File size: 17,099 Bytes
b2eb230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
import datetime
import shutil

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import time
from pathlib import Path

import click
import torch
import torch.nn as nn
import torch.nn.functional as F

from fish_speech.models.text2semantic.llama import find_multiple
from tools.llama.generate import load_model

##### Quantization Primitives ######


def dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
    # assumes symmetric quantization
    # assumes axis == 0
    # assumes dense memory format
    # TODO(future): relax ^ as needed

    # default setup for affine quantization of activations
    eps = torch.finfo(torch.float32).eps

    # get min and max
    min_val, max_val = torch.aminmax(x, dim=1)

    # calculate scales and zero_points based on min and max
    # reference: https://fburl.com/code/srbiybme
    min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
    max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
    device = min_val_neg.device

    # reference: https://fburl.com/code/4wll53rk
    max_val_pos = torch.max(-min_val_neg, max_val_pos)
    scales = max_val_pos / (float(quant_max - quant_min) / 2)
    # ensure scales is the same dtype as the original tensor
    scales = torch.clamp(scales, min=eps).to(x.dtype)
    zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)

    # quantize based on qmin/qmax/scales/zp
    # reference: https://www.internalfb.com/code/fbsource/[8edc275012b1]/fbcode/caffe2/torch/ao/quantization/fx/_decomposed.py?lines=63
    x_div = x / scales.unsqueeze(-1)
    x_round = torch.round(x_div)
    x_zp = x_round + zero_points.unsqueeze(-1)
    quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype)

    return quant, scales, zero_points


def get_group_qparams(w, n_bit=4, groupsize=128):
    # needed for GPTQ with padding
    if groupsize > w.shape[-1]:
        groupsize = w.shape[-1]
    assert groupsize > 1
    assert w.shape[-1] % groupsize == 0
    assert w.dim() == 2

    to_quant = w.reshape(-1, groupsize)
    assert torch.isnan(to_quant).sum() == 0

    max_val = to_quant.amax(dim=1, keepdim=True)
    min_val = to_quant.amin(dim=1, keepdim=True)
    max_int = 2**n_bit - 1
    scales = (max_val - min_val).clamp(min=1e-6) / max_int
    zeros = min_val + scales * (2 ** (n_bit - 1))
    return scales.to(torch.bfloat16).reshape(w.shape[0], -1), zeros.to(
        torch.bfloat16
    ).reshape(w.shape[0], -1)


def pack_scales_and_zeros(scales, zeros):
    assert scales.shape == zeros.shape
    assert scales.dtype == torch.bfloat16
    assert zeros.dtype == torch.bfloat16
    return (
        torch.cat(
            [
                scales.reshape(scales.size(0), scales.size(1), 1),
                zeros.reshape(zeros.size(0), zeros.size(1), 1),
            ],
            2,
        )
        .transpose(0, 1)
        .contiguous()
    )


def unpack_scales_and_zeros(scales_and_zeros):
    assert len(scales_and_zeros.shape) == 3 and scales_and_zeros.shape[2] == 2
    assert scales_and_zeros.dtype == torch.float
    return torch.split(scales_and_zeros.transpose(0, 1), 1, 2)


def group_quantize_tensor_from_qparams(w, scales, zeros, n_bit=4, groupsize=128):
    assert groupsize > 1
    # needed for GPTQ single column quantize
    if groupsize > w.shape[-1] and scales.shape[-1] == 1:
        groupsize = w.shape[-1]

    assert w.shape[-1] % groupsize == 0
    assert w.dim() == 2

    to_quant = w.reshape(-1, groupsize)
    assert torch.isnan(to_quant).sum() == 0

    scales = scales.reshape(-1, 1)
    zeros = zeros.reshape(-1, 1)
    min_val = zeros - scales * (2 ** (n_bit - 1))
    max_int = 2**n_bit - 1
    min_int = 0
    w_int32 = (
        to_quant.sub(min_val)
        .div(scales)
        .round()
        .clamp_(min_int, max_int)
        .to(torch.int32)
        .reshape_as(w)
    )

