File size: 30,016 Bytes
b2eb230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
import io
import json
import os
import queue
import re
import time
import traceback
import wave
from argparse import ArgumentParser
from http import HTTPStatus
from pathlib import Path
from typing import Annotated, Any

import librosa
import numpy as np
import ormsgpack
import pyrootutils
import soundfile as sf
import torch
import torchaudio
from baize.datastructures import ContentType
from kui.asgi import (
    Body,
    FactoryClass,
    HTTPException,
    HttpRequest,
    HttpView,
    JSONResponse,
    Kui,
    OpenAPI,
    StreamResponse,
    request,
)
from kui.asgi.routing import MultimethodRoutes
from loguru import logger

pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
import struct
from threading import Lock

import httpx
from cachetools import LRUCache, cached
from funasr import AutoModel
from silero_vad import get_speech_timestamps, load_silero_vad

from fish_speech.models.text2semantic.llama import BaseModelArgs

# from fish_speech.models.vqgan.lit_module import VQGAN
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText

# from fish_speech.conversation import IM_END_TOKEN, SEMANTIC_TOKEN
from fish_speech.tokenizer import IM_END_TOKEN, FishTokenizer
from fish_speech.utils import autocast_exclude_mps, set_seed
from tools.file import AUDIO_EXTENSIONS, audio_to_bytes, list_files, read_ref_text
from tools.llama.generate import (
    GenerateRequest,
    GenerateResponse,
    WrappedGenerateResponse,
    launch_thread_safe_queue,
    launch_thread_safe_queue_agent,
)
from tools.schema import (
    GLOBAL_NUM_SAMPLES,
    ASRPackRequest,
    ServeASRRequest,
    ServeASRResponse,
    ServeASRSegment,
    ServeAudioPart,
    ServeForwardMessage,
    ServeMessage,
    ServeRequest,
    ServeResponse,
    ServeStreamDelta,
    ServeStreamResponse,
    ServeTextPart,
    ServeTimedASRResponse,
    ServeTTSRequest,
    ServeVQGANDecodeRequest,
    ServeVQGANDecodeResponse,
    ServeVQGANEncodeRequest,
    ServeVQGANEncodeResponse,
    ServeVQPart,
)
from tools.vqgan.inference import load_model as load_decoder_model

global_lock = Lock()

# Whether to disable keepalive (which is helpful if the server is in the same cluster)
DISABLE_KEEPALIVE = os.getenv("DISABLE_KEEPALIVE", "false").lower() == "true"
async_client = httpx.AsyncClient(
    timeout=120, limits=httpx.Limits(keepalive_expiry=0 if DISABLE_KEEPALIVE else None)
)
backends = torchaudio.list_audio_backends()

if "ffmpeg" in backends:
    backend = "ffmpeg"
else:
    backend = "soundfile"


def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
    buffer = io.BytesIO()

    with wave.open(buffer, "wb") as wav_file:
        wav_file.setnchannels(channels)
        wav_file.setsampwidth(bit_depth // 8)
        wav_file.setframerate(sample_rate)

    wav_header_bytes = buffer.getvalue()
    buffer.close()
    return wav_header_bytes


# Define utils for web server
async def http_execption_handler(exc: HTTPException):
    return JSONResponse(
        dict(
            statusCode=exc.status_code,
            message=exc.content,
            error=HTTPStatus(exc.status_code).phrase,
        ),
        exc.status_code,
        exc.headers,
    )


async def other_exception_handler(exc: "Exception"):
    traceback.print_exc()

    status = HTTPStatus.INTERNAL_SERVER_ERROR
    return JSONResponse(
        dict(statusCode=status, message=str(exc), error=status.phrase),
        status,
    )


def load_audio(reference_audio, sr):
    if len(reference_audio) > 255 or not Path(reference_audio).exists():
        audio_data = reference_audio
        reference_audio = io.BytesIO(audio_data)

