf-8").splitlines()
            if line.strip()
        ]
        self.sample_rate = sample_rate
        self.hop_length = hop_length
        self.slice_frames = slice_frames

    def __len__(self):
        return len(self.files)

    def get_item(self, idx):
        file = self.files[idx]

        audio, _ = librosa.load(file, sr=self.sample_rate, mono=True)

        # Slice audio and features
        if (
            self.slice_frames is not None
            and audio.shape[0] > self.slice_frames * self.hop_length
        ):
            start = np.random.randint(
                0, audio.shape[0] - self.slice_frames * self.hop_length
            )
            audio = audio[start : start + self.slice_frames * self.hop_length]

        if len(audio) == 0:
            return None

        max_value = np.abs(audio).max()
        if max_value > 1.0:
            audio = audio / max_value

        return {
            "audio": torch.from_numpy(audio),
        }

    def __getitem__(self, idx):
        try:
            return self.get_item(idx)
        except Exception as e:
            import traceback

            traceback.print_exc()
            logger.error(f"Error loading {self.files[idx]}: {e}")
            return None


@dataclass
class VQGANCollator:
    def __call__(self, batch):
        batch = [x for x in batch if x is not None]

        audio_lengths = torch.tensor([len(x["audio"]) for x in batch])
        audio_maxlen = audio_lengths.max()

        # Rounds up to nearest multiple of 2 (audio_lengths)
        audios = []
        for x in batch:
            audios.append(
                torch.nn.functional.pad(x["audio"], (0, audio_maxlen - len(x["audio"])))
            )

        return {
            "audios": torch.stack(audios),
            "audio_lengths": audio_lengths,
        }


class VQGANDataModule(LightningDataModule):
    def __init__(

        self,

        train_dataset: VQGANDataset,

        val_dataset: VQGANDataset,

        batch_size: int = 32,

        num_workers: int = 4,

        val_batch_size: Optional[int] = None,

    ):
        super().__init__()

        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.batch_size = batch_size
        self.val_batch_size = val_batch_size or batch_size
        self.num_workers = num_workers

    def train_dataloader(self):
        return DataLoader(
            self.train_dataset,
            batch_size=self.batch_size,
            collate_fn=VQGANCollator(),
            num_workers=self.num_workers,
            shuffle=True,
            persistent_workers=True,
        )

    def val_dataloader(self):
        return DataLoader(
            self.val_dataset,
            batch_size=self.val_batch_size,
            collate_fn=VQGANCollator(),
            num_workers=self.num_workers,
            persistent_workers=True,
        )


if __name__ == "__main__":
    dataset = VQGANDataset("data/LibriTTS_R/vq_train_filelist.txt")
    dataloader = DataLoader(
        dataset, batch_size=4, shuffle=False, collate_fn=VQGANCollator()
    )

    for batch in dataloader:
        print(batch["audios"].shape)
        print(batch["features"].shape)
        print(batch["audio_lengths"])
        print(batch["feature_lengths"])
        break