    return w_int32


def group_quantize_tensor(w, n_bit=4, groupsize=128):
    scales, zeros = get_group_qparams(w, n_bit, groupsize)
    w_int32 = group_quantize_tensor_from_qparams(w, scales, zeros, n_bit, groupsize)
    scales_and_zeros = pack_scales_and_zeros(scales, zeros)
    return w_int32, scales_and_zeros


def group_dequantize_tensor_from_qparams(

    w_int32, scales, zeros, n_bit=4, groupsize=128

):
    assert groupsize > 1
    # needed for GPTQ single column dequantize
    if groupsize > w_int32.shape[-1] and scales.shape[-1] == 1:
        groupsize = w_int32.shape[-1]
    assert w_int32.shape[-1] % groupsize == 0
    assert w_int32.dim() == 2

    w_int32_grouped = w_int32.reshape(-1, groupsize)
    scales = scales.reshape(-1, 1)
    zeros = zeros.reshape(-1, 1)

    w_dq = (
        w_int32_grouped.sub(2 ** (n_bit - 1)).mul(scales).add(zeros).reshape_as(w_int32)
    )
    return w_dq


def group_dequantize_tensor(w_int32, scales_and_zeros, n_bit=4, groupsize=128):
    scales, zeros = unpack_scales_and_zeros(scales_and_zeros)
    return group_dequantize_tensor_from_qparams(
        w_int32, scales, zeros, n_bit, groupsize
    )


class QuantHandler:
    def __init__(self, mod):
        self.mod = mod

    def create_quantized_state_dict(self) -> "StateDict":
        pass

    def convert_for_runtime(self) -> "nn.Module":
        pass


##### Weight-only int8 per-channel quantized code ######


def replace_linear_weight_only_int8_per_channel(module):
    for name, child in module.named_children():
        if isinstance(child, nn.Linear):
            setattr(
                module,
                name,
                WeightOnlyInt8Linear(child.in_features, child.out_features),
            )
        else:
            replace_linear_weight_only_int8_per_channel(child)


class WeightOnlyInt8QuantHandler:
    def __init__(self, mod):
        self.mod = mod

    @torch.no_grad()
    def create_quantized_state_dict(self):
        cur_state_dict = self.mod.state_dict()
        for fqn, mod in self.mod.named_modules():
            if isinstance(mod, torch.nn.Linear):
                int8_weight, scales, _ = dynamically_quantize_per_channel(
                    mod.weight.float(), -128, 127, torch.int8
                )
                cur_state_dict[f"{fqn}.weight"] = int8_weight
                cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype)

        return cur_state_dict

    def convert_for_runtime(self):
        replace_linear_weight_only_int8_per_channel(self.mod)
        return self.mod


class WeightOnlyInt8Linear(torch.nn.Module):
    __constants__ = ["in_features", "out_features"]
    in_features: int
    out_features: int
    weight: torch.Tensor

    def __init__(

        self,

        in_features: int,

        out_features: int,

        bias: bool = True,

        device=None,

        dtype=None,

    ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.register_buffer(
            "weight", torch.empty((out_features, in_features), dtype=torch.int8)
        )
        self.register_buffer("scales", torch.ones(out_features, dtype=torch.bfloat16))

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return F.linear(input, self.weight.to(dtype=input.dtype)) * self.scales


