File size: 20,581 Bytes
b2eb230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import math
from functools import partial
from math import prod
from typing import Callable

import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
from torch.utils.checkpoint import checkpoint


def sequence_mask(length, max_length=None):
    if max_length is None:
        max_length = length.max()
    x = torch.arange(max_length, dtype=length.dtype, device=length.device)
    return x.unsqueeze(0) < length.unsqueeze(1)


def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv1D") != -1:
        m.weight.data.normal_(mean, std)


def get_padding(kernel_size, dilation=1):
    return (kernel_size * dilation - dilation) // 2


def unpad1d(x: torch.Tensor, paddings: tuple[int, int]):
    """Remove padding from x, handling properly zero padding. Only for 1d!"""
    padding_left, padding_right = paddings
    assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
    assert (padding_left + padding_right) <= x.shape[-1]
    end = x.shape[-1] - padding_right
    return x[..., padding_left:end]


def get_extra_padding_for_conv1d(

    x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0

) -> int:
    """See `pad_for_conv1d`."""
    length = x.shape[-1]
    n_frames = (length - kernel_size + padding_total) / stride + 1
    ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
    return ideal_length - length


def pad1d(

    x: torch.Tensor,

    paddings: tuple[int, int],

    mode: str = "zeros",

    value: float = 0.0,

):
    """Tiny wrapper around F.pad, just to allow for reflect padding on small input.

    If this is the case, we insert extra 0 padding to the right

    before the reflection happen.

    """
    length = x.shape[-1]
    padding_left, padding_right = paddings
    assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
    if mode == "reflect":
        max_pad = max(padding_left, padding_right)
        extra_pad = 0
        if length <= max_pad:
            extra_pad = max_pad - length + 1
            x = F.pad(x, (0, extra_pad))
        padded = F.pad(x, paddings, mode, value)
        end = padded.shape[-1] - extra_pad
        return padded[..., :end]
    else:
        return F.pad(x, paddings, mode, value)


class FishConvNet(nn.Module):
    def __init__(

        self, in_channels, out_channels, kernel_size, dilation=1, stride=1, groups=1

    ):
        super(FishConvNet, self).__init__()
        self.conv = nn.Conv1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            dilation=dilation,
            groups=groups,
        )
        self.stride = stride
        self.kernel_size = (kernel_size - 1) * dilation + 1
        self.dilation = dilation

    def forward(self, x):
        pad = self.kernel_size - self.stride
        extra_padding = get_extra_padding_for_conv1d(
            x, self.kernel_size, self.stride, pad
        )
        x = pad1d(x, (pad, extra_padding), mode="constant", value=0)
        return self.conv(x).contiguous()

    def weight_norm(self, name="weight", dim=0):
        self.conv = weight_norm(self.conv, name=name, dim=dim)
        return self

    def remove_parametrizations(self, name="weight"):
        self.conv = remove_parametrizations(self.conv, name)
        return self


class FishTransConvNet(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, dilation=1, stride=1):
        super(FishTransConvNet, self).__init__()
        self.conv = nn.ConvTranspose1d(
            in_channels, out_channels, kernel_size, stride=stride, dilation=dilation
        )
        self.stride = stride
        self.kernel_size = kernel_size

    def forward(self, x):
        x = self.conv(x)
        pad = self.kernel_size - self.stride
        padding_right = math.ceil(pad)
        padding_left = pad - padding_right
        x = unpad1d(x, (padding_left, padding_right))
        return x.contiguous()

    def weight_norm(self, name="weight", dim=0):
        self.conv = weight_norm(self.conv, name=name, dim=dim)
        return self

    def remove_parametrizations(self, name="weight"):
        self.conv = remove_parametrizations(self.conv, name)
        return self


class ResBlock1(torch.nn.Module):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
        super().__init__()

        self.convs1 = nn.ModuleList(
            [
                FishConvNet(
                    channels, channels, kernel_size, stride=1, dilation=dilation[0]
                ).weight_norm(),
                FishConvNet(
                    channels, channels, kernel_size, stride=1, dilation=dilation[1]
                ).weight_norm(),
                FishConvNet(
                    channels, channels, kernel_size, stride=1, dilation=dilation[2]
                ).weight_norm(),
            ]
        )
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList(
            [
                FishConvNet(
                    channels, channels, kernel_size, stride=1, dilation=dilation[0]
                ).weight_norm(),
                FishConvNet(
                    channels, channels, kernel_size, stride=1, dilation=dilation[1]
                ).weight_norm(),
                FishConvNet(
                    channels, channels, kernel_size, stride=1, dilation=dilation[2]
                ).weight_norm(),
            ]
        )
        self.convs2.apply(init_weights)