    waveform, original_sr = torchaudio.load(reference_audio, backend=backend)

    if waveform.shape[0] > 1:
        waveform = torch.mean(waveform, dim=0, keepdim=True)

    if original_sr != sr:
        resampler = torchaudio.transforms.Resample(orig_freq=original_sr, new_freq=sr)
        waveform = resampler(waveform)

    audio = waveform.squeeze().numpy()
    return audio


def encode_reference(*, decoder_model, reference_audio, enable_reference_audio):
    if enable_reference_audio and reference_audio is not None:
        # Load audios, and prepare basic info here
        reference_audio_content = load_audio(
            reference_audio, decoder_model.spec_transform.sample_rate
        )

        audios = torch.from_numpy(reference_audio_content).to(decoder_model.device)[
            None, None, :
        ]
        audio_lengths = torch.tensor(
            [audios.shape[2]], device=decoder_model.device, dtype=torch.long
        )
        logger.info(
            f"Loaded audio with {audios.shape[2] / decoder_model.spec_transform.sample_rate:.2f} seconds"
        )

        # VQ Encoder
        if isinstance(decoder_model, FireflyArchitecture):
            prompt_tokens = decoder_model.encode(audios, audio_lengths)[0][0]

        logger.info(f"Encoded prompt: {prompt_tokens.shape}")
    else:
        prompt_tokens = None
        logger.info("No reference audio provided")

    return prompt_tokens


def decode_vq_tokens(

    *,

    decoder_model,

    codes,

):
    feature_lengths = torch.tensor([codes.shape[1]], device=decoder_model.device)
    logger.info(f"VQ features: {codes.shape}")

    if isinstance(decoder_model, FireflyArchitecture):
        # VQGAN Inference
        return decoder_model.decode(
            indices=codes[None],
            feature_lengths=feature_lengths,
        )[0].squeeze()

    raise ValueError(f"Unknown model type: {type(decoder_model)}")


routes = MultimethodRoutes(base_class=HttpView)


def get_content_type(audio_format):
    if audio_format == "wav":
        return "audio/wav"
    elif audio_format == "flac":
        return "audio/flac"
    elif audio_format == "mp3":
        return "audio/mpeg"
    else:
        return "application/octet-stream"


@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.half)
def batch_encode(model, audios: list[bytes | torch.Tensor]):
    audios = [
        (
            torch.from_numpy(
                librosa.load(io.BytesIO(audio), sr=model.spec_transform.sample_rate)[0]
            )[None]
            if isinstance(audio, bytes)
            else audio
        )
        for audio in audios
    ]

    # if any(audio.shape[-1] > model.spec_transform.sample_rate * 120 for audio in audios):
    #     raise ValueError("Single audio length is too long (>120s)")

    max_length = max(audio.shape[-1] for audio in audios)
    print(f"Encode max length: {max_length / model.spec_transform.sample_rate:.2f}s")

    lengths = torch.tensor([audio.shape[-1] for audio in audios], device=model.device)
    max_length = lengths.max().item()
    padded = torch.stack(
        [
            torch.nn.functional.pad(audio, (0, max_length - audio.shape[-1]))
            for audio in audios
        ]
    ).to(model.device)

    features, feature_lengths = model.encode(padded, audio_lengths=lengths)
    features, feature_lengths = features.cpu(), feature_lengths.cpu()

    return [feature[..., :length] for feature, length in zip(features, feature_lengths)]


@cached(

    cache=LRUCache(maxsize=10000),

    key=lambda model, audios: (model.device, tuple(audios)),

)
def cached_vqgan_batch_encode(model, audios: list[bytes]):
    return batch_encode(model, audios)


@routes.http.post("/v1/vqgan/encode")
def api_vqgan_encode(payload: Annotated[ServeVQGANEncodeRequest, Body(exclusive=True)]):

    start_time = time.time()
    tokens = cached_vqgan_batch_encode(decoder_model, payload.audios)
    logger.info(f"[EXEC] VQGAN encode time: {(time.time() - start_time) * 1000:.2f}ms")

    return ormsgpack.packb(
        ServeVQGANEncodeResponse(tokens=[i.tolist() for i in tokens]),
        option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
    )