##### weight only int4 per channel groupwise quantized code ######


def prepare_int4_weight_and_scales_and_zeros(weight_bf16, groupsize, inner_k_tiles):
    weight_int32, scales_and_zeros = group_quantize_tensor(
        weight_bf16, n_bit=4, groupsize=groupsize
    )
    weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(
        weight_int32, inner_k_tiles
    )
    return weight_int4pack, scales_and_zeros


def linear_forward_int4(x, weight_int4pack, scales_and_zeros, out_features, groupsize):
    origin_x_size = x.size()
    x = x.reshape(-1, origin_x_size[-1])
    c = torch.ops.aten._weight_int4pack_mm(
        x, weight_int4pack, groupsize, scales_and_zeros
    )
    new_shape = origin_x_size[:-1] + (out_features,)
    c = c.reshape(new_shape)
    return c


def _check_linear_int4_k(k, groupsize=1, inner_k_tiles=1):
    return k % groupsize == 0 and k % (inner_k_tiles * 16) == 0


def replace_linear_int4(module, groupsize, inner_k_tiles, padding):
    for name, child in module.named_children():
        if isinstance(child, nn.Linear):
            if _check_linear_int4_k(child.in_features, groupsize, inner_k_tiles):
                setattr(
                    module,
                    name,
                    WeightOnlyInt4Linear(
                        child.in_features,
                        child.out_features,
                        bias=False,
                        groupsize=groupsize,
                        inner_k_tiles=inner_k_tiles,
                        padding=False,
                    ),
                )
            elif padding:
                setattr(
                    module,
                    name,
                    WeightOnlyInt4Linear(
                        child.in_features,
                        child.out_features,
                        bias=False,
                        groupsize=groupsize,
                        inner_k_tiles=inner_k_tiles,
                        padding=True,
                    ),
                )
        else:
            replace_linear_int4(child, groupsize, inner_k_tiles, padding)


class WeightOnlyInt4QuantHandler:
    def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
        self.mod = mod
        self.groupsize = groupsize
        self.inner_k_tiles = inner_k_tiles
        self.padding = padding
        assert groupsize in [32, 64, 128, 256]
        assert inner_k_tiles in [2, 4, 8]

    @torch.no_grad()
    def create_quantized_state_dict(self):
        cur_state_dict = self.mod.state_dict()
        for fqn, mod in self.mod.named_modules():
            if isinstance(mod, torch.nn.Linear):
                assert not mod.bias
                out_features = mod.out_features
                in_features = mod.in_features
                assert out_features % 8 == 0, "require out_features % 8 == 0"
                print(f"linear: {fqn}, in={in_features}, out={out_features}")

                weight = mod.weight.data
                if not _check_linear_int4_k(
                    in_features, self.groupsize, self.inner_k_tiles
                ):
                    if self.padding:
                        import torch.nn.functional as F

                        print(
                            f"warning: {fqn} is padded to satisfy in_features % 1024 == 0"
                        )
                        padded_in_features = find_multiple(in_features, 1024)
                        weight = F.pad(
                            weight, pad=(0, padded_in_features - in_features)
                        )
                    else:
                        print(
                            f"warning: {fqn} is skipped, int4 requires that in_features is 32, 64, or is divisible by 1024, "
                            + "and that groupsize and inner_k_tiles*16 evenly divide into it"
                        )
                        continue
                (
                    weight_int4pack,
                    scales_and_zeros,
                ) = prepare_int4_weight_and_scales_and_zeros(
                    weight.to(torch.bfloat16).to("cuda"),
                    self.groupsize,
                    self.inner_k_tiles,
                )
                cur_state_dict[f"{fqn}.weight"] = weight_int4pack.to("cpu")
                cur_state_dict[f"{fqn}.scales_and_zeros"] = scales_and_zeros.to("cpu")

        return cur_state_dict

    def convert_for_runtime(self):
        replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
        return self.mod


class WeightOnlyInt4Linear(torch.nn.Module):
    __constants__ = ["in_features", "out_features"]
    in_features: int
    out_features: int
    weight: torch.Tensor

    def __init__(

        self,

        in_features: int,

        out_features: int,

        bias=True,

        device=None,

        dtype=None,

        groupsize: int = 128,

        inner_k_tiles: int = 8,

        padding: bool = True,

    ) -> None:
        super().__init__()
        self.padding = padding
        if padding:
            self.origin_in_features = in_features
            in_features = find_multiple(in_features, 1024)

