Spaces:
Running
on
L4
Running
on
L4
File size: 11,458 Bytes
0a3525d 82d5f8b a1f69ad 93ab4bd 82d5f8b a1f69ad 82d5f8b 0a3525d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import subprocess as sp
import os
# Download if not exists
os.makedirs("checkpoints", exist_ok=True)
if not os.path.exists("checkpoints/text2semantic-medium-v1-2k.pth"):
print("Downloading text2semantic-medium-v1-2k.pth")
sp.run(["wget", "-q", "-O", "checkpoints/text2semantic-medium-v1-2k.pth", os.environ["CKPT_SEMANTIC"]])
if not os.path.exists("checkpoints/vq-gan-group-fsq-2x1024.pth"):
print("Downloading vq-gan-group-fsq-2x1024.pth")
sp.run(["wget", "-q", "-O", "checkpoints/vq-gan-group-fsq-2x1024.pth", os.environ["CKPT_VQGAN"]])
print("All checkpoints downloaded")
import html
from argparse import ArgumentParser
from io import BytesIO
from pathlib import Path
import gradio as gr
import librosa
import spaces
import torch
from loguru import logger
from torchaudio import functional as AF
from transformers import AutoTokenizer
from tools.llama.generate import generate_long
from tools.llama.generate import load_model as load_llama_model
from tools.vqgan.inference import load_model as load_vqgan_model
# Make einx happy
os.environ["EINX_FILTER_TRACEBACK"] = "false"
HEADER_MD = """# Fish Speech
A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).
由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成.
You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1) 找到模型.
Related code are released under BSD-3-Clause License, and weights are released under CC BY-NC-SA 4.0 License.
相关代码使用 BSD-3-Clause 许可证发布,权重使用 CC BY-NC-SA 4.0 许可证发布.
We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.
"""
TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本."""
def build_html_error_message(error):
return f"""
<div style="color: red; font-weight: bold;">
{html.escape(error)}
</div>
"""
@spaces.GPU
def inference(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_k,
top_p,
repetition_penalty,
temperature,
speaker=None,
):
if len(reference_text) > 100:
return None, "Ref text is too long, please keep it under 100 characters."
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
return None, "Text is too long, please keep it under 1000 characters."
# Parse reference audio aka prompt
if enable_reference_audio and reference_audio is not None:
# reference_audio_sr, reference_audio_content = reference_audio
reference_audio_content, _ = librosa.load(
reference_audio, sr=vqgan_model.sampling_rate, mono=True
)
audios = torch.from_numpy(reference_audio_content).to(vqgan_model.device)[
None, None, :
]
logger.info(
f"Loaded audio with {audios.shape[2] / vqgan_model.sampling_rate:.2f} seconds"
)
# VQ Encoder
audio_lengths = torch.tensor(
[audios.shape[2]], device=vqgan_model.device, dtype=torch.long
)
prompt_tokens = vqgan_model.encode(audios, audio_lengths)[0][0]
# LLAMA Inference
result = generate_long(
model=llama_model,
tokenizer=llama_tokenizer,
device=vqgan_model.device,
decode_one_token=decode_one_token,
max_new_tokens=max_new_tokens,
text=text,
top_k=int(top_k) if top_k > 0 else None,
top_p=top_p,
repetition_penalty=repetition_penalty,
temperature=temperature,
compile=args.compile,
iterative_prompt=chunk_length > 0,
chunk_length=chunk_length,
max_length=args.max_length,
speaker=speaker if speaker else None,
prompt_tokens=prompt_tokens if enable_reference_audio else None,
prompt_text=reference_text if enable_reference_audio else None,
)
codes = next(result)
# VQGAN Inference
feature_lengths = torch.tensor([codes.shape[1]], device=vqgan_model.device)
fake_audios = vqgan_model.decode(
indices=codes[None], feature_lengths=feature_lengths, return_audios=True
)[0, 0]
fake_audios = fake_audios.float().cpu().numpy()
return (vqgan_model.sampling_rate, fake_audios), None
def build_app():
with gr.Blocks(theme=gr.themes.Base()) as app:
gr.Markdown(HEADER_MD)
