File size: 8,333 Bytes
b2eb230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from dataclasses import dataclass, field
from typing import Literal

import torch

from .tokenizer import MODALITY_TOKENS, FishTokenizer

CODEBOOK_PAD_TOKEN_ID = 0


@dataclass(kw_only=True)
class BasePart:
    pass


@dataclass(kw_only=True)
class VQPart(BasePart):
    codes: torch.Tensor


@dataclass(kw_only=True)
class TextPart(BasePart):
    text: str


@dataclass(kw_only=True)
class EncodedMessage:
    tokens: torch.Tensor
    labels: torch.Tensor
    vq_mask_tokens: torch.Tensor | None = None
    vq_mask_labels: torch.Tensor | None = None
    vq_parts: list[torch.Tensor]
    vq_require_losses: torch.Tensor | None = None


@dataclass(kw_only=True)
class Message:
    role: Literal["system", "user", "assistant"]
    parts: list[VQPart | TextPart] = field(default_factory=list)
    add_im_start: bool = True
    add_im_end: bool = True
    cal_loss: bool = False
    modality: Literal["text", "voice", "interleave"] | None = None

    # By default, ignore the loss of the auto-generated im_start token
    ignore_im_start_loss: bool = True

    def encode(

        self: "Message",

        tokenizer: FishTokenizer,

    ) -> EncodedMessage:
        all_tokens = []
        all_labels = []

        # Multi-modal tokens
        vq_parts = []
        vq_masks = []

        parts = self.parts.copy()
        if self.add_im_start:
            modality_token = MODALITY_TOKENS[self.modality] if self.modality else ""
            parts.insert(0, TextPart(text=f"<|im_start|>{self.role}\n{modality_token}"))

        if self.add_im_end:
            parts.append(TextPart(text="<|im_end|>"))

        for part in parts:
            if isinstance(part, TextPart):
                tokens = torch.tensor(
                    tokenizer.encode(part.text),
                    dtype=torch.int,
                )
            elif isinstance(part, VQPart):
                curr_codes = part.codes.clone()
                tokens = torch.tensor(
                    [
                        tokenizer.semantic_id_to_token_id[i.item()]
                        for i in curr_codes[0].int()
                    ],
                    dtype=torch.int,
                )
                vq_parts.append(curr_codes)
            else:
                raise ValueError(f"Unsupported part type: {type(part)}")

            all_tokens.append(tokens)
            if isinstance(part, VQPart):
                vq_masks.append(torch.ones_like(tokens, dtype=torch.bool))
            else:
                vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool))

            if self.cal_loss:
                all_labels.append(tokens.clone())
            else:
                all_labels.append(torch.full_like(tokens, -100))

        tokens = torch.cat(all_tokens, dim=0)
        labels = torch.cat(all_labels, dim=0)
        vq_masks = torch.cat(vq_masks, dim=0)

        assert tokens.shape == labels.shape == vq_masks.shape

        if self.ignore_im_start_loss and self.add_im_start:
            labels[: len(all_tokens[0])] = -100

        return EncodedMessage(
            tokens=tokens,
            labels=labels,
            vq_parts=vq_parts,
            vq_mask_tokens=vq_masks,
            vq_mask_labels=vq_masks,
        )


@dataclass
class Conversation:
    messages: list[Message]

    def __init__(self: "Conversation", messages: list[Message] | None = None):
        self.messages = messages or []

    def encode(

        self: "Conversation",

        tokenizer: FishTokenizer,

        add_shift: bool = True,

        ignore_loss_tokens: list[str] = [],

    ) -> EncodedMessage:
        # Build the input_ids and labels
        tokens = []
        labels = []
        vq_parts = []
        vq_mask_tokens = []
        vq_mask_labels = []
        vq_require_losses = []
        ignore_loss_token_ids = [tokenizer.get_token_id(i) for i in ignore_loss_tokens]

