File size: 9,923 Bytes
b2eb230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import base64
import ctypes
import io
import json
import os
import struct
from dataclasses import dataclass
from enum import Enum
from typing import AsyncGenerator, Union

import httpx
import numpy as np
import ormsgpack
import soundfile as sf

from .schema import (
    ServeMessage,
    ServeRequest,
    ServeTextPart,
    ServeVQGANDecodeRequest,
    ServeVQGANEncodeRequest,
    ServeVQPart,
)


class CustomAudioFrame:
    def __init__(self, data, sample_rate, num_channels, samples_per_channel):
        if len(data) < num_channels * samples_per_channel * ctypes.sizeof(
            ctypes.c_int16
        ):
            raise ValueError(
                "data length must be >= num_channels * samples_per_channel * sizeof(int16)"
            )

        self._data = bytearray(data)
        self._sample_rate = sample_rate
        self._num_channels = num_channels
        self._samples_per_channel = samples_per_channel

    @property
    def data(self):
        return memoryview(self._data).cast("h")

    @property
    def sample_rate(self):
        return self._sample_rate

    @property
    def num_channels(self):
        return self._num_channels

    @property
    def samples_per_channel(self):
        return self._samples_per_channel

    @property
    def duration(self):
        return self.samples_per_channel / self.sample_rate

    def __repr__(self):
        return (
            f"CustomAudioFrame(sample_rate={self.sample_rate}, "
            f"num_channels={self.num_channels}, "
            f"samples_per_channel={self.samples_per_channel}, "
            f"duration={self.duration:.3f})"
        )


class FishE2EEventType(Enum):
    SPEECH_SEGMENT = 1
    TEXT_SEGMENT = 2
    END_OF_TEXT = 3
    END_OF_SPEECH = 4
    ASR_RESULT = 5
    USER_CODES = 6


@dataclass
class FishE2EEvent:
    type: FishE2EEventType
    frame: np.ndarray = None
    text: str = None
    vq_codes: list[list[int]] = None


client = httpx.AsyncClient(
    timeout=None,
    limits=httpx.Limits(
        max_connections=None,
        max_keepalive_connections=None,
        keepalive_expiry=None,
    ),
)


class FishE2EAgent:
    def __init__(self):
        self.llm_url = "http://localhost:8080/v1/chat"
        self.vqgan_url = "http://localhost:8080"
        self.client = httpx.AsyncClient(timeout=None)

    async def get_codes(self, audio_data, sample_rate):
        audio_buffer = io.BytesIO()
        sf.write(audio_buffer, audio_data, sample_rate, format="WAV")
        audio_buffer.seek(0)
        # Step 1: Encode audio using VQGAN
        encode_request = ServeVQGANEncodeRequest(audios=[audio_buffer.read()])
        encode_request_bytes = ormsgpack.packb(
            encode_request, option=ormsgpack.OPT_SERIALIZE_PYDANTIC
        )
        encode_response = await self.client.post(
            f"{self.vqgan_url}/v1/vqgan/encode",
            data=encode_request_bytes,
            headers={"Content-Type": "application/msgpack"},
        )
        encode_response_data = ormsgpack.unpackb(encode_response.content)
        codes = encode_response_data["tokens"][0]
        return codes

    async def stream(

        self,

        system_audio_data: np.ndarray | None,

        user_audio_data: np.ndarray | None,

        sample_rate: int,

        num_channels: int,

        chat_ctx: dict | None = None,

    ) -> AsyncGenerator[bytes, None]:

        if system_audio_data is not None:
            sys_codes = await self.get_codes(system_audio_data, sample_rate)
        else:
            sys_codes = None
        if user_audio_data is not None:
            user_codes = await self.get_codes(user_audio_data, sample_rate)
        # Step 2: Prepare LLM request
        if chat_ctx is None:
            sys_parts = [
                ServeTextPart(
                    text='您是由 Fish Audio 设计的语音助手,提供端到端的语音交互,实现无缝用户体验。首先转录用户的语音,然后使用以下格式回答:"Question: [用户语音]\n\nAnswer: [你的回答]\n"。'
                ),
            ]
            if system_audio_data is not None:
                sys_parts.append(ServeVQPart(codes=sys_codes))
            chat_ctx = {
                "messages": [
                    ServeMessage(
                        role="system",
                        parts=sys_parts,
                    ),
                ],
            }
        else:
            if chat_ctx["added_sysaudio"] is False and sys_codes:
                chat_ctx["added_sysaudio"] = True
                chat_ctx["messages"][0].parts.append(ServeVQPart(codes=sys_codes))

        prev_messages = chat_ctx["messages"].copy()
        if user_audio_data is not None:
            yield FishE2EEvent(
                type=FishE2EEventType.USER_CODES,
                vq_codes=user_codes,
            )
        else:
            user_codes = None

        request = ServeRequest(
            messages=prev_messages
            + (
                [
                    ServeMessage(
                        role="user",
                        parts=[ServeVQPart(codes=user_codes)],
                    )
                ]
                if user_codes
                else []
            ),
            streaming=True,
            num_samples=1,
        )