# Use light theme by default
app.load(
None,
None,
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', 'light');window.location.search = params.toString();}}",
)
# Inference
with gr.Row():
with gr.Column(scale=3):
text = gr.Textbox(
label="Input Text / 输入文本",
placeholder=TEXTBOX_PLACEHOLDER,
lines=15,
)
with gr.Row():
with gr.Tab(label="Advanced Config / 高级参数"):
chunk_length = gr.Slider(
label="Iterative Prompt Length, 0 means off / 迭代提示长度,0 表示关闭",
minimum=0,
maximum=100,
value=30,
step=8,
)
max_new_tokens = gr.Slider(
label="Maximum tokens per batch, 0 means no limit / 每批最大令牌数,0 表示无限制",
minimum=128,
maximum=512,
value=512, # 0 means no limit
step=8,
)
top_k = gr.Slider(
label="Top-K", minimum=0, maximum=5, value=0, step=1
)
top_p = gr.Slider(
label="Top-P", minimum=0, maximum=1, value=0.7, step=0.01
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
minimum=0,
maximum=2,
value=1.5,
step=0.01,
)
temperature = gr.Slider(
label="Temperature",
minimum=0,
maximum=2,
value=0.7,
step=0.01,
)
# speaker = gr.Textbox(
# label="Speaker / 说话人",
# placeholder="Type name of the speaker / 输入说话人的名称",
# lines=1,
# )
with gr.Tab(label="Reference Audio / 参考音频"):
gr.Markdown(
"5 to 10 seconds of reference audio, useful for specifying speaker. \n5 到 10 秒的参考音频,适用于指定音色。"
)
enable_reference_audio = gr.Checkbox(
label="Enable Reference Audio / 启用参考音频",
)
reference_audio = gr.Audio(
label="Reference Audio / 参考音频",
type="filepath",
)
reference_text = gr.Textbox(
label="Reference Text / 参考文本",
placeholder="参考文本",
lines=1,
)
with gr.Column(scale=3):
with gr.Row():
error = gr.HTML(label="Error Message / 错误信息")
with gr.Row():
audio = gr.Audio(label="Generated Audio / 音频", type="numpy")
with gr.Row():
with gr.Column(scale=3):
generate = gr.Button(
value="\U0001F3A7 Generate / 合成", variant="primary"
)
# # Submit
generate.click(
inference,
[
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_k,
top_p,
repetition_penalty,
temperature,
# speaker,
],
[audio, error],
)
return app
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--llama-checkpoint-path",
type=Path,
default="checkpoints/text2semantic-medium-v1-2k.pth",
)
parser.add_argument(
"--llama-config-name", type=str, default="dual_ar_2_codebook_medium"
)
parser.add_argument(
"--vqgan-checkpoint-path",
type=Path,
default="checkpoints/vq-gan-group-fsq-2x1024.pth",
)
parser.add_argument("--vqgan-config-name", type=str, default="vqgan_pretrain")
parser.add_argument("--tokenizer", type=str, default="fishaudio/fish-speech-1")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--half", action="store_true")
parser.add_argument("--max-length", type=int, default=2048)
parser.add_argument("--compile", action="store_true")
parser.add_argument("--max-gradio-length", type=int, default=1024)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
args.precision = torch.half if args.half else torch.bfloat16
logger.info("Loading Llama model...")
llama_model, decode_one_token = load_llama_model(
config_name=args.llama_config_name,
checkpoint_path=args.llama_checkpoint_path,
device=args.device,
precision=args.precision,
max_length=args.max_length,
compile=args.compile,
)
llama_tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
logger.info("Llama model loaded, loading VQ-GAN model...")
vqgan_model = load_vqgan_model(
config_name=args.vqgan_config_name,
checkpoint_path=args.vqgan_checkpoint_path,
device=args.device,
)
logger.info("VQ-GAN model loaded, warming up...")
# Dry run to check if the model is loaded correctly and avoid the first-time latency
inference(
text="Hello, world!",
enable_reference_audio=False,
reference_audio=None,
reference_text="",
max_new_tokens=0,
chunk_length=0,
top_k=0, # 0 means no limit
top_p=0.7,
repetition_penalty=1.5,
temperature=0.7,
speaker=None,
)
logger.info("Warming up done, launching the web UI...")
app = build_app()
app.launch(show_api=False)
|