        for message in self.messages:
            encoded = message.encode(
                tokenizer,
            )
            tokens.append(encoded.tokens)
            labels.append(encoded.labels)
            vq_parts.extend(encoded.vq_parts)
            vq_mask_tokens.append(encoded.vq_mask_tokens)
            vq_mask_labels.append(encoded.vq_mask_labels)
            vq_require_losses.extend([message.cal_loss] * len(encoded.vq_parts))

        tokens = torch.cat(tokens, dim=0)
        labels = torch.cat(labels, dim=0)
        vq_mask_tokens = torch.cat(vq_mask_tokens, dim=0)
        vq_mask_labels = torch.cat(vq_mask_labels, dim=0)
        vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool)

        if add_shift:
            tokens = tokens[:-1]
            labels = labels[1:]
            vq_mask_tokens = vq_mask_tokens[:-1]
            vq_mask_labels = vq_mask_labels[1:]

        for i in ignore_loss_token_ids:
            assert i != -100 and i is not None
            labels[labels == i] = -100

        assert tokens.dtype in [
            torch.int,
            torch.long,
        ], f"Invalid dtype: {tokens.dtype}, conv: {conversation}"

        return EncodedMessage(
            tokens=tokens,
            labels=labels,
            vq_parts=vq_parts,
            vq_mask_tokens=vq_mask_tokens,
            vq_mask_labels=vq_mask_labels,
            vq_require_losses=vq_require_losses,
        )

    def encode_for_inference(

        self: "Conversation",

        tokenizer: FishTokenizer,

        num_codebooks: int,

    ) -> EncodedMessage:
        # self.visualize(tokenizer)

        encoded = self.encode(tokenizer, add_shift=False)
        tokens = encoded.tokens
        values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int)
        values[0] = tokens

        if encoded.vq_parts is None or len(encoded.vq_parts) == 0:
            return values

        vq_parts = encoded.vq_parts
        vq_parts = [part.to(values.device) for part in vq_parts]
        vq_parts = torch.cat(vq_parts, dim=1)
        values[0, encoded.vq_mask_tokens] = vq_parts[0] + tokenizer.semantic_begin_id
        values[1:, encoded.vq_mask_tokens] = vq_parts

        return values

    def visualize(

        self: "Conversation",

        tokenizer: FishTokenizer,

        ignore_loss_tokens: list[str] = [],

    ):
        encoded = self.encode(
            tokenizer, add_shift=False, ignore_loss_tokens=ignore_loss_tokens
        )

        # Colors for alternating tokens
        colors = {
            "blue": "\033[94m",  # Light blue
            "cyan": "\033[96m",  # Cyan
            "green": "\033[92m",  # Light green
            "dark_green": "\033[32m",  # Dark green
        }
        blue_idx = 0
        green_idx = 0

        def print_in_blue(x):
            nonlocal blue_idx
            color = colors["blue"] if blue_idx % 2 == 0 else colors["cyan"]
            print(f"{color}{x}\033[0m", end="")
            blue_idx += 1

        def print_in_green(x):
            nonlocal green_idx
            color = colors["green"] if green_idx % 2 == 0 else colors["dark_green"]
            print(f"{color}{x}\033[0m", end="")
            green_idx += 1

        for tok, lab in zip(encoded.tokens, encoded.labels):
            val = tokenizer.decode([tok])

            if lab == -100:
                print_in_green(val)
            else:
                print_in_blue(val)

        print()

    def append(self: "Conversation", message: Message):
        self.messages.append(message)


if __name__ == "__main__":
    message0 = Message(
        role="user",
        parts=[
            TextPart(text="Hello, how are you?"),
            VQPart(codes=torch.zeros((4, 10))),
        ],
        cal_loss=False,
    )

    message1 = Message(
        role="assistant",
        parts=[TextPart(text="I'm fine, thank you.")],
        cal_loss=True,
    )
    conversation = Conversation([message0, message1])
    tokenizer = FishTokenizer.from_pretrained("checkpoints/Qwen2-1.5B-Instruct")
    conversation.visualize(tokenizer)

    encoded = conversation.encode(tokenizer)
    print(encoded)
    print(tokenizer.batch_decode(encoded.tokens))