    def forward(self, x):
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.silu(x)
            xt = c1(xt)
            xt = F.silu(xt)
            xt = c2(xt)
            x = xt + x
        return x

    def remove_parametrizations(self):
        for conv in self.convs1:
            conv.remove_parametrizations()
        for conv in self.convs2:
            conv.remove_parametrizations()


class ParallelBlock(nn.Module):
    def __init__(

        self,

        channels: int,

        kernel_sizes: tuple[int] = (3, 7, 11),

        dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),

    ):
        super().__init__()

        assert len(kernel_sizes) == len(dilation_sizes)

        self.blocks = nn.ModuleList()
        for k, d in zip(kernel_sizes, dilation_sizes):
            self.blocks.append(ResBlock1(channels, k, d))

    def forward(self, x):
        return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0)

    def remove_parametrizations(self):
        for block in self.blocks:
            block.remove_parametrizations()


class HiFiGANGenerator(nn.Module):
    def __init__(

        self,

        *,

        hop_length: int = 512,

        upsample_rates: tuple[int] = (8, 8, 2, 2, 2),

        upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2),

        resblock_kernel_sizes: tuple[int] = (3, 7, 11),

        resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),

        num_mels: int = 128,

        upsample_initial_channel: int = 512,

        pre_conv_kernel_size: int = 7,

        post_conv_kernel_size: int = 7,

        post_activation: Callable = partial(nn.SiLU, inplace=True),

    ):
        super().__init__()

        assert (
            prod(upsample_rates) == hop_length
        ), f"hop_length must be {prod(upsample_rates)}"

        self.conv_pre = FishConvNet(
            num_mels,
            upsample_initial_channel,
            pre_conv_kernel_size,
            stride=1,
        ).weight_norm()

        self.num_upsamples = len(upsample_rates)
        self.num_kernels = len(resblock_kernel_sizes)

        self.noise_convs = nn.ModuleList()
        self.ups = nn.ModuleList()

        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(
                FishTransConvNet(
                    upsample_initial_channel // (2**i),
                    upsample_initial_channel // (2 ** (i + 1)),
                    k,
                    stride=u,
                ).weight_norm()
            )

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel // (2 ** (i + 1))
            self.resblocks.append(
                ParallelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes)
            )

        self.activation_post = post_activation()
        self.conv_post = FishConvNet(
            ch, 1, post_conv_kernel_size, stride=1
        ).weight_norm()
        self.ups.apply(init_weights)
        self.conv_post.apply(init_weights)

    def forward(self, x):
        x = self.conv_pre(x)

        for i in range(self.num_upsamples):
            x = F.silu(x, inplace=True)
            x = self.ups[i](x)

            if self.training and self.checkpointing:
                x = checkpoint(
                    self.resblocks[i],
                    x,
                    use_reentrant=False,
                )
            else:
                x = self.resblocks[i](x)

        x = self.activation_post(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_parametrizations(self):
        for up in self.ups:
            up.remove_parametrizations()
        for block in self.resblocks:
            block.remove_parametrizations()
        self.conv_pre.remove_parametrizations()
        self.conv_post.remove_parametrizations()


# DropPath copied from timm library
def drop_path(

    x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True

):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).



    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,

    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...

    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for

    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use

    'survival rate' as the argument.



    """  # noqa: E501

    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (
        x.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""  # noqa: E501

    def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

    def extra_repr(self):
        return f"drop_prob={round(self.drop_prob,3):0.3f}"


class LayerNorm(nn.Module):
    r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.

    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with

    shape (batch_size, height, width, channels) while channels_first corresponds to inputs

    with shape (batch_size, channels, height, width).

    """  # noqa: E501

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(
                x, self.normalized_shape, self.weight, self.bias, self.eps
            )
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None] * x + self.bias[:, None]
            return x


# ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py
class ConvNeXtBlock(nn.Module):
    r"""ConvNeXt Block. There are two equivalent implementations:

    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)

    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back

    We use (2) as we find it slightly faster in PyTorch



    Args:

        dim (int): Number of input channels.

        drop_path (float): Stochastic depth rate. Default: 0.0

        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.

        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.

        kernel_size (int): Kernel size for depthwise conv. Default: 7.

        dilation (int): Dilation for depthwise conv. Default: 1.