@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.half)
def vqgan_decode(model, features):
    lengths = torch.tensor(
        [feature.shape[-1] for feature in features], device=model.device
    )
    max_length = lengths.max().item()
    padded = torch.stack(
        [
            torch.nn.functional.pad(feature, (0, max_length - feature.shape[-1]))
            for feature in features
        ]
    ).to(model.device)

    # If bs too large, we do micro batch decode
    audios, audio_lengths = [], []
    for i in range(0, padded.shape[0], 8):
        audio, audio_length = model.decode(
            padded[i : i + 8], feature_lengths=lengths[i : i + 8]
        )
        audios.append(audio)
        audio_lengths.append(audio_length)
    audios = torch.cat(audios, dim=0)
    audio_lengths = torch.cat(audio_lengths, dim=0)
    audios, audio_lengths = audios.cpu(), audio_lengths.cpu()

    return [audio[..., :length].numpy() for audio, length in zip(audios, audio_lengths)]


@routes.http.post("/v1/vqgan/decode")
def api_vqgan_decode(payload: Annotated[ServeVQGANDecodeRequest, Body(exclusive=True)]):
    tokens = [torch.tensor(token, dtype=torch.int) for token in payload.tokens]
    start_time = time.time()
    audios = vqgan_decode(decoder_model, tokens)
    logger.info(f"[EXEC] VQGAN decode time: {(time.time() - start_time) * 1000:.2f}ms")
    audios = [audio.astype(np.float16).tobytes() for audio in audios]
    return ormsgpack.packb(
        ServeVQGANDecodeResponse(audios=audios), option=ormsgpack.OPT_SERIALIZE_PYDANTIC
    )


@torch.no_grad()
def batch_asr(model, audios, sr, language="auto"):
    resampled_audios = []
    for audio in audios:
        audio = torchaudio.functional.resample(audio, sr, 16000)
        assert audio.ndim == 1
        resampled_audios.append(audio)

    with global_lock:
        res = model.generate(
            input=resampled_audios,
            batch_size=len(resampled_audios),
            language=language,
            use_itn=True,
        )

    results = []
    for r, audio in zip(res, audios):
        text = r["text"]
        text = re.sub(r"<\|.*?\|>", "", text)
        duration = len(audio) / sr * 1000
        huge_gap = False

        if "timestamp" in r and len(r["timestamp"]) > 2:
            for timestamp_a, timestamp_b in zip(
                r["timestamp"][:-1], r["timestamp"][1:]
            ):
                # If there is a gap of more than 5 seconds, we consider it as a huge gap
                if timestamp_b[0] - timestamp_a[1] > 5000:
                    huge_gap = True
                    break

            # Doesn't make sense to have a huge gap at the end
            if duration - r["timestamp"][-1][1] > 3000:
                huge_gap = True

        results.append(
            {
                "text": text,
                "duration": duration,
                "huge_gap": huge_gap,
            }
        )

    return results


@routes.http.post("/v1/asr")
def api_invoke_asr(payload: Annotated[ServeASRRequest, Body(exclusive=True)]):
    start_time = time.time()
    audios = [np.frombuffer(audio, dtype=np.float16) for audio in payload.audios]
    audios = [torch.from_numpy(audio).float() for audio in audios]

    if any(audios.shape[-1] >= 30 * payload.sample_rate for audios in audios):
        raise HTTPException(status_code=400, detail="Audio length is too long")

    transcriptions = batch_asr(
        asr_model, audios=audios, sr=payload.sample_rate, language=payload.language
    )
    logger.info(f"[EXEC] ASR time: {(time.time() - start_time) * 1000:.2f}ms")