        # Step 3: Stream LLM response and decode audio
        buffer = b""
        vq_codes = []
        current_vq = False

        async def decode_send():
            nonlocal current_vq
            nonlocal vq_codes

            data = np.concatenate(vq_codes, axis=1).tolist()
            # Decode VQ codes to audio
            decode_request = ServeVQGANDecodeRequest(tokens=[data])
            decode_response = await self.client.post(
                f"{self.vqgan_url}/v1/vqgan/decode",
                data=ormsgpack.packb(
                    decode_request,
                    option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
                ),
                headers={"Content-Type": "application/msgpack"},
            )
            decode_data = ormsgpack.unpackb(decode_response.content)

            # Convert float16 audio data to int16
            audio_data = np.frombuffer(decode_data["audios"][0], dtype=np.float16)
            audio_data = (audio_data * 32768).astype(np.int16).tobytes()

            audio_frame = CustomAudioFrame(
                data=audio_data,
                samples_per_channel=len(audio_data) // 2,
                sample_rate=44100,
                num_channels=1,
            )
            yield FishE2EEvent(
                type=FishE2EEventType.SPEECH_SEGMENT,
                frame=audio_frame,
                vq_codes=data,
            )

            current_vq = False
            vq_codes = []

        async with self.client.stream(
            "POST",
            self.llm_url,
            data=ormsgpack.packb(request, option=ormsgpack.OPT_SERIALIZE_PYDANTIC),
            headers={"Content-Type": "application/msgpack"},
        ) as response:

            async for chunk in response.aiter_bytes():
                buffer += chunk

                while len(buffer) >= 4:
                    read_length = struct.unpack("I", buffer[:4])[0]
                    if len(buffer) < 4 + read_length:
                        break

                    body = buffer[4 : 4 + read_length]
                    buffer = buffer[4 + read_length :]
                    data = ormsgpack.unpackb(body)

                    if data["delta"] and data["delta"]["part"]:
                        if current_vq and data["delta"]["part"]["type"] == "text":
                            async for event in decode_send():
                                yield event
                        if data["delta"]["part"]["type"] == "text":
                            yield FishE2EEvent(
                                type=FishE2EEventType.TEXT_SEGMENT,
                                text=data["delta"]["part"]["text"],
                            )
                        elif data["delta"]["part"]["type"] == "vq":
                            vq_codes.append(np.array(data["delta"]["part"]["codes"]))
                            current_vq = True

        if current_vq and vq_codes:
            async for event in decode_send():
                yield event

        yield FishE2EEvent(type=FishE2EEventType.END_OF_TEXT)
        yield FishE2EEvent(type=FishE2EEventType.END_OF_SPEECH)


# Example usage:
async def main():
    import torchaudio

    agent = FishE2EAgent()

    # Replace this with actual audio data loading
    with open("uz_story_en.m4a", "rb") as f:
        audio_data = f.read()

    audio_data, sample_rate = torchaudio.load("uz_story_en.m4a")
    audio_data = (audio_data.numpy() * 32768).astype(np.int16)

    stream = agent.stream(audio_data, sample_rate, 1)
    if os.path.exists("audio_segment.wav"):
        os.remove("audio_segment.wav")

    async for event in stream:
        if event.type == FishE2EEventType.SPEECH_SEGMENT:
            # Handle speech segment (e.g., play audio or save to file)
            with open("audio_segment.wav", "ab+") as f:
                f.write(event.frame.data)
        elif event.type == FishE2EEventType.ASR_RESULT:
            print(event.text, flush=True)
        elif event.type == FishE2EEventType.TEXT_SEGMENT:
            print(event.text, flush=True, end="")
        elif event.type == FishE2EEventType.END_OF_TEXT:
            print("\nEnd of text reached.")
        elif event.type == FishE2EEventType.END_OF_SPEECH:
            print("End of speech reached.")


if __name__ == "__main__":
    import asyncio

    asyncio.run(main())