    """  # noqa: E501

    def __init__(

        self,

        dim: int,

        drop_path: float = 0.0,

        layer_scale_init_value: float = 1e-6,

        mlp_ratio: float = 4.0,

        kernel_size: int = 7,

        dilation: int = 1,

    ):
        super().__init__()

        self.dwconv = FishConvNet(
            dim,
            dim,
            kernel_size=kernel_size,
            # padding=int(dilation * (kernel_size - 1) / 2),
            groups=dim,
        )  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, int(mlp_ratio * dim)
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x, apply_residual: bool = True):
        input = x

        x = self.dwconv(x)
        x = x.permute(0, 2, 1)  # (N, C, L) -> (N, L, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)

        if self.gamma is not None:
            x = self.gamma * x

        x = x.permute(0, 2, 1)  # (N, L, C) -> (N, C, L)
        x = self.drop_path(x)

        if apply_residual:
            x = input + x

        return x


class ConvNeXtEncoder(nn.Module):
    def __init__(

        self,

        input_channels: int = 3,

        depths: list[int] = [3, 3, 9, 3],

        dims: list[int] = [96, 192, 384, 768],

        drop_path_rate: float = 0.0,

        layer_scale_init_value: float = 1e-6,

        kernel_size: int = 7,

    ):
        super().__init__()
        assert len(depths) == len(dims)

        self.downsample_layers = nn.ModuleList()
        stem = nn.Sequential(
            FishConvNet(
                input_channels,
                dims[0],
                kernel_size=7,
                # padding=3,
                # padding_mode="replicate",
                # padding_mode="zeros",
            ),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
        )
        self.downsample_layers.append(stem)

        for i in range(len(depths) - 1):
            mid_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv1d(dims[i], dims[i + 1], kernel_size=1),
            )
            self.downsample_layers.append(mid_layer)

        self.stages = nn.ModuleList()
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]

        cur = 0
        for i in range(len(depths)):
            stage = nn.Sequential(
                *[
                    ConvNeXtBlock(
                        dim=dims[i],
                        drop_path=dp_rates[cur + j],
                        layer_scale_init_value=layer_scale_init_value,
                        kernel_size=kernel_size,
                    )
                    for j in range(depths[i])
                ]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv1d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            nn.init.constant_(m.bias, 0)

    def forward(

        self,

        x: torch.Tensor,

    ) -> torch.Tensor:
        for i in range(len(self.downsample_layers)):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)

        return self.norm(x)


class FireflyArchitecture(nn.Module):
    def __init__(

        self,

        backbone: nn.Module,

        head: nn.Module,

        quantizer: nn.Module,

        spec_transform: nn.Module,

    ):
        super().__init__()

        self.backbone = backbone
        self.head = head
        self.quantizer = quantizer
        self.spec_transform = spec_transform
        self.downsample_factor = math.prod(self.quantizer.downsample_factor)

    def forward(self, x: torch.Tensor, template=None, mask=None) -> torch.Tensor:
        if self.spec_transform is not None:
            x = self.spec_transform(x)

        x = self.backbone(x)
        if mask is not None:
            x = x * mask

        if self.quantizer is not None:
            vq_result = self.quantizer(x)
            x = vq_result.z

            if mask is not None:
                x = x * mask

        x = self.head(x, template=template)

        if x.ndim == 2:
            x = x[:, None, :]

        if self.vq is not None:
            return x, vq_result

        return x

    def encode(self, audios, audio_lengths):
        audios = audios.float()

        mels = self.spec_transform(audios)
        mel_lengths = audio_lengths // self.spec_transform.hop_length
        mel_masks = sequence_mask(mel_lengths, mels.shape[2])
        mel_masks_float_conv = mel_masks[:, None, :].float()
        mels = mels * mel_masks_float_conv

        # Encode
        encoded_features = self.backbone(mels) * mel_masks_float_conv
        feature_lengths = mel_lengths // self.downsample_factor

        return self.quantizer.encode(encoded_features), feature_lengths

    def decode(self, indices, feature_lengths) -> torch.Tensor:
        mel_masks = sequence_mask(
            feature_lengths * self.downsample_factor,
            indices.shape[2] * self.downsample_factor,
        )
        mel_masks_float_conv = mel_masks[:, None, :].float()
        audio_lengths = (
            feature_lengths * self.downsample_factor * self.spec_transform.hop_length
        )

        audio_masks = sequence_mask(
            audio_lengths,
            indices.shape[2] * self.downsample_factor * self.spec_transform.hop_length,
        )
        audio_masks_float_conv = audio_masks[:, None, :].float()

        z = self.quantizer.decode(indices) * mel_masks_float_conv
        x = self.head(z) * audio_masks_float_conv

        return x, audio_lengths

    def remove_parametrizations(self):
        if hasattr(self.backbone, "remove_parametrizations"):
            self.backbone.remove_parametrizations()

        if hasattr(self.head, "remove_parametrizations"):
            self.head.remove_parametrizations()

    @property
    def device(self):
        return next(self.parameters()).device