    return ormsgpack.packb(
        ServeASRResponse(transcriptions=transcriptions),
        option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
    )


from fish_speech.conversation import Conversation, Message


def execute_request(

    input_queue: queue.Queue,

    tokenizer: FishTokenizer,

    config: BaseModelArgs,

    request: ServeRequest,

    device: str = "cuda:0",

):

    im_end_id = tokenizer.get_token_id(IM_END_TOKEN)
    messages = []
    for message in request.messages:
        messages.append(message.to_conversation_message())

    assert len(messages) >= 1, "At least one message is required"
    # assert messages[-1].role == "user", "The last message must be from the user"

    if messages[-1].role == "user":
        messages.append(
            Message(role="assistant", parts=[], add_im_end=False, modality="voice")
        )
    elif messages[-1].role == "raw":
        messages[-1].add_im_start = False
        messages[-1].add_im_end = False
        messages[-1].modality = "voice"
    else:
        assert (
            messages[-1].role == "assistant"
        ), "The last message must be from the assistant"
        messages[-1].add_im_end = False

    conv = Conversation(messages=messages)

    # conv.visualize(tokenizer)
    prompt = conv.encode_for_inference(
        tokenizer=tokenizer, num_codebooks=config.num_codebooks
    ).to(device)

    if request.streaming:
        for i in range(request.num_samples):
            yield ServeStreamResponse(
                sample_id=i,
                delta=ServeStreamDelta(
                    role="assistant",
                ),
            )

    req = {
        "prompt": prompt,
        "max_new_tokens": request.max_new_tokens,
        "im_end_id": im_end_id,
        "temperature": request.temperature,
        "top_p": request.top_p,
        "repetition_penalty": request.repetition_penalty,
        "num_samples": request.num_samples,
        "early_stop_threshold": request.early_stop_threshold,
    }

    start = time.time()
    response_queue = queue.Queue()
    input_queue.put(GenerateRequest(req, response_queue))

    # Decoding
    decode_buffer = [[] for _ in range(request.num_samples)]
    parts = [[] for _ in range(request.num_samples)]

    def send_reset_buffer(sample_id):
        nonlocal decode_buffer
        if len(decode_buffer[sample_id]) == 0:
            return

        decoded = tokenizer.decode(decode_buffer[sample_id])
        part = ServeTextPart(text=decoded)

        if request.streaming:
            yield ServeStreamResponse(delta=ServeStreamDelta(part=part))
        else:
            parts[sample_id].append(part)

        decode_buffer[sample_id] = []

    # Decode process
    finished = [False for _ in range(request.num_samples)]
    stats = {}
    idx = 0
    while True:
        response = response_queue.get()

        if response in ["stop", "error"]:
            break

        for sample_id, tokens in enumerate(response):
            if finished[sample_id]:
                continue

            if tokens[0] == im_end_id:
                finished[sample_id] = True
                if request.streaming:
                    yield from send_reset_buffer(sample_id)
                    yield ServeStreamResponse(
                        sample_id=sample_id,
                        finish_reason="stop",
                        stats=stats,
                    )
                continue

            is_semantic = (
                tokenizer.semantic_begin_id <= tokens[0] <= tokenizer.semantic_end_id
            )
            if is_semantic and request.streaming:
                yield from send_reset_buffer(sample_id)
                # Streaming vq
                _tokens = tokens[1:].clone()

                if config.share_codebook_embeddings is False:
                    for i in range(len(_tokens)):
                        _tokens[i] -= config.codebook_size * i

                yield ServeStreamResponse(
                    sample_id=sample_id,
                    delta=ServeStreamDelta(part=ServeVQPart(codes=_tokens.tolist())),
                )
                continue