        self.in_features = in_features
        self.out_features = out_features
        assert not bias, "require bias=False"
        self.groupsize = groupsize
        self.inner_k_tiles = inner_k_tiles

        assert out_features % 8 == 0, "require out_features % 8 == 0"
        assert (
            in_features % (inner_k_tiles * 16) == 0
        ), "require in_features % (innerKTiles * 16) == 0"
        self.register_buffer(
            "weight",
            torch.empty(
                (
                    out_features // 8,
                    in_features // (inner_k_tiles * 16),
                    32,
                    inner_k_tiles // 2,
                ),
                dtype=torch.int32,
            ),
        )
        self.register_buffer(
            "scales_and_zeros",
            torch.empty(
                (in_features // groupsize, out_features, 2), dtype=torch.bfloat16
            ),
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        input = input.to(torch.bfloat16)
        if self.padding:
            import torch.nn.functional as F

            input = F.pad(input, pad=(0, self.in_features - self.origin_in_features))
        return linear_forward_int4(
            input, self.weight, self.scales_and_zeros, self.out_features, self.groupsize
        )


def generate_folder_name():
    now = datetime.datetime.now()
    folder_name = now.strftime("%Y%m%d_%H%M%S")
    return folder_name


@click.command()
@click.option(

    "--checkpoint-path",

    type=click.Path(path_type=Path, exists=True),

    default="checkpoints/fish-speech-1.4",

)
@click.option(

    "--mode", type=str, default="int8", help="type of quantization to perform"

)
@click.option(

    "--groupsize", type=int, default=128, help="Group size for int4 quantization."

)
@click.option("--timestamp", type=str, default="None", help="When to do quantization")
def quantize(checkpoint_path: Path, mode: str, groupsize: int, timestamp: str) -> None:

    device = "cpu"
    precision = torch.bfloat16

    print("Loading model ...")
    t0 = time.time()

    model, _ = load_model(
        checkpoint_path=checkpoint_path,
        device=device,
        precision=precision,
        compile=False,
    )
    vq_model = "firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
    now = timestamp if timestamp != "None" else generate_folder_name()

    if mode == "int8":
        print(
            "Quantizing model weights for int8 weight-only symmetric per-channel quantization"
        )
        quant_handler = WeightOnlyInt8QuantHandler(model)
        quantized_state_dict = quant_handler.create_quantized_state_dict()

        dir_name = checkpoint_path
        dst_name = Path(f"checkpoints/fs-1.2-int8-{now}")
        shutil.copytree(str(dir_name.resolve()), str(dst_name.resolve()))
        if (dst_name / vq_model).exists():
            (dst_name / vq_model).unlink()
        quantize_path = dst_name / "model.pth"

    elif mode == "int4":
        print(
            "Quantizing model weights for int4 weight-only affine per-channel groupwise quantization"
        )
        quant_handler = WeightOnlyInt4QuantHandler(model, groupsize)
        quantized_state_dict = quant_handler.create_quantized_state_dict()

        dir_name = checkpoint_path
        dst_name = Path(f"checkpoints/fs-1.2-int4-g{groupsize}-{now}")
        shutil.copytree(str(dir_name.resolve()), str(dst_name.resolve()))
        if (dst_name / vq_model).exists():
            (dst_name / vq_model).unlink()
        quantize_path = dst_name / "model.pth"

    else:
        raise ValueError(
            f"Invalid quantization mode {mode} needs to be one of [int8, int4, int4-gpptq]"
        )

    print(f"Writing quantized weights to {quantize_path}")
    quantize_path.unlink(missing_ok=True)  # remove existing file if one already there
    torch.save(quantized_state_dict, quantize_path)
    print(f"Quantization complete took {time.time() - t0:.02f} seconds")


if __name__ == "__main__":
    quantize()