            # Not streaming vq
            if is_semantic:
                yield from send_reset_buffer(sample_id)
                # None streaming vq
                if len(parts[sample_id]) == 0 or not isinstance(
                    parts[sample_id][-1], ServeVQPart
                ):
                    _tokens = tokens[1:].clone()

                    if config.share_codebook_embeddings is False:
                        for i in range(len(_tokens)):
                            _tokens[i] -= config.codebook_size * i

                    parts[sample_id].append(ServeVQPart(codes=_tokens.tolist()))
                else:
                    for codebook_id, value in enumerate(tokens[1:, :]):
                        val = value.item()
                        if config.share_codebook_embeddings is False:
                            val -= config.codebook_size * codebook_id

                        parts[sample_id][-1].codes[codebook_id].append(val)
                continue

            if not is_semantic:
                # Stream text decode is not supported now
                decode_buffer[sample_id].append(tokens[0, 0])

        if idx == 0:
            stats["time_to_first_token"] = (time.time() - start) * 1000

        idx += 1

    for sample_id in range(request.num_samples):
        yield from send_reset_buffer(sample_id)

    stats["total_time"] = (time.time() - start) * 1000
    stats["total_tokens"] = idx

    if request.streaming:
        for sample_id in range(request.num_samples):
            if finished[sample_id]:
                continue
            yield ServeStreamResponse(
                finish_reason=response, stats=stats, sample_id=sample_id
            )
        return

    yield ServeResponse(
        messages=[
            ServeMessage(role="assistant", parts=parts[i])
            for i in range(request.num_samples)
        ],
        finish_reason=response,
        stats=stats,
    )


@routes.http.post("/v1/chat")
def api_invoke_chat(

    req: Annotated[ServeRequest, Body(exclusive=True)],

):
    """

    Invoke model and generate audio

    """

    # This makes torch compile happy
    assert (
        req.num_samples == GLOBAL_NUM_SAMPLES
    ), f"num_samples must be {GLOBAL_NUM_SAMPLES}"

    content_type = request.headers.get("Content-Type", "application/json")
    json_mode = "application/json" in content_type

    async def wrapped_generator():
        generator = execute_request(llama_queue, tokenizer, config, req, args.device)

        for i in generator:
            if json_mode:
                body = i.model_dump_json().encode("utf-8")
                yield b"data: " + body + b"\n\n"
            else:
                body = ormsgpack.packb(i, option=ormsgpack.OPT_SERIALIZE_PYDANTIC)
                yield struct.pack("I", len(body)) + body

    # Naive mode
    if req.streaming is False:
        result = next(execute_request(llama_queue, tokenizer, config, req, args.device))

        if json_mode:
            return JSONResponse(result.model_dump())
        else:
            return ormsgpack.packb(result, option=ormsgpack.OPT_SERIALIZE_PYDANTIC)

    return StreamResponse(
        iterable=wrapped_generator(), content_type="text/event-stream"
    )


@torch.inference_mode()
def inference(req: ServeTTSRequest):

    global prompt_tokens, prompt_texts

    idstr: str | None = req.reference_id
    if idstr is not None:
        ref_folder = Path("references") / idstr
        ref_folder.mkdir(parents=True, exist_ok=True)
        ref_audios = list_files(
            ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False
        )

        if req.use_memory_cache == "never" or (
            req.use_memory_cache == "on-demand" and len(prompt_tokens) == 0
        ):
            prompt_tokens = [
                encode_reference(
                    decoder_model=decoder_model,
                    reference_audio=audio_to_bytes(str(ref_audio)),
                    enable_reference_audio=True,
                )
                for ref_audio in ref_audios
            ]
            prompt_texts = [
                read_ref_text(str(ref_audio.with_suffix(".lab")))
                for ref_audio in ref_audios
            ]
        else:
            logger.info("Use same references")

    else:
        # Parse reference audio aka prompt
        refs = req.references

        if req.use_memory_cache == "never" or (
            req.use_memory_cache == "on-demand" and len(prompt_tokens) == 0
        ):
            prompt_tokens = [
                encode_reference(
                    decoder_model=decoder_model,
                    reference_audio=ref.audio,
                    enable_reference_audio=True,
                )
                for ref in refs
            ]
            prompt_texts = [ref.text for ref in refs]
        else:
            logger.info("Use same references")

    if req.seed is not None:
        set_seed(req.seed)
        logger.warning(f"set seed: {req.seed}")

    # LLAMA Inference
    request = dict(
        device=decoder_model.device,
        max_new_tokens=req.max_new_tokens,
        text=(
            req.text
            if not req.normalize
            else ChnNormedText(raw_text=req.text).normalize()
        ),
        top_p=req.top_p,
        repetition_penalty=req.repetition_penalty,
        temperature=req.temperature,
        compile=args.compile,
        iterative_prompt=req.chunk_length > 0,
        chunk_length=req.chunk_length,
        max_length=4096,
        prompt_tokens=prompt_tokens,
        prompt_text=prompt_texts,
    )

    response_queue = queue.Queue()
    llama_queue.put(
        GenerateRequest(
            request=request,
            response_queue=response_queue,
        )
    )

    if req.streaming:
        yield wav_chunk_header()

    segments = []
    while True:
        result: WrappedGenerateResponse = response_queue.get()
        if result.status == "error":
            raise result.response
            break

        result: GenerateResponse = result.response
        if result.action == "next":
            break

        with autocast_exclude_mps(
            device_type=decoder_model.device.type, dtype=args.precision
        ):
            fake_audios = decode_vq_tokens(
                decoder_model=decoder_model,
                codes=result.codes,
            )

        fake_audios = fake_audios.float().cpu().numpy()

        if req.streaming:
            yield (fake_audios * 32768).astype(np.int16).tobytes()
        else:
            segments.append(fake_audios)

    if req.streaming:
        return

    if len(segments) == 0:
        raise HTTPException(
            HTTPStatus.INTERNAL_SERVER_ERROR,
            content="No audio generated, please check the input text.",
        )

    fake_audios = np.concatenate(segments, axis=0)
    yield fake_audios


async def inference_async(req: ServeTTSRequest):
    for chunk in inference(req):
        yield chunk


async def buffer_to_async_generator(buffer):
    yield buffer


@routes.http.post("/v1/tts")
async def api_invoke_model(

    req: Annotated[ServeTTSRequest, Body(exclusive=True)],

):
    """

    Invoke model and generate audio

    """

    if args.max_text_length > 0 and len(req.text) > args.max_text_length:
        raise HTTPException(
            HTTPStatus.BAD_REQUEST,
            content=f"Text is too long, max length is {args.max_text_length}",
        )

    if req.streaming and req.format != "wav":
        raise HTTPException(
            HTTPStatus.BAD_REQUEST,
            content="Streaming only supports WAV format",
        )

    if req.streaming:
        return StreamResponse(
            iterable=inference_async(req),
            headers={
                "Content-Disposition": f"attachment; filename=audio.{req.format}",
            },
            content_type=get_content_type(req.format),
        )
    else:
        fake_audios = next(inference(req))
        buffer = io.BytesIO()
        sf.write(
            buffer,
            fake_audios,
            decoder_model.spec_transform.sample_rate,
            format=req.format,
        )

        return StreamResponse(
            iterable=buffer_to_async_generator(buffer.getvalue()),
            headers={
                "Content-Disposition": f"attachment; filename=audio.{req.format}",
            },
            content_type=get_content_type(req.format),
        )


@routes.http.post("/v1/health")
async def api_health():
    """

    Health check

    """
    return JSONResponse({"status": "ok"})


def parse_args():
    parser = ArgumentParser()
    parser.add_argument("--mode", type=str, choices=["agent", "tts"], default="tts")
    parser.add_argument("--load-asr-model", action="store_true")
    parser.add_argument(
        "--llama-checkpoint-path",
        type=str,
        default="checkpoints/fish-speech-1.4",
    )
    parser.add_argument(
        "--decoder-checkpoint-path",
        type=str,
        default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
    )
    parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--half", action="store_true")
    parser.add_argument("--compile", action="store_true")
    parser.add_argument("--max-text-length", type=int, default=0)
    parser.add_argument("--listen", type=str, default="127.0.0.1:8080")
    parser.add_argument("--workers", type=int, default=1)

    return parser.parse_args()


# Define Kui app
openapi = OpenAPI(
    {
        "title": "Fish Speech API",
        "version": "1.4.2",
    },
).routes


class MsgPackRequest(HttpRequest):
    async def data(

        self,

    ) -> Annotated[
        Any, ContentType("application/msgpack"), ContentType("application/json")
    ]:
        if self.content_type == "application/msgpack":
            return ormsgpack.unpackb(await self.body)

        elif self.content_type == "application/json":
            return await self.json

        raise HTTPException(
            HTTPStatus.UNSUPPORTED_MEDIA_TYPE,
            headers={"Accept": "application/msgpack, application/json"},
        )


app = Kui(
    routes=routes + openapi[1:],  # Remove the default route
    exception_handlers={
        HTTPException: http_execption_handler,
        Exception: other_exception_handler,
    },
    factory_class=FactoryClass(http=MsgPackRequest),
    cors_config={},
)


def load_asr_model(*, device="cuda", hub="ms"):
    return AutoModel(
        model="iic/SenseVoiceSmall",
        device=device,
        disable_pbar=True,
        hub=hub,
    )


# Each worker process created by Uvicorn has its own memory space,
# meaning that models and variables are not shared between processes.
# Therefore, any global variables (like `llama_queue` or `decoder_model`)
# will not be shared across workers.


# Multi-threading for deep learning can cause issues, such as inconsistent
# outputs if multiple threads access the same buffers simultaneously.
# Instead, it's better to use multiprocessing or independent models per thread.
@app.on_startup
def initialize_app(app: Kui):

    global args, llama_queue, tokenizer, config, decoder_model, vad_model, asr_model, prompt_tokens, prompt_texts

    prompt_tokens, prompt_texts = [], []

    args = parse_args()  # args same as ones in other processes
    args.precision = torch.half if args.half else torch.bfloat16

    if args.load_asr_model:
        logger.info(f"Loading ASR model...")
        asr_model = load_asr_model(device=args.device)

    logger.info("Loading Llama model...")

    if args.mode == "tts":
        llama_queue = launch_thread_safe_queue(
            checkpoint_path=args.llama_checkpoint_path,
            device=args.device,
            precision=args.precision,
            compile=args.compile,
        )
    else:
        llama_queue, tokenizer, config = launch_thread_safe_queue_agent(
            checkpoint_path=args.llama_checkpoint_path,
            device=args.device,
            precision=args.precision,
            compile=args.compile,
        )

    logger.info("Llama model loaded, loading VQ-GAN model...")

    decoder_model = load_decoder_model(
        config_name=args.decoder_config_name,
        checkpoint_path=args.decoder_checkpoint_path,
        device=args.device,
    )

    logger.info("VQ-GAN model loaded, warming up...")

    vad_model = load_silero_vad()

    logger.info("VAD model loaded, warming up...")

    if args.mode == "tts":
        # Dry run to ensure models work and avoid first-time latency
        list(
            inference(
                ServeTTSRequest(
                    text="Hello world.",
                    references=[],
                    reference_id=None,
                    max_new_tokens=0,
                    chunk_length=200,
                    top_p=0.7,
                    repetition_penalty=1.5,
                    temperature=0.7,
                    emotion=None,
                    format="wav",
                )
            )
        )

    logger.info(f"Warming up done, starting server at http://{args.listen}")


if __name__ == "__main__":

    import uvicorn

    args = parse_args()
    host, port = args.listen.split(":")
    uvicorn.run(
        "tools.api:app",
        host=host,
        port=int(port),
        workers=args.workers,
        log_level="info",
    )